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Self-Supervised Learning for Annotation
Efficient Biomedical Image Segmentation
Luca Rettenberger*, Marcel Schilling*, Stefan Elser, Moritz Böhland, and Markus Reischl

Abstract— Objective: The scarcity of high-quality anno-
tated data is omnipresent in machine learning. Especially
in biomedical segmentation applications, experts need to
spend a lot of their time into annotating due to the com-
plexity. Hence, methods to reduce such efforts are desired.
Methods: Self-Supervised Learning (SSL) is an emerging
field that increases performance when unannotated data
is present. However, profound studies regarding segmenta-
tion tasks and small datasets are still absent. A comprehen-
sive qualitative and quantitative evaluation is conducted,
examining SSL’s applicability with a focus on biomedical
imaging. We consider various metrics and introduce mul-
tiple novel application-specific measures. All metrics and
state-of-the-art methods are provided in a directly applica-
ble software package (https://osf.io/gu2t8/). Results:
We show that SSL can lead to performance improvements
of up to 10%, which is especially notable for methods
designed for segmentation tasks. Conclusion: SSL is a
sensible approach to data-efficient learning, especially for
biomedical applications, where generating annotations re-
quires much effort. Additionally, our extensive evaluation
pipeline is vital since there are significant differences be-
tween the various approaches. Significance: We provide
biomedical practitioners with an overview of innovative
data-efficient solutions and a novel toolbox for their own
application of new approaches. Our pipeline for analyzing
SSL methods is provided as a ready-to-use software pack-
age.

Index Terms— Biomedicine, Contrastive Learning, Deep
Learning, Segmentation, Self-Supervised Learning

I. INTRODUCTION

Recently, Deep Learning (DL) has shown great potential
in various research areas, including biomedicine [16], [26],
[40], [52], [64]. However, since data is essential for DL
algorithms and annotating samples can be tedious, these
approaches are often constrained by the lack of suitable
annotated datasets. Generating annotations for segmentation
tasks is especially time-consuming; hence such datasets are
particularly affected by annotation scarcity. This is further
amplified within biomedical imaging. High inter- and intra-
subject variations are ubiquitous. Relevant regions are often
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difficult to separate as they appear heterogeneous and the shape
or borders are fuzzy and hard to determine [12], [49]. Further,
when developing diagnostics solutions, the analysis algorithms
need to be robust [42]. All these difficulties conflict with
deep learning algorithms as they usually need vast amounts
of accurately annotated samples to perform well [51].

Self-Supervised Learning (SSL) is an emerging approach to
counteract the gap between the large amount of data needed
in deep learning and the difficulties in annotating. It finds
characteristics in unannotated data and builds a knowledge
base [24]. This can increase the performance on a small
portion of annotated samples of the same or a similar domain.
Especially within biomedical image segmentation, this intro-
duces multiple benefits. First, the general robustness of the
Machine Learning (ML) system is enhanced by task-agnostic
knowledge [65]. Second, the importance of annotations is
reduced since SSL creates knowledge without needing any
segmentation masks. Third, the delineation quality of rele-
vant regions increases as SSL does not depend on possibly
erroneous human annotations [8]. Despite the great potential,
in-depth investigations regarding SSL for segmentation tasks,
small-scale datasets, and applicability within the biomedical
domain are missing.

This work’s contributions are: (i) A comprehensive study re-
garding the potential and applicability of SSL in segmentation
applied to biomedical imaging with limited data is conducted.
(ii) We evaluate the state-of-the-art methods concerning visual
representation learning, dense predictions, and biomedical
applications using various qualitative and quantitative metrics.
(iii) Multiple novel metrics are introduced, focusing to evaluate
SSL in-depth depending on the number of available annota-
tions. (iv) A software package is deployed, including all SSL
methods and evaluation metrics.

All code and data employed in this paper are open-source
and available at https://osf.io/gu2t8/.

II. RELATED WORK

Solutions to computer vision challenges usually revolve
around building Supervised Learning (SL) systems with re-
markable solutions for a particular problem [16], [22], [30],
[56] but no transferability to other challenges. Such methods
are gradually recognized as a limiting factor [37]. Further,
human annotations are often erroneous, so numerous works
try to reduce the human component in ML or focus on
data-efficient learning approaches like active learning, semi-
supervised learning, or transfer learning [44]–[46], [50], [51],
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[58], [69], [70]. A particularly promising approach to reduce
annotation efforts is SSL, which finds inherent structures in
unannotated images [33].

SSL consists of two phases: the pretext task P (or pre-
training) and the downstream task D. The pretext task learns
features of a given unannotated dataset by transforming sam-
ples into a vector (= representation learning). Pseudo anno-
tations are generated by the SSL method to train P applying
conventional SL approaches [29], [43]. The learned parameters
of P are subsequently used as initialization in D, which
may be any ML challenge. SSL for imaging data consist
of three categories: i) generative, ii) generative-discriminative
and, iii) discriminative methods. Generative methods employ
Autoencoders (AEs) with reconstruction error-based losses
(denoising AEs) [3], [55]. Generative-discriminative methods
use Generative Adversarial Networks (GANs) [20] to learn
image representations [14], [15], [17]. Discriminative methods
apply metrics on image representations directly [6], [8], [9],
[21], [65].

