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Abstract

Surfaces with heterogeneous properties occur in many engineering and geophysical flows, as
atmospheric flows over urban and rural areas illustrates. However, due to the multitude of surface
patterns, variation in textures and a variety of different scales, the current knowledge on the influence
of heterogeneous surfaces on the exchange processes of momentum, heat and mass transport of
turbulent flows is limited. The aim of the thesis is to contribute to a better understanding of these
processes by focusing on a specific subtype of heterogeneous surface, that is spanwise heterogeneous
surfaces, where the surface heterogeneity occurs perpendicular to the main flow direction. These
surfaces are known to generate turbulent secondary motions, which appear as large-scale counter-
rotating vortices aligned with the flow. These can significantly alter the exchange processes of
turbulent flows. One objective of the thesis is to investigate the influence of lateral variations in
surface drag in combination with relative wall elevation on the formation of secondary motions.
In addition, the influence of spanwise heterogeneous surfaces on turbulent large-scale structures,
which can also be found above homogeneous wall conditions, is examined. All investigations of
the thesis are based on direct numerical simulations (DNS), which resolve all relevant turbulent
scales. For secondary motions over alternating smooth- and rough-wall strips, it is found that the
strength of secondary motions correlates with the relative height difference between these strips,
independent ofwhich strip is protruding. However, the rotational direction of the secondarymotions
depends whether the roughness strip is protruding or recessed, which is related to the distribution
of wall-normal deflections of spanwise velocity at the protruding strip edges. The interaction and
coexistence of secondary motions with large-scale and very-large-scale motions (LSM/VLSM) is
investigated in turbulent open-channel flows with streamwise-aligned ridges. The results shows that
coexistence between secondary motions and VLSMs is possible for large ridge spacings S ≥ 4δ,
where δ is the half-channel height, such that VLSMs emerge in the valleys between the ridges that
are unaffected by secondary motions. Reducing the strength of secondary motions by decreasing
the ridge height, eventually leads to the reappearance of VLSMs at the ridges. By means of proper
orthogonal decomposition (POD), instantaneous large-scale structures are detected for dense ridge
spacings (S ≤ δ), that resemble LSMs and extending over adjacent ridges, which is not evident
from the mean secondary motions. In addition, the influence of spanwise heterogeneous surfaces
on turbulent convective large-scale structures, which form under the concurrent action of buoyancy
and shear, are examined in turbulent channel flows with streamwise-aligned ridges. Among these
structures are streamwise rolls, which are long coherent structures aligned with the flow direction.
Their range of occurrence is significantly reduced by spanwise heterogeneous surfaces compared to
homogeneous smooth-wall conditions, which is related to the increased drag exerted by the ridges.
Furthermore, the ridges can introduce slow dynamics of the streamwise rolls in case the spanwise
ridge spacing is in the order of the roll’s width.
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Kurzfassung

Oberflächen mit heterogenen Eigenschaften kommen in vielen technischen und geophysikalischen
Strömungen vor, wie beispielsweise atmosphärische Strömungen über urbanen und ländlichen
Flächen verdeutlichen. Aufgrund der zahlreichen Oberflächenformen, unterschiedlicher Texturen
und der Vielzahl involvierter Skalen ist das derzeitige Wissen über den Einfluss heterogener Ober-
flächen auf die Austauschprozesse von Impuls-, Wärme- und Stofftransport in turbulenten Strö-
mungen jedoch begrenzt. Das Ziel dieser Arbeit ist es, zu einem besseren Verständnis dieser
Prozesse beizutragen, indem der Fokus auf eine spezielle Unterart heterogener Oberflächen gelegt
wird, nämlich auf spannweitig heterogene Oberflächen, bei denen die Oberflächenheterogenität
senkrecht zur Hauptströmungsrichtung auftritt. Diese Oberflächen sind bekannt dafür turbulente
Sekundärströmungen auszubilden, welche die Austauschprozesse turbulenter Strömung erheblich
verändern. Diese Sekundärströmungen treten dabei in Form von großskaligen und gegenläufigen
Wirbeln senkrecht zur Hauptrströmungsrichtungen auf. Die Thesis untersucht einerseits den Ein-
fluss von seitlichen Variationen des Oberflächenwiderstands in Kombination mit unterschiedlichen
relativen Wandhöhen auf die Entstehung von Sekundärströmungen. Andererseits, wird der Ein-
fluss von spannenweitig heterogenen Oberflächen auf turbulente großskalige Strukturen untersucht,
welche auch über homogenen Wandbedingungen anzutreffen sind. Die Untersuchungen in dieser
Arbeit basieren auf direkten numerischen Simulationen (DNS), die alle relevanten turbulenten
Skalen auflösen. Für Sekundärströmungen über abwechselnd glatten und rauen Wandstreifen wird
gezeigt, dass deren Stärkemit dem relativen Höhenunterschied zwischen den Streifen korreliert, un-
abhängig davonwelcher Streifen hervorsteht. DieDrehrichtung der Sekundärströmung hängt jedoch
davon ab, ob der Rauheitsstreifen hervorsteht oder vertieft ist, was mit der Verteilung der wandnor-
malen Ablenkungen der spannweitigen Geschwindigkeit an den hervorstehenden Streifenkanten
zusammenhängt. Die Interaktion und Koexistenz zwischen Sekundärströmungen mit large- und
very-large-scale motions (LSM/VLSM) wird in turbulenten Strömungen offener Kanäle mit in
Strömungsrichtung orientierten Stegen untersucht. Die Ergebnisse zeigen, dass Koexistenz zwis-
chen Sekundärströmungen und VLSMs bei großen Stegabständen S ≥ 4δ möglich ist, wobei δ
die halbe Kanalhöhe ist. Somit können VLSMs in den von Sekundärströmungen unbeeinflussten
Bereichen der Täler zwischen den Stegen entstehen. Desweiteren kann gezeigt werden, dass die
verringerte Stärke der Sekundärströmung durch Abnahme der Steghöhe schließlich zum Wieder-
auftreten von VLSMs in Stegnähe führt. Mit Hilfe der proper orthogonal decomposition (POD)
werden für enge Stegabstände (S ≤ δ) instantane großskalige turbulente Strukturen aufgedeckt.
Diese Strukturen ähneln LSMs und erstrecken sich über benachbarte Stege, was aus den mittleren
Sekundärströmungen nicht ersichtlich ist. Zusätzlich wird in turbulenten Kanalströmungen mit
Stegen untersucht, wie sich spannweitig heterogene Oberflächen auf großskalige turbulente kon-
vektive Strukturen auswirken, die sich unter der gleichzeitigenWirkung von Auftrieb und Scherung
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bilden. Zu diesen konvektiven Strukturen gehören streamwise rolls, die lange, kohärente und in
Strömungsrichtung ausgerichtete Rollen darstellen. Diese treten bei spannweitig heterogenen Ober-
flächem im Vergleich zu homogenen, glatten Wandbedingungen in einem reduzierten Bereich auf,
was mit einem durch die Stege erhöhten induzierten Wiederstand assoziiert wird. Darüber hinaus
können die Stege eine langsameDynamik der streamwise rolls verursachen, sofern der spannweitige
Stegabstand in der Größenordnung der Breite der streamwise rolls liegt.
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1 Introduction

1.1 Motivation

Turbulent flows in nature and engineering applications are often bounded by surfaces or walls.
Strong shear is driving the turbulence in the vicinity of the walls and the surface properties have a
crucial influence on the exchange of momentum, heat and scalar concentration. While prediction
of mean flow over homogeneous smooth walls is well understood, environmental and engineering
flows often involve walls with heterogeneous properties. A prominent example is the atmospheric
boundary layer, where topographical heterogeneities occur, for instance, at the transitions between
urban and rural areas. Due to themultitude of possible surface combinations and patterns triggering
different flow processes and interactions, many scientific questions remain open. Better knowledge
about the influence of heterogeneous surfaces on the exchange processes of turbulent flows is of
great importance to improve the prediction of current weather and climate models (Bou-Zeid et al.
2020).

Even though many surfaces have complex heterogeneities, as the examples of urban topographies
show, there exist less complex heterogeneous surfaces exhibiting variations only in one spatial
direction. An illustrative example are the sand dunes in the Namib Desert, which are shown by
satellite images in figure 1.1 (a). The sand dunes are longitudinal and quasi-aligned with the main
wind direction and typical heights are in the order of 20-50m. The topographical variations of
the sand dunes occur in the lateral direction, and neighbouring sand dune ridges are separated
by about 2-3 km and their length can range up to several hundred of kilometers (Hanna 1969,
Shao 2008). The formation mechanism of the longitudinal sand dunes is attributed to large-scale
counter-rotating vortices or rolls, which are illustrated in the sketch in figure 1.2. The counter-
rotating rolls are assumed to concentrate the mobile sand particles in the convergence region of
the rolls and thereby forming the sand dune ridges. These counter-rotating rolls often occur in the
atmosphere even over homogeneous surfaces, for instance, when cold air flows over warmer ocean,
cloud streets can emerge as shown in figure 1.1 (b) (Etling and Brown 1993). Cloud streets form
in the upper part of the upward motion of these large-scale rolls, where water vapor condenses due
to the colder high-altitude air. In hydraulic flows such as rivers, similar to the example of sand
dunes but without buoyancy effects, it was found that roll-like structures are responsible for the
formation of sand ridges aligned with the flow direction (Colombini 1993, Scherer et al. 2022).
These examples illustrate that large-scale flow structures have a great influence on atmospheric and
subaqueous processes and can affect and form surface structures.

In technical flows, the opposite effect is often observed: large-scale flow structures are formed
above rigid surface heterogeneities, resulting from protrusion or erosion during operation. In
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20 km 100 km

(a) (b)

Figure 1.1: Longitudinal sand dunes in Namib Desert in (a) (taken and adopted from (NASA Earth Observatory 2020))
and cloud streets near Antarctica in (b) (taken and adopted from (NASA Earth Observatory 2018)). The
black solid line in (a) indicates the alignment of one sand dune ridge with the main flow direction of the
prevailing wind out of the south.

Figure 1.2: Simplified sketch of counter-rotating rolls aligned with longitudinal sand dunes as shown in figure 1.1 (a).
The longitudinal sand dunes are located in the updraft region of the counter-rotating rolls. The rolls are
aligned with the main flow direction, which is indicated by the mean velocity profile in the right part of the
figure. Sketch was adapted and extended from Hanna (1969).

case the surface heterogeneity occurs transverse to the main turbulent flow direction, these flow
structures are known as secondary motions. In contrast to the above mentioned flow structures
observed in the atmosphere, secondary motions cannot be easily detected in instantaneous velocity
fields, since they are immersed in the regular turbulence, but instead are seen as counter-rotating
vortices in the mean velocity field. Secondary motions occur over surfaces that are generally
divided into two classes, ridge- and strip-type surfaces (Wang and Cheng 2006). Ridge-type
surfaces are characterised by significant differences in surface elevation. Strip-type surfaces, on
the other hand, exhibit lateral differences in their surface textures, such as in experiments with
alternating smooth-wall and rough sandpaper strips (Hinze 1967). Although secondary motions
were observed early on and it was speculated that they significantly contribute to the heat transfer
increase in engineering flows over ridge-type surfaces (Taslim et al. 1996), it is only in recent
years that they have begun to be studied systematically. This thesis focuses primarily on ridge-type
surfaces as a simplified model for heterogeneous surfaces, which can trigger secondary motions,
to investigate their influence and the effects of heterogeneous surfaces on the turbulent exchange
processes.

2
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1.2 Research objectives and procedure

The objective of the thesis is to improve the physical understanding of spanwise heterogeneous
surfaces on the formation of turbulent large-scale structures, such as secondary motions, and
their influence on exchange processes of turbulent flows. An additional objective is to clarify the
extent to which secondary motions have similarities and differences to other known large-scale
structures and how they can interact with them. These objectives are investigated using simplified
flow configurations, to break down the complex physical processes and interactions that occur in
real-world problems in order to target individual effects or specific interactions. For this purpose,
high-fidelity data of turbulent channel flow with spanwise heterogeneous surfaces are generated by
means of direct numerical simulations (DNS) to allow addressing these questions in detail.

