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Abstract

The transition from conventional to renewable power generation has a large impact
on when and where electricity is generated. To deal with this change the electric
transmission network needs to be adapted and expanded. Expanding the network has
two benefits. Electricity can be generated at locations with high renewable energy
potentials and then transmitted to the consumers via the transmission network.
Without the expansion the existing transmission network may be unable to cope
with the transmission needs, thus requiring power generation at locations closer
to the energy demand, but at less well-suited locations. Second, renewable energy
generation (e.g., from wind or solar irradiation) is typically volatile. Having strong
interconnections between regions within a large geographical area allows to the
smooth the generation and demand over that area. This smoothing makes them more
predictable and the volatility of the generation easier to handle.
In this thesis we consider problems that arise when designing and expanding

electric transmission networks. As the first step we formalize them such that we
have a precise mathematical problem formulation. Afterwards, we pursue two goals:
first, improve the theoretical understanding of these problems by determining their
computational complexity under various restrictions, and second, develop algorithms
that can solve these problems.
A basic formulation of the expansion planning problem models the network as a

graph and potential new transmission lines as edges that may be added to the graph.
We formalize this formulation as the problems Flow Expansion and Electrical
Flow Expansion, which differ in the flow model (graph-theoretical vs. electrical
flow). We prove that in general the decision variants of these problems are N P-
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complete, even if the network structure is already very simple, e.g., a star. For certain
restrictions, we give polynomial-time algorithms as well. Our results delineate
the boundary between the N P-complete cases and the cases that can be solved in
polynomial time.
The basic expansion planning problems mentioned above ignore that real trans-

mission networks should still be able to operate if a small part of the transmission
equipment fails. We employ a criticality measure from the literature, which measures
the dynamic effects of the failure of a single transmission line on the whole transmis-
sion network. In a first step, we compare this criticality measure to the well-used
𝑁 − 1 criterion. Moreover, we formulate this criticality measure as a set of linear
inequalities, which may be added to any formulation of a network design problem as a
mathematical program. To exemplify this usage, we introduce the criticality criterion
in two transmission network expansion planning problems, which can be formulated
as mixed-integer linear programs (MILPs). We then evaluate the performance of
solving the MILPs. Finally, we develop a greedy heuristic for one of the two problems,
and compare its performance to solving the MILP.

Microgrids play an important role in the electrification of rural areas. We formalize
the design of the cable layout of a microgrid as a geometric optimization problem,
which we call Microgrid Cable Layout. A key difference to the network design
problems above is that there is no graph with candidate edges given. Instead, edges
and new vertices may be placed anywhere in the plane. We present a hybrid genetic
algorithm for Microgrid Cable Layout and evaluate it on a set of benchmark
instances, which include a real microgrid in the Democratic Republic of the Congo.

Finally, instead of expanding electrical networks one may place electric equipment
such as FACTS (flexible AC transmission system). These influence the properties of
the transmission lines such that the network can be used more efficiently. We apply a
model of FACTS from the literature and study the problem whether a given network
with given positions and properties of the FACTS admits an electrical flow provided
that FACTS are set appropriately. We call such a flow a FACTS flow. In this thesis we
prove that in general it is N P-complete to determine whether a network admits a
FACTS flow, and we present polynomial-time algorithms for two restricted cases.
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1 Introduction

In the Paris Agreement the United Nations (UN) have pledged to keep “the global
average temperature to well below 2 ◦C above pre-industrial levels” and to make
efforts to limit the temperature increase to 1.5 ◦C above pre-industrial levels” [Uni15a].
To reach this goal a reduction of global greenhouse gas emissions is necessary.
In order to still satisfy the global energy demand there needs to be a shift from
fossil fuels to renewable energy sources. Increasing the share of these in the global
energy mix until 2030 is also part of the UN’s Sustainable Development Goals (SDGs)
as SDG 7.2 [Uni15b]. A recent report on these goals concluded that the share of
renewable energy in total final energy consumption increased slightly from 16.4 %
in 2010 to 17.1 % in 2018 [Uni21, p. 41]. The main contributor of this increase was
the electricity sector with an increase from 19.7 % to 25.4 % in the same time period.
Similar data is reported in the latest REN21 global status report with an increase
from 20.4 % in 2011 to 28.3 % in 2021.
In their European Green Deal the European Commission formulated the goal to

achieve climate neutrality in the European Union (EU) by 2050 [Eur19]. According
to the 2030 targets of the EU at least 32 % of energy consumed shall be obtained from
renewable energy sources. As a reference, in 2020 the share of renewables in the
gross final energy consumption was 22.1 % [Eur22, p. 142].
Even though electricity makes up only about 20 % of the global final energy con-

sumption (21 % according to [Uni21], 17 % for the power sector according to [Ren22b]),
it plays a crucial role in reducing greenhouse gas emissions. Machines powered com-
monly by fossil fuels are replaced by electric ones. For example in the transportation
sector, battery electric vehicles slowly replace vehicles with internal combustion
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engines. In the heating sector, one may install electric heat pumps instead of oil and
gas heating. Therefore, it is expected that the share of electricity in the total energy
consumption increases. Based on current and announced policies the International
Energy Agency (IEA) estimates that the share of electricity among the useful energy
consumption rises from 30 % in 2020 to 34 % in 2030 [Int21b, p. 197]. This relative
increase corresponds to an absolute increase as well. They estimate that the global
electricity demand grows from 23 300 TW h in 2020 to almost 30 000 TW h in 2030
and 42 000 TW h in 2050 [Int21b, p. 195].

Increasing the share of renewables in the electricity production presents challenges.
Conventional fossil fuel based power plants have a much higher power capacity than
wind turbines or photovoltaic power plants. Consequently, there need to be much
more of these. Moreover, renewable power plants have different requirements on the
environment in which they are built. For example, wind turbines are more effective in
areas with constantly high wind speeds. This in particular leads to the commissioning
of offshore wind parks.

But renewable power plants are not only more distributed spatially than conven-
tional power plants, they also depend strongly on the local environment and weather.
For example, a photovoltaic installation can only produce electricity when the sun
is shining, and a wind turbine requires sufficiently high (but not too high) wind
speed. These problems can be alleviated by selecting sites for the installations where
the conditions allow for a higher and more constant energy yield, but this does
not address the problems completely. The dependency of renewable generation on
external factors such as weather means that they cannot be used whenever needed,
but rather they must be used whenever the conditions allow. This means that they
are non-dispatchable. The intermittent nature of renewables and the high variability
in their power generation makes managing the electricity system much harder.

Moreover, to ensure constant access to electricity, one needs to deal with the fact
that there may be times when renewable generation is insufficient to meet the current
demand. In particular, this may happen when there is little wind and it is cloudy or
at night. Then, neither wind turbines nor photovoltaic plants are able to generate
much electric power. In particular in Germany, such a time period that lasts more
than one day is known under the German term Dunkelflaute, which can be roughly
translated as “dark wind lull” [LBWR21]. In countries surrounding the North Sea
and the Baltic Sea such events occur mainly in November, December, and January,
and on average 2 to 4 days in each of these months [LBWR21]. There are several, not
mutually exclusive ways to address the challenges posed by the increased volatility
of the electricity generation.
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Storage. Increase the ability of the power grid to store energy in times of electricity
surplus, which can later be fed into the grid in times of electricity deficit. There are
numerous storage technologies available—all with different characteristics such as
the storage duration, the amount of energy that can be stored, the peak power that
can be delivered, and the costs of storage per unit of energy.

One form of energy storage uses basically the same technology as small electronic
devices: batteries, and in fact, often even lithium-ion batteries. Examples of such
batteries with a storage capacity of up to a few MW h integrated into wind farms
can be found in [Win17]. But there are also larger storage facilities, for example the
Moss Landing Energy Storage Facility in California with a total capacity of 400 MW
and 1600 MW h [Vis21]. The owner claims this to be the world’s largest lithium-ion
battery storage system.
But surplus electric energy can also be stored in different energy forms. In fact,

in the EU pumped hydro storage is the main form of energy storage [Eur+20]. It is
also possible to store energy in the form of heat, e.g., using molten salt. Often, the
medium is heated directly by solar irradiance in concentrated solar power plants,
allowing the electricity production to be shifted into the night [BOB21]. But there is
also a demonstration projects that uses surplus electricity to heat a medium (vulcanic
rocks in this case), and later transforms the stored thermal energy again to electric
energy [NS 20, Sie22]. In this project the maximum storage duration is given as seven
days, and it may power up to 1500 households [NS 20].

Grid expansion. Increase the ability of the power grid to transmit power from far
away regions by adding transmission capacities to the grid, typically by building
new transmission lines. This allows the variability of the electricity generation
to be smoothed over a larger area. The larger the area is, the less likely it is that
all parts of the area are affected by the weather in the same way. For example, a
study encompassing 11 countries bordering the North and Baltic Sea concluded that
interconnecting the countries reduces the mean frequency of a Dunkelflaute from
3–9 % for the individual countries to 3.5 % for the whole region [LBWR21].
For example, in Germany the Bundesnetzagentur—Germany’s regulatory body

for, among others, electricity—mentions 101 expansion projects of the transmission
grid [Bun22]. The total length of these projects is approximately 12 256 km, of which
2005 km have been completed. Notable projects among these are the long distance
high-voltage direct current (DC) lines: A-Nord, Ultranet, SuedLink, and SuedOstLink.
They run roughly north to south and connect the regions in Northern Germany with
high wind power capacities to South Germany.

Similarly, in the United States of America (USA) there are several projects that aim
to increase the transmission capacity between areas with large renewable generation
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andmore populated areas. For example, both theGatewayWest [Pac21] and TransWest
Express shall connect wind farms in Wyoming to consumers on the West Coast. Both
include more than 1000 km of high-voltage transmission lines. A similar project is
the Grain Belt Express connecting wind farms in Kansas to Indiana via more than
1250 km of transmission lines [Inv22].

Demand response. Shift the electricity load from times when renewable energy is
scarce to times when it is abundant. In this way the demand follows the availability
of electricity generation. This represents a change of the way people interact with
the electricity grid away from the current assumption that the electricity generation
is responsible for matching the electricity demand at any time.
A history of demand response (and the more general demand-side management),

focused mostly on the USA, can be found in [Gel17]. One possibility for demand re-
sponse is to exploit the flexibility offered by power-to-heat. For example, Gjorgievski
et al. [GMAD21] list 34 projects of power-to-heat demand response. One of these
aims to reduce the peak loads in the Australian power grid by managing residential
air conditioners [Aus22]. A review of 16 field studies on the suitability and maturity
of demand response from power-to-heat concludes that “significant benefits have
been demonstrated” [Koh+19, p. 543].
A tighter coupling of the electricity grid with other sectors, in particular, the

heating sector, allows to exploit the flexibilities there as well. In the paragraph on
energy storage above it is mentioned that surplus electric energy may be used to heat
materials such as sand and the heat is later converted to electric energy again [NS
20]. There are similar projects that use the stored heat directly in the form of district
heating [Ren22a]. One may also consider the combination of the two uses such that
the stored heat may either be transformed to electric energy or directly used based
on what is more beneficial at the moment. Such a combined approach showcases the
potential tighter sector coupling has for the future energy system.

It should be noted that thementioned techniques should not be consideredmutually
exclusive. A cost-effective solution will likely use a combination of the techniques
presented above. There are modeling tools that can help finding good solutions, e.g.,
[ZMT11, BHS18, Thu+18, DIg22, HOM22]. An overview over modeling tools for
energy and electrical systems is given by Ringkjøb, Haugan, and Solbrekke [RHS18].
The exact results however strongly depend on the assumptions the planners make.
But grid expansion is often part of a good solution [SSH12, Bro+18, CPHL21, Gea+21].
One study indicates that allowing for more additional transmission capacity reduces
the overall system costs up to some optimal transmission capacity [Bro+18]. In
another study the scenario with the lowest investment in transmission expansion
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has the highest overall system costs, and in general it finds that their solutions invest
more in transmission expansion than in storage [CPHL21]. This shows that optimal
solutions to the models typically include grid expansion.

In practice, there are multiple examples where missing grid infrastructure slows the
adoption of renewable energy sources. For example, in Germany offshore wind instal-
lations that were awarded in 2018 were postponed until the necessary grid infrastruc-
ture is built. It is expected that they are commissioned in 2022 or 2023 [Win21, p. 13].
Similarly, transmission and distribution grid expansion is required in Poland [Int21a,
p. 65] and Latin America [Int21a, p. 71]. In general, the IEA views limits in the
transmission and distribution infrastructure as one of the three key challenges to add
more photovoltaic and wind power installations [Int21a, p. 39].

All these modeling results and real-world observations indicate that the expansion
of the power grid will likely play a crucial role in decarbonizing the energy system.
In this thesis we therefore focus on the computational problems that occur in the
context of expanding electric transmission grids.

Literature on Transmission Network Expansion

Planning

Expanding the electric transmission grid is a vast topic, which raises a lot of research
questions. Coupled with the high relevance of the topic, it is not surprising that there
is a huge body of literature on transmission network expansion planning. We give a
brief overview over the research area, and include pointers to literature for further
reading.

The book edited by Lumbreras, Abdi, and Ramos [LAR21] gives a good introduction
to transmission network expansion planning problems. A basic formulation considers
a given power grid and potential candidate lines that may be added to fulfill future
demand. The objective is to minimize the investment costs, the operation costs, and
the reliability costs, i.e., costs that occur to ensure the reliable operation of the power
grid such as costs of load curtailment. There are multiple choices for the power flow
model (transport model, which is a graph-theoretical flow; linearized alternating
current (AC) power flow, often called DC power flow; and AC power flow). But for
transmission network expansion planning the most common choice is the linearized
AC power flow model [LARM21, p. 7]. For a comparison of different power flow
models in the context of expansion planning problems see [NHB22]. In one of the
first works on transmission network expansion planning, Garver [Gar70] presents a
heuristic for the basic transmission network expansion planning problem.
This basic formulation may be extended in many ways; see the surveys [LR16b,
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MSAR18, GYG19] for an overview. Designing transmission networks involves pre-
dictions of future requirements and operational constraints, e.g., the future power
demand and the power generation by renewable sources. These uncertainties may
be modeled via different scenarios, e.g., in [ZCZ17, ZLC19, Gha+21, Muñ+21]. A
different way to tackle these problems is robust optimization, where the possible
values of stochastic variables is given as so-called uncertainty sets. Robust solutions
shall be feasible under all possible realizations of these variables [BBC11]. Robust
optimization has been applied successfully to transmission network expansion plan-
ning [DA16, Lia+21].
Building storage may be considered together with the grid expansion [BHS18,

Hem21]. Moreover, one may include generation expansion planning, i.e., the option
to increase the generation capacity of existing generators or to build new generators.
This may be modeled as a mixed-integer linear program (MILP) [Li+22].

Expanding the grid may also be combined with allowing lines to be switched
off [KSK10, MPS10, MNMR20]. Using the linearized AC power flow this problem
can be modeled as an MILP. This setting may further be extended by considering
uncertainty [VP12, VBP13].
One may also consider expansion planning with FACTS (flexible AC transmis-

sion system). These are devices that allow the operator to influence the power
flow on the lines. One study compares building FACTS to adding new transmission
lines [BOGR11]. The authors find that building FACTS allows postponing the ad-
dition of new transmission lines. Hence, one does not need to commit to building
transmission lines early, which allows considering future information when deciding
whether and which additional lines are needed. Transmission network expansion
planning with the ability to place FACTS can be formulated as an MILP [LPC20].
After the problem formulation has been fixed, it needs to be solved. While the

exact solution method depends on the given problem formulation, they typically
fall into few classes [GYG19]. Often meta-heuristics such as genetic algorithms are
used, in particular if multiple objectives are considered [CM21, p. 33]. They have the
advantage that their implementation is typically rather simple and that they compute
a set of good solutions instead of only a single one [CM21]. However, they give no
guarantees regarding the solution quality. Recent examples of this approach include
[ASSR21, Ref+21, Gha+21]. Another common solution technique is formulating the
problem as a mathematical program, typically as an MILP or mixed-integer non-
linear program (MINLP) [AMC03, DZMR16, EREG16, DEG17]. An overview over
acceleration techniques for MILPs used in transmission network expansion planning
problems is given by Lumbreras and Ramos [LR16a]. There are also heuristics based
on solving linear programs [NB19]. Occasionally, artificial neural networks are used
as well [AE02]. Several of the approaches mentioned above may be combined. For
example, a meta-heuristic may be used to find feasible solutions, and an MILP to
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find lower bounds [VSC22]. This combines the advantage that meta-heuristics may
find good solutions fast with the advantage of MILPs that they provide provable
guarantees for the solution qualities.
In most formulations of expansion planning problems, a set of candidate lines is

given as an input. However, unlike the topology of the existing grid, the candidate
edges are immediately given in the real world, but have to be determined first.
Algorithms to automatically determine candidate lines are often based on information
from power flow computations in the existing transmission network such as locational
marginal prices [LRS14, Wu+18]. To keep the set of candidate lines sufficiently small,
the set of candidate lines may need to be pruned [LRS14]. Moreover, new buses may
be included as well [Wu+18].
The literature review above shows that grid expansion is an important and well-

studied topic. However, the works on this topic have mostly taken a rather applied
perspective. Typically, this means making the models more realistic or proposing
different algorithms to tackle the problems. While this endeavor is certainly worth-
while, it can be noted that a more theoretical understanding of the problems is still
lacking. It is known that the expansion planning problems are N P-hard [MPS10,
OR14] in general, but not much more is known. One goal of this thesis is therefore
to obtain a deeper theoretical understanding of problems related to grid expansion.
The second goal is to identify gaps in the literature on network design problems and
to develop algorithms for these problems.

Thesis Outline

Weoutline the structure of the remainder of this thesis. Wewould like to point out that
parts of this work have previously been published in conference proceedings [WW20,
WW21, GW22].

Chapter 2 – Fundamentals: We introduce fundamental concepts and notations
we use throughout the thesis. In particular, we define flows and electrical flows,
and refer to algorithms to compute them.

Chapter 3 – Complexity of Flow Expansion: Weanalyze the computational com-
plexity of expanding flow networks—both graph-theoretical and electrical. The
results include both N P-hardness proofs and polynomial-time algorithms for
special cases.

Chapter 4 – Expanding Electrical Networks to Prevent Critical Edges: We con-
sider mitigations for negative effects caused by failing lines in the power grid.
We base our analysis of the severity of line failures on a criterion for critical
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edges. We formulate this criterion in the context of network expansion plan-
ning problems, and exemplify it by defining two problems with this criterion.
Both can be formulated as an MILP, and for one problem, we additionally
present a heuristic. Finally, we evaluate the heuristic and the MILP on a set of
benchmark instances.

Chapter 5 – Algorithmic Approaches for Microgrid Cable Layouts: Wedeal with
designing the cable layout of a microgrid. We formalize the problem as a geo-
metric optimization problem, similar to the Euclidean Steiner Tree problem.
Further, we present a hybrid genetic algorithm for this new problem and
evaluate its performance on a set of benchmark instances.

Chapter 6 – FACTS Flows: We study the problem FACTS Flow, which askswhether
there is a FACTS flow in a network. A FACTS flow is a generalization of an
electrical flow, in which some edge properties may be varied. Unlike the related
problem Maximum FACTS Flow of finding a maximum FACTS flow, to the
best of our knowledge the complexity of finding any FACTS flow has not been
studied before. We transfer the N P-hardness of Maximum FACTS Flow to
FACTS Flow and present polynomial-time algorithms for some special cases.

Chapter 7 – Conclusion: We conclude the thesis with a summary, describe how
the chapters fit together and point out possible future research directions.
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2 Fundamentals

In this chapter we define terms that occur throughout the thesis. We assume that
the reader is familiar with basic graph-theoretical terms. An introduction to graph
theory can be found in [Die17]. In this thesis we denote the undirected edge between
two vertices v and 𝑤 by {v, 𝑤} and the directed edge from v to 𝑤 by v𝑤. Moreover,
all cycles in this thesis are simple, i.e., they are connected graphs where all vertices
have a degree of 2. As usual, the complete graph on 𝑛 vertices is denoted by 𝐾𝑛 , and
the complete bipartite graph with𝑚 vertices in one partition and 𝑛 vertices in the
other partition is denoted by 𝐾𝑚,𝑛 .
We further formalize the connection between directed and undirected graphs

as follows. Let 𝐺 = (𝑉 , 𝐸) be a directed graph. Then, its underlying undirected
graph 𝐺 is (𝑉 , 𝐸), where 𝐸 = {{v, 𝑤} | v𝑤 ∈ 𝐸}. Conversely, an orientation of
an undirected graph 𝐺 = (𝑉 , 𝐸) is a directed graph 𝐺 = (𝑉 , 𝐸) such that 𝐺 is the
underlying undirected graph of 𝐺 and for every {v, 𝑤} ∈ 𝐸 it either holds v𝑤 ∈ 𝐸 or
𝑤v ∈ 𝐸, but not both. For an edge v𝑤 we call 𝑤v its reverse and denote it by rev(v𝑤).
Similarly, for a set 𝐸 of directed edges, we define rev(𝐸) = {rev(𝑒) | 𝑒 ∈ 𝐸}. The
neighborhood of a vertex v ∈ 𝑉 in a graph 𝐺 is denoted by 𝑁𝐺 (v) and defined by
𝑁𝐺 (v) = {𝑤 ∈ 𝑉 | v𝑤 ∈ 𝐸 or 𝑤v ∈ 𝐸}.

2.1 Flows

Flows are fundamental objects that occur in all problems in this thesis. We consider
three flow models: graph-theoretical flows, electrical flows, and FACTS flows.
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2.1.1 Graph-Theoretical Flows

Undirected flow networks. Conceptually, the graphs on which we compute flows
are usually undirected since, e.g., a power line allows for power to be transmitted
in either direction. However, flows themselves are inherently directed—there is a
difference between a unit flowing from v to 𝑤 or from 𝑤 to v along an undirected
edge {v, 𝑤}. To capture this direction we always fix an arbitrary orientation𝐺 of the
undirected graph𝐺 . An undirected flow network (or simply a flow network) N is then
the directed graph𝐺 = (𝑉 , 𝐸) together with a demand function 𝐷 : 𝑉 → Intervals(R)
and a capacity function cap : 𝐸 → R>0. A flow in N is a function 𝑓 : 𝐸 → R such that

|𝑓 (v𝑤) | ≤ cap(v𝑤) ∀v𝑤 ∈ 𝐸, (2.1)∑︁
𝑢 :𝑢v∈𝐸

𝑓 (𝑢v) −
∑︁

𝑤 : v𝑤∈𝐸
𝑓 (v𝑤) ∈ 𝐷 (v) ∀v ∈ 𝑉 . (2.2)

Equation (2.1) states that the flow on any edge does not exceed the capacity of the
edge (called the capacity constraint), and Equation (2.2) ensures that the amount of
flow entering a vertex v minus the amount leaving v lies within the demand interval
of v . The latter property is often called the conservation of flow or flow conservation.
The name can be explained by considering a vertex v with 𝐷 (v) = {0}. In this case,
Equation (2.2) requires the amount of flow entering v to be equal to the amount of
flow leaving v . Given a flow 𝑓 , we call the term on the left side of Equation (2.2) the
consumption of v in 𝑓 , and we denote it by 𝑐 𝑓 (v). The total flow value of a flow 𝑓 is
the sum of all positive consumptions, i.e.,

total(𝑓 ) =
∑︁
v∈𝑉

max{𝑐 𝑓 (v), 0} (2.3)

Note that values of 𝑓 may be negative. The sign encodes the direction of the flow:
If 𝑓 (v𝑤) > 0, we interpret this as 𝑓 (v𝑤) units flowing from v to 𝑤; if 𝑓 (v𝑤) < 0, we
interpret this as −𝑓 (v𝑤) units flowing from 𝑤 to v . Note that the chosen orientation
of the underlying undirected graph is arbitrary. Replacing the edge v𝑤 with the
edge 𝑤v and setting the flow value on 𝑤v to −𝑓 (v𝑤) still yields a flow provided
that 𝑓 is a flow.

A subnetwork of a flow network on a graph𝐺 is a network on a subgraph𝐺 ′, where
the demands and capacities are restricted to the vertices and edges of 𝐺 ′.

Directed flow networks. Occasionally, we need edges that restrict the direction of
the flow. Therefore, we define directed flow networks. The definition is similar to the
one of undirected flow networks. The two main differences are that we do not require
the graph to be an orientation of an undirected graph, and the capacity constraint
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fixed

strict

adjustable

basic𝐷≡{0}

Figure 2.1: The relationship of the demand cases. The only demand function that is
both fixed and basic is the function mapping each vertex to {0}.

bounds the flow values from below by 0. For easier reference we include a complete
definition of directed flow networks and flows below, including parts that are the
same as in the undirected case. A directed flow network is a directed graph𝐺 = (𝑉 , 𝐸)
with a demand function 𝐷 : 𝐸 → Intervals(R) and a capacity function cap : 𝐸 → R>0.
A flow in a directed flow network N is a function 𝑓 : 𝐸 → R such that

0 ≤ 𝑓 (v𝑤) ≤ cap(v𝑤) ∀v𝑤 ∈ 𝐸, (2.4)∑︁
𝑢 :𝑢v∈𝐸

𝑓 (𝑢v) −
∑︁

𝑤 : v𝑤∈𝐸
𝑓 (v𝑤) ∈ 𝐷 (v) ∀v ∈ 𝑉 . (2.5)

Every undirected flow network can be transformed into an equivalent directed
flow network by adding the reverse of every edge with the same capacity. That
is, if there is an edge v𝑤 with capacity cap(v𝑤) in the undirected flow network,
then the equivalent directed flow network contains both v𝑤 and 𝑤v , each with
capacity cap(v𝑤).

Special cases. An important special case of a flow network occurs when all demand
intervals contain only one element, i.e., there is a function 𝑑 : 𝑉 → R such that
𝐷 (v) = {𝑑 (v)} for all v ∈ 𝑉 . We then say that the flow network has fixed demands.
This setting is very common in the literature. For example, the standardMinimum
Cost Flow problem is phrased in this setting [AMO93]. Note that if the sum of
all demands is not 0, there is no flow in the network. When studying properties of
networks with fixed demands, we therefore typically require the sum of the demands
to be 0. For clarity, we may refer to the general case of demand intervals as networks
with adjustable demands. Figure 2.1 depicts the relationship between the special cases
of the demand choices.
Another special case are flow networks where no demand interval contains both

positive and negative values. We call such flow networks strict. In particular, all flow
networks with fixed demands are strict. In strict networks we can partition the vertex
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set 𝑉 into a set 𝑉S of sources, a set 𝑉T of sinks, and a set 𝑉I of intermediate vertices by
defining

𝑉S = {v ∈ 𝑉 | min𝐷 (v) < 0},
𝑉T = {v ∈ 𝑉 | max𝐷 (v) > 0},
𝑉I = {v ∈ 𝑉 | 𝐷 (v) = {0}}.

Finally, a strict network is basic if every demand interval contains 0.

Computing flows. Computing a flow in a network can be formulated as a linear
program. A linear program with constraint matrix 𝐴 can be solved in Õ((nnz(𝐴) +
rank(𝐴)2)

√︁
rank(𝐴) log(1/Y)) time, where nnz(𝐴) is the number of non-zero entries

of 𝐴, rank(𝐴) is the rank of 𝐴, and Y is the desired approximation factor [LS14, LS19].
Formulating the constraints in Equations (2.1) and (2.2) as a linear program with
matrix 𝐴, we have nnz(𝐴) ∈ O(𝑚 + 𝑛) and rank(𝐴) ∈ O(𝑚 + 𝑛), where 𝑛 is the
number of vertices and𝑚 the number of edges. Hence, flows can be computed using
standard linear program solving techniques in Õ((𝑚 + 𝑛)5/2 log(1/Y)) time. We shall
see in Corollary 2.2 that if the capacities and the boundaries of the demand intervals
are integers, there is a flow with integral values. We may set Y = 𝛼/((𝑚+𝑛)𝑈 ), where
𝑈 is an upper bound on the input values and 𝛼 is a sufficiently small constant. This
way, we are able to guarantee that rounding the resulting flow values to the nearest
integers always yields an (exact) flow. The running time then lies in Õ((𝑚 + 𝑛)5/2);
note that the additional factor of log(1/Y) = log((𝑚 + 𝑛)𝑈 ) is hidden in Õ(·).

However, we can reduce the flow computation in the setting of adjustable demands
to the standard problem of computing a maximum flow from a single source to a
single sink in a flow network. For fixed demands such a reduction is well-known and
works by adding a super source and a super sink that are connected to all sources
and all sinks, respectively; see,e.g., [AMO93, Sec. 6.2]. Below, we present a reduction
of the general case of adjustable demands.

Formulated in terms of the notation introduced in this thesis, the Maximum Flow
problem is defined as follows. The input consists of a directed flow network N and
two distinguished vertices 𝑠 and 𝑡 . The demand of the source 𝑠 is (−∞, 0], the demand
of the sink 𝑡 is [0,∞), and for all other vertices v it holds that 𝐷 (v) = {0}. We call
networks that fulfill these conditions 𝑠-𝑡-networks. The goal is then to find a flow
in N that maximizes the consumption of 𝑡 . Note that in this case the consumption
of 𝑡 in a flow 𝑓 is then the total flow value of 𝑓 .
Lemma 2.1. Let N be a flow network on a graph with 𝑛 vertices and𝑚 edges. There is
a directed 𝑠-𝑡-network N ′ with 𝑛 + 6 vertices and Θ(𝑚) edges as well as some 𝑎 ∈ R≥0
such that there is a flow in N if and only if there is a flow 𝑓 ′ in N ′ with total flow
value 𝑎.



Flows Section 2.1

13

𝑉𝑆 𝑉𝑇

N
[-4, -3]

[-3, 0]

[4, 5]

[1, 3]

(a)A sketch of the input network showing only
the sources and sinks with their demands.

𝑉𝑆 𝑉𝑇

N

3
0

1
3
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4

𝑠★

𝑠1

𝑠2

𝑡1

𝑡2

𝑡★

4
1

1
2

5
2

2
(b) The corresponding directed 𝑠-𝑡-network
with source 𝑠★ and sink 𝑡★. The values at the
edges represent the capacities.

Figure 2.2: An example of the construction in the proof of Lemma 2.1.

Proof. Let N be a flow network on the graph 𝐺 = (𝑉 , 𝐸). We may assume without
loss of generality that N is strict by splitting the demand intervals that contain both
positive and negative values and assigning the two intervals to two new vertices.
More precisely, let v be a vertex such that 𝐷 (v) contains both positive and negative
values. Then, we add two new vertices 𝑠v and 𝑡v with edges 𝑠vv and v𝑡v of sufficient
capacity. We set 𝐷 ′ (v) = {0}, 𝐷 ′ (𝑠v ) = [min𝐷 (v), 0], and 𝐷 ′ (𝑡v ) = [0,max𝐷 (v)].
Repeating this process, we obtain a network, where every demand interval either
contains only non-positive values (at sources) or non-negative values (at sinks). Let𝑉S
be the set of sources and 𝑉T be the set of sinks.
The key idea of the construction below is to route flow from a super source to an

original source 𝑠 of N via two different paths. The first path (via a vertex 𝑠1) conducts
the minimum amount of flow that is necessary to fulfill the demand constraint of 𝑠 ,
i.e., −max𝐷 (𝑠). The second path (via a vertex 𝑠2) optionally conducts flow until the
lower bound of the consumption of 𝑠 is reached, i.e., up to max𝐷 (𝑠) −min𝐷 (𝑠). By
choosing the capacities appropriately, we ensure that in any maximum flow the edges
of the first path are saturated. A similar construction is added for all other sources
and all sinks.

More precisely, we define the graph 𝐺 ′ = (𝑉 ′, 𝐸′) of the Maximum Flow instance
by

𝑉 ′ = 𝑉 ∪ {𝑠★, 𝑠1, 𝑠2, 𝑡
★, 𝑡1, 𝑡2}

𝐸𝑆 = {𝑠★𝑠1, 𝑠
★𝑠2} ∪ {𝑠1𝑠, 𝑠2𝑠 | 𝑠 ∈ 𝑉S},

𝐸𝑇 = {𝑡1𝑡★, 𝑡2𝑡★} ∪ {𝑡𝑡1, 𝑡𝑡2 | 𝑡 ∈ 𝑉T},
𝐸′ = 𝐸 ∪ rev(𝐸) ∪ 𝐸𝑆 ∪ 𝐸𝑇 ∪ {𝑠2𝑡2}.

An example of the graph constructed in this way can be found in Figure 2.2.
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In order to define the capacities of the edges, we use bounds for the sum of the
consumptions in any flow in N . Let

𝑑max = min
{∑︁
𝑠∈𝑉S

−min𝐷 (𝑠),
∑︁
𝑡 ∈𝑉T

max𝐷 (𝑡)
}
,

𝑑𝑆min =
∑︁
𝑠∈𝑉S

−max𝐷 (𝑠),

𝑑𝑇min =
∑︁
𝑡 ∈𝑉T

min𝐷 (𝑡).

Observe that 𝑑max is an upper bound on the sum of the consumptions of all sinks
in any flow in N , and 𝑑𝑆min and 𝑑𝑇min are lower bounds. Moreover, 𝑑𝑇min is the sum of
the minimum consumptions of all sinks. Similarly, 𝑑𝑆min is the sum of the minimum
productions (i.e., the negative of the consumption) of the sources. We define the
capacities of the edges by

cap′ (v𝑤) =



cap(v𝑤), v𝑤 ∈ 𝐸,
cap(𝑤v), v𝑤 ∈ rev(𝐸),
−max𝐷 (𝑠), v𝑤 = 𝑠1𝑠 for some 𝑠 ∈ 𝑉S,

max𝐷 (𝑠) −min𝐷 (𝑠), v𝑤 = 𝑠2𝑠 for some 𝑠 ∈ 𝑉S,

𝑑𝑆min, v𝑤 = 𝑠★𝑠1,

𝑑max − 𝑑𝑆min. v𝑤 = 𝑠★𝑠2,

min𝐷 (𝑡), v𝑤 = 𝑡𝑡1 for some 𝑡 ∈ 𝑉T,

max𝐷 (𝑡) −min𝐷 (𝑡), v𝑤 = 𝑡𝑡2 for some 𝑡 ∈ 𝑉T,

𝑑𝑇min, v𝑤 = 𝑡1𝑡
★,

𝑑max − 𝑑𝑇min, v𝑤 = 𝑡2𝑡
★,

min{𝑑max − 𝑑𝑆min, 𝑑max − 𝑑𝑇min}, v𝑤 = 𝑠2𝑡2.

Let the resulting directed flow network be N ′. We claim that there is a flow with
total flow value 𝑑max in N ′ if and only if there is a flow in N .
Let 𝑓 be a flow in N . It can be extended to a flow 𝑓 ′ in N ′ as follows. Send

the maximum amount of flow along all edges incident to 𝑠★, 𝑠1, 𝑡★, and 𝑡1. Then,
send the required amount of flow along edges from 𝑠2 to sources in N to match the
consumption of the sources, i.e., set 𝑓 ′ (𝑠2𝑠) = max𝐷 (𝑠) − 𝑐 𝑓 (𝑠) for 𝑠 ∈ 𝑉S. Similarly,
set 𝑓 ′ (𝑡𝑡2) = 𝑐 𝑓 (𝑡) −min𝐷 (𝑡) for all sinks 𝑡 ∈ 𝑉T. Finally, route 𝑑max −

∑
𝑡 ∈𝑉T 𝑐 𝑓 (𝑡)

units of flow along 𝑠2𝑡2. It can be verified that 𝑓 ′ defined in this way is a flow in N ′
with a total flow value of 𝑑max.
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Conversely, let 𝑓 ′ be a flow in N ′ with total flow value 𝑑max. Let 𝑓 : 𝐸 → R be
defined by 𝑓 (v𝑤) = 𝑓 ′ (v𝑤) − 𝑓 ′ (𝑤v) for all v𝑤 ∈ 𝐸. Essentially, 𝑓 describes the
restriction of 𝑓 ′ to the edges in the undirected network N . We claim that 𝑓 is a
flow in N . To prove this claim, we need to verify that the consumptions of the
vertices lie within the demand intervals. For an intermediate vertices v we have
𝑐 𝑓 (v) = 𝑐 𝑓 ′ (v) = 0. For the sinks, we observe that the cut formed by the edge 𝑡2𝑡★

and all edges 𝑡𝑡1 for 𝑡 ∈ 𝑉T has a size of 𝑑max. By the max-flow min-cut theorem (see
e.g., [Die17, Thm. 6.2.2]) the edges across the cut must be saturated by 𝑓 ′. Hence,
the consumption of a sink 𝑡 in 𝑓 is at least cap′ (𝑡𝑡1) = min𝐷 (𝑡). By construction,
we have cap′ (𝑡𝑡1) + cap′ (𝑡𝑡2) = max𝐷 (𝑡). Hence, we have 𝑐 𝑓 (𝑡) ≤ max𝐷 (𝑡) as
well, showing 𝑐 𝑓 (𝑡) ∈ 𝐷 (𝑡). A similar argument considering the cut formed by the
edge 𝑠★𝑠2 and all edges 𝑠1𝑠 for 𝑠 ∈ 𝑉S yields 𝑐 𝑓 (𝑠) ∈ 𝐷 (𝑠) for all 𝑠 ∈ 𝑉S. □

This lemma shows that the computation of flows in the setting defined in this
thesis can be reduced to computing maximum flows in directed 𝑠-𝑡-networks. This
is a classical problem, which has received a lot of attention in the recent years. A
maximum flow in a directed 𝑠-𝑡-network with 𝑛 vertices,𝑚 edges, integral capacities
and maximum capacity𝑈 can be computed in Õ((𝑚 + 𝑛3/2) log𝑈 ) time [Bra+21b],
in Õ(𝑚3/2−1/58 log𝑈 ) time [Bra+21a, Bra+22], and in 𝑚4/3+𝑜 (1)𝑈 1/3 time [KLS22,
Kat20, LS20a]. There is also a randomized algorithm that computes such a flow in
𝑚11/8+𝑜 (1)𝑈 1/4 time with high probability [LS20b]. Interestingly, there is a series of
works, starting with an Õ(𝑚10/7𝑈 1/3)-time algorithm [Mąd16] and including the
𝑚11/8+𝑜 (1)𝑈 1/4-time algorithm [LS20b], that use the computation of electrical flows
as building blocks in their algorithms.
For directed 𝑠-𝑡-flow networks with integral capacities the integral flow theo-

rem guarantees that there is a maximum flow where all values are integers [Die17,
Cor. 6.2.3]. Such flows are called integral. By Lemma 2.1 the same holds for flows in
the setting we describe.

Corollary 2.2. If there is a flow in a flow network N with integral capacities and
integral demand interval endpoints, then there is an integral flow in N .

2.1.2 Electrical Flows

To model the flow of electric power we use a linearized AC power flow model, which is
sometimes called the DC power flow model [FR16]. As the name suggests, it is derived
from the AC power flow model by applying suitable simplifications [FR16]. In this
model a unit of flow represents a unit of power (measured in W) that is transmitted.
Every edge has an additional parameter, called the susceptance, which is represented
by a function 𝑏 : 𝐸 → R>0. We call a network with this additional edge parameter
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an electrical network. The model enforces an additional constraint called Kirchhoff's
voltage law. A flow 𝑓 satisfies Kirchhoff’s voltage law if there is a function \ : 𝑉 → R
such that

𝑓 (v𝑤) = 𝑏 (v𝑤) · (\ (v) − \ (𝑤)) ∀v𝑤 ∈ 𝐸. (2.6)

Based on the derivation from AC power flow, the values of \ represent (power) angles.
We call any flow that satisfies Equation (2.6) an electrical flow.

Equivalently (and how they were originally stated [Kir47]), the constraints in
Equation (2.6) can be expressed in terms of restrictions of flows in cycles [Bol98,
Koc+16]. Let 𝐶 be a cycle of the underlying undirected graph 𝐺 of 𝐺 . We fix an
orientation of the cycle by first choosing the direction of one edge arbitrarily, and
then walking along the cycle in the chosen direction. We note that the direction of
an edge in the directed graph 𝐺 and in the orientation of 𝐶 may differ. Let 𝛿𝐶v𝑤 = +1
if v𝑤 is oriented the same in both cases, and 𝛿𝐶v𝑤 = −1 otherwise. A flow is electrical
if and only if for every oriented cycle 𝐶 in 𝐺 it holds that∑︁

v𝑤∈𝐸 (𝐶 )

𝑓 (v𝑤) · 𝛿𝐶v𝑤
𝑏 (v𝑤) = 0.

Note that Kirchhoff [Kir47, Kir58] formulated this law in the context of resistor net-
works, which can be described as graphs where each edge v𝑤 has a resistance 𝑟 (v𝑤).
DC flows in these resistor networks need to satisfy 𝑓 (v𝑤) = 𝑟 (v𝑤) · (𝜋 (v) − 𝜋 (𝑤))
for some potential function 𝜋 . Physically, the variables that occur in this equation
and the ones in Equation (2.6) have different meanings. Mathematically, however,
the two equations are equivalent by setting 𝑏 (v𝑤) = 1/𝑟 (v𝑤) for all edges v𝑤 and
\ (v) = 𝜋 (v) for all vertices v . Most literature on electrical flows, e.g., [Bol98, Chr+11],
uses the resistance network model. But their results can be directly transferred to
the model we use by applying the observation just mentioned.

In networks with fixed demands the flow conservation (Equation (2.2)) and Kirch-
hoff’s voltage law (Equation (2.6)) already uniquely define the flow values [Bol98, p.
29]. That means that we can use these equations to compute the flow values for all
edges. We can then determine whether this is actually an electrical flow by checking
whether no edge capacities are exceeded. The uniqueness of the solution implies that
there is at most one electrical flow in an electrical flow network. Moreover, if the
demand sum is 0 and the capacities are sufficiently large, there is always exactly one
electrical flow.

Let N1 and N2 be two networks on the same graph 𝐺 with infinite capacities and
fixed demands given by 𝑑1 and 𝑑2, respectively. We assume that the demand sums in
both networks is 0; otherwise, there is no flow. Let 𝑓𝑖 be the uniquely determined
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electrical flow in N𝑖 . Then, 𝑓1 + 𝑓2 defines an electrical flow in a network on 𝐺 with
demands 𝑑1 + 𝑑2. In other words, the addition of two electrical flows is an electrical
flow as well.
Conversely, an electrical flow 𝑓 in a network with 𝑛 vertices can be decomposed

into electrical flows 𝑓1, . . . , 𝑓𝑛−1 such that 𝑓 = 𝑓1 + · · · + 𝑓𝑛−1 and 𝑓𝑖 is a flow in a
network N𝑖 with exactly one source and exactly one sink. All other vertices have
a demand of 0. Moreover, the networks N𝑖 can be computed from N in O(𝑛2)
time. This decomposition allows us to reduce the computation of electrical flows in
networks with fixed demands to 𝑛 − 1 electrical flow computations in networks with
one source and one sink. For example, in a cycle one such computation is possible in
linear time. Thus, an electrical flow in a cycle with fixed demands can be computed
in quadratic time.