Contrastive Learning (CL) belongs to the discriminative
methods and currently dominates the state of the art in SSL
[8], [65]. Here, pseudo annotations are generated by modifying
the appearance of an image x. The augmentation process T
is used, which produces modification functions t ∼ T that are
employed to obtain two views t(x) = x′ and t′(x) = x′′ of
the same depicted object. Using the similarity function F , CL
maps x′ and x′′ to a similarity value s ∈ R+

F : x′ × x′′ 7→ s. (1)

F is trained to output high values for similar (x′ and x′′)
samples and low values for dissimilar (any other image)
samples [36]. To prevent F from yielding a constant distance
of 0 (model collapse), it must be trained on as many dissimilar
samples as possible. In DL, F is implemented with two Neural
Network (NN) encoders fΘ and fξ, that map the views into
a lower-dimensional feature space, combined with a distance
metric d() (see Fig. 1). The parameters of fΘ and fξ are
then employed into a downstream task. Considering dense
predictions (classifying each pixel of an image), the encoder
of an Encoder-Decoder Network (EDN) is provided with fΘ
and fξ for the downstream training.

Fig. 1. Concept of contrastive learning: The sample image x is
modified by an augmentation process T to produce two different views
t(x) = x′ and t′(x) = x′′. Both views are then mapped into a
feature space by the encoders fΘ and fξ. During training the distance
d(fΘ(x′),fξ(x

′′)) between the two mappings is minimized.

Within CL multiple approaches exist. MoCo [24] uses a
query encoder fΘ that is trained with regular backpropagation
and a momentum encoder fξ that is updated with a linear
interpolation of fΘ and fξ itself. MoCo also introduces an

encoding queue containing the representations from previous
training batches to access many dissimilar samples during
training. SimCLR [8] introduces projection heads consisting of
multiple Multilayer Perceptrons (MLPs), that map the views
yet again into a lower vector space. Within SimCLR fΘ and fξ
share all parameters. Bootstrap Your Own Latent (BYOL) [21]
avoids model collapse without the need for dissimilar samples
by defining the parameters ξ as an exponential moving average
of Θ. Barlow Twins [65] tries to make the cross-correlation
matrix of a batch of samples close to identity, effectively
moving together similar samples (on-diagonal) and decorre-
lating the other samples (off-diagonal). DenseCL [59] extends
MoCo by employing one projection head as introduced in
SimCLR and a second one tailored for dense predictions.
DetCo [60] is a second extension to MoCo that uses many
projection heads to improve dense predictions. DenseCL and
DetCo have been proven on dense predictions, SimCLR and
MoCo in the biomedical environment [59], [60], [63], [67].
Barlow Twins, BYOL, AE were evaluated neither on dense
predictions nor biomedical data. A graphical overview is given
in the supplementary.

A popular benchmark for CL is to pre-train a NN on the
ImageNet [48] classification challenge and use the obtained
parameters as initialization for the actual task [41], [61]. While
this works well for large datasets within similar domains
as ImageNet, it is unknown whether this benefit can be
transferred to more specific domains like the biomedical field,
small-scale datasets, or segmentation challenges.

Most studies within SSL for biomedical imaging focus on
classification tasks [4], [53], [57]. Such studies cannot be
considered for segmentation since the semantic consistency
is disregarded if certain essential image augmentations are
applied [8], [66]1. Some works address this issue by tailoring
frameworks for dense prediction tasks [7], [25], [38], [59],
[62] and a few studies examine segmentation tasks, however,
with very large datasets [10].

The fundamental challenges are summarized as follows: (i)
Current studies assume that the database for training consists
of millions of samples, which is not the case in real-world
scenarios. (ii) Studies on SSL in the biomedical imaging
field are scarce; there is no comprehensive application-related
study. (iii) Statements about whether the attention to semantic
consistency in SSL makes a difference for the actual appli-
cation are missing. (iv) There is no collection of evaluation
methods to reliably and comparably evaluate SSL methods.
No metrics evaluate SSL depending on available annotations.
(v) No framework combines different SSL techniques and
additional tools and methods.

III. CONCEPT

A. Experiments

We systematically compare the state of the art in SSL on
biomedical data with various metrics to conclude about the
applicability of the methods. Our experiments are divided into

1For example, if an image is cropped at two random positions, the two
crops may contain objects of different semantic categories
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Fig. 2. Overview of our work: Our experiments are conducted in three stages 1 , 2 , and 3 . In the first stage, a set of pretext tasks
P = {P1,P2,P3, . . . } are combined with multiple unannotated biomedical imaging datasets Xu = {Xu

1 ,Xu
2 ,Xu

3 , . . . } and used in the
pretext experiments to parameterize useful encoders fΘ and evaluated with multiple metrics ( 1 ). The encoders fΘ are then employed into
the downstream experiments, which consist of regular Supervised Learning (SL) methods D = {D1,D2,D3, . . . } ( 2 ) and are trained with a
EDN consisting of the contracting path fΘ and an expanding path fΨ. For the downstream tasks, the datasets are extended with corresponding
annotations A = {A1,A2,A3, . . . }. Usually, only a subset R of the available annotations Aj ⊃ R are provided. Multiple metrics evaluate the
downstream experiments to assess the performance, depending on the available annotations R. All pre-training methods, evaluation metrics, and
formalizable conclusions are provided as a self-contained software solution, ready to be used in industrial deployment, biomedical applications, or
further research ( 3 ).

two stages: the first focuses on pretext tasks, and the second
employs the learned representations into the downstream tasks.