A fundamental question is whether secondary motions induced by either strip- or ridge-type
surfaces share a common formation mechanism. This question is addressed by investigating
turbulent channel flow with alternating rough- and smooth-wall strips, which are aligned with the
flow direction. For this configuration the combined effects of lateral variations of surface drag
and relative height differences can be systematically varied in order to shed light on the transition
between strip- and ridge-type behaviour of secondary motions. This allows to check to which
degree the proposed formation mechanisms of secondary motions over strip-type surfaces based
on considerations of the imbalance of production and dissipation of turbulent kinetic energy (Hinze
1967, 1973, Anderson et al. 2015) are valid in presence of relative height differences. Furthermore,
it can be analysed at which point the additional turbulent transport of turbulent kinetic energy
found for ridge-type surfaces (Hwang and Lee 2018) starts to become important.

Many studies have focused on the influence of secondary motions on mean turbulent properties.
However, the dynamics of secondary motions and the instantaneous structures contributing to their
formation have gained less attention to date. Recent experimental studies have shown that instan-
taneous structures associated with mean secondary motions have certain similarities to turbulent
large-scale motions (Zampiron et al. 2020, Wangsawijaya et al. 2020). These turbulent large-scale
motions occur naturally over smooth surface conditions, where they appear in instantaneous flow
fields as very long and persistent low- and high-momentum regions aligned with the main flow
direction. These structures can meander arbitrarily in space and time, such that their instantaneous
footprints disappear in long time averages and are no longer detectable. Therefore, the goal of the
second investigation is to better quantify the instantaneous characteristics of secondary motions
and their interaction with turbulent large-scale motions. This investigation is based on temporally
and spatially highly resolved simulation data to unravel the similarities and differences between
secondary motions and turbulent large-scale structures.

As the examples of sand dunes and cloud streets illustrate, buoyancy effects play an important role in
atmospheric processes and are relevant for the formation of large-scale flow structures. In contrast,
buoyancy effects are usually absent in engineering flows or are negligible since the effects of strong
pressure gradients determine the exchange processes of the flow. Although secondary motions
have been intensively investigated in the hydraulic and engineering communities, the influence

3
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of buoyancy on the formation of secondary motions has not been systematically studied to date.
Therefore, the final investigation of this thesis addresses two questions: first, how do buoyancy
effects influence turbulent secondary motions; and second, how can buoyancy-driven large-scale
structures interact with secondary motions and how are these structures affected by presence of
heterogeneous surfaces.

4



2 Fundamentals

This chapter presents the fundamental equations of fluid motion and the theoretical frame of
turbulent wall-bounded flows. A brief literature review about turbulent large-scale structures is
presented in section 2.3. The numerical methods used in this thesis are presented in section 2.4
and the proper orthogonal decomposition is explained in section 2.5.

2.1 Governing equations of hydrodynamics

The following derivation of the governing equations of hydrodynamics are based on the textbooks
of Tritton (1977), Pope (2000) and Kundu et al. (2016). The derivation of the equations for fluid
motion is based on the fundamental assumption of the continuum hypothesis. This states that
the fluid volume under consideration consists of infinitesimally small fluid elements for which the
macroscopic quantities such as density, pressure, temperature and velocity can be defined. Thus,
these quantities can be represented in the fluid volume as continuous functions in space and time.
This presupposes that a sufficiently large number of molecules is present in the fluid elements such
that the macroscopic quantities are obtained by averaging over the molecules’ properties.

From the principle of conservation of mass follows the continuity equation of a fluid element in
differential form

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2.1)

which can be alternatively written as

1

ρ

(
∂ρ

∂t
+ ui

∂ρ

∂xi

)
+
∂ui
∂xi

=
1

ρ

Dρ

Dt
+
∂ui
∂xi

= 0, (2.2)

with D(·)/Dt representing the material derivative. In this thesis only incompressible flows are
considered, which implies that density variations of fluid particles are not present or negligible
small compared to the divergence of velocity ∂ui/∂xi, such that the continuity equation in 2.2
simplifies for incompressible flows to

∂ui
∂xi

= 0. (2.3)

Thus, the continuity equation of incompressible flows represents a kinematic condition that the
velocity field is divergence-free (Pope 2000).
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2 Fundamentals

Based on Newton’s second law, the momentum equation describes the acceleration of a fluid
element as a result of surface and body forces, which for incompressible flows can be written as

∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ

∂τij
∂xj

+ fi, (2.4)

with the fluid density ρ, the stress tensor τij and the body force term fi. The stress tensor describes
all surface forces acting on the fluid element, while volume forces, such as gravity or the Coriolis
force, are considered in the body force term fi. In this thesis only Newtonian fluids with constant
properties are considered, such that the stress tensor depends linearly on the velocity gradients in
the form of

τij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.5)

with pressure p, the Kronecker delta δij and the dynamic viscosity µ.

Combining equations 2.3, 2.4 and 2.5 yields the well-known Navier-Stokes equations

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi, (2.6)

where ν is the kinemativ viscosity.

In flows inwhich additional convection occurs, i.e. the fluid transfers heat, a third transport equation
is required to describe these physical processes. Based on the conservation of the total energy,
which is composed of internal and kinetic energy, and the assumptions of an incompressible fluid
and ideal gas, the following transport equation for the temperature T is obtained

∂T

∂t
+ uj

∂T

∂xj
= α

∂2T

∂xj∂xj
+Qs, (2.7)

with the temperature diffusivity α and heat source term Qs. The temperature equation relates the
change of temperature of a fluid element to thermal conduction (first term on right-hand side) and
heat sources, such as radiation, in the fluid (Tritton 1977).

Boussinesq approximation

In a number of flows, such as atmospheric or geophysical flows, buoyancy effects characterised by
density differences within the fluid play an important role. The Boussinesq approximation is an
extension of the incompressible Navier-Stokes equations to account for buoyancy effects only in
the gravitational term, which is for instance a valid approximation for flows with small temperature
variations within the fluid (Kundu et al. 2016).

In this framework the density depends only on temperature ρ(T ) in the gravitational term, such
that the body force term in the Navier-Stokes equation is given by fi = −ρ(T )/ρ0 g δi2. Here, ρ0
represents a reference density, which replaces ρ in the Navier-Stokes equation 2.6, and the gravity
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2.2 Turbulent wall-bounded flows

is assumed to be aligned with the wall-normal direction x2 throughout this thesis. For the density
variation, a linear approach of the density with temperature is introduced

ρ(T ) = ρ0(1− β(T − T0)), (2.8)

with thermal expansion coefficient β and reference temperature T0. Introducing this Ansatz to the
Navier-Stokes equation yields

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− g (1− β(T − T0)) δi2. (2.9)

The equation can be further simplified by introducing a new pressure p∗ = p + ρ0gx2, which
includes the hydrostatic pressure, and a new temperature T ∗ = T −T0. This results in the familiar
representation of the Navier-Stokes equation under the Boussinesq approximation

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p∗

∂xi
+ ν

∂2ui
∂xj∂xj

+ βgT ∗δi2. (2.10)

The asterisks of pressure and temperature as well as the index of the reference density ρ0 are
omitted in the following representations of the Boussinesq approximation.

2.2 Turbulent wall-bounded flows

Many technical and environmental flows are turbulent and are influenced by the presence of walls,
such as in channel or pipe flows, and in atmospheric boundary layer flows by the earth’s surface. The
turbulence of these wall-bounded flows is usually driven and sustained by strong shear near the wall,
and in case of atmospheric flows also buoyancy effects contribute to the turbulence production.
Turbulent flows are characterised by unsteady and chaotic fluid motion, which complicates the
description and prediction of instantaneous velocity fields, which is why a statistically description
of turbulent flows is used. The common procedure to describe turbulent flows is the Reynolds
decomposition, which decomposes the instantaneous velocity ui into a mean 〈ui〉 and fluctuating
part u′i, such that the Reynolds decomposition is given by

ui(x, y, z, t) ≡ 〈ui〉(y) + u′i(x, y, z, t), (2.11)

where the overbar indicates (·) time- and streamwise averaging and angular brackets 〈·〉 averaging
in the spanwise direction. Throughout the thesis, as an alternative to the index notation, the
spatial coordinates are also represented by (x, y, z) = (x1, x2, x3) representing the streamwise,
wall-normal and spanwise directions, respectively, and the corresponding velocity components are
(u, v, w) = (u1, u2, u3). In addition, only turbulent channel flows are considered here, such that in
all presented cases the main flow and pressure gradient are aligned with the streamwise direction.

By introducing the Reynolds decomposition in equation 2.3, 2.7 and 2.10 and subsequent averaging
in time and horizontal directions, the mean continuity equation, Reynolds-averaged Navier-Stokes
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2 Fundamentals

equations (RANS) under the Boussinesq approximation, and the mean temperature equation are
given by

∂〈ui〉
∂xi

= 0, (2.12)

∂〈ui〉
∂t

+ 〈uj〉
∂〈ui〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂xj∂xj

+ βg〈T 〉δi2 −
∂

∂xj
〈u′iu′j〉, (2.13)

∂〈T 〉
∂t

+ uj
∂〈T 〉
∂xj

= α
∂2〈T 〉
∂xj∂xj

+ 〈Qs〉 −
∂

∂xj
〈T ′u′j〉, (2.14)

where 〈u′iu′j〉 represent the Reynolds stresses and 〈T ′u′j〉 the turbulent heat fluxes.

The turbulent kinetic energy k is defined by

k ≡ 1

2
〈u′iu′i〉. (2.15)

The transport equation of turbulent kinetic energy is

∂k

∂t
+ 〈uj〉

∂k

∂xj
=
∂T ′i
∂xi
− 〈u′iu′j〉

∂〈ui〉
∂xj

− ε+ βg〈u′iT ′〉δi2, (2.16)

where T ′i is the turbulent transport of k, ε the dissipation and the second and last term on the
right-hand side represent the shear production and buoyant production of turbulent kinetic energy.
The dissipation is defined by

ε ≡ 2ν〈sijsij〉, (2.17)

where sij is the fluctuating rates of strain

sij =
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
. (2.18)

The turbulent transport T ′i due to turbulent fluctuations, pressure fluctuations and viscous stresses
is defined by

T ′i ≡
1

2
〈u′iu′ju′j〉+

1

ρ
〈u′ip′〉 − 2ν〈u′jsij〉. (2.19)

For a fully-developed and statistically stationary turbulent channel, which is also statistically
homogeneous in the spanwise direction, the mean streamwise momentum equation 2.20 reduces to

d〈p〉
dx

=
d

dy

(
µ

d〈u〉
dy
− ρ〈u′v′〉

)
=

dτ

dy
, (2.20)

−〈Qs〉 =
d

dy

(
α

d〈T 〉
dy
− 〈v′T ′〉

)
=

dq

dy
, (2.21)

where τ is the total shear stress, q the total heat flux and the notation d(·)/dxi represents derivation
of variables, which depend only on one single parameter. Note, that the heat source term is a
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2.2 Turbulent wall-bounded flows

constant here, since it is considered as statistically homogeneous in all spatial directions and in
time.

The momentum and heat flux at the wall are represented by the wall-shear stress τw and wall heat
flux qw which are defined as

τw ≡ µ
(

d〈u〉
dy

)
y=0

and qw ≡ −α
(

d〈T 〉
dy

)
y=0

. (2.22 a,b)

Integration of the momentum equation 2.20 and introducing the wall-shear stress τw and half-
channel height δ results in the following solution of the total shear stress

τ(y) = τw

(
1− y

δ

)
. (2.23)

Two scenarios are considered in this thesis for the solution of the total heat flux q, which depend on
the type of heat source term. In the first case when the channel experiences a constant cooling or
heating by 〈Qs〉, a linear relationship for q results, analogous to the solution of τ in equation 2.23

q(y) = qw

(
1− y

δ

)
. (2.24)

In the second case, when no heat source term 〈Qs〉 is present, the gradient of the total heat flux is
zero in equation 2.21, hence q is constant across the entire channel height.