Computing electrical flows. The constraints for electrical flows can be formulated
as a linear program. Using the same general linear programming solving techniques
we mention for graph-theoretical flows [LS14, LS19], electrical flows can be computed
in Õ((𝑚 + 𝑛)5/2) time, where 𝑛 is the number of vertices and𝑚 the number of edges
in the network.
If the demands are fixed, the check whether the consumptions lie within the

demand intervals (Equation (2.2)) become equality checks. Moreover, the variables
representing the flow values can be eliminated using Equation (2.6). In total, we
obtain the following system of linear equations.∑︁

𝑢 :𝑢v∈𝐸
𝑏 (𝑢v) (\ (𝑢) − \ (v)) −

∑︁
𝑤 : v𝑤∈𝐸

𝑏 (v𝑤) (\ (v) − \ (𝑤)) = 𝑑 (v) ∀v ∈ 𝑉 . (2.7)

In fact, this system can be written in terms of the Laplacian 𝐿 of the graph (with
edge weights given by 𝑏) as 𝐿\ = 𝑑 , where \ and 𝑑 are interpreted as vectors [Bol98].
The Laplacian 𝐿 of a graph is symmetric diagonally dominant (SDD), i.e., we have
𝐿 = 𝐿T, and 𝐿𝑖𝑖 ≥

∑
𝑗≠𝑖 |𝐿𝑖 𝑗 | for all 𝑖 ∈ {1, . . . , 𝑛} [KOSZ13]. Such systems can

be solved approximately in nearly linear time. Here, an Y-approximate solution \̃
satisfies ∥𝐿\̃ − 𝑑 ∥ < Y and ∥\̃ − \ ∥𝐿 ≤ Y∥\̃ ∥𝐿 , where \ is the exact solution and
∥𝑥 ∥𝐿 =

√
𝑥T𝐿𝑥 . The first such algorithm was presented by Spielman and Teng [ST04].

Following this breakthrough, there is a long line of works improving upon this
result; see [ST14] for a history of the developments. Recently, it was shown that
Y-approximate solution of SDD systems can be computed with high probability in
expected O(𝑚

√︁
log𝑛(log log𝑛)3+𝛿 log(1/Y)) time for every 𝛿 > 0 [Coh+14].

Note that in Equation (2.7) the capacity constraints of Equation (2.1) are neglected.
However, any two solutions \ 1 and \ 2 of Equation (2.7) have a constant difference,
i.e., there is some constant 𝑘 such that \ 1 (v) = \ 2 (v) + 𝑘 for all v ∈ 𝑉 [Bol98]. As the
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flow on an edge depends only on the difference of the angles at the incident vertices,
all solutions induce the same flow. Hence, it suffices to check afterwards whether
this flow satisfies all capacities.
Besides these numerical algorithms there are also combinatorial algorithms for

computing approximate electrical flows in networks with fixed demands. These
methods have the advantage that they do not require the heavy machinery used for
solving and are thus much simpler to implement. The first such algorithm by Kelner
et al. [KOSZ13] uses a low-stretch spanning tree, i.e., for v𝑤 ∈ 𝐸 the ratio of the
length (given by the inverse 𝑏−1 of the susceptance) of the unique path from v to 𝑤
along the tree to the length of v𝑤 is small. Then, an initial flow is computed, which is
iteratively updated via simple modifications. Every such flow 𝑓𝑖 in iteration 𝑖 induces
angles \ 𝑖 . During the algorithm the property that 𝑓𝑖 is indeed a flow is maintained,
i.e., 𝑓𝑖 satisfies the flow conservation constraint (Equation (2.2)), but 𝑓𝑖 and \ 𝑖 do not
necessarily satisfy Kirchhoff’s voltage law (Equation (2.6)). The goal of each update
step is to reduce the violation of this constraint. In total, the algorithm computes an
Y-approximate electrical flow in O(𝑚 log2 𝑛 log log𝑛 log(𝑛/Y)) time. This algorithm
has also been implemented and evaluated experimentally [HLMW16]. It was found
that the results confirm the predicted asymptotic behavior, but the constant factors
are large such that it is not competitive with other methods in practice.
Henzinger, Jin, and Williamson [HJW20] present an algorithm that is dual to the

one by Kelner et al. [KOSZ13]. It also updates functions 𝑓𝑖 and \ 𝑖 , but it maintains
the property that Kirchhoff’s voltage law is satisfied, whereas the flow conservation
may be violated. They achieve a running time of O(𝑚𝑛 log𝑛 log log𝑛 log(1/Y)). This
algorithm can be adapted to p-norm flows, which are a generalization of electrical
flows [HJPW21].

2.1.3 FACTS Flows

Electrical flows can be generalized by loosening the restriction on the susceptances
of the edges. A straight-forward way to do this is to allow the susceptances to be
adjusted within a certain range. The model is inspired by and named after flexible AC
transmission system devices, which allow the transmission grid operator to influence
the impedance of power lines [Hin93, HH14].
The model we use in this thesis is based on the work by Lehmann, Bent, and

Pan [LBP15]. To be self-contained and consistent with the notation in the previous
sections, we restate the definition here. Intuitively, the key difference to electrical
flow networks and electrical flows is that the susceptance of the edges is no longer
fixed, but instead each edge 𝑒 ∈ 𝐸 has an interval 𝐵(𝑒), from which the susceptance
may be chosen. Formally, a FACTS flow network N consists of an orientation 𝐺 =

(𝑉 , 𝐸) of an undirected graph, a demand function 𝐷 : 𝑉 → Intervals(R), a capacity
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function cap : 𝐸 → R≥0, and a susceptance interval function 𝐵 : 𝐸 → Intervals(R>0).
A FACTS flow in the FACTS flow network N is a flow 𝑓 for which there are

functions 𝑏 : 𝐸 → R>0 and \ : 𝑉 → R such that for all edges v𝑤 ∈ 𝐸 it holds that

𝑏 (v𝑤) ∈ 𝐵(v𝑤), (2.8)
𝑓 (v𝑤) = 𝑏 (v𝑤) · (\ (v) − \ (𝑤)) . (2.9)

In other words, we can assign susceptances from the susceptance intervals to the
edges such that 𝑓 is an electrical flow in the resulting electrical flow network.

It is known that maximizing the flow value of a FACTS flow is N P-hard [LBP15].
More precisely, it is strongly N P-complete to determine whether a given FACTS
flow network admits a FACTS flow of value at least 𝑘 , where 𝑘 ∈ R≥0 is part of the
input. We show in Chapter 6 how to transfer this hardness to computing any FACTS
flow in a network.

2.2 Expansion of Flow Networks

In expansion problems of flow networks, the input contains a flow network N on a
graph𝐺 = (𝑉 , 𝐸), where the edge set is partitioned into a set 𝐸ex of existing edges and
a set 𝐸cand of candidate edges (or candidates for short). In addition to the capacities and
possibly susceptances, there are costs associated with the candidates. We represent
them by a function 𝑐 : 𝐸cand → R≥0. The existing network is the subnetwork on the
graph (𝑉 , 𝐸ex), i.e., it contains only the existing edges.
An expansion H of the network N is a subnetwork of N on a graph 𝐻 = (𝑉 , 𝐸𝐻 )

such that 𝐸ex ⊆ 𝐸𝐻 ⊆ 𝐸. The total cost of an expansion H is defined by

cost(H) =
∑︁

𝑒∈𝐸𝐻 \𝐸ex

𝑐 (𝑒).

An expansion H of an (electrical) network N is feasible if there is an (electrical) flow
in H.

We note that defining an expansion as a subnetwork seems to be counter-intuitive.
However, the network contains both the existing and all candidate edges. As not all
candidate edges need to be chosen, an expansion H is a subnetwork of N . But by
definition, every expansion contains the existing network as a subnetwork. In this
sense, H expands the existing network.
We call the problem of finding a feasible expansion of a (non-electrical) network

with minimum total cost Flow Expansion. The analogous problem of finding a
feasible expansion of an electrical network with minimum total cost is Electrical
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cacti

outerplanar
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series-parallel

partial 2-trees
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arbitrary

Figure 2.3: The relationships of the graph classes. A box for a graph class C1 is
contained in another for C2 if and only if C1 is contained in C2.

Flow Expansion. A feasible expansion of minimum total cost is called an optimal
expansion.
For both problems we also define the corresponding decision variant as: Given

some 𝑘 ∈ R≥0, is there a feasible expansion with total cost at most 𝑘?

2.3 Graph Classes

In this thesis we classify the complexity of problems on flow networks based on the
graph class the underlying graphs belong to. In this section, we give an overview
of the graph classes that are relevant to our results. The relationships between the
classes are illustrated in Figure 2.3. Note that there are many more graph classes
than we cover here. We refer the interested reader to [BLS99] for a huge list of graph
classes and their relationships. The following list of graph classes are ordered from
largest to smallest.

Arbitrary graphs. The largest class we consider is of course the class of all graphs.
In our results, we denote them by arbitrary graphs.

Planar graphs. The next smaller class contains the planar graphs. These are the
graphs that can be embedded into the plane without any edge crossings. A famous
result is that a graph is planar if and only if it is 𝐾5- and 𝐾3,3-minor-free [Wag37].
Planar graphs can be recognized in linear time [CNAO85].
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Partial 2-trees. We further consider the class of partial 2-trees, which are the
subgraphs of 2-trees. A 2-tree is recursively defined as follows. The graph 𝐾2 is a 2-
tree. Further, adding a vertex with edges to the endpoints of one edge of a 2-tree yields
another 2-tree [BLS99]. Partial 2-trees are precisely the𝐾4-minor-free graphs [WC83].
Equivalently, these are the subgraphs of series-parallel graphs [Duf65]. We frequently
use the latter characterization as the structure of a series-parallel graph can be
described by a tree structure, which is very helpful when formulating algorithms for
series-parallel graphs.
Formally, a two-terminal series-parallel graph is a graph with two vertices des-

ignated as terminals: one source and one sink such that it can be obtained via the
following operations. First, a single edge is a two-terminal series-parallel graph.
Then, let 𝐺1 and 𝐺2 be two-terminal series-parallel graphs with sources 𝑠1 and 𝑠2
and sinks 𝑡1 and 𝑡2. The series composition of 𝐺1 and 𝐺2 is obtained by merging 𝑡1
with 𝑠2, forming a new graph with source 𝑠1 and sink 𝑡2. The parallel composition
of 𝐺1 and 𝐺2 is obtained by merging the two sources (forming the new source) and
the two sinks (forming the new sink). A series-parallel graph then is a graph 𝐺 for
which two vertices 𝑠 and 𝑡 can be chosen such that𝐺 is a two-terminal series-parallel
graph with terminals 𝑠 and 𝑡 .

We can represent the way the compositions are applied to get a graph𝐺 by a rooted
binary tree: the sp-tree T [BLS99]. The leaves of the tree correspond bijectively to
the edges of 𝐺 . The inner nodes correspond to the two operations above. The s-node
corresponds to the series composition of its two children, and the p-node corresponds
to the parallel composition. It is possible to compute the sp-tree of a series-parallel
graph both with and without fixed terminals in linear time [BA01]. The case without
fixed terminals can actually be reduced to the case with fixed terminals in linear
time [He91, Epp92].
Any partial 2-tree can be completed to a 2-tree in linear time [WC83]. Given a

partial 2-tree 𝐺 , we can thus compute an sp-tree of a supergraph of 𝐺 in linear time:
First, complete 𝐺 to a 2-tree 𝐺★. Since all 2-trees are series-parallel, we can then
compute an sp-tree for 𝐺★.

Outerplanar graphs. A graph is outerplanar if it can be embedded into the plane
such that all vertices lie on the outer face. The outerplanar graphs can be characterized
by being 𝐾4- and 𝐾2,3-minor-free [CH67]. Hence, they form a strict subclass of the
partial 2-trees. Outerplanar graphs can be recognized in linear time [Mit79].

Cacti. A special case of outerplanar graphs are cacti. A cactus is a graph in which
any two simple cycles share at most one vertex. Hence, every biconnected component
of a cactus is either a single edge or a simple cycle. Thus, cacti can be recognized in
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linear time by computing the biconnected components [HT73] and then checking
whether they are edges or simple cycles.

Trees. Finally, a graph is a tree if it is connected and does not contain any cycles.
This can be checked in linear time with a depth-first search. A special case of trees
are stars, which are graphs of the form 𝐾1,𝑛 for 𝑛 ∈ N. That is, they have one central
vertex which is adjacent to all other vertices.

2.4 Structures in Graphs

Let 𝐺 be a connected graph. If for a vertex v the graph 𝐺 − v after removing v is
not connected, then v is called a cut-vertex. Similarly, an edge 𝑒 whose removal
disconnects the graph is called a bridge. A graph is biconnected if it has no cut-
vertices, i.e., the graph is still connected after any single vertex is removed. A
maximal biconnected subgraph of a graph is called a biconnected component or block.
We observe that by this definition every edge belongs to exactly one biconnected
component. However, a vertex v may belong to multiple biconnected components.
In this case, v is a cut-vertex. In fact, the converse is true as well. Every cut-vertex
belongs to at least two biconnected components.
The structure of the biconnected components and cut-vertices of a graph can

be described by a block-cut tree. It has one node per cut-vertex and one node per
biconnected component. There is an edge between a node for a cut-vertex v and a
node for a biconnected component 𝐻 if and only if v belongs to 𝐻 . The block-cut
tree of a graph can be computed in linear time [HT73].
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3 Complexity of Flow Expansion

In this chapter we analyze the computational complexity of Flow Expansion and
Electrical Flow Expansion under various restrictions. In particular, we consider
the structures of the underlying graphs of the networks and the demands types. For
adjustable demands both problems are already N P-hard if the network is a tree. For
the case of fixed demands, we give polynomial-time algorithms for networks on cacti,
and we prove that the problems become N P-hard on planar 2-trees. An important
difference between Flow Expansion and Electrical Flow Expansion is that for
Flow Expansion it can be decided in polynomial time whether there is an expansion,
whereas for Electrical Flow Expansion this is N P-hard to decide in general.

This chapter is based on joint work with Dorothea Wagner [WW21].

3.1 Introduction

Expanding flow networks is a challenging task with a wide range of applications such
as deciding where to build new roads, which regions to connect by new rail lines, or
where to build new power lines for transmitting electrical power. The latter problem
is often called Transmission Network Expansion Planning (TNEP or TEP), and a
huge body of research on it exists in the electrical engineering community; see for
example [MSAR18, GYG19] for recent surveys and [LAR21] for a book that introduces
the topic. What distinguishes Transmission Network Expansion Planning from
other flow expansion problems is the underlying flow model, which needs to capture
additional physical laws such as Kirchhoff’s voltage law.
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Many variants of Transmission Network Expansion Planning are considered
in the literature. Among other differences, they differ in the underlying power
flow model (in particular, AC vs. linearized AC power flow), the focus on reliability,
regulated vs. deregulated energy markets, how they deal with the uncertainty of
future events, or whether they consider one time period or multiple. The focus
in most works lies on having more realistic models of the real-world transmission
system, e.g., uncertainties in the properties of the equipment [ZLC19] or finding more
efficient solution methods [NB19, MKMC22, Zop+22] especially for Transmission
Network Expansion Planning based on an AC power flow model [MC21, VSC22].

Due to this large range the term Transmission Network Expansion Planning is
somewhat ambiguous, and we choose to frame our results in terms of the Electrical
Flow Expansion problem defined in Section 2.2. More precisely, Electrical Flow
Expansion is a formalization of a very basic version of Transmission Network
Expansion Planning. There is only one time period, the demand intervals are
assumed to be known, and we use the linearized AC power flow model. In accordance
with our definitions in Section 2.1 we call flows adhering to the linearized AC power
flow model electrical flows.
For these problems few theoretical results are established in the literature. It is

known that Electrical Flow Expansion is N P-hard [MPS10]. The related problem
Maximum Transmission Switching Flow, where edges may be removed instead of
added, is N P-hard as well even if the underlying graph is series-parallel [Koc+16,
Gra+18]. On general graphs it is N P-hard to decide whether there is a subnetwork
that admits an electrical flow [LGV14]. These results can easily be transferred to
Electrical Flow Expansion.

In this chapter we thoroughly analyze the complexity of Electrical Flow Expan-
sion and its cousin Flow Expansion, where graph-theoretical flows are considered
instead of electrical flows. Recall that an instance of these problems consists of an
(electrical) flow network where the edge set of the underlying graph is partitioned
into existing and candidate edges. There are costs associated with the candidate
edges. The goal is to find the cheapest subset of candidate edges to add to the existing
network such that the resulting expansion admits an (electrical) flow satisfying all
constraints. We further assume in this chapter that all input values are integral.
However, note that we do not make this assumption for the flows in the resulting
expansion.
Besides Electrical Flow Expansion, which is based on an electrical flow, we

consider the expansion of graph-theoretical flow networks as well. We call the
expansion problem for graph-theoretical flow networks Flow Expansion. The
problem Flow Expansion can be considered as a minimum-cost flow problem with
non-linear cost functions. For the related problem of maximizing the flow subject
to a budget constraint heuristics exist [EF82]. A generalization of Flow Expansion
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Table 3.1: Overview over the complexity of the expansion planning problems.
𝑎 The hardness already applies to the feasibility variant; see Proposition 3.4 for
details. 𝑏 This result is not stated explicitly; see Proposition 3.9 for more details.

Flow Expansion Electrical Flow Expansion

Graph class fixed adjustable fixed adjustable

Tree O(𝑛) time
(Prop. 3.11)

N P-compl.
(Thm. 3.5)

O(𝑛) time
(Prop. 3.11)

N P-compl.
(Cor. 3.6)

Cactus O(𝑛2) time
(Thm. 3.14)

N P-compl.
(Thm. 3.5)

O(𝑛2) time
(Thm. 3.14)

N P-compl.𝑎
[LGV14]

Partial 2-tree N P-compl.
(Cor. 3.8)

N P-compl.
(Thm. 3.5)

N P-compl.𝑎
[Koc+16]

N P-compl.𝑎
[LGV14]

Planar strongly
N P-compl.
[MPS10]

strongly
N P-compl.
[MPS10]

strongly
N P-compl.𝑎
[LGV14]

strongly
N P-compl.𝑎
[LGV14]

Arbitrary APX -hard
[MPS10]𝑏

APX -hard
[MPS10]𝑏

strongly
N P-compl.𝑎
[LGV14]

strongly
N P-compl.𝑎
[LGV14]

is the Fixed Charge Transportation Problem, where the cost of each edge with
non-zero flow is given by a fixed amount plus an amount proportional to the flow
on the edge. It is N P-hard as well, and there are several exact algorithms based on
integer linear programming [RBM15, MR18].

Contribution. We give a fine-grained view on the complexity of various variants of
(Electrical) Flow Expansion. To this end we classify the variants of (Electrical)
Flow Expansion according to the graph classes, the demand type (adjustable vs.
fixed demands), the number of sources and sinks, and the flow type.

Table 3.1 gives an overview over the computational complexities of variants of the
flow network expansion problems. Note that we only include two of the four demand
types defined in Section 2.1. We argue in Section 3.2 why the other two types can
be ignored. It includes both existing results and results that were first described in
the paper this chapter is based on [WW21]. Some cases for which we report existing
results actually consider different but very similar problems, or they are not stated
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Table 3.2: Overview over the complexity of the expansion planning problems in
two-terminal networks. The class sps-graphs refers to a subclass of two-terminal
series-parallel graphs, which is defined in Section 3.6. 𝑎 The hardness already applies
to the feasibility variant.

Graph class Flow Expansion Electrical Flow Expansion

Tree O(𝑛) time
(Prop. 3.11)

O(𝑛) time
(Prop. 3.11)

Cactus O(𝑛2) time
(Thm. 3.14)

O(𝑛2) time
(Thm. 3.14)

Sps-graph N P-compl.
(Cor. 3.8)

pseudo-poly.
(Prop. 3.17)

N P-compl.
(Thm. 3.7)

pseudo-poly.
(Prop. 3.17)

Two-terminal
series-parallel

N P-compl.
(Cor. 3.8)

O(𝑛3𝐶2) time
(Prop. 3.16)

N P-compl.𝑎
[Gra+18]

explicitly, but they are easy consequences of known results. In some cases we feel
that stating the arguments explicitly is beneficial. These cases are marked in the
table, and references to the corresponding propositions are given.
It can be noted that the existing results only include hardness proofs. This is not

suprising as the table indicates that the expansion problems are already N P-hard
on moderately complex graph classes such as partial 2-trees, and realistic networks
typically have more complex structures [KHCM18]. Our results extend the N P-
hardness to networks on trees if the demands are adjustable (Theorem 3.5).
For more restricted variants, e.g., cacti with fixed production (Theorem 3.14), we

give polynomial-time algorithms. To the best of our knowledge these are the first
polynomial-time algorithms for any variant of (Electrical) Flow Expansion.
In addition, we study the case that the networks have only one source and one

sink; see Table 3.2. We prove that in this setting networks with fixed demands and
networks with adjustable demands are equivalent. Therefore, we do not distiguish
between these two in Table 3.2. Many hardness results for the general setting actually
apply here as well. Our main contribution are pseudo-polynomial-time algorithms
for a certain subclass of two-terminal series-parallel graphs, which we call sps-graphs.

Outline. We first argue why only two of the four demand types defined in Sec-
tion 2.1 are relevant to the expansion problems (Section 3.2). Then, we elaborate
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on the complexity of finding feasible expansions in Section 3.3. The following sec-
tions include new hardness results (Section 3.4) and polynomial-time algorithms
(Section 3.5). In Section 3.6 we consider networks with only one source and one sink.
Finally, we conclude this chapter with a short summary and an outlook over further
research directions in Section 3.7

3.2 Relations Between the Demand Types

In Section 2.1 we define networks with four types of demands: adjustable, strict,
basic, and fixed. As a first step, we study relations between networks of different
types in the context of the expansion planning problems in this chapter. First, we
show that adjustable and strict demands are equivalent.

Lemma 3.1. Let N be an instance of Flow Expansion or Electrical Flow Expansion

with adjustable demands. Then, there is a network with strict demands that is equivalent
to N .

Proof. Suppose there is a vertex v in N with a demand interval 𝐷 (v) = [𝑙, 𝑢] that
contains both positive and negative values. That is 𝑙 < 0 and 𝑢 > 0. We call such
a vertex hybrid. The key insight is that we can write [𝑙, 𝑢] = [𝑙, 0] + [0, 𝑢]. Neither
interval on the right contains both positive and negative values. In this spirit we
add two new vertices 𝑠v and 𝑡v with edges to v . The vertex 𝑠v gets a demand interval
of [𝑙, 0], and 𝑡v gets [0, 𝑢], whereas the demand interval of v is set to {0}. The
additional edges v𝑠v and v𝑡v belong to the set of existing edges, and their capacities
are set to −𝑙 and 𝑢, respectively. In the case of an electrical network, we also need to
define their susceptances. However, the two edges do not lie on any cycle such that
their susceptances do not matter. Thus, we may set them to any value, e.g., 1.
We apply this construction to all hybrid vertices of N and obtain N ′. There is

a one-to-one correspondence between expansions of N and expansion of N ′ by
choosing the same set of candidate edges. Consider an expansion H of N and the
corresponding expansion H′ of N ′. It is easy to see that every (electrical) flow 𝑓 in H
can be extended to an (electrical) flow 𝑓 ′ in H′ by setting 𝑓 ′ (v𝑠v ) = min{𝑐 𝑓 (v), 0}
and 𝑓 ′ (v𝑡v ) = max{𝑐 𝑓 (v), 0}. Conversely, the restriction of an (electrical) flow 𝑓 ′

in H′ to the edges of N yield an (electrical) flow in H. Hence, H is feasible if and
only if H′ is feasible. □

Second, we observe that basic networks always admit a flow that is 0 everywhere.
Hence, the expansion that contains only the existing edges is feasible and has costs 0.
Since the candidate edges have non-negative costs, this is as cheap as possible.
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Observation 3.2. Let N be an instance of Flow Expansion or Electrical Flow
Expansion on the graph (𝑉 , 𝐸ex ∪ 𝐸cand) with basic demands. Then, (𝑉 , 𝐸ex) is an
optimal expansion, and 𝑓 ≡ 0 is a feasible (electrical) flow in this expansion.

These two results allow us to restrict our attention to two types of demands in this
chapter: fixed and adjustable.

3.3 Finding Feasible Expansions

Before trying to find optimal expansions, we analyze how difficult it is to find any
feasible expansion. Flow Expansion is based on a graph-theoretical flow model.
Hence, any flow 𝑓 in any feasible expansion H of a network N can be extended to a
flow 𝑓 ′ in the whole network N by setting 𝑓 ′ (𝑒) = 0 for all edges 𝑒 ∈ 𝐸 (N ) \ 𝐸 (H).
Thus, there is a feasible expansion of N if and only if there is a flow in N . Checking
for a flow in N is possible in polynomial time; see Section 2.1.1.

Proposition 3.3. It can be determined in polynomial time whether an instance of Flow
Expansion has a feasible expansion.

In contrast, extending flows like this does not work for electrical flows because
the angle difference between the endpoints of an edge 𝑒 ∈ 𝐸 (N ) \ 𝐸 (H) may require
a non-zero flow on 𝑒 . In fact, it is known that finding feasible solutions to the Maxi-
mum Transmission Switching Flow problem is N P-hard in certain cases [LGV14,
Koc+16]. An instance of Maximum Transmission Switching Flow consists of an
electrical flow network N . The goal is to find a suitable subnetwork N ′ of N and
an electrical flow in N ′ such that the total flow value is maximized. Since Maxi-
mum Transmission Switching Flow and Electrical Flow Expansion are closely
related, this hardness can be transferred to Electrical Flow Expansion.

Proposition 3.4. The problem of determining whether an instance of Electrical Flow
Expansion has a feasible expansion is

(a) N P-complete if the underlying graph is a cactus and the demands are adjustable,

(b) N P-complete if the underlying graph is a partial 2-tree and the demands are
fixed,

(c) strongly N P-complete if the underlying graph is planar and the demands are
fixed.

Proof. The feasibility variant of Maximum Transmission Switching Flow is equiv-
alent to Electrical Flow Expansion when the existing network contains no edges.
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(b) The feasible expansion of cost 12.

Figure 3.1: An example of the network constructed in the proof of Theorem 3.5. The
network corresponds to the instance of Subset Sum defined by 𝐴 = {1, 3, 6, 7, 9} and
𝑘 = 12.

That is, all edges are candidate edges. Hence, the hardness results for the Maximum
Transmission Switching Flow problem can be transferred directly to Electrical
Flow Expansion. More precisely, Items (a) and (c) in this proposition are derived
from [LGV14, Thm. 1], and Item (b) is derived from [Koc+16, Thm. 3.1]. □

3.4 Hardness

There are polynomial-time algorithms both for computing graph-theoretical flows
and for computing electrical flows; see Section 2.1. Hence, it can be checked if
any given expansion of a network is feasible in polynomial time. This implies that
determining whether a network has a feasible expansion lies in N P . Moreover, the
costs of an expansion can be computed in linear time. Thus, the decision variants
of both Flow Expansion and Electrical Flow Expansion are in N P as well. We
start by proving that determining whether a network with adjustable demands has a
feasible expansion is N P-complete.

Theorem 3.5. The decision variant of Flow Expansion with adjustable demands and
a star as underlying graph is N P-complete.

Proof. We prove the hardness by a reduction from Subset Sum. An instance of
Subset Sum consists of a set 𝐴 ⊆ N and a natural number 𝑘 ∈ N. Such an instance
(𝐴,𝑘) belongs to Subset Sum if and only if there is a subset of 𝐴 whose elements
sum to 𝑘 .
We construct a star graph 𝐾1, |𝐴 | with center v and leaves 𝑤𝑎 for 𝑎 ∈ 𝐴; see

Figure 3.1 for an example. All edges are candidate edges. The center is a sink with
demand interval 𝐷 (v) = {𝑘}. For 𝑎 ∈ 𝐴, we set 𝐷 (𝑤𝑎) = [−𝑎, 0], cap(v𝑤𝑎) = 𝑎, and
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𝑐 (v𝑤𝑎) = 𝑎. We call the resulting network N . It can clearly be computed in linear
time. We further claim that there is an expansion of N with cost at most 𝑘 if and
only if (𝐴,𝑘) belongs to Subset Sum.

By construction there is a one-to-one correspondence between elements of 𝐴 and
leaves (and thus edges) of 𝐾1, |𝐴 | . Hence, there is a bijection Φ between subsets of 𝐴
and expansions ofN , which are determined by subsets of edges. Consider any𝐴′ ⊆ 𝐴,
and let 𝑘 ′ be the sum of elements of 𝐴′. We further observe that in Φ(𝐴′) the sum
of the edge capacities is 𝑘 ′. Therefore, there is no flow in Φ(𝐴′) if 𝑘 ′ < 𝑘 since the
demand of the center 𝑢 cannot be satisfied. However, if 𝑘 ′ ≥ 𝑘 , the definition of
the demands of the leaves as 𝐷 (𝑤𝑎) = [−cap(v𝑤𝑎), 0] implies that there is a flow
in Φ(𝐴′). In total, Φ(𝐴′) is feasible if and only if 𝑘 ′ ≥ 𝑘 . Since cost(Φ(𝐴′)) = 𝑘 ′,
the total cost of the expansion is at most 𝑘 if and only if 𝑘 ′ ≤ 𝑘 . This shows that
feasible expansions of cost at most 𝑘 correspond to subsets 𝐴′ ⊆ 𝐴 with sum 𝑘 and
vice versa. □

Note that on trees every graph-theoretical flow is an electrical flow. Hence, the
reduction proves the hardness of Electrical Flow Expansion on trees as well.

Corollary 3.6. The decision variant of Electrical Flow Expansion with adjustable
demands and a tree as underlying graph is N P-complete.

In the reduction above we crucially use the fact that the consumption at the leaves
are not fixed. Selecting which of the leaves produce flow and which do not is the key
choice when searching for a cheap feasible expansion. When we restrict ourselves
to networks with fixed demands, this construction does not work anymore, at least
not directly. However, we do know the total consumption in any flow in any feasible
expansion, namely the demand of the center. Due to the simple structure of the
network and with carefully choosing the susceptances, the standard approach of
adding a super source to the network gives an equivalent network. Hence, we obtain
the N P-hardness of Electrical Flow Expansion with fixed demands.

Theorem 3.7. The decision variant of Electrical Flow Expansionwith fixed demands
is N P-complete even if the underlying network is a 𝐾2,𝑛 for 𝑛 ∈ N.

Proof. As in Theorem 3.5 we reduce an instance (𝐴,𝑘) of Subset Sum to Electrical
Flow Expansion. This time, however, the demands are fixed. We have one source 𝑠
with a demand of −𝑘 and one sink 𝑡 with a demand of 𝑘 . For every 𝑎 ∈ 𝐴 there is a
path 𝑠v𝑎𝑡 of candidate edges with costs 𝑎, susceptances 𝑎, and capacities 𝑎. Let the
resulting network be N . The vertices v𝑎 have a demand of 0. We claim that there is
an feasible expansion H of N with cost(H) ≤ 2𝑘 if and only if the instance (𝐴,𝑘)
has a solution.
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If only one edge of any path 𝑠v𝑎𝑡 is included in an expansion H, the flow on this
edge has to be 0 in any flow. Hence, leaving this edge out is both cheaper and allows
for the same flows. Therefore, we may treat the candidate edges on one path as a
single unit.

Every subset 𝐴′ of 𝐴 corresponds to an expansion HA’ of N , where the edges 𝑠v𝑎
and v𝑎𝑡 are included in the expansion if and only if 𝑎 ∈ 𝐴′. It is easy to verify that

cost(H𝐴′ ) = 2
∑︁
𝑎∈𝐴′

𝑎.

Let 𝑘 ′ be the sum of the elements in 𝐴′, i.e., 𝑘 ′ = cost(H𝐴′ )/2. The edges of H𝐴′

incident to the source 𝑠 form a cut with capacity 𝑘 ′. Hence, if 𝑘 ′ < 𝑘 , there is no flow
in H𝐴′ . Otherwise, if 𝑘 ′ ≥ 𝑘 , setting \ (𝑠) = 2𝑘/𝑘 ′, \ (v𝑎) = 𝑘/𝑘 ′ for all 𝑎 ∈ 𝐴, and
\ (𝑡) = 0 induces an electrical flow in H𝐴′ .

In total, if 𝐴′ ⊆ 𝐴 is a solution of (𝐴,𝑘), then H𝐴′ is a feasible expansion of N
with cost(H𝐴′ ) = 2𝑘 . Conversely, H is a feasible expansion of N with cost(H) ≤ 2𝑘 ,
then we may assume that H = H𝐴′ for some 𝐴′ ⊆ 𝐴. Let 𝑘 ′ be the sum of 𝐴′. The
feasibility of H yields 𝑘 ′ ≥ 𝑘 , and the total cost bound yields 𝑘 ′ ≤ 𝑘 . Thus, 𝐴′ is a
solution of (𝐴,𝑘). □

Leaving out the susceptances in the reduction above directly shows the N P-
hardness of Flow Expansion with fixed demands as well.

Corollary 3.8. The decision variant of Flow Expansion with fixed demands is N P-
complete even if the underlying network is a 𝐾2,𝑛 for 𝑛 ∈ N.

The problem Steiner Tree can be reduced to both Flow Expansion and Electri-
cal Flow Expansion [MPS10]. An instance of Steiner Tree consists of a weighted
undirected graph 𝐺 = (𝑉 , 𝐸) and a set of terminals 𝑇 ⊆ 𝑉 . The goal is to find the
minimum-weight subgraph of 𝐺 that connects all terminals. While not noted explic-
itly, the reduction also implies that the approximation hardness of Steiner Tree can
be transferred as well. More precisely, it is known that it is N P-hard to approximate
Steiner Tree within a factor of 96/95 [CC08]. Thus, we obtain a similar result for
Flow Expansion and Electrical Flow Expansion.

Proposition 3.9. It is N P-hard to approximate Flow Expansion and Electrical

Flow Expansion within a factor of 96/95 even if the demands are fixed and there is
only one source.
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3.5 Polynomial-Time Algorithms for Networks with

Fixed Demands

In this section we only consider networks with fixed demands. That is, their demand
intervals contain only one value, andwe can replace the demand intervals by demands,
i.e., we have a function 𝑑 that assigns the demand value 𝑑 (v) to each vertex v .

Lemma 3.10. In networks with fixed demands, it can be determined in linear time,
which bridges are part of an optimal expansion. Moreover, the amounts of flow on these
bridges are the same for all flows in all expansions, and the amounts can be determined
in linear time as well.

Proof. Let v𝑤 be a bridge in the underlying graph𝐺 of the network N . By definition,
the removal of v𝑤 disconnects 𝐺 into two components 𝐺v and 𝐺𝑤 that contain v
and 𝑤, respectively. Let 𝑠v and 𝑠𝑤 be the sums of the demands at vertices of 𝐺v
and 𝐺𝑤 , respectively. If 𝑠v ≠ −𝑠𝑤 , then there is no feasible expansion. Otherwise,
we have 𝑓 (v𝑤) = 𝑠𝑤 for any flow 𝑓 in any expansion. Hence, if 𝑠𝑤 ≠ 0, any feasible
expansion contains v𝑤. In contrast, if 𝑠𝑤 = 0 and v𝑤 is a candidate, the edge v𝑤 may
be removed from any expansion without affecting the feasibility of the expansion.
Moreover, doing so may only reduce the costs.

Since this argument holds for every bridge, we obtain that the amount of flow on
the bridges is the same in any flow in any expansion of N . Additionally, if N has
a feasible expansion, then there is an optimal expansion that contains only those
bridges for which the demand sums defined above are not 0.
It remains to show how to compute the demand sums and this set of bridges in

linear time. We first check whether the sum of the demands of all vertices is 0. If
not, there is no feasible expansion, and we stop. Then, we determine the bridges
of 𝐺 in linear time using a modified depth-first search (DFS) [HT73]. We then root
the resulting DFS-tree 𝑇 at an arbitrary vertex and perform a bottom-up traversal to
compute the demand sums, which takes linear time. Afterwards, every vertex v is
annotated with the sums 𝑎v of the demands at the vertices in the subtree below v .
Every spanning tree, and in particular 𝑇 , contains every bridge. Let v𝑤 be a bridge.
We may assume without loss of generality that 𝑤 is a child of v in 𝑇 . Then, 𝑎𝑤 is the
sum of the demands in the component of𝐺 − v𝑤 that contains 𝑤. By the argument
above, the amount of flow on v𝑤 is 𝑎𝑤 in every flow. Furthermore, we can determine
whether to include v𝑤 in an expansion (if 𝑎v ≠ 0 or v𝑤 is an existing edge) or not. □

In a first step we apply this lemma to trees. There, every edge is a bridge. Hence,
the algorithm in the proof of Lemma 3.10 yields a unique expansion, and either
this expansion is optimal or there is no feasible expansion. Moreover, we obtain an
assignment of values to the edges that satisfies the flow conservation constraints at
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the vertices. To determine whether it is a flow, it remains to check if the assigned
values exceed the capacities. This is clearly possible in linear time.

Proposition 3.11. On trees both Flow Expansion with fixed demands and Electrical
Flow Expansion with fixed demands can be solved optimally in O(𝑛) time.

Having understood the case expansion problem in graphs where every edge is a
bridge, we move on to a slightly more complex graph class: cacti. Since no two cycles
share an edge in a cactus, all biconnected components are either a bridge or a cycle.
We assume in the remainder of this section that the sum of all demands is 0.

Otherwise, there is no feasible expansion. This prerequisite can be checked easily in
linear time.

We first argue that the biconnected components can be considered independently.
Two biconnected components have at most one vertex in common. A vertex that
belongs to two biconnected components is a cut-vertex. Consider a cut-vertex v .
The graph 𝐺 − v consists of 𝑘 ≥ 2 components 𝐺1, . . . ,𝐺𝑘 . We define 𝐻𝑖 = 𝐺𝑖 + v
for 𝑖 ∈ {1, . . . , 𝑘}. There is a unique way of distributing the demand of v into demands
for each graph𝐻𝑖 such that the total demand in the subnetwork N𝑖 induced by𝐻𝑖 is 0.
We can then consider the networks N1, . . . ,N𝑘 independently. Repeating this proce-
dure for all cut-vertices, we decompose the network into subnetworks induced by
the biconnected components. For an efficient calculation of the subnetworks for the
biconnected components, we first compute the block-cut tree in linear time [HT73].
The demands of the cut-vertices in the subnetworks can be computed by traversing
the block-cut tree bottom-up. All leaves of the block-cut tree are biconnected compo-
nents that contain exactly one cut-vertex. For this vertex the demand can easily be
determined. Once all children of a node corresponding to a biconnected component
have been handled, the demands of all but (at most) one cut-vertex have been fixed.
Hence, we can proceed as for the leaf. In total, this procedure can be implemented to
run in linear time.

Lemma 3.12. The biconnected components can be considered independently and the
subnetworks for the biconnected components can be computed in linear time.

As mentioned above the biconnected components of a cactus are either bridges or
cycles. The bridges can be handled by Lemma 3.10. Thus, it remains to show how
the cycles can be handled efficiently.

Lemma 3.13. In a cycle 𝐶 an optimal expansion can be computed in O( |𝐶 |2) time.

Proof. Let N be a network on a cycle 𝐶 . An optimal expansion (if it exists) either
includes all edges or at least one of the edges is missing. Thus, there are |𝐶 | + 1 cases:
one case if all edges are present, and 𝐶 − 𝑒 for every edge 𝑒 . In the first case, we
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simply check whether there is an (electrical) flow in the network induced by 𝐶 . We
claim that this is possible in O( |𝐶 |2) time. For graph-theoretical flows an algorithm
for the general case has this running time [Orl13]. For electrical flows we can reduce
this to at most |𝐶 | − 1 computations of electrical flows between two vertices, each
taking O( |𝐶 |) time; see Section 2.1.2. The cost of this expansion is the cost of all
candidate edges on 𝐶 . In the other cases, 𝐶 − 𝑒 is a path. Hence, there is at most
one flow, which can be checked in O( |𝐶 |) time, e.g., by applying Lemma 3.10. Note
that the flow may be 0 on some edges. If these edges are candidate edges, we do not
need to include them in the expansion, and their costs can be ignored. Finally, we
determine which of these expansions is the cheapest feasible one, and we return it
(or that there is no feasible expansion). In total, this takes O( |𝐶 |2) time. □

All that remains for an algorithm for the expansion problems on cacti is to put
everything together.

Theorem 3.14. On cacti both Flow Expansion with fixed demands and Electrical
Flow Expansion with fixed demands can be solved optimally in O(𝑛2) time.

Proof. We first decompose the network N into the subnetworks induced by the
biconnected components in linear time (Lemma 3.12). These are either single edges
(and thus bridges), which can be handled in linear time in total by Lemma 3.10, or
cycles, which can be handled in time quadratic in the number of edges on the cycle by
Lemma 3.13. Afterwards, we have an optimal expansion in each of the subnetworks
induced by the biconnected components, or we determine that there is no feasible
expansion in some subnetwork. In the latter case, we conclude that there is no
feasible expansion of the whole network. In the former case, we combine the optimal
expansions of the subnetwork to an expansion H of the network N . Clearly, H is
feasible (by Lemma 3.12) and has minimum costs. Otherwise, it would contain a
cheaper expansion for one of the subnetworks.
The procedure takes O(𝑛) time for decomposing the network and to combine the

expansions. The optimal expansion of a biconnected component with ℓ edges can be
computed in O(ℓ2) time by Lemmas 3.10 and 3.13. Hence, the total running time lies
in O(𝑛2). □

3.6 Single Source, Single Sink

In this section we consider two-terminal networks, which are networks where for all
but two vertices the demand intervals are {0}. Let these two vertices be 𝑠 and 𝑡 . If
both 𝐷 (𝑠) and 𝐷 (𝑡) contain 0, the function that is 0 on all edges defines an (electrical)
flow in any expansion. Thus, adding no candidate edges yields an optimal expansion.
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Therefore, we may assume that at least one of the intervals does not contain 0, but
only, say, positive values. In any flow 𝑓 in any expansion, we have 𝑐 𝑓 (𝑠) = −𝑐 𝑓 (𝑡).
Hence, we can ignore the positive values in the demand interval of the other vertex,
and we may assume without loss of generality that 𝐷 (𝑠) contains only negative
values and 𝐷 (𝑡) contains only positive values. Then, 𝑠 is the unique source and 𝑡 is
the unique sink.

Lemma 3.15. Let N be an (electrical) two-terminal network with source 𝑠 and sink 𝑡 .
Let 𝑎 = max{−max𝐷 (𝑠),min𝐷 (𝑡)}, and let H be an expansion of N . If there is an
(electrical) flow in H, then there is an (electrical) flow 𝑓 in H such that 𝑐 𝑓 (𝑠) = −𝑎 and
𝑐 𝑓 (𝑡) = 𝑎.

Proof. Let 𝑓 ′ be an (electrical) flow in H. We define 𝛼 = 𝑎/𝑐 𝑓 ′ (𝑡). By the definition
of 𝑎 and the fact that 𝑐 𝑓 ′ (𝑠) = −𝑐 𝑓 ′ (𝑡), it holds that 𝛼 ≤ 1. Hence, 𝑓 B 𝛼 · 𝑓 ′ is an
(electrical) flow in H with the desired consumptions at 𝑠 and 𝑡 . □

This lemma allows us to treat the demands as fixed with 𝑑 (𝑠) = −𝑎, 𝑑 (𝑡) = 𝑎, and
𝑑 (v) = 0 for all other vertices v .

In Theorem 3.7 and Corollary 3.8 we already establish that Flow Expansion and
Electrical Flow Expansion areN P-complete on the class of parallel paths between
a single source and a single sink. In the remainder of this section we present two
pseudo-polynomial-time algorithms for (Electrical) Flow Expansion on graph
classes that include (among others) parallel paths. We start with an algorithm for
Flow Expansion on series-parallel graphs.