1) Pretext Comparison: In the first part a set of SSL pretext
tasks P = {P1,P2,P3, . . . } are combined with unannotated
biomedical datasets X u = {X u

1 ,X u
2 ,X u

3 , . . . } to learn useful
representations and parameterize the encoder fΘ (Fig. 2, 1 ).
The learned parameters Θ are evaluated independently of the
subsequent downstream task with various metrics. ImageNet
pre-training is used as a baseline. Further, an Autoencoder is
trained, which is the simplest type of representation learning.
For the SSL methods, a combination of classical methods
(SimCLR, Barlow Twins, BYOL, and MoCo) and the latest
approaches designed for dense tasks (DenseCL and DetCo)
are used to obtain an all-encompassing overview.

2) Downstream Application: The second part employs the
learned representations into the downstream tasks D =
{D1,D2,D3, . . . } to evaluate the performance on real-
world segmentation challenges. For this X u is enriched
with corresponding annotations/segmentation masks A =
{A1,A2,A3, . . . } and the provided parameters fΘ are used
as initialization. The decoder fΨ of the employed EDN is
randomly initialized. Since SSL is especially interesting for
partially annotated datasets, we observe how the performance
behaves depending on the number of annotated samples. The
downstream tasks are evaluated with multiple metrics to assess
the performance on each dataset X u

j with annotations Aj , a
pretext task Pi, and downstream task Dh depending on the

number of available annotations R ⊂ Aj (Fig. 2, 2 ). Powers
of two are used as annotation rates ρs = 2s/100, s = 0, . . . ,6
to focus on situations with few annotations. We also investigate
whether freezing the learned parameters fΘ is a viable option,
as this reduces the training effort and the number of required
annotated samples [27]. Since 2% available annotations are
difficult but not impossible to solve if the pretext task provides
good representations, we choose to select exemplary results
for each pretext task for this annotation rate. In our work,
No Pretraining means that the parameters of the encoder are
randomly initialized [22] and not changeable during training.

To make all results easily accessible and to be able to trans-
fer our evaluation pipeline to other challenges, all methods,
employed metrics, and formalizable conclusions are provided
as a self-contained software package ready to be applied to any
biomedical challenge (Fig. 2, 3 ). Details about the training
configurations are given in the supplementary.

B. Evaluation Methods
We provide a collection of qualitative and quantitative

metrics to investigate SSL.
1) Implementation and Hardware Requirements: We con-

sider the number of hyperparameters ψ and the qualitative
implementation overhead κ for each SSL method. Since SSL
methods extend the employed encoder fθ for training and
require larger batch sizes than SL, we also evaluate the relative
number of parameters ∆θ compared to fθ and the required
batch size b.
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2) Class Activation Maps: Observing the the Class Acti-
vation Maps (CAMs) [68] of the encoder trained with SSL
enables the visual interpretation of the learned features with
attention maps. We evaluate the quality of a CAM as how
much the computed focus is on the segmented object.

3) Centered Kernel Alignment: Centered Kernel Alignment
(CKA) [34] is a similarity metric that is invariant to orthogonal
transformations and isotropic scaling. It observes the compared
NNs at multiple feature layers. It is not relevant if identical
filters of two NNs are located at different positions in a
layer. Therefore, it is a suitable measure to quantitatively
evaluate features of multiple SSL methods and to evaluate how
similar the layers of the encoders are compared to the network
being trained supervised with annotations. High similarity to
the supervised case means good performance since the same
parameters could be found without annotations.

C. Novel Evaluation Methods

We introduce three novel metrics, as the existing evalua-
tion methods do not analyze SSL approaches in a sufficient
quantification degree and considering the given annotations.

1) Neighborhood Quality Criterion (NQC): Considering a
representation p of a dataset X , the nearest Dn() and farthest
Df() neighbors calculated with the Euclidean distance d()

Dn(p) = argmin
k∈X

{d(p,k)}

Df(p) = argmax
k∈X

{d(p,k)},

provide valuable insights since samples of the same latent
class should be clustered together and be located far away
from dissimilar samples [28]. We additionally introduce the
quantifying NQC measure that summarizes the neighborhood
quality in one value. NQC iterates over the test data X t and
outputs 1 if the nearest neighbor Dn(X t

i) of each sample X t
i

is from the same class and 0 otherwise

QNQC =
1

|X t|

|X t|∑
i=1

{
1, if X t

i and Dn(X t
i) are of same class

0, otherwise,

where |X t| is the cardinality of X t. Since NQC is dependent on
the number of classes k in X t, it can be employed to compare
different representation spaces, but not different datasets and
has to be > 1, to be able to find the nearest neighbor. To
reduce the effect of the curse of dimensionality [31], we
additionally employ a Principal Component Analysis (PCA)
[1] before evaluating Dn(), that maps the representations
into a 10-dimensional feature subspace. Assume a random
representation distribution for a dataset D of length l with
classification classes C. The expected value Erandom of QNQC
is calculated as the sum over the probability P() multiplied by
the number of samples for each class

Erandom [QNQC] =
1

l

∑
c∈C

P(c)|c|, (2)

where |c| denotes the cardinality of c.