The important physical parameters of the flow near the wall are the viscosity, the wall-shear stress
and wall heat flux. With these quantities the viscous scales can be constituted, which are the
friction velocity uτ , the viscous length scale δν and the friction temperature Tτ defined as

uτ ≡
√
τw
ρ
, δν ≡ ν

√
ρ

τw
=

ν

uτ
and Tτ ≡

qw
uτ
. (2.25 a,b,c)

Based on the viscous velocity scale the friction Reynolds number is defined

Reτ ≡
uτδ

ν
=

δ

δν
, (2.26)

which can be interpreted as the scale separation between outer and inner length scales. Normal-
ization of the wall-normal coordinate y by the viscous length scale is denoted by

y+ ≡ y

δν
, (2.27)

which is also referred to as a measure wall-normal distance in wall units.
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2.2.1 Law of the wall

Dimensional analysis allows theoretical estimates of the functional form of the mean velocity
profile for turbulent channel flows. The following derivation follows the procedure outlined in
Pope (2000) and buoyancy effects are not considered, which will be part of section 2.2.2. The
mean velocity 〈u〉, or the mean velocity gradient in wall-normal direction d〈u〉/dy, depends on the
physical parameters, ν, δ, uτ and y, such that by applying the Buckingham Π theorem, a functional
relationship of the dimensionless velocity gradient exists

y

uτ

d〈u〉
dy

= Φ

(
y

δν
,
y

δ

)
, (2.28)

with the two dimensionless parameters y/δν and y/δ. Note that the non-dimensionalisation of the
velocity gradient was achieved with the length scale y, instead of δ and δν , since these length scales
will be neglected as relevant reference parameters of the physical problem in the following.

Close to the wall, such that the limit y/δ � 1 holds, the functional relation Φ asymptotically
tends to a functional relation ΦI(y/δν), which is independent of y/δ. By applying Taylor series
expansion of ΦI(y/δν) and the no-slip condition at the wall a linear relationship is obtained

u+ = y+, (2.29)

also known as the law of the wall. This relation is confirmed by experimental and numerical
measurements and is found to be universal among channel, pipe and boundary layer flows, where
it is a valid approximation of the mean velocity within the viscous sublayer y+ < 5.

In the outer layer, the mean velocity profile is independent of viscosity, such that the functional
relationship Φ is independent of y/δν and tends asymptotically to the function Φ0(y/δ). Between
the outer and inner layer, there is an overlap region y+ � 1 and y/δ � 1, where both functional
relations are equivalent, which can be only valid if both relations tend to a constant

y

uτ

d〈u〉
dy

= ΦI

(
y

δν

)
= Φ0

(y
δ

)
=

1

κ
, (2.30)

with the von Kármán constant κ. Integration of equation 2.30 yields the well-known logarithmic
law of the wall

〈u〉+ =
1

κ
log
(
y+
)

+Aw, (2.31)

where the constant Aw and κ have empirically determined values in the range of Aw = 5.2 and
κ = 0.4 (Pope 2000, Wyngaard 2010).

Analogously, a log-law can also be derived for the temperature profile if the additional condition
applies that the wall-normal region lies above the region in which thermal diffusion effects are
important. From this assumption follows

〈T 〉+ =
〈T 〉
Tτ

=
1

κT
log
(
y+
)

+AT (Pr), (2.32)
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2.2 Turbulent wall-bounded flows

with the constantκT ≈ 0.47 and the valueAT depends on the considered Prandtl numberPr = ν/α

(Chung et al. 2021).

2.2.2 Monin-Obukhov similarity theory

In case of buoyancy effects the Monin-Obukhov similarity theory generalizes the logarithmic law
of the wall for non-neutral stratification, which is widely used to describe turbulent momentum
and heat fluxes in the atmospheric boundary layer (Obukhov 1946, Monin and Obukhov 1954,
Wyngaard 2010). In addition to the previous considerations, the mean velocity and temperature
depend on the wall heat flux qw, thermal expansion coefficient β and gravitational acceleration g,
such that a new length scale can be formed by dimensional reasons, which is the Obukhov length
L, defined as

L ≡ −u3τ
κ qw βg

. (2.33)

A physical interpretation of the Obukhov length |L| is that it represents the wall-normal height ye
at which shear production of turbulent kinetic energy equals that due to bouyant production (see
equation 2.16). This can be shown by approximating the momentum and heat flux by uτ and qw,
respectively, as well as using the relation of the logarithmic law of the wall, it follows

〈u′v′〉d〈u〉
dy

= βg〈v′T ′〉 (2.34)

u2τ
uτ
κye

= βg qw, (2.35)

ye =
u3τ

κβg qw
= |L|. (2.36)

Introducing the Obukhov length L as a new length scale, the Buckinhgam Π theorem states
functional relationships of the dimensionless velocity and temperature gradients in the overlap
region by

y

uτ

∂〈u〉
∂y

=
1

κ
φm

( y
L

)
and

y

Tτ

∂〈T 〉
∂y

=
1

κ
φh

( y
L

)
, (2.37 a,b)

where φm and φh are the universal functions of momentum and heat flux. These universal
functions depend on the kind of stratification of the flow and existing relationships are determined
by experimental measurements in the atmospheric surface layer (Wyngaard 2010).

2.2.3 Statistical description for spanwise heterogeneous
surfaces

In case of spanwise heterogeneous surfaces, such as the example of the streamwise-aligned sand
dunes in chapter 1 , the spanwise direction is no longer statistically homogeneous. To account for the
local differences of the flow in the spanwise direction, a triple decomposition is introduced (Raupach
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y

z

z

u

〈u〉

u u

ũ

u′′
u′

Figure 2.1: Illustration of the triple decomposition for the streamwise velocity u over a spanwise heterogeneous surface
consisting of streamwise-aligned ridges. In the bottom panel the light blue lines represent isolines of constant
u and the green line indicates the wall-normal location at which the velocity profiles are shown in the upper
panel. In the upper panel the instantaneous velocity u is represented by the green line, while the black line
indicates the local mean u and the dashed black line the global mean 〈u〉.

and Shaw 1982), which decomposes the turbulent fluctuation u′i of the Reynolds decomposition in
equation 2.11 into a coherent contribution ũi (or dispersive contribution) and random fluctuation
u′′, such that the instantaneous velocity can be decomposed into

ui(x, y, z, t) = 〈ui〉(y) + ũi(y, z) + u′′i (x, y, z, t). (2.38)

The sum of the first two terms on the right-hand side results in the local mean ui, which is the
time- and streamwise-averaged mean

ui(y, z) ≡ 〈ui〉(y) + ũi(y, z). (2.39)

With this definition equation 2.38 can be alternatively written as

ui(x, y, z, t) = ui(y, z) + u′′i (x, y, z, t), (2.40)

from which it is evident, that the random fluctuation u′′ is the fluctuation from the local mean
ui. From these definitions it follows that 〈ũ〉 = 0 and u′′ = 0 hold. The relations of the triple
decomposition are illustrated in figure 2.1 for the streamwise velocity u in a cross-section over
spanwise heterogeneous surface consisting of streamwise-aligned ridges. The velocity profiles
shown in the upper panel are extracted along the green line in the bottom panel, which is located
at a constant wall-normal location above the ridges. In the vicinity of the ridges the time- and
streamwise averaged velocity u is lower compared to the regions in the valley, which results in
negative and positive variations of ũ in these regions, respectively.

As a consequence of the triple decomposition covariances of flow variables, such as the Reynolds
shear stresses 〈u′iu′j〉, contain two contributions

〈u′iu′j〉 = 〈ũiũj〉+ 〈u′′i u′′j 〉, (2.41)
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where 〈ũiũj〉 represents coherent covariances, resulting from spanwise spatial correlations of local
mean quantities, and 〈u′′i u′′j 〉 are random covariances.

In case of spanwise heterogeneous surfaces with a periodically repeating pattern in the spanwise
direction, the procedure of phase-averaging can be introduced to average the local mean quantities
for the repeating pattern or phases. The phase-averaged local mean 〈ui〉φ is defined by

〈ui〉φ(y, z̄) ≡ 1

Nφ

Nφ∑
j=1

ui(y, [zφ,j −Wφ/2, zφ,j +Wφ/2]), (2.42)

where z̄ represents the phase-averaged spanwise coordinate,Nφ is the number of repeating phases,
zφ,j is the spanwise position of the centre of the j-th phase in the total spanwise direction andWφ

is the spanwise width of the phase window. The range of values of z̄ can be chosen as [0,Wφ] or
alternatively as [−Wφ/2,Wφ/2].

2.3 Turbulent large-scale structures

In wall-bounded turbulent flows a variety of different large-scale structures exist. In this section
a brief review of three types of turbulent large-scale structures is presented, which are the subject
of the current thesis. Turbulent large-scale structure emerging over smooth-wall conditions are
discussed in section 2.3.1, while those initiated by surface heterogeneities are presented in section
2.3.2. For flows in which buoyancy effects play a relevant role, convective large-scale structures
can arise, which are outlined in section 2.3.3.

2.3.1 Large-scale and very-large-scale motions

While the coherent structures near the wall of turbulent shear flows, which consist of low-
momentum streaks and quasi-streamwise vortices, have been observed as early as the 1960s and
since then have been well studied and understood (Kline et al. 1967, Kim et al. 1987), significant
insights into coherent structures in the logarithmic and outer region have been achieved in recent
decades. These include the observation that coherent structures with very large length scales
occur in the outer region and contribute significantly to the production and transport of turbulent
kinetic energy and Reynolds shear stresses, which are referred to large-scale motion (LSM) and
very-large-scale motion (VLSM) (Kim and Adrian 1999, Adrian et al. 2000, Ganapathisubramani
et al. 2003, Monty et al. 2009).

The LSMs and VLSMs can be distinguished on the one hand by their streamwise length scale,
which for instance in internal flows (pipe and channel flows) is significantly smaller for LSMs than
for VLSMs. On the other hand, VLSMs exhibit mainly streamwise turbulent kinetic energy, while
LSMs are characterised by intensewall-normal and spanwise turbulent kinetic energy (Hwang 2015,
de Giovanetti et al. 2017). The streamwise wavelength of LSMs is in the order of λx ≈ 1 − 5δ

(Monty et al. 2009, de Giovanetti et al. 2017), where δ is here representing either the boundary
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layer depth, half-channel height or pipe radius. VLSMs have been first observed and termed by
Kim and Adrian (1999) in turbulent pipe flows, where they appear as alternating regions of low and
high momentum with streamwise length scales of λx ≈ 12 − 14δ. Turbulent channel flows also
show similar streamwise length scales of VLSMs (14δ < λx < 20) as those observed in pipe flows
(Monty et al. 2009), and recently VLSM have been identified in rough-bed open-channel flows
with λx ≈ 10 − 40δ (Cameron et al. 2017). In turbulent boundary layers very long meandering
streamwise velocity fluctuations have been found by Hutchins and Marusic (2007), who termed
them as superstructures, which have smaller streamwise length scales λx ≈ 6δ as the VLSMs found
in pipe or channel flows. Despite the structural similarities between VLSM and superstructures,
they should not be confused with each other as noted byMonty et al. (2009), as there are significant
differences in their energy distribution. The VLSM in internal flows extend beyond the logarithmic
layer into the outer region, and the streamwise length scales grows with the distance to the wall,
whereas superstructures in boundary layer flows are only evident in the logarithmic layer (Monty
et al. 2009). Thus, the energy spectrum in the outer region for internal flows shows two energetic
peaks associated with LSM and VLSM, respectively, whereas the spectrum of boundary layer flows
shows a single peak with a length scale matching that of LSM from internal flows.

2.3.2 Secondary motions

Secondary motions represent a distinct mean fluid motion that occurs in wall-bounded flows in the
cross-sectional plane perpendicular to the main flow direction. The first observations of secondary
motions were made by Nikuradse (1926) and Prandtl (1926) in flows with non-circular pipes, where
the secondary motions form as counter-rotating vortices transporting fluid from the bulk towards
the corners. Later, Prandtl divided secondary motions into two categories, which are known today
as secondary motions of Prandtl’s first kind, occurring in bent pipe flows or meandering rivers,
and secondary motions of Prandtl’s second kind, forming only in turbulent flows due to spatial
heterogeneity of Reynolds stresses (Bradshaw 1987). In the following text the term secondary
motions will only refer to secondary motions of Prandtl’s second kind.