Proposition 3.16. LetN be an instance of Flow Expansion on a two-terminal network
with integral costs and capacities, where the underlying graph 𝐺 is two-terminal series-
parallel and the terminals of 𝐺 are the source and the sink of N . An optimal expansion
can be computed in O(𝑛3 ·min{𝐶2,𝑈 2}) time, where the candidate costs and capacities
are bounded by 𝐶 and𝑈 , respectively.

Proof. We only describe an algorithm that obtains a running time of O(𝑛3𝐶2) in
detail. At the end we sketch how to modify it to get an algorithm with a running time
of O(𝑛3𝑈 2). Choosing the algorithm with the better running time for each instance
then gives an algorithm with the claimed running time.
Let 𝐺 be a series-parallel graph with 𝑛 vertices and 𝑚 edges. Its structure can

be represented by an sp-tree T as described in Section 2.3. Each internal node 𝛼
of T represents a subgraph 𝐺𝛼 of 𝐺 . We compute an optimal solution by dynamic
programming on T .
For every node 𝛼 in the tree we compute the function 𝐹𝛼 : N0 → N0, where

𝐹𝛼 (𝑎) represents the maximum total flow value in 𝐺𝛼 when the costs of the selected
candidate edges is at most 𝑘 . Recall that we assumed all input values to be integral.
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Hence, it is sufficient for 𝐹𝛼 to be a map from the natural numbers. Let 𝜌 be the
root of the tree. If we know 𝐹𝜌 , we are able to compute the minimum cost for an
expansion as follows. The total cost of all candidate edges is at most𝑚𝐶 . Hence, if
𝐹𝜌 (𝑚𝐶) < 𝑑 (𝑡), then there is no feasible expansion of N . Otherwise, we find the
smallest 𝑘 ∈ N0 such that 𝐹𝜌 (𝑘) ≥ 𝑑 (𝑡).
It remains to show how 𝐹𝛼 for all nodes 𝛼 can be computed efficiently. Note that

if 𝐺𝛼 has𝑚′ edges, then 𝐹𝛼 (𝑘) = 𝐹𝛼 (𝑚′𝐶) for all 𝑘 ≥ 𝑚′𝐶 . Hence, we only need to
compute and store 𝐹𝛼 (0), . . . , 𝐹𝛼 (𝑚′𝐶).
At a leaf 𝛼 , which represents an edge 𝑒 , we have

𝐹𝛼 (𝑘) =


cap(𝑒), 𝑒 ∈ 𝐸ex,

0, 𝑒 ∈ 𝐸cand and 𝑘 < 𝑐 (𝑒),
cap(𝑒), 𝑒 ∈ 𝐸cand and 𝑘 ≥ 𝑐 (𝑒).

If 𝛼 is an internal node it has two children 𝛽 and 𝛾 . If the subgraph 𝐺𝛼 is formed
by a series composition, it holds that

𝐹𝛼 (𝑘) = max{min{𝐹𝛽 (𝑘1), 𝐹𝛾 (𝑘2)} | 𝑘1, 𝑘2 ∈ N0, 𝑘1 + 𝑘2 = 𝑘}.

If 𝐺𝛼 is formed by a parallel composition, we have

𝐹𝛼 (𝑘) = max{𝐹𝛽 (𝑘1) + 𝐹𝛾 (𝑘2) | 𝑘1, 𝑘2 ∈ N0, 𝑘1 + 𝑘2 = 𝑘}.

Every function value can be computed in O(𝑚𝐶) = O(𝑛𝐶) time. Since we com-
pute O(𝑚𝐶) values for each of the O(𝑛) functions, we have a total running time
of O(𝑛3𝐶2).
A similar approach gives a running time of O(𝑛3𝑈 2). We compute at each node 𝛼

of the sp-tree the function 𝐹 ′𝛼 where 𝐹 ′𝛼 (𝑘 ′) is the minimum cost of an expansion
that allows for a flow of 𝑘 ′ through the subgraph 𝐺𝛼 represented by 𝛼 . Note that by
Corollary 2.2 there is an integral flow in the subgraph𝐺𝛼 . Thus, it suffices to only
consider 𝐹 ′𝛼 (𝑘 ′) for 𝑘 ′ ∈ N0. An analysis analogous to the one above shows that we
compute O(𝑛𝑈 ) function values for O(𝑛) functions, and each computation takes
O(𝑛𝑈 ) time. In total, this gives a running time in O(𝑛3𝑈 2). □

Note that the algorithm in the proof above cannot easily be adapted to work on
electrical flow networks. It builds on the fact that two parallel subnetworks do not
interact with each other, except that their out-flows at the sinks (and in-flows at
the sources) add. In contrast to that, if we considered an electrical flow, the angle
differences between the source and sink of the two subnetworks would have to be the
same for both subnetworks. This additional influence cannot be captured as easily.
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Moreover, with electrical flows it is not possible anymore to assume that the resulting
flows are integral, which further complicates the situation.
In fact, the analogous problem for electrical flows, Electrical Flow Expansion,

is N P-hard on partial 2-trees even if all capacities are 1 and edge costs are ignored
(but the susceptances are not constant) [Gra+18]. This result does not preclude the
existence of a pseudo-polynomial-time algorithm. However, assuming P ≠ N P ,
the running time of such a hypothetical algorithm would need to depend on the
magnitude of the susceptances as well. We leave finding such an algorithm as an
open question.
But we prove that there is a pseudo-polynomial-time algorithm for Electrical

Flow Expansion (and for Flow Expansion) on a subclass of the series-parallel graph,
namely those graphs that are formed by a series composition of blocks consisting of
parallel paths. We call such graphs sps-graphs (for series–parallel–series).

Proposition 3.17. Let N be an instance of Electrical Flow Expansion on a two-
terminal network with integral costs bounded by 𝐶 , where the underlying graph 𝐺 is
an sps-graph and the terminals of 𝐺 are the source and the sink of N . An optimal
expansion can be computed inO(𝑛3𝐶𝑇 ) time, where𝑇 is the time it takes to add numbers
with O(𝑛2∥𝑏∥ + 𝑛∥cap∥) bits, where ∥𝑏∥ and ∥cap∥ are the maximum number of bits
needed to represent a value of 𝑏 and cap.

Proof. We note that in sps-graphs each block of parallel paths forms a biconnected
component. Thus, it can be considered independently by Lemma 3.12. We reduce
finding an optimal solution Flow Expansion on parallel paths to solving a linear
number of Minimum Knapsack instances. An instance of Minimum Knapsack
consists of a set of objects 𝐴, some 𝑘 ∈ N0, as well as a cost 𝑐 (𝑎) ∈ N0 and a
value v (𝑎) ∈ N0 for each𝑎 ∈ 𝐴. The goal is to find a subset𝐴′ ⊆ 𝐴withminimum cost
such that the sum of the values is at least 𝑘 . A straightforward dynamic programming
approach yields aO(𝑛2 max𝑎∈𝐴 𝑐 (𝑎))-time algorithm forMinimumKnapsack [KPP04,
Sec. 13.3.3 and Thm. 7.2.1].
Let 𝑃1, . . . , 𝑃𝑘 be the paths between the source 𝑠 and the sink 𝑡 . We denote their

edge sets by 𝐸 (𝑃𝑖 ). We associate each path 𝑃𝑖 with its costs 𝑐 (𝑃𝑖 ), susceptance 𝑏 (𝑃𝑖 ),
and capacity cap(𝑃𝑖 ), which are defined by

𝑐 (𝑃𝑖 ) =
∑︁

𝑒∈𝐸 (𝑃𝑖 )∩𝐸cand

𝑐 (𝑒),

𝑏 (𝑃𝑖 ) =
1∑

𝑒∈𝐸 (𝑃𝑖 )
1

𝑏 (𝑒 )
,

cap(𝑃𝑖 ) = min{cap(𝑒) | 𝑒 ∈ 𝐸 (𝑃𝑖 )}.
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We observe that 𝑏 (𝑃𝑖 ) can be represented with O(𝑛∥𝑏∥) bits. We call the paths with
candidate edges candidate paths and the others existing paths. Furthermore, we denote
the set of existing paths by Qex and the set of candidate paths by Qcand.
The key idea is to reduce the selection of the paths to a series of MinimumKnapsack

computations. Every path 𝑃𝑖 that is contained in an expansion has cost 𝑐 (𝑃𝑖 ), and
naively one may assume that it can transport cap(𝑃𝑖 ) units of flow. However, by
Kirchhoff’s voltage law, the flows on the paths cannot be considered independently.
For example, sending cap(𝑃𝑖 ) units along 𝑃𝑖 may induce an angle difference between 𝑠
and 𝑡 of Φ(𝑃𝑖 ). That is, if H is an expansion that completely contains 𝑃𝑖 and 𝑓 is an
electrical flow in H, then the angle difference between 𝑠 and 𝑡 is at most Φ(𝑃𝑖 ). More
concretely, the maximum angle difference Φ(𝑃𝑖 ) induced by 𝑃𝑖 is given by Φ(𝑃𝑖 ) =
cap(𝑃𝑖 )/𝑏 (𝑃𝑖 ), which can be representedwithO(𝑛∥𝑏∥+∥cap∥) bits. However, another
path 𝑃 𝑗 may induce an angle difference ofΦ(𝑃 𝑗 ), whichmay differ fromΦ(𝑃𝑖 ). Having
both paths in an expansion, thus restricts the angle difference to min{Φ(𝑃𝑖 ),Φ(𝑃 𝑗 )}.
This in turn restricts the maximum flow values on one path to possibly less than the
capacities.

But every expansion H completely contains a path 𝑃 𝑗 with minimum value Φ(𝑃 𝑗 )
among all paths in H. We may then assume that the angle difference between 𝑠 and 𝑡
is exactly Φ(𝑃 𝑗 ), which allows us to assign values 𝐹 (𝑃𝑖 ) to all paths 𝑃𝑖 that describe
the amount of flow along 𝑃𝑖 if the angle difference is Φ(𝑃 𝑗 ). To simplify the notation
we assume that the paths are ordered such that Φ(𝑃𝑖 ) ≤ Φ(𝑃 𝑗 ) for 𝑖 ≤ 𝑗 . Then, 𝑃 𝑗
has the minimum index of all paths selected for H.
For each choice of 𝑃 𝑗 ∈ Qex ∪ Qcand, we reduce the search for a cost-minimal

expansion to an instance of Minimum Knapsack. For each path 𝑃𝑖 with 𝑖 ≥ 𝑗

the value 𝐹 (𝑃𝑖 ) is given by 𝐹 (𝑃𝑖 ) = 𝑏 (𝑃𝑖 ) · Φ(𝑃 𝑗 ), which can be represented in
O(𝑛∥𝑏∥ + ∥cap∥) bits. These represent the flow values we can achieve if we select 𝑃𝑖 .
It remains to compute how much flow we actually need. Part of the demand 𝑑 (𝑡)
may already be satisfied via existing paths. With the fixed angle difference of Φ(𝑃 𝑗 ),
the remaining demand is

𝑑0 = 𝑑 (𝑡) −
∑︁

𝑃𝑖 ∈Qex

𝐹 (𝑃𝑖 ).

The goal is then to find a subset Q′ ⊆ {𝑃𝑖 ∈ Qcand | 𝑖 ≥ 𝑗} such that
∑

𝑃∈Q′ 𝐹 (𝑃) ≥ 𝑑0
and

∑
𝑃∈Q′ 𝑐 (𝑃) is minimal. This would be an instance of theMinimum Knapsack

problems if all values were integral. However, the values 𝐹 (𝑃𝑖 ) may be non-integral.
Instead of working with these values, we define 𝛼 as the smallest integer such that
𝛼𝑑0 ∈ N0 and 𝛼 · 𝐹 (𝑃𝑖 ) ∈ N0 for all 𝑖 ≥ 𝑗 . Let then 𝐹 ′ (𝑃𝑖 ) = 𝛼𝐹 (𝑃𝑖 ) and 𝑑 ′0 = 𝛼𝑑0.
The value 𝛼 is bounded by the product of the denominators of all 𝐹 (𝑃𝑖 ). Hence, all
new values can be represented in O(𝑛2∥𝑏∥ + 𝑛∥cap∥) bits. The resulting instance of
the Minimum Knapsack problem can hence be solved in O(𝑛2𝐶𝑇 ) time [KPP04].
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However, initially we do not know the path 𝑃 𝑗 with the minimum index in an
optimal expansion. We therefore try all values of 𝑗 between 1 and min{𝑖 | 𝑃𝑖 ∈ Qex}.
The cost-minimal expansion then corresponds to the cheapest solution of one of
these Minimum Knapsack instances. This adds another factor of O(𝑛) to the overall
running time. □

3.7 Conclusion

Flow Expansion and Electrical Flow Expansion are optimization problems that
can be seen as variants of theMinimum Cost Flow problem. Their corresponding
decision problems are N P-complete even in very simple cases, e.g., if the network is
a star (Theorem 3.5 and Corollary 3.6) or if there are only parallel paths between the
only source and the only sink (Theorem 3.7 and Corollary 3.8). For some restricted
cases, there are (pseudo-)polynomial-time algorithms.

Our results show that the graph classes and the demand type (fixed vs. adjustable
demand) have a crucial impact on the complexity of the problems. Interestingly,
our results do not show a strong difference between the flow models, i.e., between
Flow Expansion and Electrical Flow Expansion. The only notable difference is
Proposition 3.16, whose proof is based on a dynamic program on the structure of a
partial 2-tree. It is not clear how to adapt the proof to electrical flows. A straight-
forward follow-up questions is therefore: Can the algorithm be adapted to work with
electrical flows as well (in the same running time)? Or more general, are there cases
where the complexities of Flow Expansion and Electrical Flow Expansion clearly
differ? As another possible research direction it may also be possible to extend the
results for partial 2-trees to graphs of bounded treewidth.
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4 Expanding Electrical Networks

to Prevent Critical Edges

In the basic expansion planning formulation that we analyze in Chapter 3 no redun-
dancy is required in case some transmission equipment fails. But in practice it is
important to ensure that the transmission network is reliable. In particular, it should
remain operable if one piece of equipment fails (𝑁 − 1 criterion). In this chapter we
consider a criticality measure by Witthaut et al. [Wit+16], We observe that networks
without critical edges tend to satisfy the 𝑁 − 1 criterion even though (as we show)
there are networks that satisfy either criterion but not the other.
We formulate the criticality measure as a set of linear constraints, which may

form a building block in network design problems. To exemplify this usage, we
introduce these constraints into a generalization of Electrical Flow Expansion
to multiple timestamps, obtaining MILPs for two expansion planning problems. We
study the effects of adding these constraints on the time needed for solving the
models. Furthermore, we present a simple heuristic for one of the two problems,
which often finds optimal solutions but in less time than solving the MILP.

This chapter is based on joint work with Dorothea Wagner [WW20].

4.1 Introduction

When designing a new electric transmission grid or re-designing an existing one,
one strives to make the grid robust against potential equipment failures. Otherwise,
a single failure may cause a collapse of large parts of the grid leading to a widespread
black out. To prevent such widespread failures, one therefore has to take these
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equipment failures into account both during the design and the operation phase. In
this work we focus on the design phase.
A widely used reliability criterion is the 𝑁 − 1 criterion [ZA05]. It roughly states

that the grid must be operable even if a single piece of equipment (e.g., a transmission
line or a generator) fails. It is widely used both while designing [SMB10, CMT07,
LHS19] and operating transmission and distribution grids [Mey+18]. This criterion
may also be extended to include the failure of up to 𝑘 pieces of equipment. This is
then called the 𝑁 − 𝑘 criterion [MSA15].
Typically, these criteria consider the static behavior of the grid after the failure.

They do not include the dynamic behavior of, e.g., a line failure. In contrast, to assess
the severity of edge failures one may need to take the dynamic behavior of the voltage
angles in transmission grids into account as well [Wit+16]. Lines are classified as
either critical if their failure causes a widespread outage or non-critical if the failure
still leaves the grid operable. Two simple measures that try to predict for each line
whether they are critical or not were developed [Wit+16]. The first measure bases the
decision on the maximum graph-theoretical flow between the endpoints of the line in
the residual network after the line is removed; see Section 4.3 for a formal definition.
If the fraction of the power flow on the line and the value of the maximum is larger
than some thresholdℎ, the line is predicted to be critical. The second measure is based
on the linear response on small perturbations in the existing power flow. The authors
claim that the two measures more accurately predict critical edges than standard
load flow analyses. In this chapter, we present how to incorporate the first measure
into transmission network design problems, e.g., Electrical Flow Expansion.

Related Work. There is a large body of research on Transmission Network
Expansion Planning. For a general overview we refer to Chapter 1 and the book by
Lumbreras, Abdi, and Ramos [LAR21]. In this section, we focus on the works that
incorporate reliability criteria such as the 𝑁 − 1 criterion [CMT07, SMB10].
Transmission Network Expansion Planning including both AC and DC links

considering the 𝑁 − 1 criterion may be formulated as an MILP [DEG17]. Moreover,
that work contains a method to reduce the search space of the MILP formulation,
which significantly decreases the time to solve the model.

Choi, Mount, and Thomas [CMT07] formulate an integer programming formulation
for Transmission Network Expansion Planning taking the 𝑁 − 𝑘 criterion and
variations thereof into account. This means, they consider contingencies with up to 𝑘
component failures. However, to reduce the complexity of the model, they ignore
contingencieswith probabilities below a given threshold (10−9 in their study). Moreira,
Street, and Arroyo [MSA15] address the computational complexity of explicitly
modeling the 𝑁 − 𝑘 criterion differently. They formulate this problem as a trilevel
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mixed-integer program and solve it using Benders decomposition.
Instead of employing the deterministic 𝑁 − 1 criterion, Shortle, Rebennack, and

Glover [SRG14] consider the stochastic nature of blackouts. They present a variant
of the transmission expansion planning problem with the goal of minimizing the
probability of blackouts.
Reliability criteria are not only important for designing but also for operating

transmission grids. A relaxed version of the 𝑁 − 1 criterion is proposed by Zima
and Andersson [ZA05]. They find that using this relaxed criterion during dispatch
reduces the expected blackout size. Heylen et al. [Hey+19] compare six reliability
criteria including the 𝑁 − 1 criterion and various probabilistic criteria. Their case
study shows that probabilistic criteria allow for lower expected total cost of reliability
management.

Contribution andOutline. We present a linear program formulation of the critical-
ity criterion by Witthaut et al. [Wit+16]. This formulation is general in the sense that
it can be included in various transmission network design problems. As an example
application, we include it in a basic version of the Transmission Network Expan-
sion Planning problem. This yields the two problems: Criticality-Constrained
Transmission Network Expansion Planning (CC-TNEP) and Criticality Min-
imal Expansion (CME). In the former problem, the total criticality of all edges is
bounded and the expansion costs are minimized. In the latter problem, the goal is to
minimize the total criticality in the expansion subject to budget constraints. We study
the effect of the criticality constraints in these problems by simulations on example
networks. We also compare the criticality constraints with the more standard 𝑁 − 1
constraints both theoretically and by simulations on the aforementioned example
networks. For CME we present a greedy heuristic, which is both fast and gives very
good results compared to solving the MILP formulation with Gurobi.

The remainder of this chapter is structured as follows. In the following section we
define basic terms and models that we use throughout this section. In Section 4.3
we reformulate the criticality criterion by Witthaut et al. [Wit+16] and relate it to
the 𝑁 − 1 criterion in a theoretical analysis. We formulate the criticality criterion as
linear constraints, which are then included in a model for Transmission Network
Expansion Planning resulting in models for CC-TNEP and CME. We develop a
greedy heuristic for CME in Section 4.4. In Section 4.5 we evaluate and compare the
presented models and algorithms on example networks. We further compare the
criticality criterion and the 𝑁 − 1 criterion on these example networks. We finally
conclude with a summary of the results and give an outlook on potential future work
on this topic in Section 4.6.
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4.2 Preliminaries

Recall the definition of flow networks and expansions in Chapter 2. In particular,
in a network on a graph 𝐺 = (𝑉 , 𝐸) each vertex v ∈ 𝑉 has a specified demand
interval 𝐷 (v). In this section, we extend these definitions to networks with multiple
time periods. What this means is that there is a set 𝑇 of timestamps, and instead of a
single demand function 𝐷 we have one demand function 𝐷𝜏 per timestamp 𝜏 ∈ 𝑇 .
Thus, for every 𝜏 ∈ 𝑇 we get a network N𝜏 on the same graph 𝐺 . In this chapter all
such networks have fixed demands. Hence, we specify functions 𝑑𝜏 : 𝑉 → R instead
of the functions 𝐷𝜏 , which assign demand intervals to the vertices.

Formally, let𝐺 = (𝑉 , 𝐸) be an orientation of an undirected graph. Each edge 𝑒 ∈ 𝐸
has a capacity cap(𝑒) ∈ R>0 and a susceptance 𝑏 (𝑒) ∈ R>0. Additionally, there is a
set of timestamps 𝑇 . For each timestamp 𝜏 ∈ 𝑇 and vertex v ∈ 𝑉 , the demand 𝑑𝜏 (v)
at v is fixed. We call the input tuple (𝐺,𝑇 , {𝑑𝜏 }𝜏∈𝑇 , cap, 𝑏) a multi-period network.
Given such a multi-period network N with timestamps 𝑇 , we define the network

at time 𝜏 by N𝜏 = (𝐺,𝑑𝜏 , cap, 𝑏). A multi-period network N admits an electrical flow
if there is an electrical flow in every network N𝜏 for 𝜏 ∈ 𝑇 .

Expansions for multi-period networks and their costs can be defined as for single-
period networks. This requires the edge set 𝐸 to be partitioned into a set of existing
edges 𝐸ex and a set of candidate edges 𝐸cand. An expansion of a network N is any
subnetwork of N with edgeset 𝐸𝐻 , where 𝐸ex ⊆ 𝐸𝐻 ⊆ 𝐸.

In this chapter, we call the tuple consisting of a multi-period network N , a partion-
ing of the edge set into existing and candidate edges, and a function 𝑐 : 𝐸cand → R≥0
an instance. The cost for building a candidate edge 𝑒 ∈ 𝐸cand is given by 𝑐 (𝑒).
Finding the cheapest expansion that admits an electrical flow of a (single-period)

network is the Electrical Flow Expansion problem; see Section 2.2. Clearly, we
can generalize this problem to expansions of multi-period networks.
Definition 4.1 (Multi-Period Electrical Flow Expansion (MP-EFE)). Given an
instance on a multi-period network N with timestamps 𝑇 , find an expansion H
admitting an electrical flow at all times 𝜏 ∈ 𝑇 and that has minimum cost among all
such expansions.
As usual, we denote the cost of H by cost(H). This problem lies at the heart of

most Transmission Network Expansion Planning problems. Since MP-EFE is an
extension of Electrical Flow Expansion, Proposition 3.4 directly implies that it is
N P-hard to determine whether a multi-period network has an expansion.
In order to formulate this problem as an MILP, we introduce the binary vari-

ables z (𝑒) for all 𝑒 ∈ 𝐸cand. We interpret z (𝑒) = 1 as “the candidate 𝑒 is selected in the
expansion”, and z (𝑒) = 0 as “it is not selected in the expansion”. Further, we have the
continuous variables 𝑓𝜏 (𝑒) for all 𝜏 ∈ 𝑇 and all 𝑒 ∈ 𝐸 representing the electrical flows
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and \𝜏 (v) for all 𝜏 ∈ 𝑇 and all v ∈ 𝑉 representing the angles . The conservation of
flow (see Equation (2.2)) is described by the linear equations for all 𝜏 ∈ 𝑇 and v ∈ 𝑉
by ∑︁

𝑢v∈𝐸
𝑓𝜏 (𝑢v) −

∑︁
v𝑤∈𝐸

𝑓𝜏 (v𝑤) = 𝑑𝜏 (v). (4.1)

For the existing edges the capacity constraints and Kirchhoff’s voltage law are
described as in Equations (2.1) and (2.6). That is, we have for all 𝜏 ∈ 𝑇 and v𝑤 ∈ 𝐸ex

|𝑓𝜏 (v𝑤) | ≤ cap(v𝑤), (4.2)
𝑓𝜏 (v𝑤) = 𝑏 (v𝑤) · (\𝜏 (v) − \𝜏 (𝑤)) . (4.3)

The flow on a candidate edge v𝑤 has to obey the same conditions as on existing
edges if the edge is selected in the expansion (z (v𝑤) = 1), and it must be 0 if v𝑤 is
not selected (z (v𝑤) = 0). We therefore have for all 𝜏 ∈ 𝑇 and all v𝑤 ∈ 𝐸cand

|𝑓𝜏 (v𝑤) | ≤ cap(v𝑤) · z (v𝑤), (4.4)
𝑓𝜏 (v𝑤) = z (v𝑤) · 𝑏 (v𝑤) · (\𝜏 (v) − \𝜏 (𝑤)). (4.5)

Equation (4.4) ensures that the flow on the edges does not exceed the capacity.
Equation (4.5) requires Kichhoff’s Voltage Law to be satisfied if z (v𝑤) = 1, and places
no restriction on the angles if z (v𝑤) = 0. The latter equation is non-linear, but it can
be linearized using big-M-constraints.

|𝑓𝜏 (v𝑤) − 𝑏 (v𝑤) · (\𝜏 (v) − \𝜏 (𝑤)) | ≤ 𝑀v𝑤 · (1 − z (v𝑤)) . (4.6)

The minimal values for 𝑀v𝑤 can be determined by computing shortest paths in 𝐺
equipped with a suitable metric [BPG01]. Now, Equations (4.1) to (4.4) and (4.6)
represent the basic constraints for the MP-EFE problem. The objective is to minimize∑︁

v𝑤∈𝐸cand

z (v𝑤) · 𝑐 (v𝑤) . (4.7)

This basic version can be extended in various ways, e.g., by additionally minimizing
the operation costs (e.g., [CMT07, ARK11, ATCM12]), or by considering that lines
may be added over a longer time horizon [KSK10, ARK11, ATCM12]. However, such
extensions are out of scope in this chapter. We focus on the effect of including a
criticality measure into expansion planning problems.
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4.3 The Criticality Criterion

Witthaut et al. [Wit+16] propose and evaluate simple classifiers for determining
whether the failure of a line in a power grid causes the grid to desynchronize. In this
chapter we consider a classifier based on maximal (graph-theoretical) flows in the
residual networks. In the following sections we reformulate this classifier in graph-
theoretical terms (Section 4.3.1) and compare it to the 𝑁 − 1 criterion (Section 4.3.2).
We formulate it as a set of linear constraints (Section 4.3.3), which we then include
in an MILP formulation for extensions of MP-EFE (Section 4.3.4).

4.3.1 Formulation of the Criticality Criterion

Given an expansion H with the graph 𝐻 = (𝑉 , 𝐸𝐻 ) let 𝑓𝜏 be the electrical flow
in H at time 𝜏 ∈ 𝑇 and let v𝑤 ∈ 𝐸𝐻 be an edge. The residual network N res (𝑓𝜏 , v𝑤)
consists of a directed graph with vertex set 𝑉 res ≔ 𝑉 and edge set 𝐸res. For each
edge 𝑥𝑦 ∈ 𝐸𝐻 \ {v𝑤} the residual network contains the edges 𝑥𝑦 and 𝑦𝑥 . The
residual capacity capres (𝑥𝑦) of an edge 𝑥𝑦 ∈ 𝐸res is cap(𝑥𝑦) − 𝑓𝜏 (𝑥𝑦) if 𝑥𝑦 ∈ 𝐸𝐻
and cap(𝑦𝑥) + 𝑓𝜏 (𝑦𝑥) if 𝑦𝑥 ∈ 𝐸𝐻 . We further require that the flow on each directed
residual edge is at least 0. That is, flow on the residual edges is only allowed in
the direction of the edges. We denote the total flow value of the maximum (graph-
theoretical) flow in N res (𝑓𝜏 , v𝑤) from v to 𝑤 by 𝐹 res

𝜏 (v, 𝑤). Similarly, 𝐹 res
𝜏 (𝑤, v) is the

maximum total flow value in N res (𝑓𝜏 , v𝑤) from 𝑤 to v .
Figure 4.1 shows an example electrical flow and three residual networks. In

Figure 4.1 (a) the electrical flow in the network is shown. The demands at the
vertices are indicated by arrows pointing into the vertices (sources with negative
demands) and away from them (sinks with positive demands). Figures 4.1 (b), (c), and
(d) show the residual networks for the edges 𝑠𝑢, 𝑠v , and v𝑢, respectively. Note that
even though only one direction of each edge is shown, the residual networks actually
contain edges in both directions; showing both directions and their capacities would
clutter the illustration.
Definition 4.2. The criticality of an edge v𝑤 ∈ 𝐸𝐻 at time 𝜏 ∈ 𝑇 is defined by

crit𝜏 (v𝑤) =
{

max{0, 𝑓𝜏 (v𝑤) − ℎ · 𝐹 res
𝜏 (v, 𝑤)}, 𝑓𝜏 (v𝑤) ≥ 0,

max{0,−𝑓𝜏 (v𝑤) − ℎ · 𝐹 res
𝜏 (𝑤, v)}, 𝑓𝜏 (v𝑤) < 0,

where 𝑓𝜏 is the electrical flow in H at time 𝜏 ∈ 𝑇 and ℎ ∈ R>0 is a parameter.
The edge v𝑤 is critical if crit𝜏 (v𝑤) > 0. If 𝑓𝜏 (v𝑤) ≥ 0, being critical is equivalent

to 𝑓𝜏 (v𝑤)/𝐹 res
𝜏 (v, 𝑤) > ℎ. In that sense, the parameter ℎ represents a threshold when

we classify an edge as critical.
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Figure 4.1: An example graph and three residual networks. The edges are marked
by 𝑓 (𝑒)/cap(𝑒). The susceptance of all edges is 1. Vertices with negative/positive
demands are marked by arrows into/out of the vertices. In the residual networks only
the direction of the edges carrying flow is shown, and we assume ℎ = 1. Electrical
flows are written in red, and graph-theoretical flows in blue. (a) The network with
its electrical flow. (b) The residual network N res (𝑓 , 𝑠𝑢) admits a maximum flow
of 𝐹 res (𝑓 , 𝑠,𝑢) = 5 ≥ 3 = ℎ · 𝑓 (𝑠𝑢). Thus, 𝑠𝑢 is not critical. (c) 𝐹 res (𝑓 , 𝑠, v) = 3 < 4 =

ℎ · 𝑓 (𝑠v). The criticality of 𝑠v is 1. (d) 𝐹 res (𝑓 , v, 𝑢) = 5 ≥ 1. The edge v𝑢 is not critical.

In the example in Figure 4.1, we assume ℎ = 1 for simplicity. For the edge 𝑠𝑢
(Figure 4.1 (b)) we see that 𝑓𝜏 (𝑠𝑢) = 3 ≤ 5 = ℎ · 𝐹 res (𝑓 , 𝑠,𝑢). Hence, 𝑠𝑢 is not
critical. In contrast, the edge 𝑠v is critical (Figure 4.1 (c)). The maximum residual
flow 𝐹 res (𝑓 , 𝑠, v) is only 3, which is not sufficient as 𝑓𝜏 (𝑠v) = 4. Hence, its criticality
is crit𝜏 (𝑠v) = max{0, 4 − 1 · 3} = 1.
Note that the criticality of an edge does not directly depend on the capacity of

the edge but rather on the residual capacities of the other edges. Hence, criticality
is different to the line congestion level, which relates the flow on an edge to the
capacity of the edge [YL20].
The criticality has the same unit as the flow on the edges. In this context, the

flow typically describes the power transferred via the edge. Hence, the flow and the
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criticality are measured in MW. The criticality can be interpreted as the amount
by which the flow on v𝑤 shall be reduced until the edge is not critical anymore.
From a different point of view, crit𝜏 (v𝑤)/ℎ can be interpreted as by how much the
maximum flow in the residual network needs to be increased until v𝑤 is not critical
anymore. In the example of Figure 4.1 (c) this means that we would need to increase
the maximum flow in the residual network N res (𝑓𝜏 , 𝑠, v) by at least crit𝜏 (𝑠v)/ℎ = 1
in order to make 𝑠v non-critical.

The total criticality of the expansion H induced by the edges 𝐸𝐻 is defined as the
sum of the criticalities over all edges and all timestamps,

crit(H) ≔
∑︁
𝜏∈𝑇

∑︁
v𝑤∈𝐸𝐻

crit𝜏 (v𝑤).

The equation above directly gives a way to compute the total criticality of an
expansion H. Note that for each timestamp the electrical flow in H only needs to
be computed once. In total, this yields a running time of O( |𝑇 | · (𝑇EF +𝑚 ·𝑇MF)), for
an expansion with𝑚 edges, where 𝑇EF and 𝑇MF are the running times for computing
an electrical flow and a (graph-theoretical) maximum flow. With the bounds from
Sections 2.1 and 2.1.2 we obtain the following lemma.

Lemma 4.3. The total criticality of an expansion H with𝑚 edges can be computed in
O( |𝑇 | ·𝑚5/2) time.

We observe that the value of the maximum flow in the residual network is at least 0.
If 𝑓𝜏 (v𝑤) < 0, we therefore have max{0, 𝑓𝜏 (v𝑤) − ℎ · 𝐹 res

𝜏 (v, 𝑤)} = 0. Similarly, we
obtain max{0,−𝑓𝜏 (v𝑤) −ℎ · 𝐹 res

𝜏 (𝑤v)} = 0 if 𝑓𝜏 (v𝑤) ≥ 0. Hence, we can equivalently
compute the criticality of an edge v𝑤 as follows.

Lemma 4.4.

crit𝜏 (v𝑤) = max


0,
𝑓𝜏 (v𝑤) − ℎ · 𝐹 res

𝜏 (v, 𝑤),
− 𝑓𝜏 (v𝑤) − ℎ · 𝐹 res

𝜏 (𝑤, v)

 .
This equation lends itself more easily to be formulated as a linear program than the

original formulation. We therefore base our linear constraints on this formulation;
see Section 4.3.3.

4.3.2 Relation to the 𝑵 − 1 Criterion

An expansionH satisfies the𝑁−1 criterion under edge failures if and only if removing
one edge from H still yields a network that admits an electrical flow [ZA05]. As
the criticality criterion considers edge failures (and not vertex or other equipment
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𝑠 𝑡28 28

12/16, 𝑏=1

12/16, 𝑏=1

4/24, 𝑏= 1
3

(a) The network N with electrical flow 𝑓 .

𝑠 𝑡24 28
4/4

20/20

(b) N res (𝑓 , 𝑒1), 12/24 ≤ ℎ.

𝑠 𝑡8 8

4/4

4/4

(c) N res (𝑓 , 𝑒3), 4/8 ≤ ℎ.

𝑠 𝑡28 28
21/16, 𝑏=1

7/24, 𝑏= 1
3

E

(d) No electrical flow in N − 𝑒1.

Figure 4.2: An example network without critical edges for ℎ ≥ 0.5, but removing
any edge prohibits an electrical flow. (a) The electrical flow 𝑓 in the network. The
vertex 𝑠 acts as a source with demand 𝑑 (𝑠) = −28, and 𝑡 acts as a sink with demand
𝑑 (𝑡) = 28. The edges are marked by 𝑓 (𝑒)/cap(𝑒), 𝑏 (𝑒). (b) The maximum residual
flow in N res (𝑓 , 𝑒1) has value 24 ≥ 𝑓 (𝑒1)/ℎ = 12/ℎ. (c) The maximum residual flow
in N res (𝑓 , 𝑒3) has value 8 ≥ 𝑓 (𝑒3)/ℎ = 4/ℎ. (d) If 𝑒1 fails there is no electrical flow in
the resulting network because the edge 𝑒2 is overloaded.

failures), we restrict ourselves to the 𝑁 − 1 criterion under edge failures. In the
remainder of this chapter, we simply call this the 𝑁 − 1 criterion without explicitly
mentioning edge failures.

It is similar to the criticality criterion by Witthaut et al. [Wit+16] in the sense that
both consider the failure of one edge. Both criteria aim to establish whether such
an edge failure causes the network to fail. However, in the 𝑁 − 1 criterion only the
static behavior is considered. The network after one edge failure must still admit a
(static) electrical flow. The dynamics of the failing edge are ignored. In contrast, the
criticality criterion tries to capture whether one failing edge causes the network to
desynchronize.

In general, if a network satisfies one of the two criteria, it does not need to satisfy
the other. Figures 4.2 and 4.3 show networks that satisfy one criterion but not
the other. However, we shall see in Section 4.5.4 that the two criteria are related
empirically.
The network in Figure 4.2 has no critical edge for ℎ ≥ 0.5, which in particular

includes the value of 0.614 determined by Witthaut et al. [Wit+16]. If either of
the edges, say 𝑒𝑖 , is removed, the maximum residual flow is 2𝑓 (𝑒𝑖 ). The maximum
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𝑠 𝑡
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(a) The network N .

𝑠 𝑡

𝑢
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(b) N − 𝑠𝑢.

𝑠 𝑡

𝑢

v1/1

1/3

1/1

1

1

(c) N res (𝑓 , 𝑠𝑢).

Figure 4.3: An example network, in which all edges are critical, but which still
admits an electrical flow even if one edge is removed. (a) The electrical flow 𝑓 in the
network. The vertex 𝑠 acts as a source with a demand of 𝑑 (𝑠) = −2 and 𝑡 acts as a sink
with 𝑑 (𝑡) = 2. The edges are marked by 𝑓 (𝑒)/cap(𝑒). All edges have susceptance 1.
(b) The electrical flow after the edge 𝑠𝑢 fails. (c) The maximum flow in the residual
network N res (𝑓 , 𝑠,𝑢) has value 1. For ℎ < 1, the edge 𝑠𝑢 is critical.

residual flows in N res (𝑓 , 𝑒1) and N res (𝑓 , 𝑒3) are shown in Figures 4.2(b) and 4.2(c);
the case of removing 𝑒2 is symmetric to the case of removing 𝑒1. But if any of the
edges fails, the remaining network does not admit an electrical flow. For example,
if 𝑒1 fails (see Figure 4.2(d)), Kirchhoff’s voltage law would require a flow on 𝑒2 that
is larger than the capacity of 𝑒2.

Conversely, the network in Figure 4.3 satisfies the 𝑁 − 1 criterion because if either
of the four edges fails, the other path is sufficient to transport the required 2 units
of power from 𝑠 to 𝑡 ; see Figure 4.3(b). However, for ℎ < 1 all edges are critical. For
example, if the edge 𝑠𝑢 is removed, the maximum residual flow from 𝑠 to 𝑢 is 1, but
the required residual flow is 𝑓 (𝑠𝑢)/ℎ = 1/ℎ > 1; see Figure 4.3(c).
However, in the case that we choose ℎ ≥ 1, then any network that satisfies the

𝑁 − 1 criterion also satisfies the criticality criterion. To see this consider the electrical
flows 𝑓 and 𝑓 ′ before and after an edge v𝑤 is removed. As the network satisfies
the 𝑁 − 1 criterion both flows exist. We may assume without loss of generality
that 𝑓 (v𝑤) ≥ 0. Then, the difference 𝑓 ′′ defined by 𝑓 ′′ = 𝑓 ′ − 𝑓 is a flow in the
residual network N res (𝑓 , v𝑤) with value 𝑓 (v𝑤). Hence,

𝑓 (v𝑤) ≤ 𝐹 res (v, 𝑤) ≤ ℎ · 𝐹 res (v, 𝑤),

and thus v𝑤 is not critical.
Note, however, that Witthaut et al. [Wit+16] empirically determined a value of

ℎ = 0.614 in their case study. While the optimal choice of ℎ may depend on the
graph topology, their value is far less than 1. Hence, we expect that one should
choose ℎ < 1 in realistic networks. This means that we are in the regime where
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neither the criticality criterion implies the 𝑁 − 1 criterion nor vice versa. Hence, it
may make sense to consider both criteria together.

4.3.3 The Criticality Criterion as Linear Constraints

In this section we present how the criticality can be incorporated as part of a (mixed-
integer) linear program. In Section 4.3.4 we describe how to actually incorporate
these constraints in MP-EFE models. The formulation of the criticality constraints is
not limited to expansion planning problems. It may also be incorporated in other
transmission network design problems, for example Optimal Transmission Switch-
ing [FOF08].
The criticality of an edge v𝑤 at time 𝜏 ∈ 𝑇 depends on the maximum flow in the

residual flow network N res (𝑓𝜏 , v𝑤), where 𝑓𝜏 is the electrical flow in the original
network at time 𝜏 . In N res (𝑓𝜏 , v𝑤) the vertices v and 𝑤 act as unbounded sources and
sinks. That is, the consumption at v and 𝑤 must lie in (−∞, 0] and [0,∞), respectively.
At all other vertices the amount of flow entering the vertex equals the flow leaving it.
Note that in our model we do not explicitly set one of the vertices v and 𝑤 as a source
and the other as a sink. Their roles are implicitly determined when optimizing the
model. This is different to the original formulation of the criticality condition. In this
formulation v acts as a source if there is positive flow from v to 𝑤 (i.e., 𝑓𝜏 (v𝑤) > 0)
and 𝑤 acts as a source if there is positive flow from 𝑤 to v (i.e., 𝑓𝜏 (v𝑤) < 0).
Suppose 𝑓𝜏 : 𝐸𝐻 → R is an electrical flow in the expansion H. We model the

criticality of an edge 𝑥𝑦 ∈ 𝐸𝐻 as follows. We have one continuous variable 𝑓 res
v𝑤,𝜏 (𝑥𝑦)

for each edge v𝑤 ∈ 𝐸𝐻 , which models the residual flow on 𝑥𝑦 . As for the electrical
flow, we interpret positive values of 𝑓 res

v𝑤,𝜏 (𝑥𝑦) as flow from 𝑥 to 𝑦 and negative
values as −𝑓 res

v𝑤,𝜏 (𝑥𝑦) units flowing from 𝑦 to 𝑥 . There further is one continuous
variable 𝑐𝜏 (v𝑤) representing the criticality of the edge v𝑤.1

1Actually, the constraints only ensure that 𝑐𝜏 (v𝑤 ) is an upper bound for the criticality of v𝑤. As we
minimize over 𝑐𝜏 (v𝑤 ) , we may think of it as representing the criticality of v𝑤.

For the ease of presentation, we consider the edge v𝑤 and the time 𝜏 as fixed,
and drop the subscripts v𝑤 and 𝜏 . That is, we write 𝑓 res (𝑥𝑦) and 𝑐 (𝑥𝑦) instead
of 𝑓 res

v𝑤,𝜏 (𝑥𝑦) and 𝑐𝜏 (𝑥𝑦). In our models, all constraints below are repeated for all
edges v𝑤 and all time stamps 𝜏 . We first model the capacity constraints for the
residual flow.

𝑓 res (v𝑤) = 0, (4.8)
𝑓 res (𝑥𝑦) ≤ cap(𝑥𝑦) − 𝑓 (𝑥𝑦) ∀𝑥𝑦 ∈ 𝐸ex, (4.9)
𝑓 res (𝑥𝑦) ≥ −cap(𝑥𝑦) − 𝑓 (𝑥𝑦) ∀𝑥𝑦 ∈ 𝐸ex, (4.10)
𝑓 res (𝑥𝑦) ≤ (cap(𝑥𝑦) − 𝑓 (𝑥𝑦)) · z (𝑥𝑦) ∀𝑥𝑦 ∈ 𝐸cand, (4.11)
𝑓 res (𝑥𝑦) ≥ (−cap(𝑥𝑦) − 𝑓 (𝑥𝑦)) · z (𝑥𝑦) ∀𝑥𝑦 ∈ 𝐸cand . (4.12)
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Equation (4.8) ensures that there is no residual flow on v𝑤 since we consider the
residual flow networkwhere v𝑤 is removed. Equations (4.9) and (4.10) restrict the flow
on existing edges to the residual capacities. The residual capacity constraints for the
candidate edges are modeled by Equations (4.11) and (4.12). This includes requiring
a flow of 0 on candidate edges that are not included in the resulting expansion
(z (𝑥𝑦) = 0). The last two equations are non-linear, but they can be linearized in the
following way.