2) Runtime Quality Criterion (RQC): We evaluate the tempo-
ral requirements of SSL approaches, as they require substantial
training effort and powerful hardware. The training time is
quantified into a comparable value by the novel RQC metric
that uses the point of stabilized loss values (convergence)
in the non-convex objective function. The time t() until this
convergence happens for a method δ is compared relative to
the fastest converging method t*

QRQC =
t(δ)
t*
. (3)

3) Integrated Quality Criterion (IQC): Considering that SSL
methods strongly depends on the number of available an-
notations, we introduce a novel metric called the Integrated
Quality Criterion (IQC), which evaluates the performance of
downstream tasks, taking the number of available annotations
into account.

In the following Ω() is some quality criterion, like the
Aggregated Jaccard Index (AJI+) [35] or the Dice-Sørensen
coefficient (DSC) [13]. The annotation rate is defined as
0.0 ≤ ϱ ≤ 1.0 with ϱ = 0.0 meaning no annotations and
ϱ = 1.0 fully annotated. Let a be the maximum and b be
the minimum annotation rate. All annotation rates {b, . . . ,a}
with 0.0 ≤ a,b ≤ 1.0 and a > b, are applied to Ω()
to acquire the measurements P = {Ω(b), . . . ,Ω(a)}. P is
linearly interpolated to obtain a continuous function fΩ,lin(ϱ).
To describe the overall quality concerning different annotation
rates ϱ we introduce the IQC formula as

QIQC =
1

Ω(ϱ = 1)(a− b)

∫ a

b

fΩ,lin(ϱ)dϱ.

Since the achieved quality with a completely annotated data
set Ω(ϱ = 1) can be assumed to be the maximum value,
the integral is normalized with the product of Ω(ϱ = 1) and
the interval length a − b (the maximum possible area). An
illustration of the IQC is given in the supplementary.

To verify IQC, we conduct a one-tailed t-test [32]. The null
hypothesis H0 states that the respective method is equal to or
worse than random initialization.

IV. RESULTS

A. Datasets

Two small-scale biomedical imaging datasets reflecting re-
alistic scenarios are observed in this work. They are different
in nature and cover various aspects that the practitioner may
encounter in biomedicine. Fig. 3 displays samples of both
datasets.

1) ISIC Melanoma: The first dataset stems from the 2017
International Skin Imaging Collaboration (ISIC) challenge
[11] (ISIC Melanoma dataset) and contains 2.600 close-up
RGB images, split into 2.000 train and 600 test samples. The
segmentation task is to generate binary masks which locate
the lesion in the respective image. The dataset also contains
a categorization task with three classes: Seborrheic Keratosis,
Melanoma, and Unknown.
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2) MoNuSeg: The second dataset is part of the 2018
MICCAI challenge [35] (MoNuSeg dataset) and contains
histopathological images of different types of organs. There
are 30 training and 14 test images. The challenge is to segment
and identify each nucleus in the multi-organ images (instance
segmentation). Additionally, there are classification annota-
tions given that differentiate the respective organs. The organ
classes are Kidney, Colon, Breast, Bladder, Prostate Liver,
Stomach, Brain, and Lung. The classes Liver and Stomach are
only contained in the training, Brain and Lung only in the test
set.

Fig. 3. Example images: a) ISIC Melanoma dataset [11] and b)
MoNuSeg dataset [35]. Segmentation masks are displayed as overlay.
Color markings are provided to assist in separating the individual
instances.

Details regarding the distribution of samples for both
datasets are provided in the supplementary.

B. Architecture, Training, and Implementation

The dimensions of the samples of the MoNuSeg dataset are
fairly large (1000×1000 pixels). Hence, we divide each image
into multiple crops of dimensions of 256× 256 to not distort
the content while keeping the individual images processable.
For the ISIC Melanoma dataset, the samples are resized to
256× 256 pixels.

The correct image augmentations are crucial for SSL.
Therefore, the augmentations from [59] used in many SSL
frameworks are chosen for the ISIC Melanoma dataset. Since
the MoNuSeg dataset consists of histopathological images,
other augmentations must be chosen. As there is no standard
for this type of data, we identified a set of fitting augmentation
parameters in an extensive hyperparameter search. For all
augmentations except Gaussian blurring, the Range value de-
scribes ranges of relative percentage changes. With Gaussian
blurring, the Range value describes the standard deviation. P
specifies the probability that the respective augmentation is
applied

• Random Cropping. Range [0.2, 1.0] and P=100%.
• Brightness modifications. Range: [0.4, 1.6] and P=80%.
• Contrast modifications. Range: [0.2, 1.8] and P=80%.
• Saturation modifications. Range: [0.2, 1.8] and P=80%.
• Brightness modifications. Range: [0.8, 1.2] and P=80%.
• Gaussian blurring. Range: [0.1, 2.0] and P=80%.
• Horizontal and vertical flipping. P=50%.
All SSL pretext tasks are trained with the SGD optimizer

with a weight decay of 1x10−4, momentum of 0.9, and
learning rate of 1 × 10−3. Additionally, we employ Cosine
Annealing to the learning rate [39]. As downstream task, we
either solve a semantic segmentation (ISIC Melanoma) or

instance segmentation (MoNuSeg) task. We employ the U-
Net [47] architecture with a ResNet-50 [23] backbone. For
semantic segmentation, we use the Dice Loss and for instance
segmentation the smooth L1 loss, both in combination with the
Adam optimizer and a learning rate of 1× 10−3. To segment
instances, we employ a subsequent seed-based watershed post-
processing.