Secondary motions were later also found over plane wall-bounded turbulent flows with spanwise
heterogeneous surface properties, as shown by Hinze’s experiments in wide channels with attached
streamwise-aligned roughness strips on the smooth channel wall (Hinze 1967, 1973). In these
experiments, the secondary motions manifest at the roughness transition as downwelling fluid mo-
tion over the roughness strips, while upwelling motion occurs over the smooth-wall strips. Hinze
suggested that the formation of the secondary motions is a result of an imbalance between the
production and dissipation of turbulent kinetic energy, such that the secondary motion transports
turbulence rich fluid to regions of turbulence poor fluid. These secondary motions, occurring
over spanwise heterogeneous rough surfaces, were shown to be generated by spanwise heteroge-
neous distributions of Reynolds stresses and are thus secondary motions of Prandtl’s second kind
(Anderson et al. 2015).

Spanwise heterogeneous surfaces initiating secondary motions are generally divided into two
surface types, namely strip- and ridge-type surfaces (Colombini and Parker 1995, Wang and
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(a) (b)
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z

Figure 2.2: Schematic of secondary motions over spanwise heterogeneous surfaces of strip (a) and ridge-type (b).
Ridge-type surfaces are characterised by spanwise differences in the wall elevation, while these are absent
or negligible for strip-type surface and the heterogeneity consists of spanwise variations of wall-shear stress.
The secondarymotions are represented by large-scale counter-rotating vortices, where for strip-type surfaces
the upward motion appears above the lower wall-shear stress strip and for ridge-type surfaces above the
streamwise-aligned ridges. The light blue lines depict isolines of constant mean streamwise velocity and
their up- and downward bulging is associated with low- and high-momentum pathways, respectively.

Cheng 2006), which are illustrated in figure 2.2. Stip-type surfaces, are characterised by spanwise
differences in wall properties, while no significant differences in wall elevation occur, such as
those represented by the alternating streamwise-aligned smooth- and rough-wall strips as shown in
figure 2.2 (a). Numerically, strip-type surfaces can be modeled by alternating strips with different
wall boundary conditions, such as different wall-shear stress conditions (Willingham et al. 2014,
Chung et al. 2018), variations in slip lengths (Neuhauser et al. 2022) or strips with non- and
hydrophobic surfaces (Türk et al. 2014, Stroh et al. 2016). Ridge-type surfaces are characterised by
significant differences in spanwise wall elevation, such as those represented by streamwise-aligned
ridges in figure 2.2 (b). The investigated geometries of ridge-induced secondary motion include
triangles (Goldstein and Tuan 1998, Wang and Cheng 2006, Stroh et al. 2020a, Medjnoun et al.
2020, Zampiron et al. 2020), rectangles (Wang and Cheng 2006, Hwang and Lee 2018, Medjnoun
et al. 2018, 2020), lego bricks (Vanderwel and Ganapathisubramani 2015, Vanderwel et al. 2019),
Gaussian ridges (Schäfer et al. 2022a), semicircles (Medjnoun et al. 2020) and streamwise-aligned
densely packed pyramids (Yang and Anderson 2017). Many of the aforementioned studies have
examined surfaces whose heterogeneity consists of either clear differences in wall elevation or
in surface roughness, whereas only a few studies have examined combinations of both surface
heterogeneities. Among these are, for example, smooth walls with protruding roughness strips
(Stroh et al. 2020b, Schäfer et al. 2022b) and protruding smooth ridges over rough valleys (Zampiron
et al. 2020, Schäfer et al. 2022b).

Besides the counter-rotating vortices, the secondary motions over ridge- and strip-type surface
show a spanwise heterogeneity in their mean streamwise velocity, which consists of alternating
low-momentum pathways (LMP) and high-momentum pathways (HMP) (Barros and Christensen
2014,Willingham et al. 2014). In general, the LMPs occur in the upwelling region of the secondary
motions, while the HMPs occur in the downwelling region, which in turbulent boundary layers is
associated with a thickening and thinning of the boundary layer thickness (Barros and Christensen
2014, Vanderwel and Ganapathisubramani 2015, Medjnoun et al. 2020). For ridge-type surface,
the upward motion of the secondary motions and LMPs occur above the elevated ridges, or for wide
ridges at the transition from valley to ridge, which is indicated by the upward bulging of isolines
of the mean streamwise velocity in figure 2.2 (b), and at the same time, the downward motion
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and HMPs occur in the valleys between the ridges (Hwang and Lee 2018). The upward motion of
secondary motions and LMPs are found for strip-type surfaces above the lower wall stress strips
and downward motion and HMPs above the high wall stress strips (see figure 2.2 (a))(Chung et al.
2018, Wangsawijaya et al. 2020).

The size and strength of secondary motions depends for ridge-type surfaces on the spanwise ridge
spacing S, while for strip-type surfaces on the spanwise wavelength of the alternating roughness
strips (Vanderwel and Ganapathisubramani 2015, Chung et al. 2018). Depending on S three
different regimes can be distinguished. The intermediate regime where S is in the order of the
boundary layer thickness δ is characterised by secondary motions with the largest strength and by
δ-scale spacing counter-rotating vortices filling the entire cross-sectional domain (Vanderwel and
Ganapathisubramani 2015, Chung et al. 2018). For the limiting regime S � δ, the secondary
motion remains anchored to the ridges or for strip-type roughness at the roughness transition and
maintains its δ-scaling (Vanderwel and Ganapathisubramani 2015, Hwang and Lee 2018, Chung
et al. 2018, Wangsawijaya et al. 2020). For the other extreme case S � δ, the spatial extent of the
secondary motion decreases and the mean flow is unaffected by the secondary motion in the region
y & S (Vanderwel and Ganapathisubramani 2015, Chung et al. 2018).

Most of the aforementioned studies on secondary motion have focused on mean properties, while
the time-dependent behaviour of secondary motion has been investigated by a few studies recently.
These studies have found that instantaneous structures associated with secondary motions me-
ander laterally in time (Vanderwel et al. 2019, Zampiron et al. 2020, Wangsawijaya et al. 2020,
Wangsawijaya and Hutchins 2022). For ridge-type induced secondary motions this meandering is
speculated to be associated with an inflection point instability of the mean streamwise velocity in
the spanwise direction (Zampiron et al. 2020). However, for strip-type induced secondary motions
this meandering is speculated to be associated with spanwise-locked turbulent large-scale structures
(LSM/VLSM) at the roughness transition (Wangsawijaya et al. 2020). Similar observations were
also made for converging/diverging riblets, which generate secondary motion not due to rough-
ness heterogeneity, but due to the different anisotropy of the roughness strips (Kevin et al. 2017,
2019). There, the time-averaged secondary motion were identified as artefacts of low-momentum
large-scale streaks which are accompanied by unsteady and spanwise asymmetric large-scale roll
modes. Coexistence between secondary motions and VLSMs was found for strip-type roughness
independent of the strip width (Wangsawijaya et al. 2020), while secondary motions over ridge-
type surfaces suppress the occurrence of VLSM for S ≤ 2δ (Zampiron et al. 2020). Recently,
the interaction of LSMs with mobile sediment beds were studied in hydraulic open-channel flows
(Scherer et al. 2022). It was found that the sand particles accumulate to streamwise-elongated sand
ridges below the low-speed streak of LSMs, which is attributed to a top-down mechanism such that
the sediment bed adapts to changes of the outer LSMs. At the sediment ridges secondary motions
are observed for finite time intervals (O(10) bulk time units), suggesting that for hydraulic flows
secondary motions are the statistical footprint of the lateral organisation of large-scale structures.
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2.3.3 Convective flow structures

In case buoyancy effects play an important role in the flow in addition to shear effects, new forms
of turbulent large-scale structures can emerge, which can be observed for instance in atmospheric
boundary layer flows. A distinction between stable and unstable stratification is necessary, i.e.
whether denser fluid is located below or above lighter fluid, respectively, which leads to different
formations of buoyancy-induced large-scale flow structures. In this thesis, only the flow organisa-
tion of unstable stratification is considered, while for stably stratified flows the reader is referred
to existing review literature on this topic (Mahrt 1999). Since for unstable stratified flows both
shear and buoyancy contribute to the heat transfer, the term mixed convection flows is used for
these kind of flows. This illustrates that the convection of the flow is composed of the two extreme
forms of forced and natural convection. In the former case, when buoyancy plays a minor role
and the heat transfer is mainly due to shear, the velocity field is not affected by the temperature,
which applies for the large-scale flow structures discussed in the previous sections. For natural
convection the flow is driven solely by buoyancy effects and density differences, for which an
example is the canonical Rayleigh-Bénard flow configuration. For mixed convection both shear
and buoyancy effects influence the flow to a similar extent such that both physical effects contribute
to the generation of turbulence (as discussed in section 2.2.2 and shown by equation 2.16).(Tritton
1977, Wyngaard 2010)

"In mixed convection flows [...] different turbulent large-scale flow structures have been identified
and the organisation depends on the relative strength between shear and buoyancy effects, such as
in turbulent channel flows (Pirozzoli et al. 2017), turbulent Couette flows (Blass et al. 2020) and in
the atmospheric boundary layer (ABL) (Deardorff 1972, LeMone 1973, Moeng and Sullivan 1994,
Khanna and Brasseur 1998). The transition between different flow organisations is accompanied
by an alteration of the effective heat and momentum transfer in the flow. In the case of strong
buoyancy effects and weak shear, open cells form in the flow, which resemble Rayleigh–Bénard
convection, while in the case of weak to moderate buoyancy effects and strong shear, the flow
organises into horizontal rolls aligned with the main flow direction (Khanna and Brasseur 1998,
Pirozzoli et al. 2017, Salesky et al. 2017). These streamwise rolls [depict counter-rotating motion
in the cross-section of the flow], with the up- and downdraft region of the roll occurring where
localised buoyancy forces accumulate. At very strong shear, with negligible buoyancy effects, the
flow organisation in turbulent channels resembles that of classical Poiseuille flows (Pirozzoli et al.
2017) and in the case of neutral ABL that of flat-plate boundary layers (Khanna and Brasseur
1998)."(Schäfer et al. 2022a)

"The transition between the different flow topologies of mixed convection can be characterised by
various stability parameters. In the atmospheric science community, the stability parameter−zi/L
is used to classify the transitions between rolls and cellular structures, which expresses the ratio of
the boundary layer depth zi and the Obukhov length L. [...] In the case of convective boundary
layers, large ratios of −zi/L are indicative of the formation of convective cells, while small values
are typical for roll formation (Khanna and Brasseur 1998, Salesky et al. 2017). An alternative
stability parameter to characterise the relative importance of buoyancy effects and shear is the
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Richardson number Ri. For mixed convection in turbulent channel flows, low Ri corresponds to
pure forced convection, intermediate values of Ri to roll formation and large Ri values to natural
convection with cell-like structures (Pirozzoli et al. 2017). Independent of the chosen stability
parameter the exact range at which the transition between the different flow regimes occurs is
still under debate with recent studies focusing on the transition between rolls and cells (Salesky
et al. 2017) and the transition between neutral to moderately convective conditions (Jayaraman and
Brasseur 2021)."(Schäfer et al. 2022a)

2.4 Numerical methods

In this thesis the continuity equation as well as the transport equations of momentum and tempera-
ture presented in section 2.1, are numerically solved by direct numerical simulations, which resolve
all relevant time and spatial scales of turbulent flows. The results in chapter 3 are based on the
spectral solver SIMSON (Chevalier et al. 2007), employing Fourier and Chebyshev decomposition
for the spatial discretization. The open-source code Xcompact3d is used for the results in the
subsequent chapters 4 and 5, which is based on compact finite differences for the spatial discretiza-
tion, combining numerical efficiency and accuracy for simulations of turbulent flows (Laizet and
Lamballais 2009, Bartholomew et al. 2020). The numerical representation of complex geometries
in the flow is achieved by means of an immersed boundary method (IBM) in Xcompact3d. The
code has been extended by the author to simulate the Navier-Stokes equation under the Boussinesq
approximation (see section 2.1) and the IBM was adopted for heat transfer problems. This section
presents briefly the concept of compact finite differences and the employed IBM of Xcompact3d.