𝑓 res (𝑥𝑦) ≤ 2cap(𝑥𝑦) · z (𝑥𝑦) ∀𝑥𝑦 ∈ 𝐸cand, (4.13)
𝑓 res (𝑥𝑦) ≥ −2cap(𝑥𝑦) · z (𝑥𝑦) ∀𝑥𝑦 ∈ 𝐸cand, (4.14)
𝑓 res (𝑥𝑦) ≤ cap(𝑥𝑦) − 𝑓 (𝑥𝑦) ∀𝑥𝑦 ∈ 𝐸cand, (4.15)
𝑓 res (𝑥𝑦) ≥ −cap(𝑥𝑦) − 𝑓 (𝑥𝑦) ∀𝑥𝑦 ∈ 𝐸cand . (4.16)

The first two inequalities ensure that if the edge 𝑥𝑦 ∈ 𝐸cand is not in the final solution
(z (𝑥𝑦) = 0), then 𝑓 res (𝑥𝑦) = 0. If z (𝑥𝑦) = 1, the last two inequalities ensure that the
residual capacity of 𝑥𝑦 is not exceeded. Note that in this case the first two equations
do not restrict 𝑓 res (𝑥𝑦) any further since |𝑓 (𝑥𝑦) | ≤ cap(𝑥𝑦).
As stated above we ensure that the flow is conserved at all vertices except at the

endpoints v and 𝑤 of the edge v𝑤. For those two vertices we impose no restriction
on their consumption.∑︁

𝑥𝑢∈𝐸
𝑓 res (𝑥𝑢) −

∑︁
𝑢𝑦∈𝐸

𝑓 res (𝑢𝑦) = 0 ∀𝑢 ∈ 𝑉 \ {v, 𝑤}. (4.17)

Equations (4.9), (4.10) and (4.13) to (4.17) model a flow from v to 𝑤 (or vice versa) in
the residual network N res (𝑓 , v𝑤). So far, however, we do not require any minimum
flow between v and 𝑤. In particular, setting all variables 𝑓 res (𝑥𝑦) to 0 satisfies all
constraints.
We base the constraints for the criticality of the edge v𝑤, represented by 𝑐 (v𝑤),

on the criticality formulation in Lemma 4.4.

𝑐 (v𝑤) ≥ 0, (4.18)

𝑐 (v𝑤) ≥ 𝑓 (v𝑤) − ℎ · ©«
∑︁
𝑥𝑤∈𝐸

𝑓 res (𝑥𝑤) −
∑︁
𝑤𝑦∈𝐸

𝑓 res (𝑤𝑦)ª®¬ , (4.19)

𝑐 (v𝑤) ≥ −𝑓 (v𝑤) − ℎ · ©«
∑︁
𝑥v∈𝐸

𝑓 res (𝑥v) −
∑︁
v𝑦∈𝐸

𝑓 res (v𝑦)ª®¬ . (4.20)
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Here, ℎ is the threshold used to classify an edge as critical (see Definition 4.2). These
constraints ensure that 𝑐 (v𝑤) is at least the criticality of the edge v𝑤 in the resulting
expansion.

4.3.4 Criticality in Transmission Network Expansion Planning

Having seen how to formulate the criticality criterion as a set of linear constraints,
we show how to include them in a MP-EFE model. There are two direct ways to
modify the MP-EFE problem. The first way is to require that the resulting expansion
does not exceed a given maximum total criticality Critmax. Of course, we also require
the expansion to be feasible. Recall that an expansion H of an electrical flow network
is feasible if and only if there is an electrical flow in H.
Definition 4.5 (Criticality-Constrained TransmissionNetwork Expansion Plan-
ning (CC-TNEP)). Given an instance with a network N and a maximum total criti-
cality Critmax ∈ R≥0, find a feasible expansion H with crit(H) ≤ Critmax of minimum
costs.

Alternatively, we can directly consider the total criticality of the expansion as our
objective.
Definition 4.6 (Criticality Minimal Expansion (CME)). Given an instance with a
network N and a budget Costmax ∈ R≥0, find a feasible expansion H with 𝑐 (H) ≤
Costmax that admits a feasible electrical flow and has minimum total criticality.
Adding Equations (4.8) to (4.20) to the basic MP-EFE problem and requiring that

the resulting total criticality is at most Critmax ∈ R≥0, i.e.,∑︁
𝜏∈𝑇

∑︁
v𝑤∈𝐸

𝑐𝜏 (v𝑤) ≤ Critmax, (4.21)

we obtain an MILP-formulation of the CC-TNEP problem; see Appendix A.1 for a
presentation of all constraints together. Recall that in any solutions the values of the
variables 𝑐𝜏 (v𝑤) are just an upper bound for crit𝜏 (v𝑤). But with Equation (4.21) this
implies that the total criticality of the resulting expansion is at most Critmax.

Similarly, we can model CME as an MILP, taking the basic constraints of MP-EFE
as well as the criticality constraints (Equations (4.8) to (4.20)). Different to CC-TNEP,
we require the total cost of the expansion to be bounded by Costmax, i.e.,∑︁

v𝑤∈𝐸cand

z (v𝑤) · 𝑐 (v𝑤) ≤ Costmax, (4.22)

and we minimize the total criticality, which is∑︁
𝜏∈𝑇

∑︁
v𝑤∈𝐸

𝑐𝜏 (v𝑤). (4.23)
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A full presentation of the model is given in Appendix A.2. Note that as we minimize
over the sum of the variables 𝑐𝜏 (v𝑤), we have 𝑐𝜏 (v𝑤) = crit𝜏 (v𝑤) in any optimal
solution. Hence, the objective value of an optimal solution can directly be interpreted
as the criticality of the resulting expansion.

4.4 A Greedy Heuristic for Criticality Minimal

Expansion

In addition to the MILP formulation for CME, we develop a simple greedy heuristic.
We start with the network N0 on the graph𝐺0 = (𝑉 , 𝐸ex), which contains all existing
edges but no candidate edges. The initial remaining budget 𝑟0 is Costmax. At each
step 𝑖 , we have an expansion N𝑖 induced by an edge set 𝐸′𝑖 and budget 𝑟𝑖 . We then
determine which candidate reduces the total criticality the most if it is added to N𝑖 .
To this end, we consider each candidate edge 𝑒 ∈ 𝐸cand that has not been selected in
the expansion N𝑖 , i.e., 𝑒 ∉ 𝐸′𝑖 . If 𝑐 (𝑒) > 𝑟𝑖 , the candidate edge is too expensive, and
we ignore it. Otherwise, we compute the total criticality of the expansion induced by
𝐸′𝑖 ∪ {𝑒}.

Afterwards, if there is a candidate that reduces the total criticality, we choose the
edge 𝑒 for which the total criticality of the expansion induced by 𝐸′𝑖 ∪ {𝑒} is minimal.
We then set 𝐸′𝑖+1 ≔ 𝐸′𝑖 ∪ {𝑒} and 𝑟𝑖+1 ≔ 𝑟𝑖 − 𝑐 (𝑒). If all candidates are either too
expensive or do not reduce the total criticality, we stop and return N𝑖 as the resulting
expansion. In particular, if we have reached an expansion without critical edges, we
stop since no expansion further reduces the total criticality.

Note that it may happen that an expansion is not feasible since it does not admit an
electrical flow. If this happens during the check whether added an edge is worthwhile,
we simply ignore this expansion. However, if the initial network N0 already does not
admit an electrical flow, we proceed differently. We define the total capacity violation
viol(𝐸′) of an expansion H′ with edge set 𝐸′ by

viol(𝐸′) =
∑︁
𝜏∈𝑇

∑︁
𝑒∈𝐸′

max{0, |𝑓 ′𝜏 (𝑒) | − cap(𝑒)}, (4.24)

where 𝑓 ′𝜏 is an electrical flow in H′ at time 𝜏 except that it may violate some edge
capacity constraints. Recall that Kirchhoff’s voltage law (Equation (2.6)) uniquely
determines 𝑓 ′𝜏 [Bol98]. Thus, viol(𝐸′) is well-defined.
We now proceed similar to the main part of the algorithm. But instead of mini-

mizing the total criticality, we greedily minimize the total capacity violation. If we
reach a point where the resulting expansion admits an electrical flow, we switch to
greedily minimizing the total criticality.
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Table 4.1: The properties of the networks in the evaluation. The candidate edges are
parallel to the existing edges.

Country |𝑉 | |𝐸ex | Country |𝑉 | |𝐸ex |
AT 23 29 IE 8 12
BE 27 32 NL 33 40
BG 12 17 NO 41 65
CH 15 23 PT 16 22
CZ 21 35 RO 17 27
DK 11 11 SE 46 72
HR 6 6 SI 4 4
HU 13 21 SK 9 13

Lemma 4.7. The greedy algorithm runs in O( |𝐸cand |2 · |𝐸 |5/2) time.

Proof. The edge set of expansion grows by one candidate per iteration. Hence, there
are at most |𝐸cand | iterations. In each iteration we compute the total criticalities
of at most |𝐸cand | expansions. To compute the total criticality of single expansion
we perform |𝐸 | maximum-flow computations, each taking O( |𝐸 |3/2) time (see Sec-
tion 2.1.1). □

4.5 Evaluation

Based on the theoretical analysis of the models we formulate hypotheses that guide
our evaluation. These hypotheses are then verified or falsified empirically on 16
sample networks that are extracted from the data available in PyPSA [BHS18]. Each
network is a clustered version of the transmission grid of one European country. The
networks have between 4 and 46 vertices, and between 4 and 72 edges; see Table 4.1
for details. There is a candidate edge parallel to each existing edge, i.e., the total
number of edges in the graph is twice the number of existing edges. The data for
the maximum generation and load at each vertex are available in hourly resolution
over the course of one year. We restricted our evaluation to four days. To alleviate
the impact of seasonal and weekly variation, we chose one Tuesday in winter (22
January 2013) and the following Sunday (27 January) and the same in summer (16
July, 21 July).

In the data, however, only the maximum generation is available and not the actual
generation. But different generation distributions induce different electrical flows
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and thus different criticality values. To exclude the impact of different generation
distributions, we fixed the generations based on a merit order principle. We assigned
the required power to the cheapest generators. While an optimal power flow [FR16]
may bemore desirable from an optimization point of view, it has the disadvantage that
it depends on the network topology. Since the topology changes when adding edges,
one would have to re-calculate the optimal power flow. This makes the optimization
more complex. Moreover, using the merit order is realistic in the sense that it is used
to decide which generators are active, e.g., in the European Union [Gom+19].
The models and the heuristic presented above are able to deal with multiple

timestamps. We were interested how the number of timestamps considered together
affects the solution. Therefore, we split the 96 timestamps in total in groups of 𝑘
timestamps each. For this we chose 𝑘 ∈ {1, 2, 3, 4, 6, 12, 24}. That is, for each network
we had 96/𝑘 groups. For the criticality threshold parameter ℎ, we use ℎ = 0.614,
which is the value Witthaut et al. [Wit+16] determined as optimal in their case study.

We implemented our algorithms in C++17, compiled with GCC 8.2.1, and used
Gurobi 9.0.0 [Gur22] to solve the MILPs. The algorithms were executed on a server
with 64-bit architecture, four 12-core AMD CPUs running at 2.1 GHz, 256 GB of
RAM under openSUSE Leap 15.1. We ran tests on 40 instances in parallel, but each
algorithm was only allowed to use a single thread. The latter was done to ensure a
fair comparison between Gurobi and our heuristic, which is unable to utilize multiple
threads.
We gave the Gurobi one hour time to solve the models. In cases where this was

not sufficient to prove optimality or that the instance is infeasible, we report the best
solution found within this time frame.

4.5.1 MP-EFE vs. CC-TNEP

In a first step we assess the effect of including the criticality constraints in the MP-
EFE model. To this end we compare solving the plain MP-EFE model to solving the
CC-TNEP model. For CC-TNEP, we choose Critmax = 0, which means that we require
the resulting expansions to have not critical edges. We expect Gurobi to obtain the
optimal results faster for the MP-EFE model than for the CC-TNEP model as the
CC-TNEP model is more complex.

Hypothesis 4.8. Optimal solutions for MP-EFE can be obtained faster than optimal
solutions for CC-TNEP.

The number of constraints grows quadratically in the number of edges for CC-
TNEP but only linearly for MP-EFE. Hence, we expect the ratio between the solution
times for CC-TNEP and MP-EFE to grow with increasing network sizes.
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Figure 4.4: The ratio of the solution times for CC-TNEP to the solution times for
MP-EFE on the 989 instances with one timestamp where both MP-EFE and CC-TNEP
found solutions. The instances are sorted by increasing ratio.

Hypothesis 4.9. The ratio between the solution times for CC-TNEP and MP-EFE
increases with increasing number of edges.

To verify or falsify these hypotheses, we compare solving MP-EFE and CC-TNEP
on the instances with one timestamp. There are 96 timestamps for each of the 16 coun-
tries. Hence, we have 1536 instances in total. Out of these, there are 336 instances
where no expansion admits an electrical flow. That is, MP-EFE (and consequently
CC-TNEP) has no feasible solution. For one other instance Gurobi was not able to
find any solution in one hour. Ignoring these instances, we have 1199 instances left.
For all these instances, Gurobi was able to find optimal solutions for MP-EFE. Out of
these 1199 instances, 209 instances do not admit an expansion without any critical
edges. Additionally, there is one instance for which Gurobi was unable to find any
feasible solution of CC-TNEP in one hour. This leaves us with 989 instances for which
Gurobi found optimal solutions of both MP-EFE and CC-TNEP.

In the following analysis, we focus on how long it takes until the optimal solution
is found by Gurobi and not until Gurobi can actually prove optimality. We therefore
use the solution time, which we define as the time when Gurobi found the optimal
solution.
Figure 4.4 shows the ratio of solution times for CC-TNEP and for MP-EFE. The

instances are sorted by increasing ratio. The minimum solution time ratio is about
2.5, which means that Gurobi takes more than twice as long on all instances. The
median and maximum ratios are 111.5, and 25 940. Plots for more than one timestamp
have a similar shape; see Appendix A.3. These findings confirm Hypothesis 4.8.
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Figure 4.5: The ratio of the solution times for CC-TNEP to MP-EFE plotted against
the number of existing edges. Each mark corresponds to one instance. Only instances
with one timestamp where both MP-EFE and CC-TNEP found solutions are shown.

In absolute terms, however, both models could be solved quite fast. The solution
times for MP-EFE are all below one second (with a maximum of 670 ms). For CC-
TNEP slightly more than half of the instances (528, 53.4 %) could be solved within
one second, and only 49 instances (5.0 %) needed more than one minute.
When we plot the solution time ratio in comparison to the number of edges

(Figure 4.5), we can clearly see a trend that this ratio becomes larger the more edges
there are. This observation confirms Hypothesis 4.9.

4.5.2 CC-TNEP vs. CME

CME has a budget as an additional parameter. For our tests, we set the budget to
certain fractions (5 %, 10 %, 15 %, 20 %, 25 %, 50 %) of the total costs of all candidate
edges.
The mixed-integer linear programs for CC-TNEP and CME are similar as the

objective for one problem has a hard bound in the other problem and vice versa. We
therefore expect the running times to be similar.
Hypothesis 4.10. On the same instances the running times for CME and CC-TNEP
are the same.

To evaluate this hypothesis, we analyze those instances for which Gurobi found a
feasible solution within one hour for both problems. These are between 958 instances
for a 5 %-budget and 984 instances for both 10 %- and 15 %-budgets. We plot the ratio
of the solution times of Gurobi for CME vs. CC-TNEP in Figure 4.6. Each line shows
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Figure 4.6: The ratio of the solution times for CME vs. CC-TNEP on the instances
with one timestamp. For each budget, the instances are sorted by increasing ratio.

the solution time ratio for one of the budgets; the instances are sorted by these ratios
individually for each line. We can see that except for the 5 %-budget, CME can be
solved faster than CC-TNEP on slightly less than 25 % of the instances. But on most
instances solving CC-TNEP is faster. On 40 % of the instances the ratio exceeds 2,
compared to only 8.0 % of the instances with a ratio below 0.5. We therefore conclude
that solving CME is on average slower than solving CC-TNEP and therefore reject
Hypothesis 4.10

4.5.3 Evalution of the Greedy Heuristic for CME

We now compare solving the CMEmodel with Gurobi to running the greedy heuristic
presented in Section 4.4. When Gurobi is given enough time, we are guaranteed to
find the optimal solution if the instance is feasible. The greedy algorithm, however,
does not have this guarantee. It may even fail to find any feasible solution if the
existing network does not admit an electrical flow. But as the greedy heuristic tries
to deal with this case, we nevertheless expect it to usually find feasible solutions.
Hypothesis 4.11. There are instances where Gurobi finds a solution but the greedy
algorithm does not.

Moreover, we expect the greedy algorithm to find good solutions in much less time
than Gurobi.
Hypothesis 4.12. The greedy algorithm finds optimal solutions on the majority of
instances.
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Figure 4.7: The ratio of the total criticalities of the expansions computed by Gurobi
for CME vs. the greedy algorithm on the instances with one timestamp. Instances
where neither method found a solution are omitted. For each budget, the instances
are sorted by decreasing ratio.

Hypothesis 4.13. The greedy algorithm is faster than Gurobi.
The running time of the greedy algorithm depends only linearly on the number of

timestamps. While the model size also grows linearly with the number of timestamps,
the decision which candidates to add depends on all timestamps, and having more
timestamps allows for more complex interactions. Thus, we expect the running
time of Gurobi to increase super-linearly with the number of timestamps. As a
consequence, we expect the time advantage of the greedy heuristic compared to
Gurobi to increase if the number of timestamps increases.
Hypothesis 4.14. The time advantage of the greedy algorithm compared to Gurobi
increases with the number of timestamps.

Similarly, the running time of the greedy algorithm only indirectly depends on the
budget. If it finds a solution with total criticality 0 early, it stops independent on the
budget available. However, if more budget is available the space of feasible solutions
becomes larger. This may impede Gurobi in finding good solutions.
Hypothesis 4.15. The time advantage of the greedy algorithm compared to Gurobi
increases with the budget.

Among the 9216 instances with one timestamp (over all six budget choices) there
are 2221 infeasible instances and 9 instances where neither Gurobi nor the greedy
algorithm found any solution. We use the remaining 6986 instances in the following
analysis. Gurobi solved 6914 instances (99.0 %) optimally within one hour. There are
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Figure 4.8: The ratio of solution times for the greedy algorithm and Gurobi solving
CME on instances with one timestamp. Only the instances where both solution
methods found the same result are plotted. For each budget, the instances are sorted
by increasing ratio.

7 instances (0.1 %) where Gurobi found a solution (the optimal solution in all cases)
but the greedy algorithm was unable to find any feasible solution. Conversely, there
are 43 instances (0.6 %), where the greedy algorithm found a feasible solution but
Gurobi did not. On most instances both Gurobi and the greedy algorithm found a
solution. In fact, on 86.6 % of the instances they computed expansions with the same
criticality. This observation is also visible in Figure 4.7, where the ratio of the total
criticalities for the expansions computed by the greedy algorithm and Gurobi are
plotted. Each line corresponds to one budget. For each budget choice, the instances
are sorted by decreasing ratios. Values below 1 mean that the expansion computed
by Gurobi has a smaller total criticality than the one by the greedy algorithm. It
is clearly visible that for most instances the ratio is 1. This observation confirms
Hypotheses 4.11 and 4.12. That is, the greedy algorithm is competitive to the MILP
solver Gurobi in terms of resulting total criticality.
To assess the running time, we plot the ratio of the solution times of the greedy

algorithm to the solution times of Gurobi. As being fast but providing much worse
results is not useful, we consider only those instances where Gurobi and the greedy
algorithm provide expansions with the same total criticality; see Figure 4.8. As before,
each line in the plot corresponds to one budget choice. We observe that the greedy
algorithm is faster on 91.0 % of the instances over all budget choices, but for small
budgets this portion is notably smaller: 81.4 % for a 5 %-budget and 78.2 % for a 10 %-
budget. On slightly more than half of the instances (51.0 %) the greedy algorithm is
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faster by a factor of at least 4; and on 28.4 % of the instances it is faster by a factor of
at least 10. These results confirm Hypothesis 4.13. Regarding the dependence on the
budget, however, our results only support Hypothesis 4.15 insofar as there are more
instances for smaller budgets where the greedy algorithm is slower. For well over
75 % of the instances, the budget does not make any significant difference.

For a larger number of timestamps, the time advantage of the greedy algorithm
increases; see Appendix A.4. For three timestamps, it is faster by a factor of 10 on
already more than half of the instances (59.4 %). This portion raises to 66.7 % for
instances with six timestamps. Hence, we confirm Hypothesis 4.14.

4.5.4 𝑵 − 1 Criterion and Criticality

In Section 4.3.2 we observe that in general the 𝑁 − 1 criterion and the criticality
criterion do not imply each other. However, both criteria require redundancy in the
resulting expansion. Hence, we expect expansions without critical edges to often
satisfy the 𝑁 − 1 criterion as well. In an expansion H, we call an edge 𝑒 vital if H − 𝑒
does not admit an electrical flow. Hence, an expansion satisfies the 𝑁 − 1 criterion if
and only if it has no vital edges. The fraction of vital edges of an expansion H is the
number of vital edges divided by the total number of edges in H.
Hypothesis 4.16. An optimal solution to CC-TNEP with Critmax = 0 tends to satisfy
the 𝑁 − 1 criterion, i.e., its fraction of vital edges is close to 0.

Compared to the cost-minimal expansions (i.e., optimal solutions of MP-EFE), we
expect cost-minimal expansions with total criticality 0 to have fewer vital edges.
Hypothesis 4.17. If HMP-EFE and HCC-TNEP are optimal solutions for MP-EFE and
CC-TNEP, then the fraction of vital edges in HCC-TNEP is at most the fraction of vital
edges in HMP-EFE.

To verify or falsify these hypotheses, we consider the expansions that result from
CC-TNEP and compare them to cost-minimal expansions, which result from solving
MP-EFE. Expansions for instances with multiple timestamps at once tend to include
more candidate edges than the expansions for the individual timestamps. Hence,
they should be more likely to have few vital edges. In this sense, the instances with
only one timestamp are the hardest instances. We therefore focus on those. As in
Section 4.5.1, we only consider the 989 instances solved by Gurobi for both MP-EFE
and CC-TNEP.

We find that there is no instance for which the fraction of vital edges is larger in the
expansion computed by CC-TNEP than in the cost-minimal expansion. This supports
Hypothesis 4.17. In Figure 4.9 each line corresponds to the expansions computed
by solving either MP-EFE or CC-TNEP. For each line the instances are sorted by
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Figure 4.9: The fraction of vital edges in optimal expansions as computed by solving
MP-EFE and CC-TNEP. Only instances with one timestamp are shown.

their fraction of vital edges. Note, however, that the values shown at the same x-
coordinate do not necessarily correspond to the same instance as the instances are
sorted per curve. We observe that for 76.9 % of the instances, the expansion computed
by CC-TNEP has no vital edge. That is, the expansion satisfies the 𝑁 − 1 criterion.
For MP-EFE, this holds only for 17.1 % of the instances. Hence, we conclude that
requiring no critical edges tends to result in expansions that satisfy the 𝑁 −1 criterion.
We thus confirm Hypothesis 4.16.

4.6 Conclusion

In this chapter we present how to extend any (mixed-integer) linear program for-
mulation of any transmission network design problem by the criticality criterion
introduced by Witthaut et al. [Wit+16]. To this end we formulate the criticality
criterion as a set of linear constraints. These may then be used as a building block
when formulating transmission network optimization problems. To introduce those
constraints only variables (or constants) representing the electrical flow on each edge
and at each timestamp are needed.
As an example we analyzed the effects of adding the criticality criterion to MP-

EFE, which is a basic version of the Transmission Network Expansion Planning
problem. We formulated two problems: CC-TNEP, where the total criticality is
bounded by a hard constraint, and CME, where the criticality is minimized. We
further present a greedy heuristic for CME, which is both fast and produces optimal
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solutions in more than 75 % of the instances. We further observed that minimizing the
criticality subject to a budget constraint (CME) seems to be harder than minimizing
the cost subject to a maximum criticality (CC-TNEP).

While models including the criticality criterion take longer to solve, the resulting
networks are much more reliable. In particular, they tend to satisfy the 𝑁 −1 criterion
as evidenced by our simulations. Hence, one may also consider using the criticality
criterion instead of (or in addition to) the 𝑁 − 1 criterion in transmission network
design problems.

It would be interesting to include the criticality constraints in more comprehensive
variants of Transmission Network Expansion Planning; for example, by including
the operation costs in the optimization criterion or by considering expansions over a
longer time scale. Moreover, the criticality constraints can be incorporated in other
transmission network optimization problems, e.g., Optimal Power Flow [FR16] or
Optimal Transmission Switching [FOF08]. One may analyze the applicability of
the criticality criterion in online settings such as transmission grid operation. One
could also investigate larger networks or analyze the relation to other reliability
criteria such as the 𝑁 − 𝑘 criterion [MSA15].
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5 Algorithmic Approaches for Mi-

crogrid Cable Layouts

Microgrids play an important role in the electrification of rural areas. Designing a
microgrid comprises multiple parts including finding suitable sites for the generation
units, sizing the components of the microgrid, and determining the layout of the
cables that connect the components. In this chapter we focus on the latter part,
which we formalize as the Microgrid Cable Layout problem. We assume that
the locations and the sizes of the generators and consumers are given as points in
the plane. The goal is to find a cost-minimal cable layout that is able to handle the
demands of the consumers. An important difference to the network design problems
in the previous chapters is that we are not given a set of candidate edges. Instead,
the edges, which represent cables, may be placed anywhere in the plane. In fact, we
are even allowed to introduce vertices that are neither located at a generator nor at
a consumer. Moreover, each edge is assigned a cable type from a given set of cable
types. We prove thatMicrogrid Cable Layout is a strongly N P-hard, non-linear
optimization problem.
Furthermore, we present a hybrid genetic algorithm for the Microgrid Cable

Layout problem. The topology (represented by a graph) is optimized by a genetic
algorithm, and a heuristic assigns the cable types to the edges of the topology. An
evaluation on a set of benchmark instances indicates that our algorithm is able to find
better solutions within a short amount of time than heuristics for related network
design problems. Furthermore, we evaluate the performance of the algorithm in a
case study on a real-world microgrid in the Democratic Republic of the Congo.
This chapter is based on joint work with Max Göttlicher [GW22].
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5.1 Introduction

In 2015 the UN have presented an agenda for sustainable development [Uni15b],
which formulates 17 goals to reach until 2030. SDG 7 is to “ensure access to affordable,
reliable, sustainable and modern energy for all” [Uni15b, p. 14]. Part of this goal is
to provide everyone with access to electricity. According to a case study in rural
Kenya [KJKM09] access to electricity significantly improves the productivity per
worker by up to 200 %. Providing access to electricity is particularly challenging
in rural areas in the global south. According to the 2021 report on the sustainable
development goals [Uni21] there were still 471 million people in rural areas of sub-
Saharan Africa without access to electricity in 2019.
In particular in these rural areas microgrids can play a crucial role in providing

access to electricity. They do not require possibly long and costly transmission lines
to the main power grid to be built. Instead, they can be installed anywhere and
work completely autonomously provided that there is an energy source available.
Traditionally, diesel generators were used to power microgrids, but also more sustain-
able sources like small hydropower plants, photovoltaic systems, or wind turbines
can be used. They do not require expensive fuel, but are less reliable since they
depend on external factors, e.g., wind speed or solar irradiance. Not having to build
costly connections to the national transmission grids often makes microgrids an
economical choice as studies for Western Australia [Fle+17] and for sample of 50
countries (including both developing and developed ones) [HU16] show.
Designing a microgrid is a complex task (see e.g., the guide by Sumanik-Leary

et al. [Sum+14]), and one needs to answer many questions such as: Where should
the microgrid be built? Which places shall be connected to the microgrid? How
much power is needed? Which generators shall be placed where? How does the
cable layout look like? In this work we focus on the last question, which deals with
routing the cables efficiently. The cable layout of microgrids in remote areas is often
acyclic [RFRW22]. We formalize this problem as the Microgrid Cable Layout
problem. In this problem we assume the locations and sizes of the generators and
consumers to be fixed by a previous step of the microgrid design process. The goal is
to find a cost-minimal cable layout that connects these locations subject to certain
electrical constraints. There are multiple cable types to choose from, and we may
introduce additional distribution nodes, which may be placed not only at the location
of a generator or consumer in the input but also at any other point in the plane.
Microgrid Cable Layout further includes costs for poles, which need to be placed
to support the cables. We give a formal definition of this problem in Section 5.3. Note
that this problem should be thought of as a part of the full microgrid design problem.
While solving the full problem, multiple instances of the Microgrid Cable Layout
problem may need to be solved.
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Contribution and Outline. We present a hybrid genetic algorithm for the Micro-
grid Cable Layout problem, with which we aim to achieve the following two main
goals.

1. The algorithm should find good solutions reasonably quickly such that it can
be included as a part of a software that considers the full microgrid design
problem.

2. The algorithm should be flexible, i.e., it should be easy to add further con-
straints that need to be considered. It is infeasible to gather a set of constraints
beforehand that suffices for all possible use cases.

In Section 5.2 we give an overview over the literature on microgrid planning,
focusing in particular onworks that consider the cable layout. We then formally define
theMicrogrid Cable Layout problem in Section 5.3 and prove that it is N P-hard in
Section 5.4. We describe our hybrid genetic algorithm for this problem in Section 5.5.
Afterwards, we evaluate it on a set of synthetic benchmark instances (Section 5.6).
This evaluation includes a case study on a real microgrid in the Democratic Republic
of the Kongo. Finally, we conclude this chapter with a short summary and possible
further research directions in Section 5.7.

5.2 Related Work

Determining good designs for microgrids encompasses a lot of different steps, which
range from determining the size of the components over finding a good topology
to computing a suitable strategy to control the operation of the microgrid. For an
overview on this large range of topics we refer to two surveys by Al-Ismail [Al-21]
and by Gamarra and Guerrero [GG15]. In the following we focus on works that are
related to the cable layout design aspect of microgrid design.

Lambert andHittle [LH00] tackle the problem of designing a good low- andmedium
voltage grid layout for the electrification of a rural village. They consider the design
of the low-voltage layout and of the medium-voltage layout as two separate layers
of their optimization algorithm. They use a single cable in each layer and limit
resistive losses by constraining the maximum distance between demand points and
transformers. For the low-voltage layout they propose to use an approach based on
simulated annealing. Their medium-voltage layout is always a minimum spanning
tree between the transformers, which connect the two voltage levels. The number
and placement of the transformers is part of their optimization problem. However,
these transformers may only be placed at demand nodes.

Kahveci et al. [KOPS16] present a heuristic for finding cable layouts for microgrids.
Their heuristic includes three steps: computing a minimum spanning tree, adding
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Steiner points in triangles if they reduce the costs, and finding clusters that may form
independent islands. They insert Steiner points to reduce the total network length
but do not take into account different cable types or electric constraints.
Corigliano et al. [CCEM20] present an approach to identify good electrification

strategies in rural ares. Within this approach they apply an algorithm to compute
good grid layouts considering the terrain. They first discretize the problem by
defining a grid graph with weights that represent the difficulty of the terrain. Then,
they compute a minimum spanning tree between the populated vertices (the metric
they use is not stated explicitly however), and finally, they replace the edges in the
tree by shortest paths in the grid. Similar approaches were used in case studies in
Nigeria [BCB19] and in the Philippines [BC19]. Another case study for a rural and
an urban microgrid in India [PRW18] uses Homer [HOM22] to optimize the sizing of
the components but does not consider the geographic layout.

In contrast to the works above, Nolan et al. [NSRF17] consider multiple cable types.
They present a genetic algorithm using Prim-predecessor encoding [LG06]. Unlike
our algorithm, their algorithm does not consider adding additional points to the
network. That is, their resulting network topology is always a spanning tree on the
input points.
Before being able to compute cable layouts, one needs to decide which points

should be connected. Put more abstractly, given a set of consumers, decide which
subsets of points shall be part of the same microgrid. With clustering algorithms
this decision can be made before designing the individual microgrids [Che+17]. This
decision may, however, also be combined with determining the topologies of the
microgrids. Rosenberg et al. [RFRW22] present two evolutionary algorithms for the
combined problem.
A complementary version of the microgrid layout problem we consider in this

work is studied by Vallem and Mitra [VM05] and Vallem, Mitra, and Patra [VMP06].
They consider the problem where to place distributed generation units given a grid
topology. They solve this problem with a simulated annealing approach. Note that
this approach is not directly comparable to the one we use since it solves a different
problem. We assume the locations of the generation units to be fixed in order to
include cases where, e.g., the generators already exist or where there is only one
sensible place for a small hydropower plant.

TheMicrogrid Cable Layout problem is closely related to other geometric layout
optimization problems such as the Euclidean Minimum Steiner Tree problem.2

2The (Euclidean) Minimum Steiner Tree problem is often called the Steiner Minimum Tree problem
and abbreviated by (E)SMT to distinguish it from theMinimum Spanning Tree problem (MST). We stick
to the name Minimum Steiner Tree and prevent ambiguities by always writing the full problem name.

A
survey on the history of this problem is written by Brazil et al. [BGTZ14]. Genetic
algorithms have been used both for this problem [Bar03] and the Capacitated
Minimum Spanning Tree problem in graphs [JJM04], another related network design
problem. For the EuclideanMinimum Spanning Tree problemwith restricted vertex
degree a hybrid genetic algorithm exists [SS20]. Here, there is some input value
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𝑑 ∈ N such that all vertices of the spanning tree have a degree of at most 𝑑 . Recently,
a genetic algorithm for Euclidean Minimum Steiner Tree with both soft and hard
obstacles was presented [RFRW21]. Hard obstacles are regions that the resulting tree
may not intersect. In contrast, the regions representing soft obstacles may be used,
but they increase the cost of edges overlapping the obstacles.

5.3 TheMicrogrid Cable Layout Problem

As input we are given a set 𝑃 of points in the plane, which represent the positions of
the available generators and the consumers. Each point p ∈ 𝑃 has a maximum power
generation 𝑔(p) ∈ R≥0 and a maximum power demand 𝑑 (p) ∈ R≥0. Note that this
setting is different from the other chapters. It makes the notation easier to explicitly
distinguish between generation and demands here, unlike in the other chapters where
the generation is represented by negative demands. We may assume that for each
point p one of𝑔(p) and 𝑑 (p) is non-zero since we can ignore all points where both are
zero. A point p ∈ 𝑃 is a generator if 𝑔(p) > 0 and a consumer if 𝑑 (p) > 0. Moreover,
we are given a set𝐶 of cable types. Each cable type 𝑐 ∈ 𝐶 has a cost per meter 𝑐line (𝑐),
a resistivity 𝜌 (𝑐) measured in Ω m−1, and a thermal capacity cap(𝑐) measured in kW,
which represents the maximum power that can be transferred via a cable of type 𝑐 .

The structure of an electricity grid can be described by a graph. This graph (𝑉 , 𝐸)
is inherently undirected. However, the flows on the graph are inherently directed
Therefore, we represent (𝑉 , 𝐸) by the directed graph (𝑉 , 𝐸), where 𝐸 = {v𝑤, 𝑤v |
{v, 𝑤} ∈ 𝐸}. Note again that this differs from the other chapters, where only one of v𝑤
and 𝑤v is present in a network. A topology is then such a directed graph 𝐺 = (𝑉 , 𝐸)
with 𝑃 ⊆ 𝑉 ⊆ R2, i.e., the vertices are a set of points in the plane that contains 𝑃 .
Borrowing from the nomenclature for Steiner trees, we call the points in𝑉 \𝑃 Steiner
points. A topology 𝐺 is a tree if the underlying undirected graph 𝐺 is a tree, i.e.,
it is connected and has no cycles. Due to our focus on cost minimization in this
chapter, we only consider topologies that are trees. Including cycles would increase
the costs (but mitigate the effects of line failures). The length ℓ (𝑒) of an edge 𝑒 ∈ 𝐸
is the euclidean distance between its endpoints. A cable assignment is a function
𝑎 : 𝐸 → 𝐶 such that 𝑎(v𝑤) = 𝑎(𝑤v) for all v𝑤 ∈ 𝐸. That is, every edge and its reverse
are assigned the same cable type. In particular, each edge is assigned exactly one
cable type. Note however that placing multiple cables in parallel can be modeled
by including cable types in 𝐶 that represent placing multiple cables of (actual) cable
types in parallel.

Typically, the installed power generation capacity, which is equal to the sum of the
maximum power generations at all points, is less than the total maximum demand.
That is, based on the generation capacity, we cannot fulfill all demands if all points try
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to consume their maximum demands at the same time. But we want to prevent the
grid infrastructure and especially the cables from being the limiting factor. Hence, we
want to design the grid such that it allows for all possible distributions of generation
and consumption within the bounds given by the maximum generations and demands.
This does not only include the cable power rating but also losses of power and voltage
within the network [Sum+14, Lou18].

The goal to handle all (and in particular infinitely many) potential demand distri-
butions makes this setting different to the other chapters, where we consider only
finitely many demand distributions. The constraints we present below are based on
a book by Louie [Lou18, Sec. 3.2.3].
To determine the most extreme situations that may occur, we compute for each

directed edge v𝑤 ∈ 𝐸 the maximum power p (v𝑤) that may be transmitted via v𝑤
from v to 𝑤. Recall that for p ∈ 𝑃 the values 𝑔(p) and 𝑑 (p) give bounds for the
maximum generation andmaximum demand at p , respectively. The actual generation
and consumption may (and usually will) differ from these values. These two functions
can naturally be extended to𝑉 by setting their values to 0 outside of 𝑃 . As𝐺 is a tree,
removing an edge v𝑤 and its reverse 𝑤v disconnects 𝐺 into two components 𝐺v

v𝑤
and 𝐺𝑤

v𝑤 , where the former contains v and the latter contains 𝑤. The maximum
flow p𝐺 (v𝑤) on the edge from v to 𝑤 is limited by both the total generation in 𝐺v

v𝑤
and the total demand in 𝐺𝑤

v𝑤 . We have

p𝐺 (v𝑤) = min


∑︁
𝑥∈𝑉 (𝐺v

v𝑤 )
𝑔(𝑥),

∑︁
𝑥∈𝑉 (𝐺𝑤

v𝑤 )
𝑑 (𝑥)

 . (5.1)

Note that in general p𝐺 (v𝑤) and p𝐺 (𝑤v) may differ. We can compute these values
for all edges in O( |𝑉 |) time by performing a single depth-first search of 𝐺 ; see
Section 5.5.2 for details. In the following we omit the subscript 𝐺 from p𝐺 and other
values, leaving the dependency on 𝐺 implicit, provided that the context makes clear
which graph is meant.

Since we want the cables to not limit the amount of power transmitted, we must
ensure that their capacity is large enough in any cable assignment 𝑎, i.e., for every
edge v𝑤 ∈ 𝐸 we require

max{p (v𝑤), p (𝑤v)} ≤ cap(𝑎(v𝑤)) . (5.2)

We further want the line losses and themaximum voltage drop along any generator-
consumer-path to be small. For a given topology𝐺 = (𝑉 , 𝐸) and a cable assignment 𝑎
we bound these values as follows. The maximum voltage drop 𝑢drop (v𝑤) along a
single edge v𝑤 ∈ 𝐸 with length ℓ (v𝑤) in a three-phase transmission system is given
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by 𝑟 (v𝑤) · 𝑖 (v𝑤), where

𝑟 (v𝑤) = ℓ (v𝑤)𝜌 (𝑎(v𝑤)),
𝑖 (v𝑤) = p (v𝑤)/(

√
3𝑈 cos𝜑).

Here,𝑈 is the grid voltage, cos𝜑 is the power factor. The value 𝑟 (v𝑤) describes the
resistance of the edge as defined by its length and the resistivity of the assigned cable
type. The value 𝑖 (v𝑤) is the maximum current on v𝑤 from v to 𝑤. We can then
bound the voltage drop along a directed path 𝑄 in 𝐺 by

𝑈drop (𝑄) =
∑︁

v𝑤∈𝐸 (𝑄 )
𝑢drop (v𝑤)

=
∑︁

v𝑤∈𝐸 (𝑄 )
ℓ (v𝑤)𝜌 (𝑎(v𝑤)) · p (v𝑤)

√
3𝑈 cos𝜑

,

where 𝐸 (𝑄) are the edges of 𝑄 . The maximum power loss ploss (v𝑤) on a single
edge v𝑤 ∈ 𝐸 is given by

ploss (v𝑤) = 3𝑟 (v𝑤) · 𝑖max (v𝑤)2,

where 𝑖max (v𝑤) = max{𝑖 (v𝑤), 𝑖 (𝑤v)} is the maximum current along the edge v𝑤 in
either direction. The sum of all these values is an upper bound for the total power
loss 𝑃loss.

𝑃loss =
∑︁
v𝑤∈𝐸

ploss (v𝑤)

=
∑︁
v𝑤∈𝐸

ℓ (v𝑤)𝜌 (𝑎(v𝑤)) ·
(

max{p (v𝑤), p (𝑤v)}
𝑈 cos𝜑

)2
.

Our goal is find a topology𝐺 with a cable assignment 𝑎 of minimum costs such that
the maximum voltage drop along any generator-consumer-path is at most 𝛼drop ·𝑈 ,
and the total line losses 𝑃loss are at most a factor of 𝛼loss of the total maximum
generation and consumption. More formally, we want for each directed path 𝑄 from
a generator to a consumer that

𝑈drop (𝑄) ≤ 𝛼drop ·𝑈 (5.3)

and

𝑃loss ≤ 𝛼loss ·min

∑︁
p∈𝑃

𝑔(p),
∑︁
p∈𝑃

𝑑 (p)
 (5.4)
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We call any cable assignment that satisfies Equations (5.2) to (5.4) a feasible cable
assignment.

A topology𝐺 = (𝑉 , 𝐸) with cable assignment 𝑎 incurs certain costs. In this chapter
we consider the costs for the cables, the poles the cables are placed on, and the
equipment needed to connect the cables together. We assume that these include
both the costs of the materials and the installation. Some costs like the costs of the
generators depend neither on the topology nor on the cable assignment and can be
ignored for the purpose of determining a good topology and cable assignment. Note
that the algorithms described in the following section are designed to be flexible such
that additional costs may be introduced easily if the need arises.

To compute that cable costs, recall that each cable 𝑐 ∈ 𝐶 has a cost per meter 𝑐line (𝑐).
Hence, we have

costcables (𝐺, 𝑎) =
∑︁
𝑒∈𝐸

ℓ (𝑒) · 𝑐line (𝑎(𝑒)) .

The cables are supported by poles, which may be at most ℓmax (measured in m)
apart. There is one pole placed at each vertex. If an edge is longer than ℓmax, we
additionally need to place poles in the interior of the edge. To ensure that the distance
between two such consecutive poles is at most ℓmax, we place on each edge 𝑒 ∈ 𝐸⌈

ℓ (𝑒)
ℓmax

⌉
− 1

poles, not counting the poles at the endpoints of the edges. We assume a fixed cost
of 𝑐pole per pole. In total, the cost of the poles is given by

costpoles (𝐺) = 𝑐pole ·
(
|𝑉 | +

∑︁
𝑒∈𝐸

⌈
ℓ (𝑒)
ℓmax

⌉
− |𝐸 |

)
.