The whole architecture and training loop is implemented
in PyTorch Lightning [18]. The Albumentations [5] library is
used to implement the image augmentations. For visualizing
the Gradient Class Activation Maps (Grad-CAMs), we use
the PyTorch Grad-CAMs library [19], and PyTorch Model
Compare [54] to calculate and display the CKA matrices.

As evaluation metrics, we employ the DSC for semantic
segmentation and the AJI+ for instance segmentation.

Training is performed on cluster nodes equipped with
NVIDIA A100 Tensor Core GPUs.

C. Pretext Comparison

1) Nearest and Farthest Neighbor Retrival: Fig. 4a displays
the Nearest and Farthest neighbors considering the ISIC
Melanoma dataset for three Reference images. The first image
stems from the Seborrheic Keratosis class and for most
approaches the Nearest neighbor is also within this class
and clear qualitative similarities are visible for DenseCL and
MoCo: the reference image and the two methods display
a round border around the object of interest. Qualitative
similarities are also present in the second sample (Melanoma
class). The Nearest neighbors for ImageNet, BYOL, DenseCL,
and MoCo are not only within the same class but also look
similar (patchy, disseminated melanoma with fuzzy borders).
Even though the Nearest neighbor of DetCo and SimCLR are
not from the Melanoma class, the images still appear similar.
Only for the Autoencoder and Barlow Twins the Nearest
neighbors appear less similar. In the last sample (Unknown
class) all methods have the Nearest neighbor in the same
class and appear similar as small black melanoma with sharp
edges (except for Barlow Twins). For all reference images
and methods, the Farthest neighbors look dissimilar. However,
the results indicate that the methods are not always able to
accurately capture the classifications, as the farthest neighbors
occasionally belong to the same class as the reference image.
This discrepancy can likely be attributed to large visual
variations within the individual classes.

The qualitative observations are supported by the NQC.
Assuming a random mapping of samples into the repre-
sentation space, the expected value of QNQC calculates to
Erandom[QNQC] = 0.49 (see Eq. 2). The Autoencoder, Barlow
Twins, and DetCo do not surpass this value. All other meth-
ods are noticeably better than Erandom, which shows that a
class-dependent clustering while training the SSL approaches
occurred even though it is not flawless. DenseCL in particular
is striking with a value of 0.64 (see Tab. I, where ↑ means
that large, and ↓ that small values are better. The best method
is marked in bold).

Fig. 4b shows the Nearest and Farthest neighbors for the
MoNuSeg dataset. As for the leftmost sample, the Nearest
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Fig. 4. Nearest and farthest neighbors: The circle in the upper right corner shows either the ground-truth class (reference image) or the predicted
classes. Samples are marked with green check marks if they are of the same class as the reference image and with red crosses if not. The nearest
and farthest neighbors are calculated as the Euclidean distance after a Principal Component Analysis (PCA) with 10 output components.

neighbors for most methods appear similar to the reference
image, with strong, dark colors and contrasting red and white
tones. Only the Autoencoder and DetCo stand out with a
marginally different appearance. The middle sample is less
clear. For ImageNet, Autoencoder, and BYOL, the Nearest
neighbors appear similar. For the other methods, this is not
the case. For the third reference image, the neighborhood
is similarly indistinct. Four methods (DenseCL, MoCo, Sim-
CLR, and BarlowTwins) have the same sample as Nearest
neighbor. ImageNet and the Autoencoder have a different
Nearest neighbor than the other methods, but it is also identical
between the two approaches. With the MoNuSeg dataset the
importance and expressiveness of the correlation between class
label clustering and actual representation quality is lower
than with ISIC Melanoma, as the challenge of this dataset
is instance segmentation and not classification. Class labels
are available in the MoNuSeg dataset, but it is not designed
as a classification challenge.

The difficulties mentioned above are also apparent in calcu-
lating QNQC. Random representation mapping is computed as
Erandom[QNQC] = 0.15. Almost all methods do not outperform
this value. The Autoencoder even falls below it. This is due to
Autoencoder pre-training providing parameters that are more
informative than Random but are not aligned with the given
class labels, leading to a representation space that is worse in
terms of class-based clustering compared to no pre-training.
Only DenseCL is able to surpass Erandom with a value of 0.23
(see Tab. I).

TABLE I
Nearest NEIGHBORS. QNQC IS THE Nearest NEIGHBOR QUALITY

CRITERION.

Method
QNQC ↑

ISIC Melanoma MoNuSeg

ImageNet 0.58 0.15
Autoencoder 0.48 0.07
BYOL [21] 0.57 0.15
DenseCL [59] 0.64 0.23
DetCo [60] 0.48 0.15
MoCo [24] 0.56 0.15
SimCLR [8] 0.56 0.15
Barlow Twins [65] 0.48 0.15

Evaluating the Nearest neighbors shows that the methods
seem to build representation spaces that share visible quali-
tative characteristics. Our novel NQC metric quantifies these
results. DenseCL emerged as the most promising method for
observing the neighborhood for both observed datasets.