2.4.1 Compact finite differences

Compact finite-differences represent an improved evaluation of derivatives with a spectral-like
accuracy (Lele 1992) than compared to classical finite difference methods. The following part
follows the derivation presented in Lele (1992). The compact finite difference approximation of
the first and second derivative is illustrated in the following for a one-dimensional and arbitrary
flow quantity f(x), where x represents the spatial coordinate. A uniform grid distribution for
the discretization of the domain [0, Lx] is applied, where Lx is the domain length. The discrete
coordinate position xi and the functional values fi = f(xi) of the Nx grid points are given at
xi = (i − 1)∆x for 1 ≤ i ≤ Nx, where ∆x is the distance between the grid points. The first
derivative f ′i = df(xi)/dx at the position xi can be numerically represented in the form of

α1f
′
i−1 + f ′i + α1f

′
i+1 = a1

fi+1 − fi−1
2∆x

+ b1
fi+2 − fi−2

4∆x
. (2.43)

A sixth-order compact finite difference representation of the first derivative is achieved by using
the parameter set

α1 =
1

3
, a1 =

14

9
, b1 =

1

9
. (2.44)
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Figure 2.3:Modified wavenumbers of first derivative in (a) and of second derivative in (b) for different differentiation
schemes. The purple line in (b) represents a sixth-order compact finite difference scheme which is slightly
over-dissipative compared to the exact differentiation scheme.

Thus, the evaluation of the derivative f ′i depends on the function values and the unknown derivative
values at neighbouring grid points, which result in the solution of a linear system with cyclic
tridiagonal form. The well-known second order central finite difference approximation is recovered
by α1 = 0, a1 = 1 and b1 = 0, without the requirement to solve a linear equation system.

Similar to the approximation of the first derivative, the compact finite difference approximation of
the second derivative f ′′i is given by

α2f
′′
i−1 + f ′′i + α2f

′′
i+1 = a2

fi+1 − 2fi + fi−1
(∆x)2

+ b2
fi+2 − 2fi + fi−2

4(∆x)2
(2.45)

+ c2
fi+3 − 2fi + fi−3

9(∆x)2
. (2.46)

A compact finite-difference approximation of sixth order for the second derivative is obtained by
the parameter set

α2 =
2

11
, a2 =

12

11
, b2 =

3

11
, c2 = 0. (2.47)

The approximation error introduced by the compact-finite difference scheme for the first and
second derivatives can be quantified by the concept of modified wavenumbers. For this purpose,
the function f is assumed to be periodic over the domain [0, Lx], such that the discretized function
fi can be represented by a Fourier series with Fourier coefficients f̂i. Instead of the wavenumber
κx, a scaled wavenumber κs = κx∆x is introduced and its range is in [0, π] due to the conjugate
symmetry of the Fourier coefficients f̂i = f̂∗i (where ∗ denotes the complex conjugate) for real-
valued fi. By introducing the Fourier series into equation 2.43, the relation f̂ ′i = iκ′sf̂i is obtained,
where f̂ ′i are the Fourier coefficients of the first derivative, i is the complex number andκ′s represents
the modified wavenumber given by

κ′s(κs) =
a1 sin(κs) + (b1/2) sin(2κs)

1 + 2α1 cos(κs)
. (2.48)
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Similar, a relation for the modified wavenumber of the second derivative κ′′s is obtained in the form
of

κ′′s(κs) =
2a2 (1− cos(κs)) + (b2/2) (1− cos(2κs)) + (2c2/9) (1− cos(3κs))

1 + 2α2 cos(κs)
. (2.49)

The modified wavenumbers depend on the used discretization scheme and figure 2.3 presents the
distributions for different schemes of central finite differences and a sixth-order compact finite
difference scheme. The exact derivation by the Fourier series corresponds to a straight line for the
first derivation and a parabola for the second derivation, which are indicated by the black dashed
lines. As can be seen, the compact finite difference scheme is closer to the exact differentiation
for a larger range of wavenumbers than compared to the different central finite difference schemes,
which holds for both the first and second derivatives. At the same time, it is evident that an increase
of the order of the central finite difference scheme improves the discretization error.

Figure 2.3 (b) shows that the second derivative of the sixth-order compact finite difference scheme
has a sub-dissipative behaviour, since it remains below the exact differentiation. Including the pa-
rameter c2 in equation 2.46 for the approximation of the second derivative the numerical dissipation
behaviour of the second derivative approximation can be controlled, while preserving a sixth-order
compact scheme with marginal numerical extra costs (Lamballais et al. 2011). A relationship
between the set of parameters to preserve the sixth order of the scheme while prescribing the value
of the modified wavenumber κ′′s,c = κ′′s(κs,c) at the cutoff wavenumber κs,c = π, is derived in
Lamballais et al. (2011). For κ′′s,c = π2 this results in a parameter set for the second derivative with

α2 ≈ 0.3645, a2 ≈ 0.6799, b2 ≈ 1.1913, c2 ≈ −0.1005, (2.50)

which is shown in figure 2.3 (b). As can be observed, this scheme depicts a slight over-dissipative
behaviour for large wavenumbers, which at the same time remains closer to the exact differentiation
than the classical sixth-order compact finite difference scheme. Due to the negligible numerical
extra costs this set of parameters is used for the simulations in this thesis presented in chapter 4
and 5.

2.4.2 Immersed boundary method

The immersed boundary method is a procedure to represent solid bodies in flow simulations which
are based on a Cartesian grid. This is achieved by either introducing a forcing therm in the
Navier-Stokes equation, or by modifying the values of the grid points in the vicinity of the solid
body, where the former approach has been termed "continuous forcing approach" and the latter
"discrete forcing approach" (Mittal and Iaccarino 2005). The method of (Goldstein et al. 1993)
belongs to the category of continuous forcing approach for rigid bodies, which assumes a forcing
term of the form of a proportional-integral controller. This method can be easily integrated into
spectral methods, as for example in the solver SIMSON, which is used for the simulation in chapter
3. The IBM used in Xcompact3d (Gautier et al. 2014) falls into the category of discrete forcing
approaches, where the desired boundary condition at the solid interface can be directly achieved
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Figure 2.4: Illustration of polynomial reconstruction of the alternating direction immersed boundary method in Xcom-
pact3d for a rectangular ridge in the y-z cross-section. The orange line in the bottom panel indicates the
grid line along which the reconstruction in the z-direction is illustrated in the upper panel. The Lagrange
polynomial is based on the red points in the fluid domain and the interface points, such that the interpolation
of the velocity values inside the solid region results in the green points.

by adjusting the grid point values close to the solid or in the solid. Thus, the interface of the solid
body can be located between grid points of the Cartesian mesh, allowing the representation of more
complex geometries (Gautier et al. 2014).

The approach of Gautier et al. (2014) employs an polynomial reconstruction method, based on
Lagrange polynomials, such that the fluid values inside the body are interpolated by means of
fluid grid points close to the wall and the desired boundary conditions at the solid interface.
This approach achieves a sharp interface between solid and fluid with a continuous functional
representation across the fluid-solid interface. The reconstruction of the velocities is applied in
the direction of the corresponding spatial derivative, resulting in an alternating direction forcing
strategy, such that the reconstruction of one spatial direction is independent of the other directions.
Figure 2.4 illustrates this procedure for a rectangular ridge along the z-direction. The orange line
in the bottom panel indicates the grid line of the numerical mesh at which the reconstruction of the
velocity is illustrated in the upper panel. The velocity values and spatial position of the red points
are used for the Lagrange polynomial and the green points are the reconstructed values inside the
solid region from the Lagrange interpolation. This reconstructed velocity field is subsequently
used to evaluate the derivative in the z-direction. As noted by Gautier et al. (2014) the first fluid
point next to the solid-fluid interface is neglected due to stability reasons of the the polynomial
reconstruction in case this point is close to the fluid-solid interface. In the numerical solver, this
reconstruction method of the IBM is used during the evaluation of the spatial derivatives, such that
no explicit forcing term appears in the Navier-Stokes equations.
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2.5 Proper orthogonal decomposition

Turbulent flows depict complex spatio-temporal behaviour which makes their mathematical mod-
elling considerably difficult. The observation of coherent structures in turbulent flows, which
represent characteristic reoccurring patterns of the flow and which are energetically dominant in
many flows, suggesting that a low-dimensional model of the flow can be obtained by considering
only dominant coherent structures (Holmes et al. 2012). The proper orthogonal decomposition
(POD) is a reduced-order model technique which was introduced for turbulent flows by Lumley
(1967) to extract dominant coherent structures from experimental and numerical data. This ap-
proach is used in chapter 4 to extract characteristic instantaneous large-scale structures in turbulent
channel flows with secondary motions. The subsequent introduction of the POD are based on the
description of Holmes et al. (2012) and Taira et al. (2017).

The POD first splits the instantaneous velocity vector field u(x, t) = (u(x), v(x), w(x))T , with
spatial vector x = (x, y, z), into the velocity fluctuationu′ = u−u (here (·) indicating a temporal
mean). Subsequently, u′ is decomposed by means of a separation of variables in the form of

u′(x, t) =

N∑
k=1

ak(t) Φk(x), (2.51)

where Φk(x) are the spatial POD modes, which form an orthonormal basis, ak(t) are the corre-
sponding temporal coefficients of the POD modes andN is the total number of modes. The modal
decomposition of the POD is optimal in the sense that the first n modes of the POD capture more
energy of the velocity field on average than any other basis with the same number of modes.

For the computation of the POD velocity fields u′(x, t) at M different and uncorrelated time
instances, with Ns discrete spatial points xi with i = 1, . . . , Ns, are collected. The velocity field
at time instance tj is stored in a velocity snapshot uj = (u′(x1, tj),u

′(x2, tj), . . . ,u
′(xNs , tj))

T

of the form of a column vector. For three velocity components the velocity snapshot has size
uj ∈ RN×1 with N = 3 · Ns. The M velocity snapshots are stored in the data matrix U in the
form of

U =


∣∣ ∣∣ ∣∣
u1 u2 . . . uM∣∣ ∣∣ ∣∣

 ∈ RN×M . (2.52)

The spatial POD modes Φk, here considered as column vectors, result as the eigenvectors from the
solution of the eigenvalue problem

C Φk = λk Φk, (2.53)

with the correlation matrix C = (UUT )/M ∈ RN×N and the corresponding eigenvalues λk of
the mode Φk. The eigenvalues are sorted by their values in descending order such that λ1 > λ2 >

. . . > λN . The temporal coefficient ak(t) of Φk is obtained by projecting the velocity data onto
the spatial mode by

ak = UTΦk, (2.54)
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with ak = (ak(t1), ak(t2), . . . , ak(tM ))T . The relation between the temporal coefficients and
eigenvalues is obtained by using the orthogonality of the spatial modes and relation 2.53, which
yields

λk = ak · ak =

M∑
i=1

ak(ti)ak(ti), (2.55)

where (·) represents the vector scalar product. The turbulent kinetic energy of the velocity field is
obtained by summation over all N eigenvalues of the POD modes

k =
1

2

N∑
k=1

λk. (2.56)

The procedure described above is known as direct method of POD, which can efficiently solve the
eigenvalue problem for the case that the number of spatial degrees N is significantly larger than
the number of snapshots M . In the opposite case for M > N , the so-called POD method of
snapshot can be used, which was suggested by Sirovich (1987), and which determines the same
dominant spatial POD modes by solving the eigenvalue problem of the temporal correlation matrix
Ct = (UTU)/M ∈ RM×M instead

Ct Ψk = λk Ψk, (2.57)

with eigenvectors Ψk and eigenvalues λk. The relation between the direct and snapshot POD can
be shown by means of the singular value decomposition (SVD) of the data matrix

U = LΣRT , (2.58)

whereL ∈ RN×N andR ∈ RM×M are orthogonal matrices andΣ ∈ RN×M contains the singular
values σi along its diagonal. By substituting the SVD of U into the definition of the correlation
matricesC andCt, it follows that the eigenvectorsΦk andΨk corresponds to the column vectors of
L andR, respectively. In addition, the singular values are related to the eigenvalues by σ2i = Mλi.