Further we consider the equipment at each vertex that is necessary to connect
the incident lines. The cost of this equipment at v ∈ 𝑉 is determined by a func-
tion 𝑐equip, which we assume to be given as an input. This function depends on the
degree deg𝐺 (v) of v and the maximum power on any edge incident to v , which is
defined as

p̂𝐺 (v) = max{p𝐺 (v𝑤), p𝐺 (𝑤v) | 𝑤 ∈ 𝑁𝐺 (v)},
where 𝑁𝐺 (v) denotes the neighbors of v in 𝐺 . We then have

costvertex (𝐺) =
∑︁
v∈𝑉

𝑐equip (deg𝐺 (v), p̂𝐺 (v)).

In our experiments we assume that 𝑐equip depends linearly on its parameters, i.e., we
have

𝑐equip (𝑥, 𝑦) = 𝛼 + 𝛽 · 𝑥 + 𝛾 · 𝑦,
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for some values 𝛼, 𝛽,𝛾 ∈ R≥0. In total, the costs are

cost(𝐺, 𝑎) = costcables (𝐺, 𝑎) + costpoles (𝐺) + costvertex (𝐺).

The Microgrid Cable Layout problem can be summarized as follows. We are
given a set of points 𝑃 ⊆ R2 with generation function 𝑔 : 𝑃 → R≥0 and demand
function 𝑑 : 𝑃 → R≥0, a set of cables 𝐶 with their properties (cost per unit 𝑐line,
resistivity 𝜌 , and capacity cap), and the properties of the desired grid (voltage 𝑈 ,
power factor cos𝜑 , maximum voltage drop factor 𝛼drop, maximum power loss fac-
tor 𝛼loss, maximum distance between poles ℓmax, costs of poles 𝑐pole, and costs of
other equipment 𝑐equip). We then want to find a topology 𝐺 = (𝑉 , 𝐸) that is a tree
and a cable assignment 𝑎 : 𝐸 → 𝐶 such that they satisfy Equations (5.2) to (5.4) and
minimize cost(𝐺, 𝑎).

5.4 Hardness of theMicrogrid Cable Layout

Problem

The Microgrid Cable Layout problem generalizes the strongly N P-hard Eu-
clidean Minimum Steiner Tree problem [BGTZ14, GGJ77]. The input of the
Euclidean Minimum Steiner Tree problem consists of a set of points 𝑃 ⊆ R2 in
the Euclidean plane. The goal is to connect these points by line segments (possibly
ending at additional points called Steiner points) such that the total length of the
segments is minimum. In the terms defined above we aim to find a topology such
that the sum of all edge lengths is minimum.

Theorem 5.1. It is strongly N P-hard to decide given an instance of the Microgrid

Cable Layout problem and some 𝑥 ∈ Q≥0 whether the instance has a solution of cost
at most 𝑥 .

Proof. We reduce the Euclidean Minimum Steiner Tree problem to theMicrogrid
Cable Layout problem as follows. Let 𝑃 ⊆ R2 be the points of the Euclidean
Minimum Steiner Tree instance. We use them as the points in the Microgrid
Cable Layout instance we build. Let p ∈ 𝑃 be an arbitrary point, which we use as
the single generator, and all other points are consumers. That is, we set 𝑔(p) = 1,
𝑑 (p) = 0, and for all p′ ∈ 𝑃 \ {p} we set 𝑔(p′) = 0 and 𝑑 (p′) = 1. We have only
one cable type 𝑐 with cap(𝑐) = 1, 𝜌 (𝑐) = 1, and 𝑐line (𝑐) = 1. As the total maximum
generation is 1, the cable capacity is sufficient for every edge in every topology. To
ignore the voltage drop and power loss requirements, we set 𝛼drop = 𝛼loss = 1. Hence,
the resistivity of the cable does not actually matter. Moreover, we have no costs for
the poles (𝑐pole = 0) and do not require any poles in interior of the edges by setting
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ℓmax to some sufficiently large value. In total, for each topology𝐺 = (𝑉 , 𝐸) there is a
unique cable assignment 𝑎, and we have

cost(𝐺, 𝑎) =
∑︁
𝑒∈𝐸

ℓ (𝑒),

which is precisely the objective function of the Euclidean Minimum Steiner Tree
problem. Hence, the EuclideanMinimum Steiner Tree instance and theMicrogrid
Cable Layout instancewe constructed are equivalent. This transformation is possible
in linear time. Thus, the strong N P-hardness of Euclidean Minimum Steiner Tree
implies that Microgrid Cable Layout is strongly N P-hard as well. □

In fact, even finding a cost-minimal cable assignment given a fixed topology is
already N P-complete. More precisely, we show that the following decision problem,
which we call the Cable Assignment problem, is N P-complete. Given a topology,
a set of cables, the grid properties (voltage, power factor), and some 𝑠 ∈ R≥0, is
there a feasible cable assignment costing at most 𝑠? We prove that this problem is
N P-complete by a reduction from the N P-complete problem Subset Sum [GJ79].
An instance of Subset Sum consists of a set 𝑋 ⊆ N and some 𝑘 ∈ N. The question
then is, whether there is a subset 𝑌 ⊆ 𝑋 such that the sum of all elements of 𝑌 is
equal to 𝑘 .

Theorem 5.2. The Cable Assignment problem is N P-complete even if the topology
is a path.

Proof. It is not hard to see that checking whether a given cable assignment meets all
constraints can be done in polynomial time. Hence, the Cable Assignment problem
is in N P .
To show that it is N P-hard as well, we reduce Subset Sum to it. Let (𝑋,𝑘) be

an instance of Subset Sum. The topology is a path 𝐺 = (𝑉 , 𝐸) of |𝑋 | edges, where
each element 𝑥 ∈ 𝑋 corresponds to one edge 𝑒𝑥 of length 𝑥 . The start vertex 𝑠 of the
path has a generation of 𝑔(𝑠) = 1 and no demand, and the end vertex 𝑡 has a demand
of 𝑑 (𝑡) = 1 and no generation. All other vertices v ∈ 𝑉 \ {𝑠, 𝑡} have 𝑔(v) = 𝑑 (v) = 0.
There are two cable types 𝑐1 and 𝑐2 with

𝑐line (𝑐1) = 1, 𝜌 (𝑐1) = 2, cap(𝑐1) = 1,
𝑐line (𝑐2) = 2, 𝜌 (𝑐2) = 1, cap(𝑐2) = 2.

Note that 𝑐2 is equivalent to two cables of type 𝑐1 in parallel. Since the topology is
fixed, the costs of equipment other than the cables is constant. Hence, we may assume
those costs to be 0 in this proof. Note that for v𝑤 ∈ 𝐸, we have p (v𝑤) = p (𝑤v) = 1.
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Hence, the capacities of both cable types are sufficient, and we can ignore them in
the remainder of this proof. We choose𝑈 and 𝜑 such that

2 ·
∑︁
𝑥∈𝑋

𝑥 − 𝑘 =

√
3

10𝑈
2 cos𝜑. (5.5)

Moreover, we set

𝛼drop =
1
10 and 𝛼loss =

√
3

10 cos𝜑 .

We claim that there is a cable assignment of cost at most
∑

𝑥∈𝑋 𝑥 + 𝑘 if and only if
there is a solution to the Subset Sum instance (𝑋, 𝑘).

Suppose there is 𝑌 ⊆ 𝑋 such that
∑

𝑦∈𝑌 𝑦 = 𝑘 . We claim that assigning the cables
by

𝑎(𝑒𝑥 ) =
{
𝑐1, 𝑥 ∉ 𝑌,

𝑐2, 𝑥 ∈ 𝑌 .

results in a feasible cable assignment. The costs of 𝑎 are

cost(𝑎) =
∑︁
𝑒∈𝐸

ℓ (𝑒) · 𝑐line (𝑎(𝑒))

=
∑︁
𝑥∈𝑋

𝑥 · 𝑐line (𝑎(𝑒𝑥 ))

=
∑︁

𝑥∈𝑋\𝑌
𝑥 · 1 +

∑︁
𝑦∈𝑌

𝑦 · 2

=
∑︁
𝑥∈𝑋

𝑥 +
∑︁
𝑦∈𝑌

𝑦

=
∑︁
𝑥∈𝑋

𝑥 + 𝑘.

Moreover, taking into account that the power along each edge is 1, we obtain the



Chapter 5 Algorithmic Approaches for Microgrid Cable Layouts

76

bound for the total power loss

𝑃loss =
∑︁
𝑒∈𝐸

ℓ (𝑒)𝜌 (𝑎(𝑒)) · 1
(𝑈 cos𝜑)2

=
∑︁
𝑥∈𝑋

𝑥𝜌 (𝑎(𝑒𝑥 )) ·
1

(𝑈 cos𝜑)2

=
©«

∑︁
𝑥∈𝑋\𝑌

𝑥 · 2 +
∑︁
𝑦∈𝑌

𝑦 · 1ª®¬ · 1
(𝑈 cos𝜑)2

=
©«2

∑︁
𝑥∈𝑋

𝑥 −
∑︁
𝑦∈𝑌

𝑦
ª®¬ · 1
(𝑈 cos𝜑)2

=

(
2
∑︁
𝑥∈𝑋

𝑥 − 𝑘
)
· 1
(𝑈 cos𝜑)2

=

√
3

10 cos𝜑
= 𝛼loss · 1,

where the second to last equality uses Equation (5.5), and the 1 in the final row is the
total generation in the grid. Hence, the cable assignment 𝑎 satisfies the power loss
constraint. A similar chain of equations yields

𝑈drop (𝐺) =
∑︁
𝑒∈𝐸

ℓ (𝑒)𝜌 (𝑎(𝑒)) · 1
√

3𝑈 cos𝜑
= 𝛼drop ·𝑈 .

Note that the whole path 𝐺 is the only path we need to check for the voltage drop
constraint. Hence, the assignment 𝑎 is feasible and within the desired costs.

Conversely, suppose that there is a feasible assignment 𝑎 of costs at most
∑

𝑥∈𝑋 𝑥+𝑘 .
Let 𝑌 = {𝑥 ∈ 𝑋 | 𝑎(𝑒𝑥 ) = 𝑐2} be the set of elements whose corresponding edge has
been assigned 𝑐2. We have∑︁

𝑦∈𝑌
𝑦 =

∑︁
𝑦∈𝑌

2𝑦 +
∑︁

𝑥∈𝑋\𝑌
𝑥 −

∑︁
𝑥∈𝑋

𝑥

= cost(𝑎) −
∑︁
𝑥∈𝑋

𝑥

≤
∑︁
𝑥∈𝑋

𝑥 + 𝑘 −
∑︁
𝑥∈𝑋

𝑥

= 𝑘.
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As for the converse above, we obtain

2
∑︁
𝑥∈𝑋

𝑥 −
∑︁
𝑦∈𝑌

𝑦 = 𝑃loss · (𝑈 cos𝜑)2.

Applying the power loss bound, we then get

2
∑︁
𝑥∈𝑋

𝑥 −
∑︁
𝑦∈𝑌

𝑦 ≤ 𝛼loss · (𝑈 cos𝜑)2

=

√
3

10 cos𝜑 (𝑈 cos𝜑)2

=

√
3

10𝑈
2 cos𝜑

= 2 ·
∑︁
𝑥∈𝑋

𝑥 − 𝑘,

where the final equation holds by the definition of𝑈 and 𝜑 . Rearranging this inequal-
ity yields ∑︁

𝑦∈𝑌
𝑦 ≥ 𝑘.

In total, we have that the sum of𝑌 is equal to𝑘 , which shows that the cable assignment
instance and the instance of Subset Sum are equivalent.
This transformation can clearly be done in polynomial time. As Subset Sum

is N P-hard [GJ79], so is Cable Assignment Problem even if the topology is a
path. □

5.5 A Hybrid Genetic Algorithm for theMicrogrid

Cable Layout Problem

A solution to theMicrogrid Cable Layout problem consists of a topology and an
assignment of cables to the edges of the topology. As stated in the introduction to
this chapter, we aim to achieve two goals with our algorithm: first, it should compute
good solutions fast, and second, it should be able to be adapted easily to incorporate
new requirements. Finding a suitable topology is related to the Euclidean Minimum
Steiner Tree problem, for which there is an efficient implementation of an exact
algorithm [JWWZ18]. However, this algorithm does not work with weighted edges,
which would occur due to the different cable types with different costs per unit. The
introduction of Steiner nodes makes the problem difficult to solve using a general
purpose optimizer such as Gurobi [Gur22] as they result in a non-convex problem.
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For the Euclidean Minimum Steiner Tree and various constraint spanning tree
problems (e.g., the Constrained Minimum Spanning Tree) genetic algorithms have
proven to work well [Bar03, JJM04, ATCM12]. Thus, we expect a genetic algorithm
to be able to find good solutions of theMicrogrid Cable Layout problem reason-
ably quickly, thus satisfying Goal 1. Moreover, genetic algorithms are composed of
several operators as well as the fitness function, which can be adapted to additional
requirements fairly easily. Hence, we expect a genetic algorithm to achieve Goal 2 as
well.

We adapt the genetic operators for these problems to theMicrogrid Cable Layout
problem. We base the operators of the genetic algorithm on the genetic algorithms by
Barreiros, Moharam and Morsy [Bar03, MM17]. One major difference of Microgrid
Cable Layout to the constrained spanning tree problems mentioned above is that we
also need to find a cable assignment. While this may also be incorporated directly in
the genetic algorithm, preliminary results indicated that employing a hybrid approach,
in which a genetic algorithm computes the topology (see Section 5.5.1) but not the
cable assignments may work better. Within the selection phase our genetic algorithm
uses one of several cable assignment algorithms (see Section 5.5.2) to evaluate the
quality of the computed topologies.

5.5.1 Genetic Algorithm for the Topology

A genetic algorithm maintains a set of individuals (the population) and repeatedly
creates new individuals by either modifying the individuals slightly (mutation) or
by combining parts of two individuals (crossover). Based on a fitness function it then
selects some old and some new individuals to form the next generation; see the book
by Kramer [Kra17] for a more detailed introduction to genetic algorithms.
The population of our genetic algorithm consists of topologies. Each topology is

represented by a singly-linked adjacency list. To assess the quality of these topologies,
we compute cable assignments according to one of the approaches that we explain
in Section 5.5.2. These cable assignments then allow us to compute the costs of the
topologies (with these cable assignments).

Initialization

We want the topologies in our initial population to have a reasonable structure. In
particular, we want them to be trees without edge crossings, since edge crossings are
likely suboptimal. However, we do want a variety of such trees in order to be able to
explore the solution space. To achieve both goals we compute random spanning trees
on a planar triangulation of the input points. More precisely, we use the Delaunay
triangulation [BCKO08, Ch. 9] as the planar triangulation, which can be computed in
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expected O(𝑛 log𝑛) time, where 𝑛 is the number of points [BCKO08, Thm. 9.12]. We
then obtain a random spanning tree as follows. We traverse the edges in a random
order (chosen uniformly at random from all permutations of the edges) and include
an edge in the tree unless its inclusion would close a cycle.

Crossover

All our crossover operations work on two parent topologies 𝐺1 = (𝑉 1, 𝐸1) and
𝐺2 = (𝑉 2, 𝐸2). In the separate crossover we choose which Steiner points and edges
of the two parent topologies to keep in two separate phases. In a third phase we
ensure that the created topologies are connected. Let 𝑆1 and 𝑆2 be the Steiner points
in the two parent topologies. In the first phase we select a subset 𝑆 of max{|𝑆1 |, |𝑆2 |}
Steiner points from 𝑆1 ∪ 𝑆2 uniformly at random, which we keep. Then, 𝑉 = 𝑃 ∪ 𝑆 is
the set of vertices of the new topology. Not keeping all Steiner points ensures that
the number of Steiner points remains bounded.
In the second phase we select a subset of the edges to insert. This phase is based

on an operator for constrained balanced trees [MM17]. However, due to the first
phase an edge of a parent may have endpoints that are not present in𝑉 . We therefore
map each edge v𝑤 ∈ 𝐸1 ∪ 𝐸2 to the edge ` (v𝑤) between the point of 𝑉 closest to v
and the point of 𝑉 closest to 𝑤 and work with the mapped edges. First, we insert all
of ` (𝐸1). Then, we select a random subset 𝐸′2 of ` (𝐸2) \ ` (𝐸1) by first selecting the
desired cardinality 𝑘 and then 𝑘 edges uniformly at random. We insert each of these
edges into the child topology, breaking each cycle 𝐶 that occurs by deleting random
edge on 𝐶 except the newly added edge.

Finally, we check in the third phase whether the resulting topology is connected. If
not, we randomly add edges between the components until the topology is connected.

In the subtree crossover we aim to maintain (possibly optimal) local substructures.
The main idea is to take one subtree of𝐺2 and to add it to𝐺1 removing all edges of𝐺1
in this process that would cause cycles. We select a subtree of𝐺2 by first choosing an
edge v𝑤 ∈ 𝐸2 uniformly at random and then picking the subtree𝑇 = (𝑉𝑇 , 𝐸𝑇 ) to one
side of v𝑤. We initialize the child topology with (𝑉 1 ∪𝑉𝑇 , 𝐸𝑇 ). Then, we consider
the edges of 𝐺1 in a random order, and insert those edges that connect disconnected
components. Since 𝐺1 is connected, the resulting topology is connected as well.

Mutations

Note that neither the initialization nor the two crossover operators introduces new
Steiner points. This only happens in the mutation operators, which we describe next.
All mutation operators operate on a single topology 𝐺 = (𝑉 , 𝐸).
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The close endpoint mutation is an adaptation of a mutation operator for diameter
constrained spanning tree problems [MM17]. The operator is parameterized by a
mutation probability 𝜋e. Before the mutation we temporarily insert Steiner points in
the middle of all edges of 𝐺 resulting in a topology 𝐺 ′ = (𝑉 ′, 𝐸′). Then, each edge
is considered individually and mutated with probability 𝜋e. To mutate an edge v𝑤,
we randomly select one of its endpoints 𝑥 as the first endpoint of the new edge and
remove v𝑤. We then select another point 𝑦 ∈ 𝑉 ′ as the second endpoint, where
the probability that a point z is chosen is proportional to dist(𝑥, z )−2. However,
the insertion of 𝑥𝑦 may create a cycle and disconnect the topology. As in separate
crossover, we break cycles by randomly deleting an edge on the cycle. To repair a
disconnected topology, we re-insert v𝑤. Finally, we revert the introduction of many
Steiner points in the beginning by contracting all Steiner points of degree at most 2;
we describe at the end of this section how to do this efficiently.

To move Steiner points we apply the following two operators. Both decide for
each Steiner point independently whether to move it with probability 𝜋s. They differ
in how they move the Steiner point then. The nudge mutation (called compress by
Barreiros [Bar03]) moves the Steiner point to a random point on an incident edge.
The link-length minimization mutation tries to reduce the total weighted length of
the incident edges, where we set the weight as the unit costs of the assigned cable
types before the modification. We employ an iterative algorithm for finding the
generalized Weber point [KK62]; the number of iteration is another input parameter
of this operator. Note that link-length minimization disregards the poles on the
incident edges. Moreover, during the minimization we ignore the option of assigning
different cable types. Both restrictions may cause the iterative algorithm to converge
to a non-optimal position.

Selection

At the end of every iteration we have a set of parent topologies and a new set of child
topologies, which have been created by applying the operators. To choose which
topologies to keep, we need to assess their quality, which we interpret as the total cost
of the topology. Since the cost depends both on the topology and a cable assignment,
we first compute a cable assignment for each topology; we present different exact and
heuristic methods for this in Section 5.5.2. We then use tournament selection [Kra17]
with elitist reinsertion to determine the set of topologies to keep. More precisely, 95 %
of the new population is obtained by repeatedly selecting a random subset of 𝑘 child
topologies and inserting the cheapest of these. The remaining 5 % are the 5 % cheapest
parent topologies. Keeping these implies that the quality of the best topology in the
population does not decrease over time.
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Pruning Steiner points

The operators may cause the topologies to contain Steiner points of degree at most 2.
Such Steiner points are never necessary in an optimal topology, and they can be
removed by contracting an incident edge. They can be determined by a single traversal
of the tree in O( |𝑃 |) time. Note that removing points also reduces the number of
options the operators have, e.g., for deciding where to move an edge in the close
endpoint mutation. However, we artificially subdivide the edges before performing
such operations. Hence, pruning Steiner points in this way has only a small impact
on these operators. Pruning has the benefit that it keeps the number of Steiner points
bounded by a constant factor of the number of points. Otherwise, the number of
Steiner points could increase with each iteration, which degrades the performance of
the operators.

5.5.2 Cable Assignment

A topology is only a part of a solution. It is also necessary to assign cables to the
edges of a topology. In this section we present exact and heuristic algorithms for
computing cable assignments for a topology. Throughout this section 𝐺 = (𝑉 , 𝐸) is
the tree topology for which a cable assignment shall be computed.

We first observe that the constraints for cable assignments depend on the maximum
amount of power p (v𝑤) that may flow along an edge v𝑤; see Equation (5.1). As
a first step we therefore present a linear-time algorithm that computes the values
of p (v𝑤) for all edges v𝑤 ∈ 𝐸; see Algorithm 5.1.

We begin the depth-first search (DFS) at an arbitrary vertex 𝑟 ∈ 𝑉 (Lines 3 and 4).
When the function computeFlow() is called for a vertex v and its parent in the search
tree 𝑢, it first recursively calls computeFlow() on its children (Line 8). These calls
return the total amount of generation and demands within the subtree rooted at the
child. After the loop, 𝑔 and 𝑑 contain the sum of all generations and demands in the
subtree rooted at v (including the generation and demand of v). These values suffice
to compute the maximum flows on the edge between v and its parent 𝑢 (Lines 10
and 11). Note that in the calls to the children (and recursively to their children and
so on) the correct flow values of all edges in the subtree rooted at 𝑢 are determined.
Hence, when the algorithm finishes all desired values are computed, and we have
the following result.

Lemma 5.3. For a given topology 𝐺 = (𝑉 , 𝐸), the maximum flow values can be
computed in O( |𝑉 |) time.
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Algorithm 5.1: The depth-first search to determine the maximum flows on
the edges.

Data: Tree 𝐺 = (𝑉 , 𝐸)
Result: Maximum power flow values p : 𝐸 → R≥0

1 𝑔total ←
∑

p∈𝑃 𝑔(p)
2 𝑑 total ←

∑
p∈𝑃 𝑑 (p)

3 𝑟 ← arbitrary point in 𝑉
4 computeFlow(𝑟 , ⊥)
5 function computeFlow(v , 𝑢):
6 (𝑔,𝑑) ← (𝑔(v), 𝑑 (v))
7 for 𝑤 ∈ 𝑁𝐺 (v) \ {𝑢} do
8 (𝑔,𝑑) ← (𝑔,𝑑) + computeFlow(𝑤, v)
9 if 𝑢 ≠ ⊥ then

10 p (𝑢v) ← min{𝑑,𝑔total − 𝑔}
11 p (v𝑢) ← min{𝑑 total − 𝑑,𝑔}
12 return (𝑔,𝑑)

Exact Cable Assignment

The formulation of the constraints of the cable assignment in Section 5.3 suggests
formulating the cable assignment problem as an MILP. In this formulation we have
one binary variable z (𝑒, 𝑐) ∈ {0, 1} per edge 𝑒 ∈ 𝐸 of the underlying undirected graph
and cable type 𝑐 ∈ 𝐶 . All other values that occur in the formulation are constant
for a given topology and can be precomputed. In particular, the power flows on the
edges can be precomputed in linear time by Lemma 5.3. We ensure that exactly one
cable type is selected per edge with the following constraints.∑︁

𝑐∈𝐶
z (𝑒, 𝑐) = 1, ∀𝑒 ∈ 𝐸. (5.6)

The resistance of an edge 𝑒 ∈ 𝐸 can then be described by the expression

𝑟 (𝑒) =
∑︁
𝑐∈𝐶

z (𝑒, 𝑐) · ℓ (𝑒)𝜌 (𝑐). (5.7)

Replacing ℓ (𝑒)𝜌 (𝑎(𝑒)) in Equations (5.3) and (5.4) with the expression for 𝑟 (𝑒) in
Equation (5.7) above, we obtain linear constraints that ensure that the voltage drops
and the line losses stay within the desired range. Note that it suffices to formulate
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the voltage drop constraint only for maximal paths from a generator to a consumer,
i.e., they are not part of any longer path from a generator to a consumer.
To ensure that the capacity of the selected cables is sufficiently large, we use the

following constraints, which adapt Equation (5.2).

max{p (v𝑤), p (𝑤v)} ≤
∑︁
𝑐∈𝐶

cap(𝑐) · z ({v, 𝑤}, 𝑐) ∀{v, 𝑤} ∈ 𝐸. (5.8)

Finally, we want to minimize the cost of the cable assignment, which is given by

cost(𝐺, 𝑎) =
∑︁
𝑒∈𝐸

∑︁
𝑐∈𝐶

ℓ (𝑒) · 𝑐line (𝑐) · z (𝑒, 𝑐). (5.9)

Note that this objective function just includes the costs that depend on the cable
assignment and ignores the costs that only depend on the topology. In total, we
obtain an MILP with |𝐸 | · |𝐶 | binary variables.

Heuristic Cable Assignment

In the genetic algorithm that computes the topology, we repeatedly compute cable
assignments for topologies in order to assess their qualities. Hence, we need a fast
way to compute a good cable assignment. Even though our experiments show that
the MILP can typically be solved within seconds (see Section 5.6.1), this is not fast
enough for our purpose. We therefore employ a heuristic, which extends the work
by Kraft [Kra20] and works as follows.

As for formulating the MILP, we first determine the maximum flows on all edges
(p (v𝑤) and p (𝑤v), as well as pmax (v𝑤) = max{p (v𝑤), p (𝑤v)} for all v𝑤 ∈ 𝐸). We
further compute for each edge v𝑤 the length ℓ̂path (v𝑤) of the longest path from
a generator to a consumer via v𝑤. We describe in the following how to compute
these lengths in O( |𝑉 |) time by traversing the tree twice. This algorithm is given in
Algorithm 5.2.

Any generator-consumer-path via the edge v𝑤 ∈ 𝐸 can be decomposed into a
prefix from a generator 𝑠 to v , the edge v𝑤, and a suffix from 𝑤 to a consumer 𝑡 . In
the algorithm, we therefore compute for each edge v𝑤 the values ℓ̂𝑔 (v𝑤) and ℓ̂𝑐 (v𝑤),
which represent the maximum length of a path from a generator to v without the
edge 𝑤v and the maximum length of a path from 𝑤 again without the edge 𝑤v ,
respectively. The maximum length of a generator-consumer-path via v𝑤 is then
ℓ̂𝑔 (v𝑤) + ℓ ({v, 𝑤}) + ℓ̂𝑐 (v𝑤).

In the first two traversals of the algorithm (Lines 4 and 5), the values of ℓ̂𝑔 and ℓ̂𝑐 are
computed. In the first traversal (computeLengthsBelow) the values ℓ̂𝑔 (𝑤v) and ℓ̂𝑐 (v𝑤)
where v is the parent of 𝑤 are determined. These correspond to paths that lie below
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Algorithm 5.2: The algorithm to compute the lengths of the maximum
paths containing an edge.

Data: Tree 𝐺 = (𝑉 , 𝐸)
Result: Maximum path lenghts ℓ̂path : 𝐸 → R≥0 ∪ {−∞}

1 𝑟 ← arbitrary point in 𝑉
2 ℓ̂𝑔 (v𝑤) ← −∞ ∀v𝑤 ∈ 𝐸
3 ℓ̂𝑐 (v𝑤) ← −∞ ∀v𝑤 ∈ 𝐸
4 computeLengthsBelow(𝑟 , ⊥)
5 computeLengthsAbove(𝑟 , ⊥)
6 computeLengths()

7 function computeLengthsBelow(𝑤, v):
8 for 𝑥 ∈ 𝑁𝐺 (𝑤) \ {v} do
9 computeLengthsBelow(𝑥 , 𝑤)

10 ℓ̂𝑔 (𝑤v) ← max{ℓ̂𝑔 (𝑥𝑤) + ℓ ({𝑥, 𝑤}) | 𝑥 ∈ 𝑁𝐺 (𝑤) \ {v}}
11 ℓ̂𝑐 (v𝑤) ← max{ℓ̂𝑐 (𝑤𝑥) + ℓ ({𝑤, 𝑥}) | 𝑥 ∈ 𝑁𝐺 (𝑤) \ {v}}
12 if 𝑔(𝑤) > 0 and ℓ̂𝑔 (𝑤v) = −∞ then
13 ℓ̂𝑔 (𝑤v) ← 0
14 if 𝑑 (𝑤) > 0 and ℓ̂𝑐 (v𝑤) = −∞ then
15 ℓ̂𝑐 (v𝑤) ← 0

16 function computeLengthsAbove(𝑤, v):
17 for 𝑥 ∈ 𝑁𝐺 (𝑤) \ {v} do
18 ℓ̂𝑔 (𝑤𝑥) ← max{ℓ̂𝑔 (𝑦𝑤) + ℓ ({𝑦, 𝑤}) | 𝑦 ∈ 𝑁𝐺 (𝑤) \ {𝑥}}
19 ℓ̂𝑐 (𝑥𝑤) ← max{ℓ̂𝑐 (𝑤𝑦) + ℓ ({𝑤, 𝑦}) | 𝑦 ∈ 𝑁𝐺 (𝑤) \ {𝑥}}
20 if 𝑔(𝑤) > 0 and ℓ̂𝑔 (𝑤𝑥) = −∞ then
21 ℓ̂𝑔 (𝑤𝑥) ← 0
22 if 𝑑 (𝑤) > 0 and ℓ̂𝑐 (𝑥𝑤) = −∞ then
23 ℓ̂𝑐 (𝑥𝑤) ← 0

24 function computeLengths():
25 for {v, 𝑤} ∈ 𝐸 do
26 ℓ̂path ({v, 𝑤}) ← max{ℓ̂𝑔 (v𝑤) + ℓ̂𝑐 (v𝑤), ℓ̂𝑐 (𝑤v) + ℓ̂𝑔 (𝑤v)} + ℓ ({v, 𝑤})

𝑤 in the tree. In the second traversal (computeLengthsAbove) the remaining values
are computed. Based on these values, the desired maximum path lengths are obtained.
(computeLengths). The second traversal and the final iteration may be combined in
one traversal, but this does not change the asymptotic running time of the algorithm.
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Note that a naive implementation of the maximum computations in Lines 18 and 19
requires linear time per computation, which results in quadratic running time of
the algorithm in total. However, observe that at each point v ∈ 𝑉 only the two
highest values in {ℓ̂𝑔 (𝑦𝑤) + ℓ ({𝑦, 𝑤}) | 𝑦 ∈ 𝑁𝐺 (𝑤)} are relevant (and likewise for
{ℓ̂𝑐 (𝑤𝑦) + ℓ ({𝑤, 𝑦}) | 𝑦 ∈ 𝑁𝐺 (𝑤)}). Hence, we can compute these values before,
which allows us to compute the maxima in constant time each. This results in a linear
running time for the whole algorithm.

Lemma 5.4. For all edges 𝑒 ∈ 𝐸 together the maximum lengths of generator-consumer-
paths that contain an edge 𝑒 can be computed in O( |𝑉 |) time.

We then allocate each edge {v, 𝑤} a portion of the allowed voltage drop that is
proportional to the length of the edge relative to the length of the longest path
with {v, 𝑤}. That is, we set

𝑢max
drop ({v, 𝑤}) =

ℓ ({v, 𝑤})
ℓ̂path ({v, 𝑤})

𝛼drop𝑈 .

Similarly, we allocate a portion of the allowed line losses proportional to the edge
length, i.e.,

pmax
loss ({v, 𝑤}) =

ℓ ({v, 𝑤𝑠})∑
𝑒∈𝐸 ℓ (𝑒)

𝛼loss ·min

∑︁
p∈𝑃

𝑔(p),
∑︁
p∈𝑃

𝑑 (p)
 .

We then assign the cheapest cable to {v, 𝑤} that has sufficient capacity and complies
with the bounds above, i.e., we have for the final assignment 𝑎 and all v𝑤 ∈ 𝐸

𝑢drop (v𝑤) ≤ 𝑢max
drop ({v, 𝑤}),

ploss (v𝑤) ≤ pmax
loss ({v, 𝑤}) .

Since these requirements only strengthen the constraints in Equations (5.2) to (5.4),
the cable assignment 𝑎 is feasible. By Lemma 5.4 the time to compute the cable
assignment is linear in the number of vertices.

Lemma 5.5. The heuristic computes a feasible cable assignment in O( |𝑉 |) time.

This cable assignment may be improved upon by iterating over the edges and
greedily replacing the currently selected cable by a cable of the cheapest cable
type that suffices to satisfy all constraints. We distinguish between two variants
based on the order in which we iterate over the edges. Since the cost of an edge
is proportional to its length, we expect greater cost saving when we can select a
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Figure 5.1: A flow chart for the hybrid genetic algorithm. The loop in the top
represents the genetic algorithm that is responsible for computing topologies. The
two boxes in the bottom represent cable assignment algorithms.

cheaper cable on a longer edge. Therefore, we consider the edges in the order from
the longest to the shortest. The running time of the greedy improvement phase is
dominated by computing the maximum generator-consumer-paths. In a topology
with 𝑛𝐺 generators and 𝑛𝐶 consumers, there are at most 𝑛𝐺 · 𝑛𝐶 such paths. While
this value may be quadratic in the total number of points, in typical microgrids there
are only few generators. Thus, 𝑛𝐺 may be thought of as constant. The length of each
generator-consumer-path is linear in the number of edges. Hence, we obtain the
following running time bounds for the greedy improvement.

Lemma 5.6. The heuristic with greedy improvement computes a feasible cable as-
signment of a topology with 𝑛𝐺 generators, 𝑛𝐶 consumers, and 𝑛 vertices in total in
O(𝑛𝐺 · 𝑛𝐶 · 𝑛) ⊆ O(𝑛3) time.

5.5.3 Summary of Hybrid Genetic Algorithm

Figure 5.1 summarizes the working of the hybrid genetic algorithm. In the main loop
of the algorithm the topology is optimized using a genetic algorithm (see Section 5.5.1
for details). To assess the quality of the topologies computed in this process, suitable
cable assignments are needed. The computation of these is delegated to one of the
cable assignment algorithms in Section 5.5.2. In principle, we may use any of the three
algorithms presented above (MILP, heuristic, heuristic with greedy improvement).
However, we need to compute a cable assignment once per topology and iteration. It
is therefore computationally infeasible to solve the MILP every time we need a cable
assignment. We thus only consider the two heuristic cable assignment methods for
use during the execution genetic algorithm. However, we do solve the MILP once at
the end for the best topology found by the genetic algorithm.
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Table 5.1: The base cable types we use in the evaluation [Kra20].
cross section cost capacity resistivity

[mm] [USD m−1] [A] [Ω km−1]
16 2.5 66 1.91
35 5.0 132 0.87
70 8.0 205 0.44
95 11.18 245 0.32

5.6 Evaluation

We implemented the algorithms described in the previous section in Rust using a
modified version of genevo3

3 https://github.com/innoave/genevo

as a framework for our genetic algorithm. We parallelized
the application of the genetic operators by using rayon4

4 https://github.com/rayon-rs/rayon

. The experiments were
performed on a SuperMicro H8QG6 Server with four 12-core AMD Opteron 6172
processors clocked at 2.1 GHz with 256 GB RAM running OpenSUSE Leap 15.3.

Due to a lack of suitable input instances, we resorted to adapting instances for the
related Euclidean Minimum Steiner Tree problem, which were supplied in the
DIMACS 11 implementation challenge [DS14]. These benchmark instances come
in sets of different sizes. In our evaluation we chose the sets of sizes 10, 20, 50
and 100. We randomly selected between 5 % and 20 % of the points as generators with
a maximum generation of 80 kW. All other points are consumers with a maximum
consumption of either 4 kW (with 50 % probability), 10 kW (30 % probability), or a
uniformly randomly chosen value in [15, 75] (20 % probability). This distribution was
chosen to resemble a collection of many households, some smaller and few larger
workshops. We assume a cost of 180 USD per pole and a maximum distance between
two poles of 50 m. Each distribution point incurs a fixed cost of 𝛼 = 100 USD plus
𝛽 = 200 USD per connection and an additional 𝛾 = 30 USD kW−1. The properties of
the cables are given in Table 5.1. In addition, we assume that multiple cables of the
same type may be placed in parallel to each other. We further set 𝛼loss = 𝛼drop = 0.1
and assume cos𝜑 = 0.8. We refer to the benchmark set with 𝑘 ∈ {10, 20, 50, 100}
points by B𝑘 .

5.6.1 Cable Assignment

In this section we analyze the quality of the cable assignment heuristics compared
to the optimal assignment. We used the points from the first 50 instances in our
benchmark sets B𝑘 and evaluated the heuristic and its greedy improvement. For

https://github.com/innoave/genevo
https://github.com/rayon-rs/rayon
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Figure 5.2: Distribution of the cost of the heuristic cable assignments relative to the
optimal assignment on different generated topologies on instances from B20. Markers
are placed every 25 runs corresponding to 5 instances repeated 5 times each.

each instance we used three different topologies for cable assignment: the minimum
spanning tree, the minimum Steiner tree, and a random spanning tree consisting
of edges in the Delaunay triangulation of the terminals. We compared the results
to the minimum cost cable assignment we obtained by solving the MILP using
Gurobi [Gur22]. We repeated this procedure 5 times per instance.

We find that in all test instances from B50 and B100 the heuristic always yielded the
minimum cost cable assignment on all three topologies. On the test instances fromB10
the heuristic was optimal on all minimum spanning tree and minimum Steiner tree
topologies. The results were optimal in 80 % of all random topologies with the most
expensive being around 30 % more expensive than the optimum. Using the greedy
improvement this number increased further to above 90 % with the most expensive
being 10 % more expensive than the optimum. The heuristic did not perform as well
on B20, the results of which are presented in Figure 5.2. While there are still instances
where the heuristic yielded the optimum result, it performed particularly bad on the
random spanning trees. There, the base heuristic found the optimum solution in only
3 out of all 250 runs. Using the greedy improvement could, however, increase this
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Figure 5.3: Distribution of the cost of the heuristic cable assignment relative to the
optimal assignment. The coordinates in instances of B50 and B100 are scaled to match
edge length distribution of B20.

to 49 runs or 19.6 %. With all three topology variants we see a large decrease in the
final cost when using the greedy improvement phase.

This behavior does not seem to depend on the instance size but on the distribution
of edge lengths. We scaled the coordinates of the instances in B20 by 0.25 and found
that this resulted in the heuristic always finding the optimum solution. Similarly,
we scaled B50 and B100 by 4 and 10, respectively, and got results similar to the ones
in Figure 5.2; see Figure 5.3. These scaling factors were chosen to resemble the
differences in average edge length among the instances of the different benchmark
sets. The advantage of the greedy improvement becomes even more pronounced on
the scaled version of B100, where a clear gap between the heuristic cable assignment
with and without greedy improvement can be seen in Figure 5.3.

With fewer terminals than B50 and B100, but covering the same area, the average
edge length in B20 is higher than in the other two instances. The longer the edges
become on average, the more the constraints for the voltage drops and line losses
become relevant. But these constraints are non-local, and the heuristic complies with
stricter, localized versions of them. This is the reason why the heuristic may fail to
find optimal cable assignments. In contrast, the capacity constraints are already local
and are handled optimally by the heuristic. Moreover, they are independent of the
edge lengths.
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Table 5.2: Average running times of each cable assignment method on different
benchmark sets B𝑘 .

mean running time (µs)
𝑘 heuristic greedy gurobi
10 27 53 58 345
20 62 108 223 979
50 120 332 908 331
100 220 1 094 5 070 330

In terms of running time the heuristic performed best, closely followed by the
heuristic with greedy improvement. The mean running times of the algorithms are
given in Table 5.2. For the smaller instances adding the greedy improvement phase
roughly doubles the running time. But we can also clearly see the super-linear growth
of the running time for the greedy improvement that is predicted by the theoretical
analysis in Lemma 5.6. The long running time of Gurobi compared to the heuristic
renders it less suitable for the evaluation phase of a genetic algorithm and is the
reason for our use of a heuristic.

5.6.2 Selecting Parameters for the Hybrid Genetic Algorithm

The hybrid genetic algorithm has several parameters that may influence its perfor-
mance. More specifically, we have the population size 𝑠 and the mutation probabilities
in the close endpoint mutation 𝜋e and in the Steiner points mutation operator 𝜋s. To
find good values for these parameters we evaluated the result of the algorithm with
different parameter choices. We call a choice of the parameters a configuration. Based
on preliminary experiments we selected 𝑠 ∈ {5000, 10 000, 15 000, 20 000, 25 000} and
𝜋e, 𝜋s ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.075}. To limit the amount of combinations, we
always set 𝜋e = 𝜋s. We ran each combination of parameters on 45 randomly selected
instances, 15 each from B20, B50, and B100; to limit the running time we skipped B10
in our formal study since the smaller instances tend to be easier, and they depend
less on the choice of the parameters. Moreover, we test both choices of the cable
assignment (heuristic with and without greedy improvement).

We first determine a suitable value for the mutation rate. Table 5.3 shows for each
pair of mutation rates 𝜋1 and 𝜋2 in which percentage of the runs on B20 and B50 the
algorithm with mutation rate 𝜋1 obtained a result that is at least as good as with
mutation rate 𝜋2. According to these results a rate of 0.05 gives at least as good
results on a majority of the instances compared with all other choices of mutation
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Table 5.3: Comparison of different mutation rates on B20 and B50. A value in row 𝜋1
and column 𝜋2 indicates the percentage of instances on which the genetic algorithm
performed at least as good as with mutation rate 𝜋1 than with rate 𝜋2.

𝜋 0.01 0.02 0.03 0.04 0.05 0.075
0.01 – 43.8 41.5 40.2 39.2 44.2
0.02 68.2 – 57.1 55.6 54.6 57.4
0.03 69.1 56.0 – 58.5 54.0 58.5
0.04 69.5 58.2 57.0 – 54.8 61.0
0.05 70.4 58.5 60.8 60.8 – 62.8
0.075 65.0 53.6 56.3 56.9 55.8 –

Table 5.4: Comparison of different mutation rates on B100. A value in row 𝜋1 and
column 𝜋2 indicates the percentage of instances on which the genetic algorithm
performed at least as good as with mutation rate 𝜋1 than with rate 𝜋2.

𝜋 0.01 0.02 0.03 0.04 0.05 0.075
0.01 – 36.7 31.3 39.3 48.0 66.7
0.02 63.3 – 49.3 55.3 59.3 78.0
0.03 68.7 50.7 – 57.3 65.3 85.3
0.04 60.7 44.7 42.7 – 60.0 82.0
0.05 52.0 40.7 34.7 40.0 – 74.0
0.075 33.3 22.2 14.7 18.0 26.0 –

rates. The same is true for B20 and B50 individually. For B100 the results change (see
Table 5.4), and a smaller mutation rate of 0.03 performs better. This makes sense
since the mutation rate describes the probability that any individual edge or Steiner
point is mutated. As the instances become larger, the probability that some mutation
occurs increases as well. If there are many changes at once, some bad changes may
overpower the good ones. This may cause the good changes to be discarded even
though they would improve the topology.
Next, we compare the results with respect to the population sizes. Table 5.5 and

Table 5.6 present a comparison of the population sizes similar to the tables for the
mutation rates. On B20 and B50 the results are not as clear as for the mutation rates,
but a population size of 10 000 seems to be the best choice. In contrast, on B100 the
smaller population size of 5000 is a clear winner. This is likely because a smaller
population size allows for a larger number of iterations. For larger instances, the
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Table 5.5: Comparison of different population sizes on B20 and B50. A value in row 𝑠1
and column 𝑠2 indicates the percentage of instances on which the genetic algorithm
performed at least as good as with mutation rate 𝑠1 than with rate 𝑠2.