2) Application and Hardware Requirements: Tab. II displays
relevant factors for evaluating hardware requirements and
application overhead. ImageNet and Autoencoder do not con-
tain any hyperparameters (ψ = 0). ImageNet classification
results are provided online, reducing κ to a download and
no additionally trained parameters (∆θ = +0M). Autoencoder
needs the skip connections of the U-Net to be removed and
increases the number of parameters by ∆θ = +11M, as the
expanding path must be additionally trained. For both, b is
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Fig. 5. Class activation maps: For each reference image, the ground-truth segmentation mask is given as an overlay. For each method, the CAM
for the respective reference image and the predicted segmentation mask is given. The U-Net was trained with 2% labeled samples for each dataset
(the remaining 98% unlabeled samples were removed for the downstream task). The encoder of the U-Net was frozen. The DSC and AJI+ are
given, and calculated over the whole test split of the respective dataset.

about the same size as in SL.
SimCLR, Barlow Twins, and BYOL need the generation of

image pairs, the contrastive loss function, and the projection
head to be implemented. All three have one hyperparameter to
be tuned (ψ = 1) and require batch sizes b big enough to pro-
vide enough negative samples for approximating the similarity
space. SimCLR contains the fewest parameters (∆θ = +2.2M),
followed by Barlow Twins (∆θ = +12.6M) and lastly BYOL
(∆θ = +46.6M).

All MoCo-based approaches (MoCo, DenseCL, and DetCo)
employ queue-based methods for negative samples, greatly
reducing the required batch size b while increasing the com-
plexity κ. MoCo and DetCo contain two hyperparameters
(ψ = 2) and DenseCL three (ψ = 3). DetCo requires by far
the most parameters of all methods due to the many projection
heads (∆θ = +946.5M).

For RQC, t* is set to Autoencoder, as it is the fastest
method. The values are averaged over both datasets. The
queue-based methods MoCo, DenseCL, and DetCo need the
longest training times. SimCLR (QRQC = 4.07) is the fastest
CL method, followed by Barlow Twins (QRQC = 4.53) and
BYOL (QRQC = 4.23).

D. Downstream Application

1) Class Activation Maps: Fig. 5 shows three reference
images, each with the predicted segmentation masks, the
CAM, and the respective quality metric (DSC or AJI+). The
ISIC Melanoma is trained with 32 annotated samples, and the
MoNuSeg dataset with 10.

TABLE II
APPLICATION AND HARDWARE REQUIREMENTS. ψ IS THE NUMBER OF

HYPERPARAMETERS TO BE TUNED, κ THE IMPLEMENTATION EFFORT,
∆θ THE NUMBER OF PARAMETERS RELATIVE TO THE RESULTING

BACKBONE (RESNET-50 [23]), b THE REQUIRED BATCH SIZE, AND

QRQC IS THE RELATIVE TIME UNTIL CONVERGENCE AND AVERAGED

OVER BOTH DATASETS.

Method ψ ↓ κ ∆θ ↓ b QRQC ↓

ImageNet 0 +++ +0M +++ -
Autoencoder 0 ++ +11M +++ 1.00
BYOL [21] 1 + +46.6M - - 4.23
DenseCL [59] 3 - +41.4M ++ 5.45
DetCo [60] 2 - - +946.5M ++ 5.12
MoCo [24] 2 - +32.4M ++ 4.93
SimCLR [8] 1 + +2.2M - - 4.07
Barlow Twins [65] 1 + +12.6M - - 4.53

For the ISIC Melanoma dataset, the performance is accept-
able even with No Pretraining, since looking at the CAMs
the melanomas of the reference image are at least roughly
detected. Using an Autoencoder as pretext task (DSC = 0.60)
reduces the performance compared to No Pretraining (DSC =
0.62). This is further supported by the CAMs, since the Au-
toencoder version of the U-Net pays attention to implausible
regions of the images. ImageNet pre-training can provide very
good results (DSC = 0.70), considering that it is the leading
method in terms of implementation and training effort. Still, all
CL methods apart from DetCo outperform ImageNet at least
by a small amount. Considering the DSC score, BYOL (DSC
= 0.71) , SimCLR (DSC = 0.71), and Barlow Twins (DSC =
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0.71) are on the same level.
For the MoNuSeg dataset, the results look less straightfor-

ward, presumably because it is more challenging, as many
individual instances have to be segmented. Still, distinctive
differences in the various methods can be recognized. Ob-
serving the AJI+, DetCo performs the worst (AJI+ = 0.39),
even being inferior to No Pretraining (AJI+ = 0.46). ImageNet
(AJI+ = 0.50) and the Autoencoder (AJI+ = 0.51) are sensible
choices for the MoNuSeg dataset, outperforming most of the
SSL methods. Only DenseCL (AJI+ = 0.51) is on par with
the Autoencoder. Looking at the leftmost reference image,
DenseCL pays attention to the regions where many nuclei
are located, while the Autoencoder has a less clear focus.
Overall, the differences between the various pretext methods
are marginal, suggesting that the approaches can extract little
information from the MoNuSeg dataset.