The method of snapshot will be used for the computation of the POD in chapter 4, due to the large
number of spatial grid points of the investigated cross-sectional velocity planes.
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3 Ridge- and strip-type induced
secondary motions

Spanwise heterogeneous surfaces inducing secondary motions are generally divided into ridge-
and strip-type surfaces. For the former case differences in the lateral surface height are essential
for the formation of secondary motion, while for the latter case variations in the lateral surface
drag are relevant. In previous studies, either ridge- or strip-type induced secondary motions were
investigated separately. Therefore, the aim of this chapter is to investigate the influence of the
combined effects of both surface types, i.e. lateral drag and wall height variations, on the formation
of secondary motions. For this purpose, alternating streamwise-aligned rough- and smooth-wall
strips in a turbulent channel flow are investigated, where the relative wall height difference between
the strips are systematically varied. This allows to study the relative effects of strip- and ridge-type
surfaces on the formation on secondary motions.

The numerical framework of the present flow configuration is structured as follows. In a first step,
for some characteristic heterogeneous cases, i.e. protruding, intermediate and recessed roughness,
the rough surfaces are numerically represented by an IBMmethod, which numerically fully resolves
the individual roughness elements. In a second step, the rough surfaces are represented by the PFA
roughness model, which represents the effects of roughness as a statistically homogeneous model
and which has been successfully applied for turbulent flows over homogeneous rough surfaces. By
the comparison between the two approaches, it can be tested to what extent heterogeneous rough
surfaces can be represented by the simplified PFA model. If this is applicable, parameter studies
of geometrical surfaces properties of heterogeneous surfaces, such as the relative height difference,
can be performed by the PFA with less numerical effort.

This chapter is based on the publications Rearrangement of secondary flow over spanwise heteroge-
neous roughness (Stroh et al. 2020b) and Modelling spanwise heterogeneous roughness through a
parametric forcing approach (Schäfer et al. 2022b). Compared to the publications, the notation for
random stresses, as well as some symbols of physical quantities have been adapted to be consistent
with the notation introduced in this thesis. In addition, results of a simulation with larger relative
height difference between the alternating rough- and smooth-wall strips are included in this chapter,
which were not presented in the previous publications.
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Figure 3.1: Schematic of the open channel domain with alternating rough- and smooth-wall strips at the bottom wall.

(a) (b) (c)

(d) (e) (f)

Figure 3.2: Variation of the smooth-wall elevation for fully-resolved roughness cases in (a, b, c) andmodelled roughness
cases (d, e, f). Case (a) and (d) corresponds to protruding roughness, (b) and (e) to an intermediate
roughness and (c) and (f) to a recessed roughness configuration.

3.1 Flow configuration

The flow configuration in this chapter is a fully developed turbulent open channel flowwith spanwise
alternating rough- and smooth-wall strips as depicted by the sketch in figure 3.1. The flow is driven
by a constant pressure gradient which is prescribed to maintain a constant friction Reynolds number
ofReτ = 500 for the different DNS. The friction Reynolds number Reτ = uτδeff/ν is based on the
effective half-channel height δeff, which considers the reduction of cross-sectional area due to the
introduction of structured surface and its determination will be described below. The continuity
and Navier-Stokes equation

∂ui
∂xi

= 0, (3.1)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ Πδi1 + FIBM,i + Fr,i (3.2)

are solved numerically by the spectral solver SIMSON (Chevalier et al. 2007), where the hori-
zontal direction are discretized by Fourier decomposition and the wall-normal direction employs
Chebyshev discretization. The term Π represents the forcing term to maintain a constant pressure
gradient, while FIBM,i and Fr,i represent the volume forcing terms for the IBM and PFA, respec-
tively. The IBM is based on the method of Goldstein et al. (1993). In the horizontal directions
of the open channel periodic boundary conditions are applied, while for the wall-normal direction
no-slip boundary conditions are imposed at the bottom wall and symmetry boundary conditions
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(v = 0, ∂u/∂y = ∂w/∂y = 0) at the upper boundary. The domain size of the open channel is
Lx × Ly × Lz = 8δ × δ × 4δ.

The height of the smooth-wall strip h is systematically varied to realise different relative wall
positions between the alternating smooth and rough strips. Thus, three different roughness types
can be represented, a protruding roughness, an intermediate roughness and a recessed roughness,
which are depicted in figure 3.2 (a-c). While the elevated smooth-wall strips are numerically
represented by the IBM, the rough stripes are either resolved by the IBM or modeled by the PFA. In
contrast to the IBM, the PFA does not fully resolve the individual roughness elements numerically,
but models their effects on the flow as a horizontally homogeneous distribution, such that there are
no differences between the different roughness strips. The PFA model will be described in more
detail in the next section. In this investigation three heterogeneous roughness cases are performed
with the IBM to represent the three different roughness types, while a larger parameter sweep of
different h-cases is conducted with the PFAmodel. "Themodelled roughness cases employ two sets
of grid resolutions, one being the same as for the resolved roughness cases with a grid resolution
(Nx, Ny, Nz) = (768, 301, 384) and a second set with lower resolution in the streamwise and
wall-normal directions with (Nx, Ny, Nz) = (384, 201, 384). This allows us to confirm that the
grid resolution for the case of the PFA roughness model can be reduced to standard DNS resolution
without significant impact on the results."(Schäfer et al. 2022b)

"The spanwisewavelength,L, of one pair of smooth- and rough-wall patches is fixed toL/δ = 1 and
the ratio of the smooth-wall widthW to the wavelength is set toW/Ls = 0.5. The striped surface
texture is generated by distributing randomly several discrete roughness elements and deleting
those elements whose roughness centre position is placed in a smooth-wall strip, while fulfilling
the prescribed roughness statistics. Thus, the individual roughness strips are not identical in their
detailed topography. Moreover, foothills of roughness elements placed closely to the rough–smooth
border can protrude slightly into the smooth-wall strip. For the homogeneous rough surface the
mean elevation of the rough surface is k̄r = 0.043δ, the maximum roughness height kr,max = 0.1δ

and the root mean square of the roughness height distribution is kr,rms = 0.024δ."(Schäfer et al.
2022b) The skewness and kurtosis of the homogeneous roughness are prescribed as Sk = 0.079

and Ku = 2.24, respectively.

"The introduction of the rough surface strips and the elevation of the smooth-wall strips on top of
the bottom wall (y = 0) leads to a local surface elevation and in consequence to a reduction of the
effective cross-section seen by the fluid, while the numerical domain size is kept constant. The
effective half-channel height δeff is obtained by subtracting the global melt-down height heff from
the constant half-channel height δ, such that δeff = δ − heff. Here, heff. Here, heff is obtained by
averaging the surface elevation over the full channel length and width, including roughness and
elevated smooth-wall regions. In order to maintain the same friction Reynolds number among
all configurations, the effective half-channel height is taken into account for the adjustment of the
pressure gradient Π."(Schäfer et al. 2022b)

"In order to obtain statistically converged results, statistics were time integrated over a period of at
least 50 flow-through time units. [...] For the present data sets the spatial averages in wall-parallel
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3 Ridge- and strip-type induced secondary motions

Figure 3.3: The PFAmodel functionsA andB over the wall-normal distance y normalised using the kinematic viscosity
ν and the mean roughness height k̄r . Adopted from Schäfer et al. (2022b).

planes are obtained through extrinsic averaging, which includes the solid region with zero velocity
values."(Schäfer et al. 2022b)

3.1.1 Parametric forcing approach

"The PFA forcing term Fr,i consists of the sum of a linear and a quadratic contribution of the form

Fr,i = −A(y)ui −B(y)ui|ui|. (3.3)

The general idea behind the derivation of the two model functions - A(y) and B(y) - is briefly
presented in the following while full details can be found in Forooghi et al. (2018). The first and
second terms on the right-hand side of 3.3 aim to reproduce the viscous drag and form drag per
unit volume caused by roughness elements at a certain wall distance y, respectively. An analogy
between roughness and porous media is employed to derive an expression for the first function,
based on the Kozney-Carman porous medium permeability model

A(y) = kK
νs(y)2

ε(y)3
. (3.4)

In 3.4 ε (porosity) is the fluid volume per unit total volume, s is the total surface area of the
roughness per unit total volume and kk is an empirical constant. In order to find the values of s
and ε as functions of y, the roughness perimeter (area) resulting from intersection of y-planes with
the roughness surface (volume) is used. The function B(y) is derived such that the corresponding
term represents the form drag due to all roughness elements. That is

B(y) = cD
sf (y)

2
(3.5)

where sf denotes the total ‘windward-projected’ surface area of roughness per total volume and cD
is the effective drag coefficient of the roughness. One should keep in mind that the three functions
sf (y), s(y) and ε(y) are uniquely determined based on the specific roughness geometry. They can
also be considered as statistical representations of a roughness topography. The two constants kK
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and cD serve as model constants, which enable tuning of the model. The values of these constants
have been tuned by Forooghi et al. (2018) based on a number of DNS cases with homogeneous
roughness with systematically varied topographies. In the present work, we slightly readjust the
constants in order to reproduce the mean velocity profile for the specific roughness topography
under consideration as closely as possible the homogeneous rough case. Note that the PFA forcing
is not applied in the wall-normal direction, i.e. Fr,2 = 0 following the suggestion by Busse and
Sandham (2012). "(Schäfer et al. 2022b)

"Obviously, A(y) and B(y) are zero for y > kr,max = 0.1δ and their specific distributions, as
shown in figure 3.3, are restricted to y ≤ kr,.max = 0.1δ = 2.3k as there is no roughness above this
height. Close to the wall, porosity approaches zero, leading for A(y) to assume very large values.
Therefore, as visible in figure 3.3 (a), A(y) is bounded near the wall to ensure numerical stability.
This has a negligible effect on the flow since the mean velocity is very small for y < k/2."(Schäfer
et al. 2022b)

3.2 Results

3.2.1 Global flow properties

The global flow properties of the homogeneous smooth and rough configurations and the het-
erogeneous roughness surfaces with different smooth-wall heights h are listed in table 3.1. For
the homogeneous rough case and three heterogeneous rough surfaces with different smooth-wall
heights h = 0, 0.97k̄r, 1.70k̄r, the rough surfaces are modeled once by the IBM and also by the
PFA. These PFA cases are performed with two different numerical resolutions, to test the reso-
lution requirements for the representation of heterogeneous rough surfaces. In addition, further
configurations using the PFA model were considered with smooth-wall elevations in the range
0.5k̄r ≤ h ≤ 3.00k̄r. "Note that the definition of k̄r is based on the homogeneous rough refer-
ence."(Schäfer et al. 2022b)

"The PFA model was originally developed to represent the effect of homogeneous rough surfaces
on a turbulent flow field and is applied to spanwise heterogeneous roughness in the present inves-
tigation. In order to match the skin friction coefficient of a particular homogeneous rough surface
with high accuracy, the coefficients in the model functions A and B of equation 3.3 require a fine
tuning which yields the particular distribution of A and B shown in figure 3.3 for the present
homogeneous rough reference surface."