𝑠 5000 10 000 15 000 20 000 25 000
5000 – 56.6 62.5 63.9 70.2

10 000 56.2 – 66.2 68.1 73.5
15 000 50.8 47.3 – 62.8 70.4
20 000 49.8 44.6 52.3 – 70.8
25 000 42.6 40.1 44.7 42.8 –

Table 5.6: Comparison of different population sizes on B100. A value in row 𝑠1 and
column 𝑠2 indicates the percentage of instances on which the genetic algorithm
performed at least as good as with mutation rate 𝑠1 than with rate 𝑠2.

𝑠 5000 10 000 15 000 20 000 25 000
5000 – 92.2 99.4 100.0 100.0

10 000 7.8 – 90.0 98.3 100.0
15 000 0.6 10.0 – 91.7 99.4
20 000 0.0 1.7 8.3 – 85.6
25 000 0.0 0.0 0.6 14.4 –

number of iterations is already lower than for smaller instances since each iteration
is slower. Hence, the larger number of iterations is more important here than having
a larger and more heterogeneous population.

5.6.3 Evaluation of the SolutionQuality

In this section we analyze the quality of the results produced by the genetic algorithm.
We aim to answer two questions. First, how good are the topologies produced by
the genetic algorithms? And second, how consistent is the output of the genetic
algorithms?
We start by tackling the first question. To this end we randomly selected 50

instances each from B10, B20, B50, and B100. Note that we chose these instances
independently from the instances used in Section 5.6.2 to determine the best configu-
rations. This was done to prevent giving the genetic algorithms an unfair advantage,
which would happen if we assessed the quality of the topologies and determined
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the best configuration on the same instances. We ran both variants of our hybrid
genetic algorithm (ga_heuristic with the heuristic cable assignment and ga_greedy

with the additional greedy improvement of the cable assignment) ten times on each
instance for 60 s. A (relatively short) running time was selected, since the cable layout
algorithm is meant to form a part of a larger algorithmic framework that addresses
the full microgrid design problem. In the hybrid genetic algorithm the final cable
assignment was found by solving the MILP formulation with Gurobi [Gur22].

As a baseline we compare the results of the genetic algorithms with the results of a
straight-forward adaptation of the Triangulation Algorithm by Kahveci et al. [KOPS16].
Initially, the topology is a minimum spanning tree on the terminals. Then, triangles
where two sides coincide with edges and the third side does not are considered
iteratively. It is then checked whether using the third side instead of one of the
others or introducing a Steiner point on an edge improves the solution. If it does,
the change is applied greedily, and the next triangle is considered. In base form this
heuristic is not designed to handle multiple cable types. But a straightforward way to
include them is by computing an (ideally optimal) cable assignment when evaluating
whether to modify the topology. We implemented two versions: one where optimal
cable assignments are computed by solving the MILP, which we call tra, and one
where the cable assignment is determined by our heuristic, which we call tra_fast.
In both variants the final cable assignment is determined by solving the MILP.

In addition, we compare the results to the optimal cable assignments (computed by
solving the MILP formulation) on the minimum spanning tree (mst) and the minimum
Steiner tree (steiner). Both are solutions to geometric optimization problems that
are closely related to theMicrogrid Cable Layout problem. Moreover, there are
approaches to similar microgrid design problems that use (or start with) the minimum
spanning tree [KOPS16, LH00] and approaches introducing Steiner points [KOPS16,
CCEM20]. We used the software library geosteiner5

5 http://www.geosteiner.com/

to compute minimum Steiner
trees.

Figure 5.4 shows the results of the comparison of the algorithms. The plot on top
includes all the algorithms mentioned above; the plot in the bottom zooms in to the
area below 1.0 in order to show the results for ga_heuristic and ga_greedy more
clearly. As different instances have different costs, we normalize the values by the
cost of the optimal cable assignment on the topology computed by tra. Each line in
the plot corresponds to one algorithm, and each point describes the median cost of
that algorithm over the ten runs divided by the costs of the minimum Steiner tree
based layout. The instances are sorted by increasing values independently for all
lines. We use the median cost as this is a good indicator for a typical result of the
algorithm. For example, the line for ga_greedy contains the point (100, 0.475); this
means that on 100 instances the costs of the median result of ga_greedy are at most
47.5 % of the costs of the tra-based layout.

http://www.geosteiner.com/
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Figure 5.4: The median costs of the topologies computed by the genetic algorithms
(ga_greedy, ga_heuristic) relative to the costs of the topologies computed by tra.
As further reference, the relative costs of mst, steiner, and tra_fast is shown as
well. The right plot is a zoomed in version of the left plot to show the lines for the
genetic algorithm variants more clearly.

We can clearly see that all values of steiner are above 1.0. This means that tra
always found a better topology than the minimum Steiner tree. In fact, a more
detailed analysis of the data reveals that steiner yielded the worst topology on every
single instance. This can likely be explained by the fact that in our model Steiner
points incur costs and the minimum Steiner trees include many Steiner points. For
mst all values are at least 1.0 and on all but 7 instances the values are larger than 1.0.
As both steiner and mst perform worse than the baseline tra, we ignore them in
the remainder of the evaluation section.
Both variants of the genetic algorithms perform better than tra on almost all

instances. In Table 5.7 the columns labeled “median” correspond to the values plotted
in Figure 5.4. The values indicate on how many instances the median value of the
genetic algorithm over the ten runs per instance lies within the specified interval.
The columns “min” and “max” correspond to the minimum and maximum values
over the runs, respectively. We see that there is only one instance where the worst
run of ga_greedy yielded a worse topology than tra, and two where the costs of
the topologies were equal. For ga_heuristic the picture is similar: there are two
instances with the same costs and two instances with larger costs than tra. Presented
differently, on the vast majority of 98.5 % and 98.0 % of the instances, ga_greedy and
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Table 5.7: The number of instances on which the relative costs of the topolgies
computed by the genetic algorithms lies within the given intervals. For each instance
the minimum, median, and maximum costs over the ten runs are shown for both
variants of the genetic algorithm.

ga_greedy ga_heuristic

min median max min median max
(0.10, 0.25] 29 23 8 38 32 28
(0.25, 0.50] 82 82 92 69 72 68
(0.50, 1.00) 87 93 97 90 92 100

1.00 2 2 2 2 2 2
(1.00, 1.20] 0 0 1 1 2 2

ga_heuristic found better solutions than tra.
The median costs of ga_greedy (ga_heuristic) are at most half the costs of tra on

52.5 % (52.0 %) of the instances and at most a quarter on 11.5 % (16 %) of the instances.
In other words, on more than half the instances both variants of the genetic algorithm
were able to compute topologies that cost at most half as much as the topologies
computed by tra.
In general, the two variants of the genetic algorithm have a very similar perfor-

mance. This is somewhat surprising as the greedy improvement phase is able to
improve the heuristic cable assignment considerably; see Section 5.6.1. Note however
that we always compute the optimal cable assignment via the MILP formulation for
the final topology. Otherwise, we would see the same gap between the two variants
as in Section 5.6.1.

In fact, on B100, which contains most of the instances with the largest improvement,
ga_heuristic even produces better results than ga_greedy (on average 11.7 % better).
This can be explained by the fact that the greedy improvement of the cable assignment
increases the time needed for one iteration so that ga_heuristic is able to perform
more iterations. On the other three benchmark sets, however, ga_greedy is on
average slightly better than ga_heuristic. More precisely, on average the topologies
by ga_heuristic are 0.04 % more expensive on B10, 1.11 % on B20, and 0.28 % on B50.
A more detailed analysis also reveals that the results by the hybrid genetic algo-

rithms are never worse than the layout based on the minimum spanning tree. There
are two instances on which the minimum spanning tree is as good as the solution
found by the hybrid genetic algorithm (in all runs of both variants). But on the vast
majority of the instances the minimum spanning tree is not optimal, and the hybrid
genetic algorithm finds better topologies.
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Figure 5.5: The standard deviation over ten runs of each algorithm per instance
normalized by the mean cost of layouts for the instance.

Multiple runs of the genetic algorithm on the same instance may yield different
results. If the costs of the results differed a lot between different runs, this would imply
that the algorithm rarely finds (near-)optimal solutions. Conversely, if the results
are often of similar quality, this may suggest that the solutions are (near-)optimal, in
particular, because the genetic algorithm starts with different topologies every time.
We compute the standard deviations of the costs of the ten runs for each instance. We
normalize the values by the mean costs of the layouts for each instance. The results
are shown in Figure 5.5. Each line represents the normalized standard deviations of
one algorithm on the instances of one benchmark set sorted increasingly.
The comparatively large spread on B100 can likely be explained by the fact that

the results are not yet optimal after 60 s; in particular, if ga_greedy is used. This fits
to our observation that ga_heuristic performs slightly better on B100. On B10, B20,
and B50 the relative standard deviation is small on the majority of instances; in all
cases it is below 1.4 % for more than half of the instances, and on average below 3.2 %.
As argued above, this may indicate that the results are often close to optimal. We
observe that the relative standard deviation for ga_greedy (on average 0.0 % on B10,
1.9 % on B20, and 3.1 % on B50) is smaller than for ga_heuristic (on average 0.0 % on
B10, 3.0 % on B20, and 3.1 % on B50). This means that ga_greedy seems to give more
consistent results than ga_heuristic.
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(a)Output of our hybrid genetic
algorithm. Cost: 23 671 USD.

(b) Planned network topology.
Cost: 29 649 USD.

Figure 5.6: A comparison of the topology found by our hybrid genetic algorithm
and a manually planned reference topology on an instance derived from a real-world
microgrid in Idjwi. In both cases the optimal cable assignment for these topologies is
shown. The triangles represent generators, the squares represent consumers, and the
black dots are poles.

5.6.4 Case Study: Idjwi

We evaluate the results of the hybrid genetic algorithm on an instance that is derived
from a real-world microgrid in the Democratic Republic of the Congo [Tec19]. The
microgrid is situated on the island of Idjwi in Lake Kivu and powers a small industrial
campus. A schematic description aswell as an analysis of generation and consumption
data can be found in [Luh+22]. The positions of the points in the instance resemble
the real-world locations of the generators and consumers. We deviate from the actual
site by including a solar plant, which has not been built yet, and excluding the diesel
generator. In total, we have two generators and 15 consumers. The grid uses 400 V
AC line voltage and is operated at 50 Hz. We assume a power factor of cos𝜑 = 0.8
and limit the voltage drops and line losses to within a factor of 𝛼drop = 𝛼loss = 0.1.
Figure 5.6 compares the solution of our hybrid genetic algorithm (with mutation

probabilities set to 𝜋 = 0.05) with a manually planned reference topoglogy. The cable
assignments are the optimal ones according to our model. The two topologies are
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in general quite similar. They both include a long path from the generator in the
bottom left to a central point in the top right. The location of the central point differs
slightly in the two topologies. From this point the consumers are connected mostly
along paths; in the reference solution some paths branch to two consumers.
The costs of our solution are 23 671 USD, which is significantly cheaper than the

29 649 USD for the reference solution. The cost decrease comes mainly from having
fewer vertices with degree larger than 2, which incur a significant cost according to
our model. Note, however, that the reference topology represents a network that
has grown in multiple steps. Even if each step were to be optimal on its own, the
resulting topology very likely would not be. Nevertheless, this shows that our hybrid
genetic algorithm is able to significantly improve the topology.

5.7 Conclusion

In this work we present a hybrid genetic algorithm for theMicrogrid Cable Layout
problem. Within the algorithm we split this problem into two parts: finding a
topology and computing a cable assignment for the topology. The former part is
directly optimized by the genetic algorithm; the latter is done by a heuristic. The
hybrid genetic algorithm achieves the two goals we formulated. First, it is able to find
good solutions quickly, which is evidenced by its performance on a set of benchmark
instances. It is able to consistently find solutions within 60 s, which are better than
the layouts produced by heuristics presented in the literature for similar network
design problems. Second, adding more constraints or changing the cost function is
comparatively easy for a genetic algorithm. It may be sufficient to just adapt the
evaluation function on which the selection of the new population is based. In that
sense, the algorithmic approach is very flexible, which was the second goal.
The goals for the algorithm are formulated with a larger algorithmic framework

covering all aspects of microgrid design inmind. Including the algorithm and studying
the interactions with the other components of such a framework is therefore the main
future task. This includes finding good locations for the generation units. Another
interesting modification would be to compute cable capacities based on realistic
generation and load scenarios. Load scenarios also allow proper power flow models
to be used to obtain more accurate insights into the projected grid utilization. As in
our algorithm cable assignment is part of the evaluation this can be implemented
without major changes to other parts of the genetic algorithm. The hybrid genetic
algorithm itself may be extended to include, e.g., obstacles, which restrict where the
lines or poles may be placed, or more detailed cost functions for the equipment. For
example, the choice of a pole and its foundation, and thus their costs, may depend on
the forces they are subject to.
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For the Microgrid Cable Layout problem it would be interesting to have an effi-
cient algorithm for finding optimal solutions or at least solutions with approximation
guarantees. A natural extension of the problem is to allow cycles in the network.
One can then try to adapt the algorithm to this more general setting.
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6 FACTS Flows

A FACTS flow is a generalization of an electrical flow, where the susceptances of
the edges are not fixed. Instead, they can be chosen within a specified interval. We
study the problem whether a given network admits a FACTS flow. We prove that in
general this is N P-hard to decide. For fixed demands this is already the case if the
network is planar, and for adjustable demands this is even the case if the network
is outerplanar. Previously, hardness results were only known for the problem of
finding FACTS flows with maximum total flow value. On a more positive note, we
give algorithms to compute a FACTS flow in cacti with adjustable demands in O(𝑛3)
time and in partial 2-trees with fixed demands in O(𝑛2) time.

6.1 Introduction

To model the flow of power in electrical transmission and distribution networks, one
may choose among different flow models. In the previous chapters we use electrical
(often called DC power flow) and graph-theoretical flows, which are among the most
commonly used models for transmission network expansion planning [LARM21, p. 7].
We study an extension of electrical flow, where the susceptances of the edges may be
varied. This model is motivated by so called FACTS (flexible AC transmission system)
devices [Hin93]. These devices are able to influence the power that is transmitted
via a transmission line by changing the properties of the line. In practice there are
multiple devices that may have different effects on the transmission lines [ZL99,
KALT08]. Here, we apply a model of FACTS that allow the susceptances of the edges
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to be modified continuously.
In the context of flow networks, these devices have been modeled as an extension

of electrical flow networks [AP03, LBP15, LGV15, Mch+15, LPC20]. The definition of
FACTS flows in this chapter follows the model by Lehmann et al. [LBP15]. The main
difference to electrical flows is that the susceptances of the edges are not fixed, but
may be chosen within specified intervals. We recall the definition of a FACTS flow
network from Section 2.1.3. In this chapter we assume all input values to be rational.
A FACTS flow network consists of a directed graph 𝐺 = (𝑉 , 𝐸) with a capacity

function cap : 𝐸 → Q>0, a susceptance interval function 𝐵 : 𝐸 → Intervals(R>0), and
a demand function 𝐷 : 𝑉 → Intervals(R). For brevity, we may refer to a FACTS
flow network simply a network in this chapter. A FACTS flow in a network is a
function 𝑓 : 𝐸 → R, for which there are functions 𝑏 : 𝐸 → R and \ : 𝑉 → R such that

|𝑓 (v𝑤) | ≤ cap(v𝑤) ∀v𝑤 ∈ 𝐸, (6.1)∑︁
𝑢 :𝑢v∈𝐸

𝑓 (𝑢v) −
∑︁

𝑤 : v𝑤∈𝐸
𝑓 (v𝑤) ∈ 𝐷 (v) ∀v ∈ 𝑉 , (6.2)

𝑓 (v𝑤) = 𝑏 (v𝑤) · (\ (v) − \ (𝑤)) ∀v𝑤 ∈ 𝐸, (6.3)
𝑏 (v𝑤) ∈ 𝐵(v𝑤) ∀v𝑤 ∈ 𝐸. (6.4)

The key difference to electrical flow networks is the ability to choose the suscep-
tance 𝑏 (v𝑤) of an edge v𝑤 within the interval 𝐵(v𝑤). Once the susceptances are
chosen for all edges, the problem of computing a FACTS flow is reduced to computing
an electrical flow. The goal of the FACTS Flow problem is to determine whether
there is a FACTS flow in a network.

Related Work. The formulation above immediately gives a formulation of the
FACTS Flow problem as non-convex quadratic program. This formulation can be
linearized as an MILP [LBP15, LPC20]. It is mentioned in [LBP15] that FACTS Flow
is in N P , but the proof is only sketched. We therefore give a more detailed proof of
membership in N P in Proposition 6.1.
A problem related to FACTS Flow isMaximum FACTS Flow. Instead of finding

any FACTS flow, a FACTS flow with maximum total flow value shall be determined.
This problem can be formulated as a decision problem as follows. Given 𝑘 ∈ Q is
there a FACTS flow with total flow value at least 𝑘? We call the latter problem the
decision variant of Maximum FACTS Flow. It is known that the decision variant of
Maximum FACTS Flow is strongly N P-complete in general and N P-complete on
cacti [LBP15].
There are multiple works that introduce models of FACTS devices into Optimal

Power Flow models [SC98, AAF00, CL01, AP03, SRS21]. A similar model to the one



Introduction Section 6.1

103

we use here was introduced into an Optimal Power Flow model with linearized
AC power flow and subsequently solved using a two-stage approach [SC98]. Other
works extend AC Optimal Power Flow by including a specific kinds of FACTS
such as thyristor controlled series capacitator (TCSC) [AP03] or static VAR compen-
sator (SVC) [AAF00]. Several models and computation techniques for AC Optimal
Power Flow with SVC were compared in a computational study [SRS21]. A genetic
algorithm for AC Optimal Power Flow with multiple types of FACTS devices was
presented [CL01].

It has also been proposed to include FACTS in a Transmission Network Expan-
sion Planning problem. This may be formulated as a mathematical program and
solved using Benders decomposition [LPC20]. Moreover, there are methods to assess
the value of the flexibility offered by FACTS devices [BOGR11].

In the FACTS Flow problem and Optimal Power Flow with FACTS it is assumed
that the positions and properties of the FACTS as described by the susceptance
intervals are given as input. However, one may also seek to determine where to place
FACTS. Placing a FACTS can be modeled as follows. Initially, the susceptances of
all edges are fixed, i.e., each susceptance interval contains only one value. Placing
a FACTS on an edge then means to enlarge the susceptance interval of the edge.
The exact size of the resulting interval depends on the model that is used. It has
been shown that when placing them with a susceptance interval of [0,∞) on edges6

6Actually, that work considers placing flow control buses at the vertices, but this is equivalent to placing
FACTS at all incident edges.

incident to a feedback vertex set, i.e., the edges without a FACTS form a forest, every
flow is a FACTS flow [Lei+15]. A weaker result holds if the graph induced by the
edges without a FACTS is a cactus: If the capacities of the edges on cycles of the
cactus are sufficiently large, then for every flow 𝑓 there is a FACTS flow 𝑓 ′ such that
the consumptions of the vertices in the two flows are equal, i.e., 𝑐 𝑓 (v) = 𝑐 𝑓 ′ (v) for
all vertices v [Mch+15]. Such a correspondence between graph-theoretical flows and
FACTS flows is a strong property. One may also consider other (weaker) objectives,
which require fewer FACTS to be placed. One such objective that has been studied is
the minimization of overloads in certain contingencies. For this objective a greedy
heuristic approach was presented [LA01]. Another objective is the improvement of
the voltage stability [MHN22].

Contribution and Outline. While the complexity of Maximum FACTS Flow
has been understood reasonably well, to the best of the author’s knowledge the
complexity of the underlying FACTS Flow problem is still unknown. We fill this gap.
An overview over our results is shown in Table 6.1. We extend the hardness results
for Maximum FACTS Flow to FACTS Flow in Section 6.2. More precisely, we show
that FACTS Flow with fixed demands is strongly N P-complete in general, FACTS
Flow with fixed demands is N P-complete on planar graphs, and FACTS Flow with
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Table 6.1: Overview over the complexity of FACTS Flow.

Graph class adjustable demands fixed demands

Cactus O(𝑛3) time (Thm. 6.13) O(𝑛2) time (Thm. 6.11)

Outerplanar graph N P-complete (Thm. 6.6) O(𝑛2) time (Thm. 6.11)

Partial 2-tree N P-complete (Thm. 6.6) O(𝑛2) time (Thm. 6.11)

Planar graph N P-complete (Thm. 6.6) N P-complete (Cor. 6.7)

Arbitrary graph strongly N P-complete
(Cor. 6.5)

strongly N P-complete
(Cor. 6.5)

adjustable demands is N P-complete on outerplanar graphs. On a more positive
note, we present an O(𝑛2)-time algorithm for FACTS Flow with fixed demands in
partial 2-trees (Section 6.3.1) and an O(𝑛3)-time algorithm for FACTS Flow with
adjustable demands in cacti (Section 6.3.2). We conclude with a short summary and
open questions in Section 6.4.

6.2 NP-Completeness

While it has been mentioned that FACTS Flow is in N P , only a proof sketch is
given [LGV15]. We fill in the gaps of the proof here.

Proposition 6.1. FACTS Flow is in N P .

Proof. FACTS Flow can be formulated as an MILP, where all integer variables are
binary [LBP15]. For a given variable assignment it can be checked in polynomial
time whether the variable assignment is a solution, i.e., it satisfies all constraints.
However, we need to argue that a solution can be represented in a polynomial

number of bits. For linear programs it is known that if all coefficients are rational
and the linear program has a solution, then there is a rational solution whose size is
polynomially bounded [Sch98, p. 196]. In a solution of the MILP for FACTS Flow, the
binary variables can be represented with O(1) bits per variable. Plugging the chosen
values into the MILP yields a linear program. Hence, the lemma for linear programs
guarantees that the assignments to the continuous variables in some solution can be
represented in a polynomial number of bits. In total, if there is a FACTS flow, then a
FACTS flow can be represented in a polynomial number of bits. □
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Figure 6.1: The flow bound gadget added to the edge v𝑤.

We further prove that FACTS Flow is strongly N P-complete by a reduction from
the decision variant of Maximum FACTS Flow on basic networks. That is, in the
input instances every demand interval contains 0, and no demand interval contains
both positive and negative values. The problem then is to decide whether given
some 𝑘 ∈ Q there is a FACTS flow in the network with total flow value at least 𝑘 . It is
known that this problem is N P-complete [LBP15, LGV15]. Note that the notation in
[LGV15] differs from the one we use in this thesis. For easier reference we therefore
restate the N P-completeness result forMaximum FACTS Flow in the terms from
Chapter 2.

Proposition 6.2 (Reformulation of Theorem 1 in [LGV15]). The decision variant of
Maximum FACTS Flow is strongly N P-complete for basic networks.

In basic networks it is easy to decide whether there is a FACTS flow. The answer is
always “yes”. We can simply assign a flow value of 0 to every edge and angles of 0 to
every vertex. As every demand interval contains 0, this assignment satisfies the flow
conservation constraints. Moreover, the capacity constraints and Kirchhoff’s voltage
law are satisfied as well. Thus, the hardness of finding a maximum FACTS flow does
not directly imply the hardness of finding any FACTS flow. In the following we show
how to reduceMaximum FACTS Flow to FACTS Flow with fixed demands. Since
FACTS Flow with adjustable demands is a generalization of FACTS Flow with fixed
demands, this shows that both variants of FACTS Flow are N P-hard.
A key structure in the reduction is the flow bound gadget, which is illustrated in

Figure 6.1. Let v𝑤 be an edge of a network N , and let 0 ≤ 𝑙 ≤ 𝑢. Our goal is to add
a structure that allows us to enforce a lower bound 𝑙 and a upper bound 𝑢 on the
edge v𝑤. Intuitively we achieve this goal by adding a structure that enforces a fixed
angle difference between subdivision vertices 𝑥 and 𝑦 on v𝑤. The flow along 𝑥𝑦 (and
thus v𝑥 and 𝑦𝑤) can then be controlled by choosing the susceptance interval of 𝑥𝑦
carefully.
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𝐺

𝑉S 𝑉T
...

...
𝑠★ 𝑡★

−𝑘−|𝑉S | −1 𝑘+|𝑉T |

−11

1

(a) The structure of the network. Red values
are demands, and the gray rectangles repre-
sent flow bound gadgets.

𝐺
𝑠★ 𝑡★𝑠 𝑡

0 −2

Δ+3 Δ+1 −1 −3

Δ+2 Δ

∈ [0,Δ]
(b) The angles in the extension of a FACTS
flow in N to one in N★. Only one edge inci-
dent to 𝑠★ and one incident to 𝑡★ is shown.

Figure 6.2: The network N★ in the reduction fromMaximum FACTS Flow to FACTS
Flow.

Formally, we add two subdivision vertices 𝑥 and 𝑦 on the edge v𝑤. Further, we add
two vertices 𝑠 and 𝑡 together with the edges 𝑠𝑥 , 𝑠𝑡 , and 𝑦𝑡 . We set 𝑑 (𝑥) = 𝑑 (𝑦) = 0,
𝑑 (𝑠) = −4, and 𝑑 (𝑡) = 4. The capacities of the edges are cap(v𝑥) = cap(𝑦𝑤) = 𝑢,
cap(𝑥𝑦) = 𝑢 + 1, cap(𝑠𝑥) = cap(𝑦𝑡) = 1, and cap(𝑠𝑡) = 3. The susceptance intervals
are 𝐵(𝑠𝑥) = 𝐵(𝑦𝑡) = 𝐵(𝑠𝑡) = {1}, 𝐵(𝑥𝑦) = [𝑙 + 1, 𝑢 + 1], and the susceptances of the
remaining edges are arbitrary and may later be chosen as desired.

Lemma 6.3. Let N be a network where an edge v𝑤 has been replaced by the flow
bound gadget. Then, in any FACTS flow 𝑓 with angles \ in N , it holds that 𝑓 (v𝑥) =
𝑓 (𝑦𝑤) ∈ [𝑙, 𝑢] and \ (𝑥) − \ (𝑦) = 1.

Proof. Let 𝑓 be a FACTS flow in N with angles \ . By the demands of 𝑠 and 𝑡 and the
capacities of the incident edges, we have 𝑓 (𝑠𝑥) = 𝑓 (𝑦𝑡) = 1 and 𝑓 (𝑠𝑡) = 3. Hence,
the angle differences satisfy

\ (𝑠) − \ (𝑥) = 1 \ (𝑦) − \ (𝑡) = 1
\ (𝑠) − \ (𝑡) = 3 \ (𝑥) − \ (𝑦) = 1.

Consequently, the flow on 𝑥𝑦 satisfies 𝑓 (𝑥𝑦) ∈ 𝐵(𝑥𝑦) · 1 = [𝑙 + 1, 𝑢 + 1]. The flow
conservation at 𝑥 and at 𝑦 then gives 𝑓 (v𝑥) = 𝑓 (𝑦𝑤) ∈ [𝑙, 𝑢]. □

Given a network N and some 𝑘 ∈ Q>0, we show in Theorem 6.4 how to find a
network N★ such that there is a FACTS flow in N with total flow value 𝑘 if and only
if there is a FACTS flow in N★. Note that we consider a total flow value of exactly 𝑘
in N rather than at least 𝑘 . We argue later that this is no restriction in the setting of
Maximum FACTS Flow in basic networks. Since N is basic, the sets of sources 𝑉S
(vertices whose demand intervals contain negative values) and sinks 𝑉T (vertices
whose demand intervals contain positive values) are disjoint. The main idea of N★ is
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to connect a new super source 𝑠★ to all sources and a super sink 𝑡★ to all sinks, and
require a demand of 𝑘 at 𝑡★; see Figure 6.2(a) for a sketch of the construction. We
ensure that a FACTS flow in the restriction of the new network N★ to N equals a
FACTS flow in N with total flow value 𝑘 , and conversely, that any such flow can be
extended to a FACTS flow in N★. Before presenting the details of the construction
and the formal correctness proof (see Theorem 6.4) we highlight the difficulties of a
naive introduction of a super source and super sink and mention how to overcome
them.
For the first direction, we need to ensure that the flow on the edges between the

super source and the sources (as well as between the sinks and the super sink) is
within the bounds described by the demands of the sources. In particular, there must
be no positive flow from a source to 𝑉S

★. We ensure this property by placing flow
bound gadgets on the edges.
For the reverse direction, we need to ensure that every FACTS flow in N with

total flow value 𝑘 can be extended to a FACTS flow in N★. But the addition of 𝑠★
and 𝑡★ introduces new cycles, along which Kirchhoff’s voltage law must be satisfied.
A particularly interesting case occurs when there are sources which do not generate
anything in a particular flow. Suppose there are two sources 𝑠1 and 𝑠2, which both
generate 0 units in a FACTS flow 𝑓 in N , but they have different angles. Naively
adding the connections to the super source and assigning the flow to these edges
would imply that there is a path from 𝑠1 via 𝑠★ to 𝑠2 with flow 0 on all edges. But
then all vertices on this path must have the same angle. However, we want 𝑠1 and 𝑠2
to have the same angles as in 𝑓 , which may differ from each other. To prevent this
situation, we additionally send one unit of flow from 𝑉S

★ to each source and from
each sink to 𝑡★. Then, the independence of the paths from 𝑠★ to the sources can
be ensured by choosing sufficiently large susceptance intervals on the edges of the
paths.

Theorem 6.4. Let N be a basic network, and let 𝑘 ∈ Q>0. There is a network N★ with
fixed demands such that there is a FACTS flow in N with total flow value exactly 𝑘 if
and only if there is a FACTS flow in N★. Moreover, N★ can be constructed from N in
linear time.

Proof. Let N be a basic network on a graph 𝐺 = (𝑉 , 𝐸) with demands 𝐷 , capaci-
ties cap, and susceptance intervals 𝐵. As N is basic, we can partition 𝑉 into a set of
sources 𝑉S whose demand intervals contain negative values, a set of sinks 𝑉T whose
demand intervals contain positive values, and the set 𝑉 \ (𝑉S ∪𝑉T) of intermediate
vertices with demand interval {0}. We do not know the distribution of the consump-
tions in a FACTS flow in N , but we do know that all sinks together shall consume
𝑘 units of flow. To capture this property, we introduce a super source 𝑠★ and a super
sink 𝑡★. We add 𝑠★𝑠 for all 𝑠 ∈ 𝑉S and 𝑡𝑡★ for all 𝑡 ∈ 𝑉T. We set 𝑑★(𝑠★) = −𝑘 − |𝑉S |,
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𝑑★(𝑡★) = 𝑘 + |𝑉T |, 𝑑★(𝑠) = 1 for all 𝑠 ∈ 𝑉S, 𝑑★(𝑡) = −1 for all 𝑡 ∈ 𝑉T, and 𝑑★(v) = 0
for all v ∈ 𝑉 \ (𝑉S ∪𝑉T).
To ensure that the flow on 𝑠★𝑠 lies in the interval −𝐷 (𝑠) + 1 for all 𝑠 ∈ 𝑉S, and

that the flow on 𝑡𝑡★ lies in 𝐷 (𝑡) + 1 for all 𝑡 ∈ 𝑉T, we place flow bound gadgets on
all these edges. The resulting network is illustrated in Figure 6.2(a). To distinguish
between the vertices of the gadgets on different edges, we write the original source
or sink as a subscript, e.g., the vertices 𝑥𝑡 and 𝑦𝑡 subdivide the edge 𝑡𝑡★. We set
cap★(𝑒) = cap(𝑒) for all 𝑒 ∈ 𝐸. All other edges belong to a flow bound gadget, and
we set their capacities accordingly.

Let Δ be an upper bound for the maximum angle difference between any two
vertices in any FACTS flow in N ; for example, we may set

Δ =
∑︁
𝑒∈𝐸

cap(𝑒)
min𝐵(𝑒) .

On the edges that belong to a flow bound gadget we set the susceptance intervals as
required by the gadget, and for the remaining edges we define

𝐵★(𝑠★𝑥𝑠 ) = [−max𝐷 (𝑠) + 1, −min𝐷 (𝑠) + 1] ∀𝑠 ∈ 𝑉S,

𝐵★(𝑦𝑠𝑠) =
[
−max𝐷 (𝑠) + 1

Δ + 1 , −min𝐷 (𝑠) + 1
]

∀𝑠 ∈ 𝑉S,

𝐵★(𝑡𝑥𝑡 ) =
[
min𝐷 (𝑡) + 1

Δ + 1 , max𝐷 (𝑡) + 1
]

∀𝑡 ∈ 𝑉T,

𝐵★(𝑦𝑡𝑡★) = [min𝐷 (𝑡) + 1, max𝐷 (𝑡) + 1] ∀𝑡 ∈ 𝑉T,

𝐵★(𝑒) = 𝐵(𝑒) ∀𝑒 ∈ 𝐸.

We claim that there is a FACTS flow in the resulting network N★ on the graph𝐺★

with capacities cap★ and susceptance intervals 𝐵★ if and only if there is a FACTS flow
with total flow value 𝑘 in N . Suppose there is a FACTS flow 𝑓 ★ in N★. By Lemma 6.3
the flow bound gadgets ensure that within the original network N the vertices in 𝑉S
and 𝑉T act as sources and sinks as required by their demands. Of the 𝑘 + |𝑉S | units
of flow generated by the super source exactly 𝑘 units reach the original network.
Hence, 𝑓 ★ restricted to N is a FACTS flow with flow value 𝑘 .
Conversely, let 𝑓 be a FACTS flow in N with angles \ , susceptances 𝑏 and flow

value 𝑘 . Without loss of generality, we may assume min{\ (v) | v ∈ 𝑉 } = 0. Other-
wise, we may work with \ ′ defined by \ ′ (v) = \ (v) − min{\ (v) | v ∈ 𝑉 } instead.
By the definition of Δ, we have max{\ (v) | v ∈ 𝑉 } ≤ Δ. We extend 𝑓 , \ , and 𝑏 to a
FACTS flow 𝑓 ★ in N★ with angles \★ and susceptances 𝑏★ as follows. Recall that the
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consumption of a vertex v in 𝑓 is denoted by 𝑐 𝑓 (v). We set

𝑓 ★(𝑠★𝑥𝑠 ) = 𝑓 ★(𝑦𝑠𝑠) = −𝑐 𝑓 (𝑠) + 1 ∀𝑠 ∈ 𝑉S,

𝑓 ★(𝑥𝑠𝑦𝑠 ) = −𝑐 𝑓 (𝑠) + 2 ∀𝑠 ∈ 𝑉S,

𝑓 ★(𝑡𝑥𝑡 ) = 𝑓 ★(𝑦𝑡𝑡★) = 𝑐 𝑓 (𝑡) + 1 ∀𝑡 ∈ 𝑉T,

𝑓 ★(𝑥𝑡𝑦𝑡 ) = 𝑐 𝑓 (𝑡) + 2 ∀𝑡 ∈ 𝑉T,

𝑓 ★(𝑠v𝑡v ) = 3 ∀v ∈ 𝑉S ∪𝑉T,

𝑓 ★(𝑠v𝑥v ) = 𝑓 ★(𝑦v𝑡v ) = 1 ∀v ∈ 𝑉S ∪𝑉T,

𝑓 ★(𝑒) = 𝑓 (𝑒) ∀𝑒 ∈ 𝐸,

\★(𝑠★) = \★(𝑠𝑠 ) = Δ + 3 ∀𝑠 ∈ 𝑉S,

\★(𝑥𝑠 ) = Δ + 2 ∀𝑠 ∈ 𝑉S,

\★(𝑦𝑠 ) = Δ + 1 ∀𝑠 ∈ 𝑉S,

\★(𝑡𝑠 ) = Δ ∀𝑠 ∈ 𝑉S,

\★(𝑠𝑡 ) = 0 ∀𝑡 ∈ 𝑉T,

\★(𝑥𝑡 ) = −1 ∀𝑡 ∈ 𝑉T,

\★(𝑦𝑡 ) = −2 ∀𝑡 ∈ 𝑉T,

\★(𝑡★) = \★(𝑡𝑡 ) = −3 ∀𝑡 ∈ 𝑉T,

\★(v) = \ (v) ∀v ∈ 𝑉 ,

𝑏★(𝑠★𝑥𝑠 ) = −𝑐 𝑓 (𝑠) + 1 ∀𝑠 ∈ 𝑉S,

𝑏★(𝑥𝑠𝑦𝑠 ) = −𝑐 𝑓 (𝑠) + 2 ∀𝑠 ∈ 𝑉S,

𝑏★(𝑦𝑠𝑠) = (−𝑐 𝑓 (𝑠) + 1)/(Δ + 1 − \ (𝑠)) ∀𝑠 ∈ 𝑉S,

𝑏★(𝑡𝑥𝑡 ) = (𝑐 𝑓 (𝑡) + 1)/(\ (𝑡) + 1) ∀𝑡 ∈ 𝑉T,

𝑏★(𝑥𝑡𝑦𝑡 ) = 𝑐 𝑓 (𝑡) + 2 ∀𝑡 ∈ 𝑉T,

𝑏★(𝑦𝑡𝑡★) = 𝑐 𝑓 (𝑡) + 1 ∀𝑡 ∈ 𝑉T,

𝑏★(𝑠v𝑡v ) = 1 ∀v ∈ 𝑉S ∪𝑉T,

𝑏★(𝑠v𝑥v ) = 𝑏★(𝑦v𝑡v ) = 1 ∀v ∈ 𝑉S ∪𝑉T,

𝑏★(𝑒) = 𝑏 (𝑒) ∀𝑒 ∈ 𝐸.

The angles are also illustrated in Figure 6.2(b). Direct computations confirm that
the flow is conserved at every vertex and that for every edge v𝑤 ∈ 𝐸★ it holds that
|𝑓 ★(v𝑤) | ≤ cap★(v𝑤), 𝑓 ★(v𝑤) = 𝑏★(v𝑤) · (\★(v) − \★(𝑤)), and 𝑏★(v𝑤) ∈ 𝐵★(v𝑤).
Hence, 𝑓 ★ is a FACTS flow in N★.
Clearly, N★ can be constructed in linear time. □
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In the theorem above a FACTS flow in N★ corresponds to a FACTS flow 𝑓 in N
with total flow value total(𝑓 ) = 𝑘 . However, inMaximum FACTS Flow we ask for
a FACTS flow 𝑓 with total(𝑓 ) ≥ 𝑘 . We argue that in basic flow networks these two
constraints are equivalent. Thus, with Theorem 6.4 it is possible to reduce an instance
of Maximum FACTS Flow to an instance in FACTS Flow in polynomial time.

Corollary 6.5. FACTS Flow is strongly N P-complete even if the demands are fixed.

Proof. By Proposition 6.2 Maximum FACTS Flow is N P-hard on basic networks.
Consider an instance of Maximum FACTS Flow on a basic network N with 𝑘 ∈ Q≥0.
That is, we ask whether there is a FACTS flow in N with total(𝑓 ) ≥ 𝑘 . Applying the
construction in Theorem 6.4 yields a network N★ such that there is a FACTS flow
in N★ if and only if there is a FACTS flow 𝑓 ′ in N with total(𝑓 ′) = 𝑘 . To complete
the reduction we prove that this is the case if and only if there is a FACTS flow 𝑓

in N with total(𝑓 ) ≥ 𝑘 .
Clearly, 𝑓 ′ satisfies total(𝑓 ′) ≥ 𝑘 as well. In the other direction, let 𝑓 be a FACTS

flow inN with susceptances𝑏 and angles \ such that total(𝑓 ) ≥ 𝑘 . Let𝛼 = 𝑘/total(𝑓 ),
𝑓 ′ = 𝛼 · 𝑓 , and \ ′ = 𝛼 · \ . It is easy to verify that 𝑓 ′, 𝑏, and \ ′ satisfy Kirchhoff’s
voltage law. Further, since 𝛼 ≤ 1, the function 𝑓 ′ satisfies all capacity constraints.
Moreover, for the consumptions at a vertex v it holds that 𝑐 𝑓 ′ (v) = 𝛼 · 𝑐 𝑓 (v). In basic
networks all demand intervals contain 0. Hence, 𝑐 𝑓 ′ (v) ∈ 𝐷 (v) for all vertices v .
The reduction in Theorem 6.4 can be computed in linear time. Thus, FACTS Flow

is strongly N P-hard. By Proposition 6.2 the decision variant of Maximum FACTS
Flow belong to N P . Therefore, FACTS Flow is in N P as well. □

The reduction above yields graphs that are not necessarily planar. In the following
we show how to adapt the reduction to show that FACTS Flow is N P-hard even on
planar graphs. It is known that Maximum FACTS Flow is N P-hard even on cactus
graphs [LGV15]. Since they are outerplanar, the introduction of a super sink as in
Theorem 6.4 still yields a planar graph. However, the addition of the super source
then makes the graph non-planar. The key part is to show that one common super
source can be replaced by multiple “local” sources. Tho this end we consider the
networks in N P-hardness proof forMaximum FACTS Flow [LGV15] more closely.

Theorem 6.6. FACTS Flow with adjustable demands is N P-complete even if the
underlying graph is outerplanar.

Proof. A key part in the N P-hardness proofs forMaximum FACTS Flow [LGV15] is
the existence of so-called choice networks; see Figure 6.3(a). A choice network has one
vertex (v in the example here) designated as the port. The port is the only vertex via
which the choice network interacts with the remainder of the network. These choice
networks are designed such that they act as source that can produce either 0 or 𝑎
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𝐷 (𝑡 ) = [0, 6.1𝑎]
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v𝐷 (𝑠1) = [−𝑎, 0]

𝐷 (𝑠2) = [−1.05𝑎, 0]

𝐷 (𝑠3) = [−4.55𝑎, 0]
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(a) Choice network for Maximum FACTS
Flow.
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𝐷 (𝑡 ) = [0, 6.1𝑎]

𝐵= [0.1, 0.4]

𝐵= [1.6, 1.9]

(b) Choice network for FACTS Flow.
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(c) A FACTS flow in the choice network.

𝑎

0.65𝑎

3.05𝑎

0.4𝑎

2.05𝑎

0.4𝑎

𝑎

𝑏=1.6

1.05𝑎

4.05𝑎

𝑏=0.375

𝑏≈1.65

𝑎

03.05𝑎

2.05𝑎

2.45𝑎

2.7𝑎

3.45𝑎

5.5𝑎

(d) The other FACTS flow in the choice net-
work.