As DenseCL provides the best results for both datasets, it
can be assumed that dedicated pretext methods, adjusted to
the downstream task, are useful.

2) Centered Kernel Alignment (CKA): Tab. III displays the
comparison of the different pretext methods compared to SL
training on the whole dataset.

TABLE III
CKA BETWEEN SSL METHODS AND SUPERVISED TRAINING. ConvX

DESCRIBES THE CKA SIMILARITY FOR THE X’TH LAYER OF THE

RESNET-50 [23] ENCODER. µ DESCRIBES THE MEAN VALUE OVER ALL

LAYERS.

a) ISIC Melanoma

Method Conv1↑ Conv2↑ Conv3↑ Conv4↑ µ↑

ImageNet 0.88 0.86 0.75 0.65 0.79
Autoencoder 0.68 0.51 0.45 0.37 0.50
BYOL [21] 0.83 0.82 0.73 0.60 0.75
DenseCL [59] 0.85 0.82 0.81 0.73 0.80
DetCo [60] 0.65 0.46 0.40 0.36 0.47
MoCo [24] 0.77 0.70 0.74 0.70 0.73
SimCLR [8] 0.85 0.82 0.79 0.71 0.79
Barlow Twins [65] 0.72 0.61 0.66 0.70 0.67

b) MoNuSeg

Method Conv1↑ Conv2↑ Conv3↑ Conv4↑ µ↑

ImageNet 0.95 0.78 0.45 0.48 0.67
Autoencoder 0.96 0.74 0.39 0.35 0.61
BYOL [21] 0.91 0.65 0.28 0.25 0.52
DenseCL [59] 0.97 0.79 0.47 0.46 0.67
DetCo [60] 0.62 0.31 0.11 0.13 0.29
MoCo [24] 0.96 0.76 0.45 0.43 0.65
SimCLR [8] 0.95 0.76 0.46 0.44 0.65
Barlow Twins [65] 0.76 0.61 0.45 0.45 0.57

For the ISIC Melanoma dataset, parallels between the
CAMs and high values regarding the CKA are visible. Further,
the methods that emerge as the most capable also have the
most similar representations to SL. This means that suitable
pretext tasks learn very similar parameters as fully supervised
training (with enough training data). Furthermore, these par-
allels also show that the quantifying metric CKA can extend
or even replace the purely qualitative CAMs. Comparing the
best methods determined by the mean (µ) CKA over all
layers, ImageNet (µ = 0.79) has the best representations in
the upper layers (Conv1 and Conv2), SimCLR (µ = 0.79) does

not have quite as good representations in the upper layers,
but flattens less in the lower layers (Conv3, Conv4). DenseCL
(µ = 0.80), has the overall best and least decreasing CKA
values. This supports the notion that transfer learning works
so well with ImageNet since it provides general representations
that are useful for all kinds of challenges, but the task-specific
parameters have to be relearned (fine-tuning). SSL on the other
side learns useful features throughout the whole network.

For the MoNuSeg dataset, the CKA values are much higher
in the first layers than in the lower ones. This is expected
for ImageNet, as the domain of histopathological data is quite
detached from the content of the ImageNet dataset. Observing
the SSL methods, the upper filters of the ResNet seem to fit
very well but then rapidly worsen. This is a strong indication
that the training could not provide enough information for
learning complex and specialized features (the lower layers of
the network). Nevertheless, DenseCL (µ = 0.67) provides the
best parameters almost throughout the whole network, on par
with ImageNet (µ = 0.67).

3) Integrated Quality Criterion (IQC): Looking at the quan-
titative evaluation of our novel IQC metric, the findings can
be further confirmed (see Tab. IV). We discriminate between
frozen and unfrozen encoders to determine whether fine-tuning
the provided parameters of the pretext task is sensible. The
QIQC summarizes the performance over the entire range of
label ratios into one value. Thus, it can be seen as an approxi-
mation of a fully comprehensive view. A detailed visualization
is provided in the supplementary.

TABLE IV
QUANTITATIVE COMPARISON SSL METHODS IN THE CONTEXT OF

SEMANTIC SEGMENTATION (ISIC MELANOMA) AND INSTANCE

SEGMENTATION (MONUSEG). QIQC IS CALCULATED WITH THE DSC
(ISIC MELANOMA) OR WITH THE AJI+ (MONUSEG). THE p VALUES OF

THE t-TEST ARE GIVEN IN BRACKETS. WE DISCRIMINATE BETWEEN

FROZEN ENCODERS AND UNFROZEN ENCODERS. PERFORMANCE

METRICS ARE PROVIDED IN PERCENTAGES.

a) ISIC Melanoma b) MoNuSeg

QIQC (p) ↑ [%] QIQC (p) ↑ [%]
Method Frozen Unfrozen Frozen Unfrozen

Random 85.6 (-) 91.9 (-) 81.0 (-) 90.3 (-)
ImageNet 92.7 (0.000) 95.4 (0.000) 90.5 (0.000) 92.5 (0.021)
Autoencoder 89.4 (0.000) 92.7 (0.000) 80.0 (0.76) 90.1 (0.000)
BYOL [21] 92.5 (0.000) 94.9 (0.000) 83.1 (0.048) 90.5 (0.410)
DenseCL [59] 94.1 (0.000) 96.3 (0.000) 86.9 (0.001) 93.5 (0.003)
DetCo [60] 80.1 (0.999) 90.3 (0.991) 78.2 (0.997) 84.8 (0.992)
MoCo [24] 93.4 (0.000) 96.0 (0.000) 87.8 (0.000) 93.4 (0.003)
SimCLR [8] 93.9 (0.000) 95.6 (0.000) 85.5 (0.002) 93.3 (0.016)
Barlow Twins [65] 91.7 (0.000) 92.8 (0.019) 79.6 (0.869) 86.9 (0.999)