"The reduced cross-sectional area of the channel - through the introduction of IBM-based roughness
elements or the PFA model - is taken into account through the effective half-channel height δeff
introduced in section 3.1. Therefore, the bulk velocity ub is evaluated as

ub =
1

δeff

∫ δ

0
〈u〉(y)dy. (3.6)
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case roughness representation resolution δeff/δ Reτ Reb u+b Cf/Cf,s

smooth - - high 1.000 499.98 9046.6 18.09 1.00
smooth - - low 1.000 500.00 9042.6 18.09 1.00

rough hom. IBM - resolved high 0.957 500.44 5240.8 10.47 2.99
rough hom. PFA - model high 0.957 499.90 5224.2 10.45 3.00
rough hom. PFA - model low 0.957 500.25 5229.0 10.45 3.00

h = 0 het. IBM - resolved high 0.978 499.58 5755.5 11.52 2.47
h = 0 het. PFA - model high 0.978 500.05 5937.5 11.87 2.32
h = 0 het. PFA - model low 0.978 500.01 5909.1 11.82 2.34

h = 0.50k̄r het. PFA - model low 0.968 500.09 5978.3 11.95 2.29

h = 0.97k̄r het. IBM - resolved high 0.958 500.04 5981.5 11.96 2.29
h = 0.97k̄r het. PFA - model high 0.958 500.43 5991.3 11.97 2.28
h = 0.97k̄r het. PFA - model low 0.958 499.82 6005.0 12.01 2.27

h = 1.25k̄r het. PFA - model low 0.952 500.20 6010.1 12.01 2.27
h = 1.50k̄r het. PFA - model low 0.947 499.97 5997.4 11.99 2.27

h = 1.70k̄r het. IBM - resolved high 0.943 500.01 6050.1 12.10 2.24
h = 1.70k̄r het. PFA - model high 0.943 499.87 5927.1 11.86 2.33
h = 1.70k̄r het. PFA - model low 0.943 499.77 5960.7 11.93 2.30

h = 2.00k̄r het. PFA - model low 0.936 500.14 5915.6 11.83 2.34

h = 2.50k̄r het. PFA - model low 0.925 499.99 5811.9 11.62 2.42

h = 3.00k̄r het. PFA - model low 0.914 499.94 5665.0 11.33 2.55

Table 3.1: Global flow properties from DNS of the homogeneous smooth- and rough-wall cases and the heterogeneous
smooth-rough cases with varying smooth-wall distance h. Adopted from Schäfer et al. (2022b).

Since the simulations are run at constantReτ the introduction of roughness leads to a reduced bulk
Reynolds number Reb = ubδeff/ν and a decrease of the normalised bulk velocity u+b (where the
superscript + represents viscous units obtained through a normalisation with the friction velocity
uτ ). Note that uτ is defined through the effective wall-shear stress which is obtained through
an extrapolation of the linear total shear stress distribution to the location y0 = δ − δeff (Chan-
Braun et al. 2011). The reduced flow rate in the rough channel at constant Reτ translates into an
increased friction coefficient Cf = 2u2τ/u

2
b compared with the smooth-wall reference. As reported

in Forooghi et al. (2018) the tuned PFA model captures the drag increase in terms of Cf/Cf,s

(where Cf,s represents the skin friction drag coefficient of a smooth wall at the same Reτ ) very
well for the homogeneous rough surface. In addition, it can be seen that the reduction of the
spatial resolution to standard DNS dimensions for the PFA model does not influence the global
flow parameters."(Schäfer et al. 2022b)

As can be seen, the heterogeneous roughness cases exhibit a strong increase of Cf than compared
to the smooth-wall case. This translates into a reduction of ub by 33-37% for the different
heterogeneous rough cases, and a reduction of 42% for the homogeneous rough case. In order
to determine the contribution of secondary motion on the skin friction, the assumption is made
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3.2 Results

Figure 3.4: Influence of smooth-wall height h on skin friction coefficient Cf in (a) and intensity of secondary motions
usm in (b) for the PFA modelled cases.

that Cf of alternating smooth- and rough-wall strips without secondary motions Cf,ns can be
determined from an area-average of flow properties of the homogeneous rough and smooth-wall
cases. For a channel with constant pressure gradient it follows that the global ub = 0.5(ub,s+ub,r)

is the area-average of the flow rates over the rough and smooth strips. Eventually, since uτ is kept
constant for both surfaces, a power mean for the global Cf is obtained (Neuhauser et al. 2022), and
eventually follows

Cf,ns
Cf,s

=

(
1

2

(
1 +

√
Cf,s
Cf,r

))−2
= 1.608. (3.7)

The comparison of the heterogeneous rough cases to Cf,ns/Cf clearly shows a significantly higher
relative drag increase for all h values. Among the IBM-resolved cases h = 0 has the largest relative
drag increase of 53.7% compared to Cf,ns/Cf .

"The general drag increasing impact of the inhomogeneous roughness on cf above the area-averaged
value is well captured by the PFA model. However, we find an underprediction of cf/cf,s for h = 0

and an overprediction for h = 1.70k̄r, while there is a very good match for h ≈ k̄r. A reduction
of the resolution for the modelled roughness to the one of a standard smooth-wall DNS has a
negligible to small effect on the obtained results, which is largest for h = 1.70k̄r with a difference
of less than 2% for cf/cf,s. Therefore, the additional variations of h investigated with the PFA
model only are simulated with low resolution. All results presented in the following refer to the
low resolution configuration."(Schäfer et al. 2022b)

The effect of the smooth-wall strip height h on Cf is shown for the different PFA cases in figure
3.4 (a). As can be seen, Cf has a global minimum in the range of h = 1.25k̄r, where the mean
height of the roughness strip and the smooth-wall strip height are similar. Considering the relative
height difference h− k̄r, the profile of Cf is almost symmetrical around the zero value of h− k̄r,
such that for positive and negative relative height differences which are equal in absolute terms,
also equal Cf values are obtained. Moreover, when the relative height difference exceeds about 10
plus units, the relative increase in Cf with h− k̄r is stronger, as can be seen for cases h > 1.5.
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3 Ridge- and strip-type induced secondary motions

In case of heterogeneous rough surfaces secondary motions are present which will be shown in
section 3.3.1. The strength or intensity of secondary motions is here quantified by the square root
of the cross-sectional averaged kinetic energy of the cross-sectional velocity components (Scherer
et al. 2022), which is defined by

usm =

(
1

Lzδeff

∫ Lz

0

∫ δ

0
(ṽ2 + w̃2)dy dz

)1/2

. (3.8)

The intensity of the secondary motions for the different heterogeneous rough surfaces with respect
to h is shown in figure 3.4 (b). The weakest secondary motion is found for h = 1.25k̄r and
h = 1.50k̄r, while the strongest intensity is found for h = 3.00k̄r. The latter one is in a similar
range of values as found for secondarymotion intensities of mobile sediment ridges in open-channel
flows (Scherer et al. 2022). Similar to Cf , the intensity of the secondary motions increases with
larger relative height differences h− k̄r, taking into account the slight offset towards positive values
for h− k̄r.

"Figure 3.5 shows the streamwise mean velocity profiles (averaged in time and the two wall-parallel
spatial directions) in logarithmic scaling. The zero wall location is placed at a distance of δ from
the channel centre for all cases. Figure 3.5 (a) contains the velocity profiles for the resolved and
modelled homogeneous rough surface for reference. Slight deviations in the region in the range
k̄r < y < kr,.max are visible that can be traced back to a similar but not identical wall-normal
force distribution in case of IBM and PFA. Overall, very good agreement between these two
approaches is obtained. This is in agreement with the very similar integral u+b values reported in
table 1. The roughness function ∆U+ is 8.002 and 8.046 for the resolved and modelled roughness,
respectively."(Schäfer et al. 2022b)

"As will be shown later, the streamwise mean velocity exhibits spanwise variations up to the
channel centre in some of the heterogeneous rough cases. Nevertheless, these spanwise-averaged
velocity profiles can provide some insight into the differences for modelled and resolved roughness
reported in table 3.1. In the case of h = 0 it can be seen that, in contrast to the homogeneous
rough case, differences between IBM and PFA already emerge below y = k̄r. The PFA model
leads to higher average velocities in this region. In this case the roughness strips are exposed
to the surrounding flow (compare figure 3.2). As outlined in section 3.1, individual roughness
elements whose centre is in the rough region can extend with their foothills into the otherwise
smooth region (see figure 3.2) for the present set-up. These roughness elements, which slightly
stick out of the rough region, are not modelled in the PFA approach, which is restricted to a force
distribution in the rough region (see figure 3.2 (d)). Therefore, the additional drag exerted by the
spanwise protruding roughness elements leads to larger global drag for the IBM case (see table
3.1) and a reduced average streamwise velocity (see figure 3.5). With increasing h this effect is
reduced and eventually flipped since spanwise protruding roughness elements are merged with the
surrounding elevated smooth-wall area. In consequence, IBM and PFA results agree much better
for h > 0 (see figure 3.5 (b, c))). In the case of h = 1.70k̄r, u+b for the resolved roughness exceeds
the one of the corresponding modelled case by 3− 4% (depending on the resolution). Translated
into a drag coefficient, the PFA model thus produces larger drag than the IBM approach for this
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Figure 3.5: Comparison of the streamwise mean velocity profiles between IBM and PFA model cases for three smooth-
wall elevations h = 0 (a), h = 0.97k̄r (b) and h = 1.70k̄r (c). In (a) the homogeneous rough PFA case is
presented by the light blue line. Adopted from Schäfer et al. (2022b).

case. This difference can be related to an effectively narrower rough-wall region in case of IBM
(since roughness elements at the edges are partially merged with the elevated smooth wall) which
allows us to generate higher flow rates for the same pressure drop, opposite to the effectively wider
rough-wall region for h = 0. However, the comparison between IBM and PFA for this case is
more complex, as can be seen from the streamwise velocity profiles at different spanwise locations
discussed in the following."(Schäfer et al. 2022b)

"The data displayed in figure 3.6 are obtained based on averaging in time, streamwise direction
and exploiting the spanwise periodicity. The resulting spanwise coordinate z̄ = z/δ is in the range
0 ≤ z̄ ≤ 1 with its origin z̄ = 0 placed at the centre of the smooth-wall patch. The centre of
the roughness patch is located at z̄ = 0.50 and the transition between rough to smooth occurs at
z̄ ≈ 0.25. Therefore, the blue shaded colours correspond to spanwise locations over the smooth
surface patch while red shaded colours represent locations over the rough surface part. The velocity
profiles at different spanwise locations collapse in the outer flow region for some of the investigated
cases only (see figure 3.6 (b, f)). The other cases reveal spanwise variations far into the bulk flow,
indicating the presence of strong secondary motions, which are addressed in detail in the following
section. From figure 3.6 it is apparent that the influence of the secondary flow on the streamwise
mean flow among IBM and PFA differs, especially in the case of h = 1.70k̄r. A strong spanwise
inhomogeneity is present for IBM in the range 0.18 ≤ y/δ ≤ 0.85 (figure 3.6 (c)) in contrast
to a more homogeneous streamwise flow field for PFA figure 3.6 (f)). The increased velocities
for IBM discussed above can be seen to originate from the flow above the rough surface part. In
this case the PFA forcing is located below the surrounding smooth-wall strips (see figure 3.2 (f))
while individual IBM roughness peaks reach beyond y = h (see figure 3.2 (c)). At the same time,
streamwise velocity can establish in between the IBM roughness elements. We will turn again to
the discussion of larger drag for PFA in the case of h = 1.70k̄r after the discussion of secondary
motions (section 3.2.2) and turbulent flow properties (section 3.2.3)."(Schäfer et al. 2022b)

"To a weaker extent differences between IBM and PFA are also present for h = 0 and h ≈ k̄r.
The high momentum pathways are located above the smooth surface parts for these cases (blue
shaded colours) which corresponds to the flow distribution one would expect from a laminar flow
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3 Ridge- and strip-type induced secondary motions

Figure 3.6:Mean streamwise velocity profiles at different spanwise locations z̄ = z/δ. The dark blue line shows the
centre of the smooth strip at z̄ = 0.0 and the dark red line the centre of the rough strip at z̄ = 0.5. The
dashed and dotted black lines represent the streamwise mean velocity of the smooth and homogeneous
rough case (IBM). Adopted from Schäfer et al. (2022b).