Figure 6.3: The choice networks (a) for Maximum FACTS Flow [LGV15] and (b) for
FACTS Flow. The demands are {0} and the susceptance intervals are {1}, unless
specified otherwise. In (c) and (d) the possible FACTS flows in the choice network for
FACTS Flow are shown. The red values are the flow values, and the blue values are
the angles.

units of flow, but no value in between, where 𝑎 > 0 is fixed for each choice network.
This is achieved by ensuring that there are two FACTS flows where the generation
within the choice network is maximal (here 6.1𝑎 for any 𝑎 > 0). In one flow the port
has a consumption of 0, and in the other flow it has a consumption of −𝑎.
Figure 6.3(b) shows how to adapt the choice network NC for Maximum FACTS

Flow to FACTS Flow. We fix the demand of 𝑠1 to {−𝑎} as it has been shown that
in any maximum FACTS flow in NC the vertex 𝑠1 has a consumption of −𝑎. We
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further add a super source 𝑠 connected to 𝑠2 and 𝑠3 via edges whose capacities are the
generation bounds of 𝑠2 and 𝑠3 in NC. The susceptance intervals at the new edges
are 𝐵(𝑠𝑠2) = [0.1, 0.4] and 𝐵(𝑠𝑠3) = [1.6, 1.9]. The demand of 𝑠 is {−5.1𝑎}, which is
the sum of the consumptions of 𝑠2 and 𝑠3 in any maximum FACTS flow in NC.
We can then transfer the properties of the original choice network NC to the new

network N ′C. In particular, there are exactly two FACTS flows in N ′C: one where the
consumption of v is 0 (see Figure 6.3(c)) and one where it is 𝑎 (see Figure 6.3(d)). Any
other FACTS flow in N ′C would induce another FACTS flow in the original choice
network NC with a generation of 6.1𝑎. However, this would contradict the properties
of NC.
Note that N ′C is outerplanar and has only one vertex with non-fixed demand,

namely 𝑡 . Moreover, 𝐷 (𝑡) only contains non-negative values, i.e., 𝑡 is a sink.
We replace the old choice networks with the new ones in the N P-hardness proof

for Maximum FACTS Flow [LGV15]. Additionally, we fix the demands of all vertices
that do not belong to a choice network to the non-zero endpoint of their demand
interval. In any maximum FACTS flow in the original network these are precisely the
consumptions of those vertices. Hence, the construction yields a FACTS flow network
that admits a FACTS flow if and only if the original network admits a FACTS flow
with the specified flow value. Moreover, the constructed network is outerplanar. □

In the networks created in the reduction all demand intervals with positive lengths
contain only non-negative values, i.e., they belong to sinks. Moreover, these sinks all
lie on the outer face, adding a super sink and flow bound gadgets as in the proof of
Theorem 6.4 results in a planar network.

Corollary 6.7. FACTS Flowwith fixed demands isN P-complete even if the underlying
graph is planar.

6.3 Computing FACTS Flows in Simpler Graph

Classes

Having established that FACTS Flow is N P-hard even on (outer)planar graphs if
the demands are fixed (adjustable), we present two polynomial-time algorithms for
FACTS Flow on simpler graph classes. We show how to compute FACTS flows (i) in
partial 2-trees with fixed demands in O(𝑛2) time (see Section 6.3.1) and (ii) in cacti
with adjustable demands in O(𝑛3) time (see Section 6.3.2). Both algorithms are based
on explicitly computing suitable representations of feasible regions. In this section
we assume all networks to be connected. Otherwise, FACTS flows can be computed
for each component separately.



Computing FACTS Flows in Simpler Graph Classes Section 6.3

113

These regions belong to subnetworks that are connected to the remaining network
via at most two vertices. Consider a network N with N = (𝐺,𝐷, cap, 𝐵) with two
distinguished vertices: the source terminal 𝑠 and the sink terminal 𝑡 . Let further be
𝑥, 𝑦 ∈ R, and define

𝐷𝑥,𝑦 (v) =


𝐷 (𝑠) − 𝑥, if v = 𝑠,

𝐷 (𝑡) + 𝑦, if v = 𝑡,

𝐷 (v), otherwise.

We say that there is an (𝑥, 𝑦,Δ)-flow in N if there is a FACTS flow in (𝐺,𝐷𝑥,𝑦 , cap, 𝐵)
with angles \ such that \ (𝑠) − \ (𝑡) = Δ. Intuitively, an (𝑥, 𝑦,Δ)-flow can be thought
of as a FACTS flow in N , where 𝑥 units of flow enter at 𝑠 , 𝑦 units leave at 𝑡 , and the
angle difference between the terminals is Δ. We call the set 𝐴 of all triples (𝑥, 𝑦,Δ)
for which there is an (𝑥, 𝑦,Δ)-flow in N the diagram of N . We use these diagrams
as interfaces between different parts of the networks that are only connected via two
vertices.

Observe that 𝑥 and 𝑦 in an (𝑥, 𝑦,Δ)-flow are bounded by the sum of the demands
of 𝑠 and 𝑡 and the capacities of the incident edges. Moreover, the angle difference of
a single edge 𝑒 is bounded by cap(𝑒)/min𝐵(𝑒), and since the network is connected,
Δ is bounded by the sum of all these bounds. In total, the diagrams are bounded.
Observation 6.8. The diagrams of connected networks are bounded.

6.3.1 Fixed Demands in Partial 2-Trees

In this section we consider networks that are partial 2-trees. These are precisely the
subgraphs of series-parallel graphs; see Section 2.3. Furthermore, the networks have
fixed demands, i.e., there is a function 𝑑 such that for all v ∈ 𝑉 it holds that 𝐷 (v) =
{𝑑 (v)}. Let N ′ be a subnetwork of the whole network N that is connected to the
remainder of N only via the source terminal 𝑠 and the sink terminal 𝑡 . Let further
𝑑tot be the sum of all demands in N ′. Note that in any flow 𝑓 in N , the net amount of
flow that enters N ′ at 𝑠 and 𝑡 is precisely 𝑑tot. Equivalently, this observation can be
formulated in terms of (𝑥, 𝑦,Δ)-flows. Every (𝑥, 𝑦,Δ)-flow in N ′ satisfies 𝑥 = 𝑦 +𝑑tot.
Thus, it suffices to consider the reduced diagram {(𝑦,Δ) | (𝑥, 𝑦,Δ) ∈ 𝐴}. Figure 6.4
shows two examples of reduced diagrams.
The main part of the algorithm deals with explicitly computing these reduced

diagrams. Before describing how to do this, we introduce operations on the reduced
diagrams, which are useful to formulate the algorithm. The first operation shifts a
diagram 𝐴 by an amount 𝑘 ∈ R along the 𝑦-axis and is defined by

shift𝑦 (𝐴,𝑘) = {(𝑦 + 𝑘,Δ) | (𝑦,Δ) ∈ 𝐴}.
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Δ

𝑦

cap(𝑒)

cap(𝑒)
𝑏min (𝑒)

cap(𝑒)
𝑏max (𝑒)

− cap(𝑒)
𝑏max (𝑒)

− cap(𝑒)
𝑏min (𝑒)

− cap(𝑒)

(a) The reduced diagram of a single
edge 𝑒 with capacity cap(𝑒) and sus-
ceptance interval [𝑏min (𝑒), 𝑏max (𝑒)].

Δ

𝑦

1 2−1−2

3

2

1

−1

−2

−3

−1

−𝑦+1

𝑦

cap=2
𝐵= [1, 2]

cap=2
𝐵= [1, 2]

(b) The reduced diagram of the path on the left. Both
edges have a capacity of 2 and a susceptance interval
of [1, 2].

Figure 6.4: Two examples of reduced diagrams.

𝑦

Δ

(a) A reduced diagram 𝐴.

𝑦

Δ

𝑦max
𝐴

𝑦min
𝐴

(b) 𝑦min
𝐴

and 𝑦max
𝐴

.

𝑦

Δ
Δmax
𝐴

Δmin
𝐴

(c) 𝑦min
𝐴

and 𝑦max
𝐴

.

Figure 6.5: A nice reduced diagram 𝐴 and its boundary functions. Note that in (b)
the functions map a value of Δ to a value of 𝑦 .

The other operations combine two reduced diagrams 𝐴1 and 𝐴2 by adding the values
of one coordinate for every value of the other coordinate; see Figure 6.6 for an
example.

𝐴1 +𝑦 𝐴2 = {(𝑦1 + 𝑦2,Δ) ∈ R2 | (𝑦1,Δ) ∈ 𝐴1, (𝑦2,Δ) ∈ 𝐴2},
𝐴1 +Δ 𝐴2 = {(𝑦,Δ1 + Δ2) ∈ R2 | (𝑦,Δ1) ∈ 𝐴1, (𝑦,Δ2) ∈ 𝐴2}.

Let 𝐴 be a reduced diagram. We say 𝐴 is ortho-convex if {Δ | (𝑦★,Δ) ∈ 𝐴} and
{𝑦 | (𝑦,Δ★) ∈ 𝐴} are convex for every 𝑦★,Δ★ ∈ R. Further, the boundary functions
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𝑦

Δ

𝑦

Δ

𝑦

Δ

𝐴1 𝐴2 𝐴1 +𝑦 𝐴2
𝑦1 𝑦2 𝑦1+𝑦2

Figure 6.6: An example of 𝐴1 +𝑦 𝐴2.

of 𝐴 are

𝑦min
𝐴 (Δ) = min{𝑦 | (𝑦,Δ) ∈ 𝐴}, 𝑦max

𝐴 (Δ) = max{𝑦 | (𝑦,Δ) ∈ 𝐴},
Δmin
𝐴 (𝑦) = min{Δ | (𝑦,Δ) ∈ 𝐴}, Δmax

𝐴 (𝑦) = min{Δ | (𝑦,Δ) ∈ 𝐴},

where the functions are only defined if the sets on the right side are non-empty; see
Figure 6.5 for an example. A reduced diagram is nice if it is a simple, ortho-convex
polygon and all its boundary functions are monotonically increasing. We call the
maximal line segments bounding a nice reduced diagram 𝐴 the sides of 𝐴. We prove
that the operations above preserve the niceness and that they can be applied in linear
time. For shift𝑦 this is clear, and for +𝑦 and +Δ this can be achieved by adding suitable
boundary functions as sketched in Figure 6.6.

Lemma 6.9. Let 𝐴1 and 𝐴2 be nice reduced diagrams with p1 and p2 sides, respectively,
and let 𝑘 ∈ R.

(a) shift𝑦 (𝐴1, 𝑘) is a nice reduced diagram with p1 sides, and it can be computed in
O(p1) time.

(b) 𝐴1 +𝑦 𝐴2 and 𝐴2 +Δ 𝐴2 are nice reduced diagrams with at most p1 + p2 sides, and
they can be computed in O(p1 + p2) time.

Proof. The set shift𝑦 (𝐴1, 𝑘) is simply a translated version of 𝐴1. Since this operation
affects neither the ortho-convexity nor the monotonicity, shift𝑦 (𝐴1, 𝑘) is nice if and
only if 𝐴1 is nice. We can compute shift𝑦 (𝐴1, 𝑘) by adding 𝑘 to the 𝑦-coordinates of
all corners, which takes O(p1) time.
The operations +𝑦 and +Δ differ only by swapping the roles of the two coordi-

nates. The properties of nice reduced diagrams are symmetric in the 𝑦- and the
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Δ-coordinates. Hence, it suffices to prove that 𝐴1 +𝑦 𝐴2 has the properties we claim
in the lemma.
Let 𝐴 = 𝐴1 +𝑦 𝐴2. We first observe that for every Δ★ ∈ R we have

{𝑦 | (𝑦,Δ★) ∈ 𝐴} = {𝑦 | (𝑦,Δ★) ∈ 𝐴1} + {𝑦 | (𝑦,Δ★) ∈ 𝐴2},

where the + on the right is to be understood as pointwise addition. Since 𝐴1 and 𝐴2
are ortho-convex, the two sets on the right are convex, and thus the set on the left is
convex as well. This property implies that 𝑦min

𝐴
and 𝑦max

𝐴
are sufficient to describe 𝐴.

Moreover, it holds that

𝑦min
𝐴 (Δ) = 𝑦min

𝐴1
(Δ) + 𝑦min

𝐴2
(Δ),

𝑦max
𝐴 (Δ) = 𝑦max

𝐴1
(Δ) + 𝑦max

𝐴2
(Δ)

for those values of Δ that belong to the domains of both 𝑦min
𝐴1

and 𝑦min
𝐴2

. The equalities
immediately yield that 𝑦min

𝐴
and 𝑦max

𝐴
aremonotonically increasing since the functions

on the right are monotonically increasing. Furthermore, since 𝐴1 and 𝐴2 are simple
polygons, the functions on the right side are piecewise linear and their domain is
a single interval. Thus, 𝑦min

𝐴
and 𝑦max

𝐴
are piecewise linear and defined on a single

interval as well. Hence, 𝐴 is a simple polygon.
We already observed that every intersection of 𝐴 with a line parallel to the 𝑦-

axis is convex. To prove that 𝐴 is ortho-convex, it thus remains to show that this
holds for intersections with lines parallel to the Δ-axis as well. Assume for the sake
of contradiction that there are 𝑦 ∈ R and Δ1 < Δ2 < Δ3 such that (𝑦,Δ1) ∈ 𝐴,
(𝑦,Δ2) ∉ 𝐴, and (𝑦,Δ3) ∈ 𝐴. But since 𝐴 is a simple polygon, there is some 𝑦2 ∈ R
such that (𝑦2,Δ2) ∈ 𝐴. If 𝑦2 < 𝑦 , then the convexity of {𝑦 | (𝑦,Δ2) ∈ 𝐴} gives
𝑦max
𝐴
(Δ2) < 𝑦 . However, (𝑦,Δ1) ∈ 𝐴 implies 𝑦 ≤ 𝑦max

𝐴
(Δ1), which contradicts

that 𝑦max
𝐴

is increasing. Similarly, 𝑦2 > 𝑦 implies 𝑦min
𝐴
(Δ2) > 𝑦 , and we have

𝑦 ≥ 𝑦min
𝐴
(Δ3), which contradicts that 𝑦min

𝐴
is increasing.

To prove the monotonicity of Δmin
𝐴

assume that there were 𝑦1 < 𝑦2 such that
Δmin
𝐴
(𝑦1) > Δmin

𝐴
(𝑦2). Let Δ1 = Δmin

𝐴
(𝑦1) and Δ2 = Δmin

𝐴
(𝑦2); see Figure 6.7. By

the definition of 𝑦min
𝐴

we have 𝑦min
𝐴
(Δ1) ≤ 𝑦1 and 𝑦min

𝐴
(Δ2) ≤ 𝑦2. We claim that

𝑦1 < 𝑦min
𝐴
(Δ2). Otherwise, the ortho-convexity of 𝐴 would imply (𝑦1,Δ2) ∈ 𝐴. But

then we have Δ1 = Δmin
𝐴
(𝑦1) ≤ Δ2 < Δ1, which is a contradiction. Thus, it holds

that 𝑦1 < 𝑦min
𝐴
(Δ2). However, we have 𝑦min

𝐴
(Δ1) ≤ 𝑦1 < 𝑦min

𝐴
(Δ2), contradicting the

monotonicity of 𝑦min
𝐴

. The monotonicity of Δmax
𝐴

can be proved similarly. In total, we
have confirmed that 𝐴 is a nice reduced diagram.
Finally, we bound the number of sides of 𝐴 and the time it takes to compute it.

As argued above we can obtain 𝐴 by adding the piecewise linear functions 𝑦min
𝐴1

and
𝑦max
𝐴1

as well as 𝑦min
𝐴2

and 𝑦max
𝐴2

. Each side of 𝐴𝑖 belongs to at most one of 𝑦min
𝐴𝑖

and
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𝑦1 𝑦2𝑚
𝑦

𝐴
(Δ2)𝑚

𝑦

𝐴
(Δ1)

𝑚Δ
𝐴
(𝑦2) = Δ2

𝑚Δ
𝐴
(𝑦1) = Δ1

Figure 6.7: The situation in the proof of the monotonicity of Δmin
𝐴

and Δmax
𝐴

in the
proof of Lemma 6.9.

𝑦max
𝐴𝑖

. In fact, the representations of 𝑦min
𝐴𝑖

and 𝑦max
𝐴𝑖

cover all sides of 𝐴𝑖 except the
sides parallel to the 𝑦-axis. Hence, we have

p𝑖 = |𝑦min
𝐴𝑖
| + |𝑦max

𝐴𝑖
| + 𝑘𝑖 ,

where | · | denotes the number of linear pieces of the functions, and 𝑘𝑖 is the number
of sides of 𝐴𝑖 that are parallel to the 𝑦-axis.
We obtain 𝑦min

𝐴
by adding 𝑦min

𝐴1
and 𝑦min

𝐴2
. With the representation above, this

takes O( |𝑦min
𝐴1
| + |𝑦min

𝐴2
|) time and produces a representation of 𝑦min

𝐴
with |𝑦min

𝐴
| ≤

|𝑦min
𝐴1
| + |𝑦min

𝐴2
| − 1. Similarly, we obtain 𝑦max

𝐴
by adding 𝑦max

𝐴1
and 𝑦max

𝐴2
. Finally, we

combine these two representations to get 𝐴, adding sides parallel to the 𝑦-axis if
necessary. Note that we may only need to add such sides on the lines with minimum
or maximum Δ-coordinate or whenever they are already present in 𝐴1 or 𝐴2. That is,
we only add at most 𝑘1 + 𝑘2 + 2 such sides. In total, it holds for the number of sides p
of 𝐴 that

p ≤ |𝑦min
𝐴 | + |𝑦max

𝐴 | + 𝑘1 + 𝑘2 + 2

≤
(
|𝑦min

𝐴1
| + |𝑦min

𝐴2
| − 1

)
+

(
|𝑦max

𝐴1
| + |𝑦max

𝐴2
| − 1

)
+ 𝑘1 + 𝑘2 + 2

= p1 + p2 .

Computing 𝐴 from the representations of 𝐴1 and 𝐴2 in this way takes O(p1 + p2)
time. □

We use these operations to obtain the reduced diagrams of partial 2-trees. As
finding a series-parallel supergraph of a partial 2-tree is possible in linear time [WC83],
we focus on series-parallel graphs and describe how to extend the results to subgraphs
later.
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𝑡
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(a) The network.
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p

s𝑠𝑤

𝑤𝑡

𝑠v v𝑤

(b) The sp-tree T ′.

s

p

𝑑 (𝑠) s

𝑠𝑤

𝑤𝑡

𝑠v

v𝑤

𝑑 (v)

𝑑 (𝑤)

(c) The spd-tree T .

Figure 6.8: A series-parallel network and its corresponding sp-tree and spd-tree.
The red numbers next to the vertices indicate the demand of the vertex.

Every series-parallel graph𝐺 can be described by an sp-tree T ′; see Section 2.3. It
is a rooted binary tree, where leaves (leaf-nodes) correspond bijectively to edges of𝐺
and every inner node corresponds to the series composition (s-node) or parallel com-
position (p-node) of the subgraphs represented by its children [BLS99]. An example of
an sp-tree is shown in Figure 6.8. In the description below we use the convention that
“nodes” belong to the sp-tree whereas “vertices” belong to the graph𝐺 . Every node 𝛼
corresponds to the subgraph containing the edges in the leaves below 𝛼 in T ′. Each
such subgraph is connected to the remainder of the graph via (at most) two vertices,
the terminals, one of which is the source terminal and the other is the sink terminal.
Without loss of generality we assume that the assignment of source and sink termi-
nals to the subgraphs is consistent, i.e., in a parallel composition the two subgraphs
have the same source terminal and the same sink terminal, and the source and sink
terminals of a subgraph created by a series composition are the source terminal of
the first subgraph and the sink terminal of the second, respectively. Furthermore, we
assume that the edges are directed from the source to the sink terminal.
A network N does not only consist of the graph 𝐺 , but it also contains other

properties. In particular, the vertices have demands. To handle those, we introduce
new nodes into the tree. To simplify the description of the nodes, we first ensure
that the sink terminal of 𝐺 has a demand of 0 by appending an edge to the graph if
necessary. Then, for every vertex v with non-zero demand we insert a d-node into T ′
directly above the leaf-node of an edge that starts at v . If there are multiple such
edges we may choose one of them arbitrarily. We denote the resulting tree by T .
Figure 6.8(c) shows the spd-tree of the example network. Note that the d-node for
the vertex 𝑠 may be placed either above the leaf-node for 𝑠𝑤 (as in the illustration) or
above the leaf-node for 𝑠v .
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We traverse the tree from the bottom up and compute the reduced diagrams of the
subnetworks corresponding to the nodes. The subnetwork N (𝛼) that corresponds to
a node 𝛼 contains the edges whose leaf-nodes lie below 𝛼 in T , and a vertex v has
demand 𝑑 (v) if the d-node for v lies below 𝛼 in T . Otherwise, the demand of v is 0.
We denote the reduced diagram of N (𝛼) by 𝐴(𝛼) and its demand sum by 𝑑tot (𝛼).

Lemma 6.10. Let 𝛼 be a node of T .

(a) If𝛼 is a leaf-node for an edge 𝑒 , its reduced diagram𝐴(𝛼) consists of two triangular
regions with corners (0, 0), (cap(𝑒), cap(𝑒)/𝑏max (𝑒)), (cap(𝑒), cap(𝑒)/𝑏min (𝑒)),
(−cap(𝑒),−cap(𝑒)/𝑏max (𝑒)), and (−cap(𝑒),−cap(𝑒)/𝑏min (𝑒)), and 𝑑tot (𝛼) = 0.

(b) If 𝛼 is a d-node for a vertex v with child 𝛽 , then 𝐴(𝛼) = 𝐴(𝛽) and 𝑑tot (𝛼) = 𝑑 (v).

(c) If 𝛼 is a p-node with children 𝛽 and 𝛾 , then 𝐴(𝛼) = 𝐴(𝛽) +𝑦 𝐴(𝛾) and 𝑑tot (𝛼) =
𝑑tot (𝛽) + 𝑑tot (𝛾).

(d) If 𝛼 is an s-node with children 𝛽 and 𝛾 , then 𝐴(𝛼) = shift𝑦 (𝐴(𝛽),−𝑑tot (𝛾)) +Δ
𝐴(𝛾) and 𝑑tot (𝛼) = 𝑑tot (𝛽) + 𝑑tot (𝛾).

Proof. The reduced diagram of a leaf node 𝛼 corresponding to an edge 𝑒 is

𝐴(𝛼) = {(𝑦,𝑏𝑦) | 𝑏 ∈ 𝐵(𝑒), |𝑦 | ≤ cap(𝑒)}.

It is easy to verify that this forms the polygon described in the lemma statement.
Moreover, it holds that 𝑑tot (𝑥) = 0, since we consider the edge without any demands
at its endpoints.

Let 𝛼 be a d-node for a vertex v with the child 𝛽 , which corresponds to the edge v𝑤.
Let N (𝛼) and N (𝛽) be the networks consisting of the edge v𝑤 with and without
the demand of 𝑑 (v) at v . There is a bijection between (𝑥, 𝑦,Δ)-flows on N (𝛽) and
(𝑥 +𝑑 (v), 𝑦,Δ)-flows in N (𝛼). Hence, the reduced diagrams𝐴(𝛼) and𝐴(𝛽) are equal.
The sum of all demands in N (𝛼) is 𝑑 (v).

Let𝛼 be a p-nodewith children 𝛽 and𝛾 , which correspond to two subnetworksN (𝛽)
and N (𝛾). These both have the same terminals v and 𝑤. Any (𝑥, 𝑦,Δ)-flow in N (𝛼)
can be split into a (𝑥1, 𝑦1,Δ)-flow in N (𝛽) and a (𝑥2, 𝑦2,Δ)-flow in N (𝛾), and con-
versely any such two flows in the two subnetworks can be combined to a flow inN (𝛼).
Hence, we have

𝐴(𝛼) = {(𝑦1 + 𝑦2,Δ) | (𝑦1,Δ) ∈ 𝐴(𝛽), (𝑦2,Δ) ∈ 𝐴(𝛾)}
= 𝐴(𝛽) +𝑦 𝐴(𝛾).
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Since the demands of the shared vertices are accounted for in at most one of N (𝛽)
and N (𝛾), it further holds 𝑑tot (𝛼) = 𝑑tot (𝛽) + 𝑑tot (𝛾).
Let 𝛼 be an s-node with children 𝛽 and 𝛾 , which correspond to two subnet-

works N (𝛽) with terminals 𝑢 and v and N (𝛾) with terminals v and 𝑤. Any (𝑥, 𝑦,Δ)-
flow in N (𝛼) can be decomposed into an (𝑥, 𝑦1,Δ1)-flow in N (𝛽) and an (𝑥2, 𝑦,Δ2)-
flow in N (𝛾) where 𝑦1 = 𝑥2 = 𝑦 +𝑑tot (𝛾) and Δ1 +Δ2 = Δ. Note that we have 𝑦1 = 𝑥2
since the flow that leaves N (𝛽) at v is precisely the flow that enters N (𝛾) at v , and
we have 𝑥2 = 𝑦 + 𝑑tot (𝛾), since the sum of all consumptions in the flow in N (𝛾) is 0.
Conversely, any two such flows can be combined to a flow in N (𝛼). Therefore, it
holds that

𝐴(𝛼) = {(𝑦,Δ1 + Δ2) | (𝑦 + 𝑑tot (𝛾),Δ1) ∈ 𝐴(𝛽), (𝑦,Δ2) ∈ 𝐴(𝛾)}
= {(𝑦,Δ1 + Δ2) | (𝑦,Δ1) ∈ shift𝑦 (𝐴(𝛽),−𝑑tot (𝛾)), (𝑦,Δ2) ∈ 𝐴(𝛾)}
= shift𝑦 (𝐴(𝛽), 𝑑tot (𝛾)) +Δ 𝐴(𝛾).

Moreover, we have 𝑑tot (𝛼) = 𝑑tot (𝛽) + 𝑑tot (𝛾) as in the case above. □

Following the structure outlined above, we obtain a quadratic-time algorithm for
FACTS Flow with fixed demands in partial 2-trees.

Theorem 6.11. In partial 2-trees with fixed demands a FACTS flow can be computed
in quadratic time if it exists.

Proof. We first check whether the sum of all demands is 0. If not, there is no FACTS
flow. Afterwards, we add edges with capacity 0 and susceptance 0 such that the
network is series-parallel. This is possible in linear time [WC83]. The resulting
network N ′ is equivalent to the original network N since these edges do not admit
any flow, and they do not impose any new restrictions.
The sp-tree T ′ of N ′ can be computed in O(𝑛) time and has O(𝑛) nodes; see

Section 2.3. To obtain the spd-tree T we add the d-nodes to T ′, which is possible in
O(𝑛) time as well. We then traverse T from the bottom-up and compute in each step
the reduced diagram 𝐴(𝛼) of the current node 𝛼 from the reduced diagrams of its
children by applying Lemma 6.10. The reduced diagram of a leaf-node is a polygon
with 6 sides by Lemma 6.10(a). Lemmas 6.9 and 6.10 together imply that 𝐴(𝛼) is a
polygon with at most 6𝑚𝛼 sides, where 𝑚𝛼 is the number of edges of N (𝛼), and
that𝐴(𝛼) can be computed in O(𝑚𝛼 ) time from the reduced diagrams of the children
of 𝛼 . The reduced diagram at the root node represents the reduced diagram 𝐴 of N ′.
In total, 𝐴 can be computed in O(𝑛2) time.
Finally, there is a FACTS flow in N ′ (and thus in N ) if and only if the reduced

diagram of N ′ contains a point (𝑦,Δ) with 𝑦 = 0. This can be checked in O(𝑛) time
by traversing the boundary of 𝐴(𝜌). To reconstruct a flow that corresponds to a
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point (𝑦,Δ), we trace how the point was constructed, which does not increase the
asymptotic running time. □

6.3.2 Adjustable Demands in Cacti

Next, we turn to the general case of networks with adjustable demands. By Theo-
rem 6.6 computing a FACTS flow in these networks is N P-hard even if the network
is outerplanar. We therefore focus on a subclass of outerplanar graphs, namely cacti.
Recall from Section 2.3 that a graph is a cactus if any two simple cycles have at most
one common vertex. Consequently, every biconnected component of a cactus is
either a simple cycle or a single edge.

We use the following general observation that allows us to decompose the network
into biconnected components and to handle them (almost) independently. Consider
a network N on a graph 𝐺 with a cut-vertex v , i.e., we can partition 𝐺 into two
parts𝐺1 and𝐺2 that intersect only at v . In order to simplify the description below, we
assume without loss of generality that the demand at v is {0}. This can be achieved
by adding a new vertex with the original demand of v connected to v via an edge of
sufficient capacity and arbitrary susceptance.
To compute a FACTS flow in N , we first compute the amounts of flow entering

the subnetwork N1 on𝐺1 at v for which there is a FACTS flow in N1. In other words,
we temporarily treat v as vertex with infinite demand (both positive and negative)
and ask for which consumptions of this vertex, there is a FACTS flow in N1. We call
the set 𝐷equiv of these values the equivalent demand of N1 with port v . We may then
compute a FACTS flow 𝑓2 in the subnetwork N2 on 𝐺2 treating v as a vertex whose
demand is 𝐷equiv. Combining 𝑓2 with a FACTS flow 𝑓1 in N1 that corresponds to the
consumption 𝑐 𝑓2 (v) of v in 𝑓2, we get a FACTS flow for the whole network N .

The biconnected components of a cactus are single edges or cycles. The equivalent
demand of an edge v𝑤 at v (as port) can be computed easily. Computing the equivalent
demand of a cycle is more involved, but we prove the following lemma.

Lemma 6.12. The equivalent demand 𝐷equiv of a cycle𝐶 with port v is an interval, and
it can be computed in O( |𝐶 |3) time. Moreover, given some value 𝑑 ∈ 𝐷equiv, a FACTS
flow 𝑓 in 𝐶 with 𝑐 𝑓 (v) = −𝑑 can be computed in O( |𝐶 |3) time.

The algorithm and the proof are quite technical, and we defer them to the end of
this section. Instead, let us describe how to this lemma helps to compute a FACTS
flow in a cactus.

Theorem 6.13. A FACTS flow in a cactus can be computed in O(𝑛3) time.

Proof. As argued before, we may assume that the demand of the cut-vertices is {0}.
Let T be the block-cut tree of the graph 𝐺 on which the network N is defined. We
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choose an arbitrary node 𝜌 that corresponds to a cut-vertex as root. If no such vertex
exists, 𝐺 is either an edge or a cycle, which can be handled directly. We iteratively
compute the equivalent demands of suitable subnetworks starting at the networks
represented by the leaves of the tree and work our way up to the root 𝜌 as follows.
Consider a node 𝛼 of T . If 𝛼 corresponds to a cut-vertex v , then its equivalent

demand simply is the sum of the equivalent demands of its children in T . These
have been determined in previous steps. Hence, the computation can be performed
in O(deg(𝛼)) = O(deg(v)) time.
If 𝛼 corresponds to an edge v𝑤 with port v , i.e., the subnetwork of the node

above 𝛼 contains v , the equivalent demand is 𝐷equiv (𝑤) ∩ [−cap(v𝑤), cap(v𝑤)],
where 𝐷equiv (𝑤) is the equivalent demand of the child of 𝛼 if it has a child or 𝐷 (𝑤)
otherwise. Clearly, this computation is possible in constant time.
Otherwise, 𝛼 corresponds to a cycle 𝐶 . All cut-vertices on 𝐶 except the port

correspond to children of 𝛼 . Thus, their equivalent demands are known, and we use
these as demands of the cut-vertices in 𝐶 . By Lemma 6.12 the equivalent demand
of 𝐶 can then be computed in O( |𝐶 |3) time.
There is a FACTS flow in the network if and only if the equivalent demand at the

root 𝜌 contains 0. After computing the equivalent demands, this can be checked in
constant time.
To compute a flow, we retrace the computation of the equivalent demands. That is,

we traverse T from the root node to the leaves. For each node 𝛼 , we compute the
flow on the edges of the subnetwork corresponding to 𝛼 as well as the consumptions
at the ports of the subnetworks of the children of 𝛼 . Let 𝛼 be a node and 𝑑 be the
consumption assigned to 𝛼 by its parent; initially, we have 𝛼 = 𝜌 and 𝑑 = 0.
If 𝛼 corresponds to a cut-vertex v , the subnetwork has no edges, and we assign

consumptions of𝑑1, . . . , 𝑑𝑘 to the children 𝛽1, . . . , 𝛽𝑘 of 𝛼 such that𝑑1+· · ·+𝑑𝑘 = 𝑑 and
𝑑𝑖 ∈ 𝐷equiv (𝛼𝑖 ). By the computation of the equivalent demands such a distribution
of 𝑑 is always possible.
If 𝛼 corresponds to an edge v𝑤 with port v , we set 𝑓 (v𝑤) = 𝑑 and assign a

consumption of 𝑑 to the only child 𝛽 of 𝛼 .
Finally, if 𝛼 corresponds to a cycle 𝐶 , the second part of Lemma 6.12 gives us a

FACTS flow 𝑓 ′ in 𝐶 . We then assign 𝑐 𝑓 ′ (v) as the consumption to each child 𝛽 of 𝛼 ,
where v is the port of 𝛽 .

For each node 𝛼 computing its equivalent demand and later computing the flows
takes O(𝑚3

𝛼 + degT (𝛼)) time, where𝑚𝛼 is the number of edges in the subnetwork
corresponding to the node 𝛼 and degT (𝛼) the degree of 𝛼 in T . Since every edge
belongs to at most one cycle, we obtain a total running time of O(𝑛3). □

It remains to show Lemma 6.12, i.e., how to compute FACTS flows in cycles. The
algorithm we present for this in the remainder of this section is based on explicitly
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computing diagrams. But unlike in the previous section, where it is sufficient to
consider reduced diagrams, the adjustable demands require us to consider the full
three-dimensional diagrams.
Let 𝐶 be a cycle on 𝑛 vertices, called in order v0, . . . , v𝑛−1, where v0 is the port.

For brevity, we set v𝑛 = v0. We denote the diagram of the path 𝑃𝑖 from v0 to v𝑖
excluding the demand of v0 but including the demand of v𝑖 by 𝐴𝑖 ; the diagram 𝐴0
does not include the demand of v0. We do not explicitly store the diagrams 𝐴𝑖 but
rather representations of their upper and lower hull. More precisely, we store a
representation of

𝑃 (𝐴𝑖 ) = {(𝑥, 𝑦) ∈ R2 | ∃Δ ∈ R : (𝑥, 𝑦,Δ) ∈ 𝐴𝑖 },
Δmin
𝑖 (𝑥, 𝑦) = min{Δ | (𝑥, 𝑦,Δ) ∈ 𝐴𝑖 },

Δmax
𝑖 (𝑥, 𝑦) = max{Δ | (𝑥, 𝑦,Δ) ∈ 𝐴𝑖 },

where the two functions are only defined for (𝑥, 𝑦) ∈ 𝑃 (𝐴𝑖 ).
In a first step, we establish relevant properties of 𝐴𝑖 , 𝑃 (𝐴𝑖 ), Δmin

𝑖 , and Δmax
𝑖 . The

first two results deal with the structure of the diagrams and can be obtained by
interpolating flows in a suitable way.

Lemma 6.14. The set 𝑃 (𝐴𝑖 ) is convex for 𝑖 ∈ {0, . . . , 𝑛}.

Proof. Let (𝑥A, 𝑦A), (𝑥B, 𝑦B) ∈ 𝑃 (𝐴𝑖 ). We need to prove that all points on the line
segment between these two points, i.e., all points (𝑥b , 𝑦b ) B ((1 − b)𝑥A + b𝑥B, (1 −
b)𝑦A + b𝑦B) for b ∈ [0, 1], belong to 𝑃 (𝐴𝑖 ) as well. By the definition of 𝑃 (𝐴𝑖 )
there are an (𝑥A, 𝑦A,ΔA)-flow 𝑓A and an (𝑥B, 𝑦B,ΔB)-flow 𝑓B on 𝑃𝑖 for suitable values
ΔA,ΔB ∈ R. By interpolating 𝑓A and 𝑓B we obtain flows 𝑓b = (1 − b) 𝑓A + b 𝑓B for
b ∈ [0, 1]. Note that for b ∈ [0, 1] the flow 𝑓b satisfies all edge capacities. Moreover,
𝑥b units of flow enter the path at v0, and 𝑦b units leave the path at v𝑖 . Since 𝑃𝑖 is a path,
every flow, and in particular 𝑓b , is a FACTS flow. Hence, there is some value Δb ∈ R
such that (𝑥b , 𝑦b ,Δb ) ∈ 𝐴𝑖 , and thus (𝑥b , 𝑦b ) ∈ 𝑃 (𝐴𝑖 ). □

The previous lemma is concerned with the convexity in directions within the
𝑥𝑦-plane. The following lemma deals with lines parallel to the Δ-axis.

Lemma 6.15. Let 𝑖 ∈ {0, . . . , 𝑛} and (𝑥, 𝑦) ∈ 𝑃 (𝐴𝑖 ). It holds that

𝐴𝑖 ∩ ({(𝑥, 𝑦)} × R) = {(𝑥, 𝑦)} × [Δmin
𝑖 (𝑥, 𝑦),Δmax

𝑖 (𝑥, 𝑦)] .

Proof. By the definitions of Δmin
𝑖 and Δmax

𝑖 we have 𝐴𝑖 ∩ {(𝑥, 𝑦)} × R ⊆ {(𝑥, 𝑦)} ×
[Δmin

𝑖 (𝑥, 𝑦),Δmax
𝑖 (𝑥, 𝑦)]. It remains to show the inclusion in the other direction.

There are FACTS flows 𝑓 min and 𝑓 max on 𝑃𝑖 with angles \min and \max such that
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\min (v𝑖 ) = \max (v𝑖 ) = 0, \min (v0) = Δmin
𝑖 (𝑥, 𝑦), and \

max (v0) = Δmax
𝑖 (𝑥, 𝑦). For

⋄ ∈ {Δmin,Δmax} let 𝑏⋄ (v𝑗v𝑗+1) = 𝑓⋄ (v𝑗v𝑗+1)/(\ ⋄ (v𝑗+1) − \ ⋄ (v𝑗 )).
For b ∈ [0, 1] we set 𝑓b = b 𝑓 max + (1 − b) 𝑓 min and 𝑏b = b𝑏max + (1 − b)𝑏min. Since

𝑃𝑖 is a path, there are angles \b such that 𝑓b (v𝑗v𝑗+1) = 𝑏b (v𝑗v𝑗+1) · (\b (v𝑗+1) − \b (v𝑗 ))
for all 𝑗 , and \b (v𝑖 ) = 0. Then, 𝑓b is a FACTS flow with angle difference \b (v𝑖 )
between v0 and v𝑖 . Hence, it is a witness for the point (𝑥, 𝑦, \b (v𝑖 )) in𝐴𝑖 . Since \b (v𝑖 )
is continuous in b , \ 0 = \

min, and \ 1 = \
max, the mean value theorem implies that for

every Δ ∈ [Δmin
𝑖 (𝑥, 𝑦),Δmax

𝑖 (𝑥, 𝑦)] there is a corresponding FACTS flow 𝑓b . Hence,
𝐴𝑖 ∩ {(𝑥, 𝑦)} × R = {(𝑥, 𝑦)} × [Δmin

𝑖 (𝑥, 𝑦),Δmax
𝑖 (𝑥, 𝑦)]. □

We further prove that Δmin
𝑖 and Δmax

𝑖 are monotonic.

Lemma 6.16. Let 𝑖 ∈ {0, . . . , 𝑛}, and let 𝑥, 𝑦1, 𝑦2 ∈ R such that (𝑥, 𝑦1), (𝑥, 𝑦2) ∈ 𝑃 (𝐴𝑖 ),
and 𝑦1 < 𝑦2. Then, Δmin

𝑖 (𝑥, 𝑦1) ≤ Δmin
𝑖 (𝑥, 𝑦2) and Δmax

𝑖 (𝑥, 𝑦1) ≤ Δmax
𝑖 (𝑥, 𝑦2).

Similarly, let 𝑥1, 𝑥2, 𝑦 ∈ R such that (𝑥1, 𝑦), (𝑥2, 𝑦) ∈ 𝑃 (𝐴𝑖 ), and 𝑥1 < 𝑥2. Then,
Δmin
𝑖 (𝑥1, 𝑦) ≤ Δmin

𝑖 (𝑥2, 𝑦) and Δmax
𝑖 (𝑥1, 𝑦) ≤ Δmax

𝑖 (𝑥2, 𝑦).

Proof. Weonly prove the first statement and only the part aboutΔmax
𝑖 ; the one forΔmin

𝑖

can be obtained similarly, and the second statement can be obtained by reversing the
direction of the path, which switches the roles of the 𝑥- and 𝑦-coordinates.
Let 𝑓1 be a (𝑥, 𝑦1,Δ

max
𝑖 (𝑥, 𝑦1))-flow in 𝑃𝑖 with angles \ 1. Without loss of gener-

ality we may assume \ 1 (v𝑖 ) = 0, and thus, \ 1 (v0) = Δmax
𝑖 (𝑥, 𝑦1). Our goal is to

obtain a (𝑥, 𝑦2,Δ2)-flow with Δ2 ≥ Δmax
𝑖 (𝑥, 𝑦1), which directly implies Δmax

𝑖 (𝑥, 𝑦2) ≥
Δmax
𝑖 (𝑥, 𝑦1).
To this end, we identify the last vertex v𝑗 of 𝑃𝑖 that does not consume the min-

imum amount in 𝑓1, i.e., 𝑐 𝑓1 (v𝑗 ) > min𝐷 (v𝑗 ). Such a vertex exists, since 𝑦1 < 𝑦2
and (𝑥, 𝑦2) ∈ 𝑃 (𝐴𝑖 ). We then form 𝑓 ′ by sending additional 𝛼 = min{𝑐 𝑓1 (v𝑗 ) −
min𝐷 (v𝑗 ), 𝑦2 − 𝑦1} units from v𝑗 to v𝑖 . If 𝑦1 + 𝛼 = 𝑦2, then 𝑦2 units of flow leave
the path at v𝑖 in 𝑓 ′, and we set 𝑓2 = 𝑓 ′. Otherwise, it holds that 𝑦1 + 𝛼 < 𝑦2, and we
repeat this process until the first case holds. As argued for the first step that this
process never fails to find a vertex v𝑗 whose consumption is larger than its minimum
demand. Thus, the procedure always finds a function 𝑓2.

However, we still need to argue that 𝑓2 is a (𝑥, 𝑦2,Δ2)-flow for a sufficiently large
value Δ2. By construction, 𝑓2 satisfies the flow conservation constraints at all vertices.
We further claim that it observes the edge capacities. On the edges where 𝑓2 (v𝑗v𝑗+1) =
𝑓1 (v𝑗v𝑗+1) this is clearly the case. If the flow 𝑓2 (v𝑗v𝑗+1) on some edge v𝑗v𝑗+1 (with
0 ≤ 𝑗 < 𝑖) differs from 𝑓1 (v𝑗v𝑗+1), all vertices from v𝑗+1 to v𝑖 consume the minimum
amount of flow by the construction of 𝑓2. Let 𝑓 ′2 be a (𝑥, 𝑦2,Δ

′
2)-flow for some

Δ′2 ∈ R; since (𝑥, 𝑦2) ∈ 𝑃 (𝐴𝑖 ) such a flow exists. Note that to satisfy the demands
of the vertices v𝑗+1, . . . , v𝑖 , the amount of flow 𝑓 ′2 (v𝑗v𝑗+1) must be at least 𝑦2 plus
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the minimum demands of all the vertices v𝑗+1, . . . , v𝑖 ; a property that we use in the
inequality marked with (∗) below. It then holds that

−cap(v𝑗v𝑗+1) ≤ 𝑓1 (v𝑗v𝑗+1)
≤ 𝑓2 (v𝑗v𝑗+1)

= 𝑦2 +
𝑖∑︁

𝑘=𝑗+1
min𝐷 (v𝑘 )

(∗)
≤ 𝑓 ′2 (v𝑗v𝑗+1)
≤ cap(v𝑗v𝑗+1).