As in the previous experiments, DenseCL is the leading
method, followed by ImageNet. However, the performance
gaps are much smaller if we look at the whole range of
available annotations. Observing the ISIC Melanoma dataset,
QIQC improves noticeably, compared to Random, for all SSL
methods apart from DetCo. For frozen encoders, the best
method DenseCL improves QIQC by 8.5%. If we unfreeze
the encoder, each method gets better. This means that the
learned features of the SSL methods are not sufficient to be
considered optimal in the downstream task and should at least
be fine-tuned for the best results. DenseCL still achieves an
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improvement of 4.4% compared to Random. Moreover, all
methods (apart from DetCo) are at least slightly better than
Random. This shows that even with varying annotation rates
employing a pretext task is reasonable.

Observing the MoNuSeg dataset with frozen encoders, al-
most all methods enhance the performance in the downstream
task compared to Random (QIQC = 81.0). Only Barlow Twins
(QIQC = 79.6.0) and DetCo (QIQC = 78.2) worsen the results.
This displays parallels to the CKA similarities from Tab. III, as
these two methods have the lowest values with a considerable
gap to all others. Unlike DetCo, Barlow Twins was not bad
for the ISIC melanoma dataset. This may suggest that Barlow
Twins is not suitable for instance segmentation tasks. Further,
if the encoder is frozen, ImageNet has the best representations,
showing that it can provide good representation even if the
domains have no apparent commonalities. Further, this either
means that SSL is not suitable for this downstream task or that
the dataset is not large enough. With unfrozen encoders, the
results look quite different. While ImageNet only enhances
marginally, the SSL approaches can demonstrate significant
improvements. This shows that SSL, unlike ImageNet, learns
useful representations throughout the whole network. If the
features deep in the network are not very suitable, relearning
them takes a lot of effort, which is most likely the case with the
parameters provided by ImageNet. An additional evaluation on
a dataset containing breast ultrasound images [2] is available
in the supplementary material.

V. DISCUSSION

Our evaluation shows that ImageNet pre-training is a ca-
pable pre-training method that can be used with little effort.
Still, most SSL approaches perform better than ImageNet if
the parameters are adjustable during training, challenging the
previous assumption that SSL requires millions of samples
to deliver good results. DenseCL, in particular, consistently
displays a clear performance advantage compared to other
methods, which shows that attention to spatial information
improves segmentation. Observing the pretext comparison,
especially regarding the application overhead and hardware
requirements, it is questionable whether SSL methods are cost-
effective. However, a closer look at the representations of
SSL approaches shows that SSL learns task-specific, complex,
features while transfer learning provides simple ones. Also,
our results show that the parameters of SSL methods most
likely converge to the same parameters found in SL when
sufficient data is available. This strongly indicates that the
potential of SSL is not fully exhausted yet.

Looking at different number of available annotations, our
novel evaluation method IQC approximates a fully compre-
hensive view of the respective dataset and the employed SSL
methods. The NQC provides quantifications of classification
annotations and the RQC summarizes training time compar-
isons into one value.

Many practical insights are obtained. ImageNet and Au-
toencoder provide good results regarding pre-training, if little
time can be invested. When employing SSL for segmentation,
methods tailored specifically for this challenge are the best

option. DenseCL is especially promising. Even though DetCo
was designed for segmentation tasks as well, it does not yield
sufficient results. There is a strong correlation between the
results of SSL methods and clustering regarding the classifica-
tion annotations, which should be observed if such annotations
are available. Further, SSL is more effective for semantic
segmentation than for instance segmentation. As SSL shows
great potential but also noticeable differences between the ISIC
Melanoma and MoNuSeg, new approaches and datasets should
always be compared with our framework in a structured way.

VI. CONCLUSION

We presented a comprehensive analysis regarding Self-
Supervised Learning (SSL) in biomedical image segmentation
and developed a framework for evaluating SSL methods with
a variety of existing and novel qualitative and quantitative
criteria. All methods and evaluation metrics are provided as
a self-contained software solution, ready to be used in indus-
trial deployment, biomedical applications, or further research
(https://osf.io/gu2t8/). Our results on two small-
scale biomedical datasets show that SSL improves segmenta-
tion tasks, especially if annotations are missing. In particular,
methods explicitly tailored for segmentation tasks can produce
improvements of up to 10% in overall performance.

Our evaluation pipeline offers in-depth insights into the
inner workings of SSL and clearly quantifies which methods
are best suited for a specific dataset. These detailed examina-
tions sparked many inspirations for future works: new methods
that focus on the segmentation of single instances of objects,
targeting specific layers in the neural network for optimization,
or the combination of transfer learning and SSL are ideas for
future work.
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