Setting the susceptances of the edges to the same values as for 𝑓1, we derive angles \ 2
corresponding to 𝑓2 with \ 2 (v𝑖 ) = 0 and Δ2 B \ 2 (v0) ≥ \ 1 (v0) = Δmax

𝑖 (𝑥, 𝑦1). □

Lemma 6.15 implies that Δmin
𝑖 and Δmax

𝑖 are sufficient to obtain𝐴𝑖 . In our algorithm
we therefore store representations of Δmin

𝑖 and Δmax
𝑖 . We represent Δmin

𝑖 and Δmax
𝑖 by

the drawings of two planar graphs 𝐻 (Δmin
𝑖 ) and 𝐻 (Δmax

𝑖 ) with values assigned to the
vertices. We call these values the associated values of the vertices. These drawings
have the following properties. The vertices are assigned to coordinates, and the edges
are drawn as line segments. The edges on the outer face enclose precisely 𝑃 (𝐴𝑖 ).
The interior of 𝑃 (𝐴𝑖 ) may be subdivided by vertices and edges, but each face of the
subdivision is convex. Moreover, we ensure that Δmin

𝑖 (𝑥, 𝑦) for some (𝑥, 𝑦) ∈ 𝑃 (𝐴𝑖 )
can be determined from 𝐻 (Δmin

𝑖 ) as follows. If a vertex v of 𝐻 (Δmin
𝑖 ) lies at (𝑥, 𝑦),

then the value associated with v is precisely Δmin
𝑖 (𝑥, 𝑦). Otherwise, the point (𝑥, 𝑦)

lies within a face of 𝐻 (Δmin
𝑖 ). Hence, it is possible to represent (𝑥, 𝑦) as some convex

combination
∑
b 𝑗 (𝑥 𝑗 , 𝑦 𝑗 ) of the positions of vertices incident to the face. We ensure

that Δmin
𝑖 (𝑥, 𝑦) can be obtained by interpolating the associated values at the vertices

in the same way, i.e., we have Δmin
𝑖 (𝑥, 𝑦) =

∑
b 𝑗Δ

min (𝑥 𝑗 , 𝑦 𝑗 ). To ensure that this
interpolation works, we construct 𝐻 (Δmin

𝑖 ) in such a way that Δmin
𝑖 is an affine

function when restricted to any face of 𝐻 (Δmin
𝑖 ). The values of Δmax

𝑖 can be obtained
from 𝐻 (Δmax

𝑖 ) in the same way.
We have 𝐴0 = {(𝑥, 𝑥, 0) | 𝑥 ∈ R}, and thus 𝑃 (𝐴0) = {(𝑥, 𝑥) | 𝑥 ∈ R} and

Δmin
0 (𝑥, 𝑦) = Δmax

0 (𝑥, 𝑦) = 0. Instead of storing an infinite line, we may limit our
representation to a suitably large square of side length 2𝑁 around the origin. Then,
the representations of Δmin

0 and Δmax
0 are a single edge between vertices at (−𝑁,−𝑁 )

and (𝑁, 𝑁 ), both of which have 0 as associated values.
To obtain 𝐻 (Δmin

𝑖 ) and 𝐻 (Δmax
𝑖 ) from 𝐻 (Δmin

𝑖−1 ) and 𝐻 (Δmax
𝑖−1 ), we perform three

steps. First, we handle the capacity of the additional edge v𝑖−1v𝑖 . Then, we include
the angle difference of the flow along v𝑖−1v𝑖 . And finally, we handle the demand of v𝑖 .
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Figure 6.9: An example of the steps for building the representation of Δmax
𝑖 . The

edge v𝑖−1v𝑖 has a capacity of 2 and a susceptance interval of [1, 2], and the demand
interval of v𝑖 is [−0.5, 1]. In each step, the new parts are marked in red. In (b) the
capacity of v𝑖−1v𝑖 is included. In (c) the susceptance of v𝑖−1v𝑖 is included. In (d) the
demand interval of v𝑖 is included.

We denote the graphs obtained after step 𝑗 for the path 𝑃𝑖 by 𝐻 (Δmin
𝑖, 𝑗 ) and 𝐻 (Δmax

𝑖, 𝑗 ),
the corresponding diagram by 𝐴𝑖, 𝑗 , and its projection to the 𝑥𝑦-plane by 𝑃 (𝐴𝑖, 𝑗 ). An
example of the steps is shown in Figure 6.9.

Step 1: Capacity of v 𝒊−1v 𝒊 . We have 𝐴𝑖,1 = {(𝑥, 𝑦,Δ) ∈ 𝐴𝑖−1 | |𝑦 | ≤ cap(v𝑖−1v𝑖 )}.
Hence, we obtain 𝐻 (Δmin

𝑖,1 ) from 𝐻 (Δmin
𝑖−1 ) by cutting the graph at the lines 𝑦 =

−cap(v𝑖−1v𝑖 ) and 𝑦 = cap(v𝑖−1v𝑖 ), subdividing the edges at the intersections with
these lines if necessary, adding edges between the vertices on the lines, and finally
removing all parts outside of the strip bounded by the lines. The values associated
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with the new vertices are the linear interpolations of the values at the endpoints of
the old edges the vertices lie on. Similarly, we obtain 𝐻 (Δmax

𝑖,1 ).

Step 2: Susceptance of v 𝒊−1v 𝒊 . To include 𝐵(v𝑖−1v𝑖 ), we cut 𝐻 (Δmin
𝑖,1 ) and 𝐻 (Δmax

𝑖,1 )
at the line 𝑦 = 0, adding vertices and edges as in the previous step if necessary. The
resulting graphs are 𝐻 (Δmin

𝑖,2 ) and 𝐻 (Δmax
𝑖,2 ). We then change the values associated

with the vertices by setting

Δmin
𝑖,2 (𝑥, 𝑦) =

{
Δmin
𝑖,1 (𝑥, 𝑦) + 𝑦 ·max𝐵(v𝑖−1v𝑖 ), 𝑦 ≤ 0,

Δmin
𝑖,1 (𝑥, 𝑦) + 𝑦 ·min𝐵(v𝑖−1v𝑖 ), 𝑦 > 0,

(6.5)

Δmax
𝑖,2 (𝑥, 𝑦) =

{
Δmax
𝑖,1 (𝑥, 𝑦) + 𝑦 ·min𝐵(v𝑖−1v𝑖 ), 𝑦 ≤ 0,

Δmax
𝑖,1 (𝑥, 𝑦) + 𝑦 ·max𝐵(v𝑖−1v𝑖 ), 𝑦 > 0.

(6.6)

Step 3: Demand of v 𝒊 . Finally, we include the demand of v𝑖 . We obtain 𝐻 (Δmax
𝑖 )

from 𝐻 (Δmax
𝑖,2 ) as follows. We first subtract max𝐷 (v𝑖 ) from all 𝑦-coordinates, which

effectively moves the graph by −max𝐷 (v𝑖 ) units along the 𝑦-axis. Then, we add a
copy of the upper boundary of 𝐻 (Δmax

𝑖,2 ), i.e., those vertices and edges with maximum
𝑦-coordinate for each 𝑥-coordinate, but moved by −min𝐷 (v𝑖 ) units along the 𝑦-axis
from its original position in 𝐻 (Δmax

𝑖,2 ). The two copies of the upper boundary are
exactly max𝐷 (v𝑖 ) − min𝐷 (v𝑖 ) apart. We finally connect the two copies of each
vertex on the upper boundary of 𝐻 (Δmax

𝑖,2 ) by an edge. The values associated with the
vertices stay the same during this construction. In particular, the two copies of the
vertices on the bottom boundary have the same associated value. The construction
for 𝐻 (Δmin

𝑖 ) is similar, but we first move the graph by −min𝐷 (v𝑖 ) units, and then
add a copy of the bottom boundary translated by −max𝐷 (v𝑖 ). The monotonicity of
the boundary functions (Lemma 6.16) plays a crucial role in proving the correctness
of the constructions.

Lemma 6.17. The graphs 𝐻 (Δmin
𝑖 ) and 𝐻 (Δmax

𝑖 ) are correct representations of Δmin
𝑖

and Δmax
𝑖 . In particular, Δmin

𝑖 and Δmax
𝑖 are continuous.

Proof. Clearly the representations of 𝐻 (Δmin
0 ) and 𝐻 (Δmax

0 ) are correct. To get
from 𝐴𝑖−1 to 𝐴𝑖 , we perform three steps. In the first step we include the capac-
ity of the edge v𝑖−1v𝑖 . It holds that𝐴𝑖,1 = {(𝑥, 𝑦,Δ) ∈ 𝐴𝑖−1 | |𝑦 | ≤ cap(v𝑖−1v𝑖 )}. Thus,
cutting the graphs at the lines 𝑦 = −cap(v𝑖−1v𝑖 ) and 𝑦 = −cap(v𝑖−1v𝑖 ) yields a correct
representation of 𝐻 (Δmin

𝑖,1 ) and 𝐻 (Δmax
𝑖,1 ).

In the second step we include the susceptance interval of the edge v𝑖−1v𝑖 . A
point (𝑥, 𝑦,Δ) ∈ 𝐴𝑖,1 corresponds to a FACTS flow on 𝑃𝑖 , where 𝑦 units flow
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along v𝑖−1v𝑖 . Thus, we have

𝐴𝑖,2 = {(𝑥, 𝑦,Δ + 𝑏 · 𝑦) | (𝑥, 𝑦,Δ) ∈ 𝐴𝑖,1, 𝑏 ∈ 𝐵(v𝑖−1v𝑖 )}.

Hence, it holds that

Δmin
𝑖,2 (𝑥, 𝑦) = Δmin

𝑖,1 (𝑥, 𝑦) +min{𝑏 · 𝑦 | 𝑦 ∈ 𝐵(v𝑖−1v𝑖 )}

=

{
Δmin
𝑖,1 (𝑥, 𝑦) + 𝑦 ·max𝐵(v𝑖−1v𝑖 ), 𝑦 ≤ 0,

Δmin
𝑖,1 (𝑥, 𝑦) + 𝑦 ·min𝐵(v𝑖−1v𝑖 ), 𝑦 > 0,

Δmax
𝑖,2 (𝑥, 𝑦) = Δmax

𝑖,1 (𝑥, 𝑦) +max{𝑏 · 𝑦 | 𝑦 ∈ 𝐵(v𝑖−1v𝑖 )}

=

{
Δmax
𝑖,1 (𝑥, 𝑦) + 𝑦 ·min𝐵(v𝑖−1v𝑖 ), 𝑦 ≤ 0,

Δmax
𝑖,1 (𝑥, 𝑦) + 𝑦 ·max𝐵(v𝑖−1v𝑖 ), 𝑦 > 0.

By construction Δmin
𝑖,1 is affine within each face of 𝐻 (Δmin

𝑖,1 ). The only difference
between Δmin

𝑖,2 and Δmin
𝑖,1 is the addition of min{𝑏 · 𝑦 | 𝑦 ∈ 𝐵(v𝑖−1v𝑖 )}, which is

affine within the halfplanes to either side of the line defined by 𝑦 = 0. Splitting
the graph 𝐻 (Δmin

𝑖,1 ) at this line hence ensures that within each face Δmin
𝑖,2 are affine

function. Thus, after applying the transformations in Equations (6.5) and (6.6) only
to the values at the vertices, the correct values of all other points can be obtained by
interpolation. A similar argument applies to Δmax

𝑖,2 and 𝐻 (Δmax
𝑖,2 ).

In the third step we include the demand of v𝑖 , and it holds that

𝐴𝑖 = {(𝑥, 𝑦 + 𝑑,Δ) | (𝑥, 𝑦,Δ) ∈ 𝐴𝑖,2, 𝑑 ∈ 𝐷 (v𝑖 )}.

Hence, we have
Δmax
𝑖 (𝑥, 𝑦) = max

𝑑∈𝐷 (v𝑖 )
Δmax
𝑖,2 (𝑥, 𝑦 + 𝑑).

By Lemma 6.14 the set 𝑃 (𝐴𝑖 ) is convex, and by Lemma 6.16 the functions Δmin
𝑖−1

and Δmax
𝑖−1 are increasing for fixed 𝑥 . The same holds for Δmin

𝑖,2 and Δmax
𝑖,2 since the

operations in the previous two steps preserve this property. Thus, in the equation
above the maximum is attained for 𝑑 = max𝐷 (v𝑖 ) provided that 𝑦 + max𝐷 (v𝑖 ) ≤
𝑦max (𝑥), where 𝑦max (𝑥) = max{𝑦 | (𝑥, 𝑦) ∈ 𝑃 (𝐴𝑖,2)}. Otherwise, the maximum is
equal to Δmax

𝑖,2 (𝑥, 𝑦max (𝑥)). To summarize, we have

Δmax
𝑖 (𝑥, 𝑦) =

{
Δmax
𝑖,2 (𝑥, 𝑦 +max𝐷 (v𝑖 )), if 𝑦 +max𝐷 (v𝑖 ) ≤ 𝑦max (𝑥),

Δmax
𝑖,2 (𝑥, 𝑦max (𝑥)), otherwise.

The copy of 𝐻 (Δmax
𝑖,2 ) translated by −max𝐷 (v𝑖 ) along the 𝑦-axis corresponds to

the first case of the equation above. The area between the two copies of the upper



Computing FACTS Flows in Simpler Graph Classes Section 6.3

129

boundary corresponds to the second case. In total, this shows that the graph 𝑃 (Δmax
𝑖 )

is a correct representation of Δmax
𝑖 . A similar argument shows that the procedure

for Δmin
𝑖 is correct as well.

Moreover, since it is possible to represent Δmin
𝑖 and Δmax

𝑖 via the graphs, the two
functions are continuous. □

We further bound the sizes of the graphs 𝐻 (Δmin
𝑖 ) and 𝐻 (Δmax

𝑖 ). To this end, we
cover the edges of the graphs with O(𝑖) shapes such that all but a constant number of
vertices per shape is located at the intersection of two shapes. Moreover, the shapes
are chosen such that any two shapes intersect at most once. All in all, we get O(𝑖2)
vertices and edges.

Lemma 6.18. The graphs 𝐻 (Δmin
𝑖 ) and 𝐻 (Δmax

𝑖 ) have O(𝑖2) vertices and edges.

Proof. We prove the bounds for 𝐻 (Δmax
𝑖 ); the proof for 𝐻 (Δmin

𝑖 ) is similar. By con-
struction the angle of an edge to the 𝑥-axis is either 0◦ for horizontal edges, 45◦ for
diagonal edges, or 90◦ for vertical edges. We further cover the edges with paths,
which we call shapes, such that every edge belongs to exactly one shape. There are
two shapes: L-shapes and J-shapes. An L-shape is a path that first traces horizontal
edges (with decreasing 𝑥-coordinates) and then vertical edges (with increasing 𝑦-
coordinates). A J-shape is a path that first traces diagonal edges (with increasing
𝑦-coordinate) and then vertical edges (with increasing 𝑦-coordinate). Note that we al-
low shapes to have edges in only one direction and even to only consist of one vertex.
We call the vertex of a shape on the vertical path with the maximum 𝑦-coordinate
the upper endpoint of the shape. In Figure 6.10 the example graphs of Figure 6.9 are
covered with shapes. The upper endpoints of the shapes are marked by filled disks.
Note that multiple shapes may have a common upper endpoint.
We prove in the following that O(𝑖) shapes suffice to cover all edges of 𝐻 (Δmax

𝑖 )
such that (a) all vertices on the upper boundary are upper endpoints of shapes,
(b) the upper boundary, which are the points of maximum 𝑦-coordinate for each
𝑥-coordinate, is formed by at most one J- and at most one L-shape, and (c) no two
shapes share an edge. By the construction of 𝐻 (Δmax

𝑖 ) every vertex is incident to
edges with different angles. In other words, there are no degree-2 vertices whose
incident edges both form the same angle with the 𝑥-axis. Hence, every vertex lies at
the intersection of two shapes or at the bend of a single shape. By Property (b) and
the form of the shapes, any two shapes intersect at most once. Thus, it follows from
the properties that there are O(𝑖2) vertices in total. Moreover, 𝐻 (Δmax

𝑖 ) is planar.
Hence, there are O(𝑖2) edges.

It remains to show how to cover𝐻 (Δmax
𝑖 ) with O(𝑖) shapes such that Properties (a)

to (c) hold. We denote the number of L- and J-shapes in 𝐻 (Δmax
𝑖 ) by 𝑛𝐿𝑖 and 𝑛 𝐽

𝑖
.
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𝑥

𝑦

𝐽1

𝐽2 𝐽3
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(a) 𝐻 (Δmax
𝑖−1 ).
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(b) 𝐻 (Δmax
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(c) 𝐻 (Δmax
𝑖,2 ).

𝑥
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𝐽3
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𝐿4
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(d) 𝐻 (Δmax
𝑖
).

Figure 6.10: The shapes covering the edges of the representation of the diagrams.
Different shapes are drawn in different colors. The filled disks represent the upper
endpoints of the shapes.

We cover 𝐻 (Δmax
0 ) with two J-shapes, one that contains the diagonal edge and one

that only contains the vertex with minimum 𝑥-coordinate. It is easy to verify that
this cover has the desired properties. We have 𝑛𝐿0 = 0 and 𝑛 𝐽0 = 2.
To get from 𝐻 (Δmax

𝑖−1 ) to 𝐻 (Δmax
𝑖 ) we perform three steps. Handling the capacity of

the edge v𝑖−1v𝑖 may add two L-shapes that consist of the edges on the lines at which
we cut the diagrams. In Figure 6.10(b) these are the shapes 𝐿2 and 𝐿3. If some edges
were part of a shape 𝑆 before, which is necessarily an L-shape as the new edges are
horizontal, then we remove all horizontal edges from 𝑆 as they are now covered by
the new L-shapes. Thus, no edge is covered twice (Property (c)). This cutting may
also shorten or even completely remove some shapes. For example, 𝐽3 is shortened at
both ends in Figure 6.10(b). But all vertices on the upper boundary are still the upper
endpoints of possibly shortened shapes (Property (a)). In particular, the L-shape
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that was part of the upper boundary may be replaced by one of the new L-shapes.
Nevertheless, the edges of the upper boundary are still covered by one J- and one
L-shape (Property (b)).
Similarly, handling the susceptance may add another L-shape consisting of the

horizontal edges on the line 𝑦 = 0. In Figure 6.10(c) the new shape is 𝐿4. This addition
may introduce a new vertex on the upper boundary, which is the upper endpoint
of the new L-shape. Other than that the upper boundary remains unchanged. Thus,
Properties (a) and (b) are maintained. Property (c) can be achieved as in the previous
step by shortening existing L-shapes if necessary.
Handling the demand we add a copy of the old upper boundary. By Property (b)

this copy can be covered by two shapes (𝐽4 and 𝐿5 in Figure 6.10(d)). Hence, the new
boundary can be covered by duplicates of these. We further add multiple vertical
edges, each incident to a vertex on the former upper boundary. Since each such
vertex is the upper endpoint of a shape by Property (a), we can simply append the
new vertical edges to these shapes without creating any new shapes. Moreover, this
ensures that Property (a) holds for the resulting shapes as well.
In total, we add at most four L-shapes and at most one J-shape. Together with

𝑛𝐿0 = 0 and 𝑛 𝐽0 = 2 this implies 𝑛𝐿𝑖 ≤ 4𝑖 and 𝑛 𝐽
𝑖
≤ 𝑖 + 2. □

Repeating the three steps for all vertices and edges in the order in which they
appear on the cycle, we obtain 𝐻 (Δmin

𝑛 ) and 𝐻 (Δmax
𝑛 ). Note that in 𝐴𝑛 the start

and end vertex of the path 𝑃𝑛 are treated as two different vertices. However, they
are actually the same vertex v0. This implies that in any FACTS flow along 𝑃𝑛 the
angle difference between them must be 0. Therefore, we are only interested in those
values (𝑥, 𝑦) such that (𝑥, 𝑦, 0) ∈ 𝐴𝑛 .

Lemma 6.19. Let 𝐷equiv be the equivalent demand of 𝐶 with port v0. Then, 𝑑 ∈ 𝐷equiv
if and only if there is (𝑥, 𝑦, 0) ∈ 𝐴𝑛 with 𝑥 − 𝑦 = 𝑑 .

Proof. By the definition of 𝐴𝑛 , any point (𝑥, 𝑦, 0) ∈ 𝐴𝑛 corresponds to a FACTS flow
in 𝐶 with 𝑥 − 𝑦 units of flow entering 𝐶 at v . Hence, 𝑥 − 𝑦 ∈ 𝐷equiv.
Conversely, any 𝑑 ∈ 𝐷equiv corresponds to a FACTS flow 𝑓 in 𝐶 where 𝑑 units

enter 𝐶 at v . These 𝑑 units split into 𝑥 units towards v1 and −𝑦 units towards v𝑛−1.
Since v0 = v𝑛 , the angle difference between v0 and v𝑛 is 0 in 𝑓 . Thus, 𝑓 witnesses
(𝑥, 𝑦, 0) ∈ 𝐴𝑛 . □

We have (𝑥, 𝑦, 0) ∈ 𝐴𝑛 if and only if Δmin
𝑛 (𝑥, 𝑦) ≤ 0 ≤ Δmax

𝑛 (𝑥, 𝑦) by Lemma 6.15.
Let 𝑃0 (𝐴𝑛) be the set of all points (𝑥, 𝑦) such that (𝑥, 𝑦, 0) ∈ 𝐴𝑛 .

Lemma 6.20. The set 𝑃0 (𝐴𝑛) is a simple polygon, and it can be computed in O(𝑛2)
time.
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Proof. We compute 𝑃0 (𝐴𝑛) by computing the sets 𝑃+ (𝐴𝑛) = {(𝑥, 𝑦) | Δmax
𝑛 (𝑥, 𝑦) ≥ 0}

and 𝑃− (𝐴𝑛) = {(𝑥, 𝑦) | Δmin
𝑛 (𝑥, 𝑦) ≤ 0} separately. For brevity, we only describe the

procedure for 𝑃+ (𝐴𝑛).
Consider a face ℎ of 𝐻 (Δmax

𝑛 ). There are three cases: the associated values of all
incident vertices are all non-negative, they are all negative, or some are negative
and some are not. In the first case ℎ is completely included in 𝑃+ (𝐴𝑛). In the second
case no point of ℎ belongs to 𝑃+ (𝐴𝑛). And in the third case part of ℎ is included
in 𝑃+ (𝐴𝑛). Since all faces are convex and Δmax

𝑛 is affine on ℎ, there is a line segment
that splits ℎ into the part that belongs to 𝑃+ (𝐴𝑛) and the part that does not. We add
this line segment as an edge to the graph 𝐻 (Δmax

𝑛 ) (adding vertices for the endpoints
if necessary). In all three cases we further mark each edge 𝑒 of ℎ for which the area
next to 𝑒 in ℎ belongs to 𝑃+ (𝐴𝑛).

Repeating this process for all faces takes O(𝑛2) time and yields a graph 𝐻 ′. Some
edges of 𝐻 ′ are marked only from one side, and these are precisely the edges that
bound 𝑃+ (𝐴𝑛). By the monotonicity (Lemma 6.16) and the continuity (Lemma 6.17)
of Δmax

𝑛 they form a cycle, which can be traced in O(𝑛2) time.
Similarly, we obtain 𝑃− (𝐴𝑛) from 𝐻 (Δmin

𝑛 ). Finally, 𝑃0 (𝐴𝑛) is the intersection
of 𝑃+ (𝐴𝑛) and 𝑃− (𝐴𝑛), which can be computed in O(𝑛2) time. By the monotonicity
of Δmin

𝑛 and Δmax
𝑛 and the definitions of 𝑃− (𝐴𝑛) and 𝑃+ (𝐴𝑛) the intersection is con-

nected. As both 𝑃+ (𝐴𝑛) and 𝑃− (𝐴𝑛) are simple polygons, 𝑃0 (𝐴𝑛) is a simple polygon
as well. □

Each point (𝑥, 𝑦) ∈ 𝑃0 (𝐴𝑛) corresponds to an inflow of 𝑥 − 𝑦 into the cycle at v0.
Hence, the interval containing all these values can be determined by computing the
minimum and maximum of this difference for all points of 𝑃0 (𝐴𝑛). Since 𝑃0 (𝐴𝑛) is a
simple polygon those extrema occur at vertices on the boundary, and it suffices to
check these points. This allows us to finally prove Lemma 6.12, which we restate
here.

Lemma 6.12. The equivalent demand 𝐷equiv of a cycle𝐶 with port v is an interval, and
it can be computed in O( |𝐶 |3) time. Moreover, given some value 𝑑 ∈ 𝐷equiv, a FACTS
flow 𝑓 in 𝐶 with 𝑐 𝑓 (v) = −𝑑 can be computed in O( |𝐶 |3) time.

Proof. Let 𝑛 be the number of vertices of 𝐶 . All steps that operate on 𝐻 (Δmin
𝑖 )

or 𝐻 (Δmax
𝑖 ) take time linear in the size of these graphs. By Lemma 6.18 these graphs

have O(𝑖2) vertices and edges. To obtain 𝐻 (Δmin
𝑛 ) and 𝐻 (Δmax

𝑛 ) we perform O(𝑛)
steps, which takeO(𝑛3) time in total. Using the procedure described above, the bound-
ary of the polygons 𝑃− (𝐴𝑛) and 𝑃+ (𝐴𝑛) can be computed from𝐻 (Δmin

𝑛 ) and𝐻 (Δmax
𝑛 )

in time linear in the size of the two graphs. Hence, it takes O(𝑛2) time. Moreover,
each of the two polygons has O(𝑛2) sides. By intersecting the two polygons, we
obtain 𝑃0 (𝐴𝑛) in O(𝑛2) time. By Lemma 6.19 we have 𝑑 ∈ 𝐷equiv if and only if there
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is a point (𝑥, 𝑦) ∈ 𝑃0 (𝐴𝑛) such that 𝑥 − 𝑦 = 𝑑 . As 𝑃0 (𝐴𝑛) is connected, the equivalent
demand is an interval. Thus, it suffices to find the points of 𝑃0 (𝐴𝑛) that minimize
and maximize the coordinate difference. Since 𝑃0 (𝐴𝑛) is a polygon and 𝑑 defined
by 𝑑 (𝑥, 𝑦) = 𝑥 − 𝑦 is linear, the extrema of 𝑑 on 𝑃0 (𝐴𝑛) occur at corners of 𝑃0 (𝐴𝑛).
Hence, the final step of computing the equivalent demand from 𝑃0 (𝐴𝑛) takes O(𝑛2)
time. All together, the computation of 𝐻 (Δmin

𝑛 ) and 𝐻 (Δmax
𝑛 ) dominates the running

time, which leads to O(𝑛3) time in total.
A FACTS flow with a consumption of −𝑑 at the port v can be computed by first

picking some point (𝑥, 𝑦) ∈ 𝑃0 (𝐴𝑛) with 𝑥 − 𝑦 = −𝑑 , and then retracing how this
point was obtained, thereby iteratively computing the flow values. This can be done
in O(𝑛3) time as well. □

6.4 Conclusion

We studied the FACTS Flow problem, an extension of electrical flows, where the
susceptances of the edges may be varied within a given interval. We proved that this
problem is N P-complete even for some restricted cases. Previously, hardness results
were only known forMaximum FACTS Flow, where additionally the total flow value
is to be maximized. Further, we gave an O(𝑛2)-time algorithm for FACTS Flow with
fixed demands in partial 2-trees and an O(𝑛3)-time algorithm for FACTS Flow with
adjustable demands in cacti.

Partial 2-trees are precisely the graphs with treewidth at most 2. Thus, one could
investigate whether our result can be extended to graphs of larger treewidth. Another
open question is to determine whether FACTS Flow becomes easier if the number of
edges with non-constant susceptance intervals is limited. Finally, one may generalize
the flows such that the flow on an edge is not directly proportional to the angle
difference, but to some function of the angle difference. Such flow formulations are
used, e.g., to describe the flow of gas or water [Gro+19].
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7 Conclusion

In this thesis we studied problems related to the design and expansion of electrical
networks. As described in Chapter 1 the expansion of the electric transmission grid
is an important puzzle piece in the energy transition.

Summary. We formalized basic expansion planning problems as Flow Expansion
and Electrical Flow Expansion, which differ in the flow model that is used (graph-
theoretical vs. electrical flow). In Chapter 3 we analyzed their computational com-
plexities under various restrictions. In the general case both problems are N P-hard.
One interesting difference between the two problems is that for Flow Expansion it
can be determined in polynomial time whether there is a (not necessarily optimal)
expansion, whereas for Electrical Flow Expansion this question is N P-hard to
decide. We further presented polynomial-time algorithms for cases in which the
network is restricted to certain graph classes. All together, this chapter gives insights
into the effect of important network properties on the computational complexities of
the two expansion planning problems.
The basic problems do not require the resulting networks to be reliable, but in

practical applications this is an important requirement. Therefore, we introduced a
reliability criterion based on a criticality measure that takes the dynamic behavior
of electrical networks into account (Chapter 4). We formulated this criterion as a
set of linear inequalities, which can be added to any expansion planning model. As
an example, we defined two expansion planning problems, in which the reliability
criterion is added to Electrical Flow Expansion. We investigated the impact
this addition has on the solution process and the resulting expansions. Further, we
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proposed a greedy heuristic for one of the two problems. This heuristic does not
guarantee optimal results, but our experiments indicate that it produces good results
faster than an MILP solver.

Electrical Flow Expansion requires candidates to be given as edges of a graph.
In particular when designing a new network, such as a microgrid in a remote location,
it is not clear which candidates to choose. In Chapter 5 we consider the Microgrid
Cable Layout problem, a network design problem where the positions of the gen-
erators and consumers are given, but all other vertices and all edges may be freely
placed in the plane. We established that the problem is N P-hard, presented a hybrid
genetic algorithm, and evaluated it on a set of benchmark instances. The evaluation
compares it to heuristics for related planning problems and shows that the hybrid
genetic algorithm produces better results.
Instead of expanding the electrical network one may choose to build power elec-

tronics with which the electrical flow can be controlled more precisely and the
network can be utilized better. This lead us to the notion of FACTS flows. In Chap-
ter 6 we study the complexity of computing a FACTS flow in a network under various
restrictions. It is in general N P-complete to decide whether a network admits a
FACTS flow. For two restricted cases we presented polynomial-time algorithms.

Conclusion. In Chapter 1 we laid out two goals of this thesis. First, obtain a deeper
theoretical understanding of problems related to the design and expansion of elec-
trical flow networks. Second, present algorithmic approaches for such problems.
Every chapter contains an analysis of the complexity of the problems studied therein.
In particular, Chapters 3 and 6 contain a detailed analysis for problems related to
designing and expanding transmission network, such as Electrical Flow Expan-
sion and FACTS Flow. While exploring the complexity of these problems, we also
gave exact polynomial-time algorithm for some restricted variants. Moreover, we
presented heuristic algorithms for certain network design problems, in particular for
theMicrogrid Cable Layout problem. Our experimental evaluations show that the
algorithms perform well on realistic instances. All in all, we argue that this thesis
achieves the goals laid out in Chapter 1.

Outlook. Every chapter contains future work sections related to the content of
the chapter. Here, we take a more abstract view on the topics of this thesis and
mention possible research topics. In their general forms, the problems we studied in
this thesis are N P-hard. From a theoretical perspective it would be interesting to
analyze whether approximate solutions to these problems can be computed efficiently.
Moreover, in cases where heuristic algorithms are able to compute good solutions
fast, it could be interesting to investigate which properties of the instances make this
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possible. This could be done both with a theoretical analysis and an experimental
evaluation.
In a broader context, we mention in Chapter 1 two other approaches besides

grid expansion to deal with increased renewable generation: storage and demand-
side management. While there are works that combine grid expansion and storage,
a thorough theoretical understanding seems to be lacking. One may expect the
combined problem to become more complex. However, sometimes having more
options may help when designing efficient algorithms.
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A
Appendix: Expanding Electri-

cal Networks to Prevent Criti-

cal Edges

A.1 The MILP for CC-TNEP

Below we present the MILP for CC-TNEP from Sections 4.3.3 and 4.3.4 in its entirety.
The presentation of the constraints has been slightly modified. In particular, we
explicitly include the timestamps as subscripts in variables that are time-dependent,
and Equation (4.6) is split into two.

Minimize
∑︁

𝑒∈𝐸cand

z (𝑒) · 𝑐 (𝑒) (4.7)

such that

𝑑𝜏 (v) =
∑︁
𝑢v∈𝐸

𝑓𝜏 (𝑢v) −
∑︁
v𝑤∈𝐸

𝑓𝜏 (v𝑤) ∀v ∈ 𝑉 , 𝜏 ∈ 𝑇 (4.1)

|𝑓𝜏 (𝑒) | ≤ cap(𝑒) ∀𝑒 ∈ 𝐸ex, 𝜏 ∈ 𝑇 (4.2)
𝑓𝜏 (v𝑤) = 𝑏 (v𝑤) · (\𝜏 (v) − \𝜏 (𝑤)) ∀v𝑤 ∈ 𝐸ex, 𝜏 ∈ 𝑇 (4.3)
|𝑓𝜏 (𝑒) | ≤ cap(𝑒) · z (𝑒) ∀𝑒 ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.4)
𝑓 ′𝜏 (v𝑤) = 𝑏 (v𝑤) · (\𝜏 (v) − \𝜏 (𝑤)) ∀v𝑤 ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.6a)

|𝑓𝜏 (𝑒) − 𝑓 ′𝜏 (𝑒) | ≤ 𝑀𝑒 · (1 − z (𝑒)) ∀𝑒 ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.6b)
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𝑓 res
𝑒,𝜏 (𝑒) = 0, ∀𝑒 ∈ 𝐸, 𝜏 ∈ 𝑇 (4.8)
𝑓 res
𝑒,𝜏 (𝑒′) ≤ cap(𝑒′) − 𝑓𝜏 (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸ex, 𝜏 ∈ 𝑇 (4.9)
𝑓 res
𝑒,𝜏 (𝑒′) ≥ −cap(𝑒′) − 𝑓𝜏 (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸ex, 𝜏 ∈ 𝑇 (4.10)
𝑓 res
𝑒,𝜏 (𝑒′) ≤ 2cap(𝑒′) · z (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.13)
𝑓 res
𝑒,𝜏 (𝑒′) ≥ −2cap(𝑒′) · z (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.14)
𝑓 res
𝑒,𝜏 (𝑒′) ≤ cap(𝑒′) − 𝑓𝜏 (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.15)
𝑓 res
𝑒,𝜏 (𝑒′) ≥ −cap(𝑒′) − 𝑓𝜏 (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.16)

0 =
∑︁
𝑥𝑢∈𝐸

𝑓 res
v𝑤,𝜏 (𝑥𝑢) −

∑︁
𝑢𝑦∈𝐸

𝑓 res
v𝑤,𝜏 (𝑢𝑦)

∀v𝑤 ∈ 𝐸,𝑢 ∈ 𝑉 \ {v, 𝑤}, 𝜏 ∈ 𝑇 (4.17)
𝑐𝜏 (𝑒) ≥ 0 ∀𝑒 ∈ 𝐸, 𝜏 ∈ 𝑇 (4.18)

𝑐𝜏 (v𝑤) ≥ 𝑓𝜏 (v𝑤) − ℎ ·
©«
∑︁
𝑥𝑤∈𝐸

𝑓 res
v𝑤,𝜏 (𝑥𝑤) −

∑︁
𝑤𝑦∈𝐸

𝑓 res
v𝑤,𝜏 (𝑤𝑦)

ª®¬
∀v𝑤 ∈ 𝐸, 𝜏 ∈ 𝑇 (4.19)

𝑐𝜏 (v𝑤) ≥ −𝑓𝜏 (v𝑤) − ℎ ·
©«
∑︁
𝑥v∈𝐸

𝑓 res
v𝑤,𝜏 (𝑥v) −

∑︁
v𝑦∈𝐸

𝑓 res
v𝑤,𝜏 (v𝑦)

ª®¬
∀v𝑤 ∈ 𝐸, 𝜏 ∈ 𝑇 (4.20)∑︁

𝜏∈𝑇

∑︁
𝑒∈𝐸

𝑐𝜏 (𝑒) ≤ Critmax, (4.21)

𝑓𝜏 (𝑒) ∈ R ∀𝑒 ∈ 𝐸, 𝜏 ∈ 𝑇
𝑓 ′𝜏 (𝑒) ∈ R ∀𝑒 ∈ 𝐸cand, 𝜏 ∈ 𝑇
\𝜏 (v) ∈ R ∀v ∈ 𝑉 , 𝜏 ∈ 𝑇
𝑐𝜏 (𝑒) ∈ [0,∞) ∀𝑒 ∈ 𝐸, 𝜏 ∈ 𝑇

𝑓 res
𝑒,𝜏 (𝑒′) ∈ R ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸, 𝜏 ∈ 𝑇
z (𝑒) ∈ {0, 1} ∀𝑒 ∈ 𝐸cand
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A.2 The MILP for CME

Below we present the MILP for CME from Sections 4.3.3 and 4.3.4 in its entirety.
The presentation of the constraints has been slightly modified. In particular, we
explicitly include the timestamps as subscripts in variables that are time-dependent,
and Equation (4.6) is split into two.

Minimize
∑︁
𝜏∈𝑇

∑︁
𝑒∈𝐸

𝑐𝜏 (𝑒) (4.23)

such that

𝑑𝜏 (v) =
∑︁
𝑢v∈𝐸

𝑓𝜏 (𝑢v) −
∑︁
v𝑤∈𝐸

𝑓𝜏 (v𝑤) ∀v ∈ 𝑉 , 𝜏 ∈ 𝑇 (4.1)

|𝑓𝜏 (𝑒) | ≤ cap(𝑒) ∀𝑒 ∈ 𝐸ex, 𝜏 ∈ 𝑇 (4.2)
𝑓𝜏 (v𝑤) = 𝑏 (v𝑤) · (\𝜏 (v) − \𝜏 (𝑤)) ∀v𝑤 ∈ 𝐸ex, 𝜏 ∈ 𝑇 (4.3)
|𝑓𝜏 (𝑒) | ≤ cap(𝑒) · z (𝑒) ∀𝑒 ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.4)
𝑓 ′𝜏 (v𝑤) = 𝑏 (v𝑤) · (\𝜏 (v) − \𝜏 (𝑤)) ∀v𝑤 ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.6a)

|𝑓𝜏 (𝑒) − 𝑓 ′𝜏 (𝑒) | ≤ 𝑀𝑒 · (1 − z (𝑒)) ∀𝑒 ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.6b)
𝑓 res
𝑒,𝜏 (𝑒) = 0, ∀𝑒 ∈ 𝐸, 𝜏 ∈ 𝑇 (4.8)
𝑓 res
𝑒,𝜏 (𝑒′) ≤ cap(𝑒′) − 𝑓𝜏 (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸ex, 𝜏 ∈ 𝑇 (4.9)
𝑓 res
𝑒,𝜏 (𝑒′) ≥ −cap(𝑒′) − 𝑓𝜏 (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸ex, 𝜏 ∈ 𝑇 (4.10)
𝑓 res
𝑒,𝜏 (𝑒′) ≤ 2cap(𝑒′) · z (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.13)
𝑓 res
𝑒,𝜏 (𝑒′) ≥ −2cap(𝑒′) · z (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.14)
𝑓 res
𝑒,𝜏 (𝑒′) ≤ cap(𝑒′) − 𝑓𝜏 (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.15)
𝑓 res
𝑒,𝜏 (𝑒′) ≥ −cap(𝑒′) − 𝑓𝜏 (𝑒′) ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸cand, 𝜏 ∈ 𝑇 (4.16)

0 =
∑︁
𝑥𝑢∈𝐸

𝑓 res
v𝑤,𝜏 (𝑥𝑢) −

∑︁
𝑢𝑦∈𝐸

𝑓 res
v𝑤,𝜏 (𝑢𝑦)

∀v𝑤 ∈ 𝐸,𝑢 ∈ 𝑉 \ {v, 𝑤}, 𝜏 ∈ 𝑇 (4.17)
𝑐𝜏 (𝑒) ≥ 0 ∀𝑒 ∈ 𝐸, 𝜏 ∈ 𝑇 (4.18)

𝑐𝜏 (v𝑤) ≥ 𝑓𝜏 (v𝑤) − ℎ ·
©«
∑︁
𝑥𝑤∈𝐸

𝑓 res
v𝑤,𝜏 (𝑥𝑤) −

∑︁
𝑤𝑦∈𝐸

𝑓 res
v𝑤,𝜏 (𝑤𝑦)

ª®¬
∀v𝑤 ∈ 𝐸, 𝜏 ∈ 𝑇 (4.19)
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𝑐𝜏 (v𝑤) ≥ −𝑓𝜏 (v𝑤) − ℎ ·
©«
∑︁
𝑥v∈𝐸

𝑓 res
v𝑤,𝜏 (𝑥v) −

∑︁
v𝑦∈𝐸

𝑓 res
v𝑤,𝜏 (v𝑦)

ª®¬
∀v𝑤 ∈ 𝐸, 𝜏 ∈ 𝑇 (4.20)∑︁

𝑒∈𝐸cand

z (𝑒) · 𝑐 (𝑒) ≤ Costmax (4.22)

𝑓𝜏 (𝑒) ∈ R ∀𝑒 ∈ 𝐸, 𝜏 ∈ 𝑇
𝑓 ′𝜏 (𝑒) ∈ R ∀𝑒 ∈ 𝐸cand, 𝜏 ∈ 𝑇
\𝜏 (v) ∈ R ∀v ∈ 𝑉 , 𝜏 ∈ 𝑇
𝑐𝜏 (𝑒) ∈ [0,∞) ∀𝑒 ∈ 𝐸, 𝜏 ∈ 𝑇

𝑓 res
𝑒,𝜏 (𝑒′) ∈ R ∀𝑒 ∈ 𝐸, 𝑒′ ∈ 𝐸, 𝜏 ∈ 𝑇
z (𝑒) ∈ {0, 1} ∀𝑒 ∈ 𝐸cand
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A.3 Plots for CC-TNEP vs. MP-EFE

10

100

1000

10000

1 100 200 300 400 474
Instances solved optimally byMP-EFE

tim
e C

C-
TN

EP
/t

im
e M

P-
EF

E

(a) Two timestamps.

10

100

1000

10000

1 100 200 305
Instances solved optimally byMP-EFE

tim
e C

C-
TN

EP
/t

im
e M

P-
EF

E
(b) Three timestamps.

10

100

1000

10000

1 50 100 150 200 222
Instances solved optimally by MP-EFE

tim
e C

C-
TN

EP
/t

im
e M

P-
EF

E

(c) Four timestamps.

10

100

1000

10000

1 50 100 133
Instances solved optimally byMP-EFE

tim
e C

C-
TN

EP
/t

im
e M

P-
EF

E

(d) Six timestamps.

10

100

1000

1 10 20 30 40 50 55
Instances solved optimally byMP-EFE

tim
e C

C-
TN

EP
/t

im
e M

P-
EF

E

(e) Twelve timestamps.

10

100

1000

1 10 20 26
Instances solved optimally byMP-EFE

tim
e C

C-
TN

EP
/t

im
e M

P-
EF

E

(f) 24 timestamps.

Figure A.1: The ratio of the solution times for CC-TNEP to MP-EFE on instances
where both MP-EFE and CC-TNEP found solutions. Each plot shows the results for
instances with a fixed number of timestamps. The instances are sorted by increasing
ratio.
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A.4 Plots for the Evaluation of the Greedy Heuristic
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Figure A.2: The ratio of solution times for the greedy algorithm and Gurobi solving
CME. Only the instances where both solution methods found the same result are
plotted. Each plot shows instances with the same number of timestamps. For each
budget, the instances are sorted by increasing ratio.
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