(i.e. a flow without secondary motions of Prandtl’s second kind) above surfaces with varying
friction drag. This spanwise inhomogeneity of ū is enhanced by the secondary motions typically
found above ridge-type roughness, inducing a downwelling motion above the recessed area. This
effect appears to be slightly stronger for the modelled roughness. Figure 3.6 (a, d) confirms that
the increase of u+b in case of PFA for h = 0 is related to the velocity difference at the transition
between smooth- and rough-wall areas (z̄ = 0.25)."(Schäfer et al. 2022b)

"In case of increased elevation of the smooth-wall area, the spanwise distribution of the streamwise
velocity changes in the sense that high momentum pathways are located above the rough surface
parts (red shaded colours). This can be observed in the case of h = 1.70k̄r for the resolved
roughness and for h = 2.00 - [3.00] k̄r for the modelled roughness. This different behaviour is
related to the reversed rotational direction of the secondary motions addressed in the following
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section. It is interesting to note that the spanwise inhomogeneity is most pronounced in the outer
flow region [for cases h = 2.00-2.50k̄r] , while the classical ridge-type behaviour is dominated by
large spanwise variations in the near-wall region [as seen for h = 0 and which starts to become
again more dominant for case h = 3.00]."(Schäfer et al. 2022b)

3.2.2 Secondary motions

"Figure 3.7 shows the cross-sectionalmean flowobtained for resolved andmodelled inhomogeneous
roughness. The secondary motion is extracted from a phase average (over L/2) of the mean flow
field obtained through space averaging (along the streamwise direction) and temporal averaging.
[...] The white lines with arrows in figure 3.7 represent the in-plane secondary motion, while the
colour code corresponds to the streamwise mean velocity. Isolines of the streamwise mean velocity
are plotted as grey lines to indicate the spanwise inhomogeneity of the mean flow."(Schäfer et al.
2022b)

First, the flow structures found for the IBM-resolved cases in figure 3.7 (a-c) are discussed before
the comparison to the PFA model is made. "In all three [roughness-resolved] cases, pronounced
secondary motion patterns can be observed. In the case of h = 0 (figure 3.7 (a)) the two main
large-scale vortices originate from the edges of the rough ridge. Two additional counter-rotating
small vortex pairs are located on the smooth wall and on top of the rough patch. The deformation
of the streamwise velocity profile is shown with [gray] velocity isolines. It can be seen that a LMP
is present over the rough surface part. This flow topology is similar to the secondary flows over
ridge-type roughness (for example, Hwang and Lee (2018)). In contrast, the case with [h = 1.70k̄r]
(figure 3.7 (c)) shows a downward bulging of the streamwise velocity field, and thus HMP over the
rough surface part. In this case the secondary motion is given through a single counter-rotating
vortex pair with an upward motion above the elevated smooth region. This flow topology resembles
the secondary flow reported for strip-type roughness (for example, Willingham et al. (2014), Chung
et al. (2018))."(Stroh et al. 2020b)

"The comparison of these two cases suggests that the alteration of the smooth-wall elevation is an
additional parameter for the secondary motion formation, which might enable rearrangement of
the secondary flow topology from the ridge-type regime (LMP over rough area) to the strip-type
regime (HMP over rough area)."(Stroh et al. 2020b)

"The third case [h = 0.97k̄r] (figure 3.7 (b)) corresponds to an intermediate state between ridge-
and strip-type roughness. In this flow a more complex secondary flow topology is present. The
largest vortical structures do not cover the entire vertical domain. [...] The rotational direction of
the vortex pair in the lower channel half corresponds to the one observed for [h = 1.70k̄r] and the
small one located in the centre of the roughness for h = 0."(Stroh et al. 2020b)

The heterogeneous rough cases with modelled roughness in figure 3.7 (d-l) clearly show, "[...] that
the PFA model is able to predict large-scale secondary motions. These are in very good agreement
with the results for the resolved roughness in case of the protruding rough surface, h = 0 (see
figure 3.7 (a), (d))), revealing an upward motion above the roughness strip that is strong enough
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Figure 3.7: Contours of streamwise mean velocity and the induced secondary motion for resolved roughness cases (a)
- (c) and modelled roughness cases (d) - (l). Adopted from Schäfer et al. (2022b).

to significantly deflect the isolines of streamwise mean velocity. In the near-wall region these
deflections are slightly stronger for the modelled roughness. In the case of h ≈ k̄r (see figures 3.7
(b), (f)) the modelled roughness induces a secondary motion similar to the one at h = 0 along
with the corresponding bulging of the streamwise flowwhile the resolved roughness does not reveal
any bulging of the streamwise velocity isolines, indicating a weaker secondary motion. The PFA
case thus behaves more like a ridge-type roughness. For the recessed roughness (h = 1.70k̄r in
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figures 3.7 (c, i)) the secondary flow topology is similar between IBM and PFA in the sense that
the upward motion is located above the smooth-wall strip for resolved and modelled roughness.
However, the secondary motion induces a deflection of the streamwise mean flow in case of the
resolved roughness (figure 3.7 (c)), especially at larger wall distance, while this cannot be observed
for the modelled roughness (figure 3.7 (i)), indicating weaker secondary currents."(Schäfer et al.
2022b)

"The secondary flow topology in the case of recessed roughness, h = 1.70k̄r, encompasses only
one large-scale vortex pair, while a more complex topology exists for smaller h. For h = 0,
in addition to the dominating large-scale vortex pair that reflects in the mean flow bulging, two
small vortex pairs can be observed for the resolved and the modelled roughness: one on top of
the roughness strip and another one above the smooth-wall area. Both small vortex pairs have
an opposite rotational direction compared with the dominating large-scale vortex pair such that a
downward motion above the centre of the roughness and an upward motion above the centre of the
smooth patch is found in the near-wall region."(Schäfer et al. 2022b)

"The additional PFA simulations with varying h reveal that this transition of the secondary flow
topology can also be captured for the modelled roughness. In this case, a topology similar to
(figure 3.7 (b)) is realised with an increased h of h = 1.50k̄r (figure 3.7 (h)) which also does
not induce any bulging of the streamwise mean flow isolines. The fact that the modelled case
requires larger h values in order to match the secondary flow topology of the resolved roughness
is also present for the more recessed roughness. The secondary flow and related isoline curvature
generated for a resolved roughness with h = 1.70k̄r (figure 3.7 (c)) is captured for a modelled
roughness with h = 2.00− 2.50k̄r ( figure 3.7 (j, k)) which is in agreement with the discussion in
section 3.2.1."(Schäfer et al. 2022b)

For the largest case with h = 3.00k̄r ( figure 3.7 (l)) a small vortex pair emerges above the
smooth-wall area. This indicates that h and the relative height difference is getting large enough
such that for the secondary motion the ridge-type induced behaviour becomes more relevant. The
increase in the strength of the secondary motion for larger h, as shown for the intensity of the
secondary motion in figure 3.4 (b), is reflected by the stronger downward bulging of the isolines
over the rough strip for h = 3.00k̄r, which is also more pronounced in the bulk region compared
to cases with lower h.

"As a measure for the spatial extent and the strength of the secondary motion the spanwise-averaged
wall-normalmean velocitymagnitude 〈ṽṽ〉 is shown in figure 3.8. Since spanwise averages integrate
a number of different features, especially in cases of complex flow topology, a colour map of the
wall-normal spanwise distribution of ṽ is provided in the Appendix in figure A.1."(Schäfer et al.
2022b)

"For the IBM case with protruding roughness (h = 0), 〈ṽṽ〉 spans a wide wall-normal range with
a rather constant value with a local near-wall maximum around y ≈ kr,.max. This can directly
be related to the strong deflection at the smooth-rough interface. While small values for 〈ṽṽ〉 are
found for h ≈ k̄r, the recessed roughness case (h = 1.70k̄r) features a single strong peak around
y ≈ 0.3δ. Interestingly, the streamwise mean velocity isolines at this wall-normal location exhibit
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Figure 3.8: Spanwise averaged wall-normal dispersive stress profiles for IBM-resolved roughness cases in (a) and
PFA-modelled roughness cases in (b). Adopted from Schäfer et al. (2022b).

a weak bulging only (see figure 3.7), indicating that the secondary motion acts to homogenize the
spanwise distribution of streamwise mean velocity in this case. Comparing 〈ṽṽ〉 for the modelled
roughness (figure 3.8 (b)) with the resolved one (figure 3.8 (a)) reveals a number of differences.
For h = 0 the PFA model depicts a stronger peak around y ≈ kr,.max and lower values in the bulk
of the flow. The stronger peak can be related to a stronger and more localised upward wall-normal
velocity at the transition of the smooth to roughwall (see figure A.1), while for the IBMmodel these
upward deflections are less intense in the transition region. In terms of 〈ṽṽ〉 the modelled roughness
with h = 0.50k̄r bears the largest resemblance to the resolved h = 0 case. For h = 1.70k̄r the
modelled roughness induces significantly lower values for 〈ṽṽ〉 as expected from the absence of
isoline curvature in figure 3.7 (i). Actually, the wall nearest isoline in this figure shows a slight
outward bulging above the roughness which a stronger secondary motion would annihilate and
eventually reverse. For PFA this increase in secondary motion strength can be realised with an
increase of h such that not only the secondary flow topology but also the corresponding intensity
for h = 1.70k̄r with IBM is reasonably well matched for h = 2− 2.5k̄r with PFA."(Schäfer et al.
2022b)

The strength of the secondary motion further increases for h = 3k̄r and the peak value is now
larger than for the protruding roughness case h = 0. An indication that the ridge-type behaviour
becomes increasingly important for this case, is that the peak location now shifts closer to the
wall than compared to the lower cases h = 1.7-2.5k̄r. However, this behaviour is likely to reverse
at some point with increasing h since at the same time the wall-offset becomes also larger as h
increases. This influence of the wall-offset can already be seen by the comparison with case h = 0,
where the peak location is closer to the wall than for h = 3k̄r.

"Within the PFA modelled cases (figure 3.8 (b)) the sole influence of h on 〈ṽṽ〉 (employed here
as a simple measure of the secondary flow strength) can nicely be analysed. On the one hand,
protruding roughness induces very strong upwardmotions around y ≈ kr,.max which reduce in their
intensity for a reduced protrusion of the roughness. On the other hand, recessed roughness also
induces strong 〈ṽṽ〉; again with reduced intensity for decreased wall offsets. However, for recessed
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Figure 3.9: Spanwise variation of turbulent kinetic energy for resolved roughness cases in (a) and modelled roughness
cases in (b) extracted at y = 0.115δ. Line colours same as in figure 3.8. Adopted from Schäfer et al.
(2022b).

roughness, the peak of 〈ṽṽ〉 is located at a larger wall-normal distance. This is in agreement with
the observation made in respect to figure 3.6 (section 3.2.1), that spanwise inhomogeneity of the
streamwise velocity profile is more pronounced in the outer flow region for recessed roughness
and more pronounced in the near-wall region for protruding roughness. In the case of recessed
roughness, the turbulence generated secondary motions homogenize the surface elevation induced
inhomogeneities near the wall. Their influence on the streamwise mean flow is therefore more
perceptible at larger wall distances up to which surface-induced inhomogeneities alone do not
reach. In contrast, turbulence generated secondary motions over protruding roughness enhance
surface-induced inhomogeneities of the flow field such that their combined influence is strongest
near the wall."(Schäfer et al. 2022b)

"We note that the observed tendency of the decrease and increase of the wall-normal velocity
magnitude with increasing h correlates well with the development of the skin friction coefficient
of the PFA model (cf. table 3.1) and suggests that the appearance of strong secondary motions
contributes to drag increase."(Schäfer et al. 2022b)

3.2.3 Turbulence flow properties

"The flow above rough walls is typically characterised by increased turbulent kinetic energy and
shear stress. Forooghi et al. (2018) show that the PFA model captures these features relatively
well for homogeneous rough surfaces. Figure 3.9 shows the spanwise variation of the turbulent
kinetic energy k = 1

2(u′′u′′ + v′′v′′ + w′′w′′) slightly above the maximum roughness elevation
at a wall-normal position of y = 0.115δ for the investigated inhomogeneous roughness cases
[(case h = 3k̄r not shown due to the larger wall-normal offset)]. The increased turbulent kinetic
energy above the rough patches and also its spanwise distribution are well captured by the model.
Comparing the magnitude of k between resolved and modelled roughness for the same smooth-wall
elevation h indicates that the modelled roughness induces similar turbulent kinetic energy to the
resolved one. Above the smooth-wall patches k is similar for resolved and modelled roughness
in the case of h = 0.97k̄r and h = 1.70k̄r but differs for h = 0. The turbulent kinetic energy
above the smooth area located in between resolved roughness elements is larger in this case. The
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3 Ridge- and strip-type induced secondary motions

Figure 3.10: Contours of Reynolds shear stress component v′′w′′ for resolved roughness cases (a) - (c) and modelled
roughness cases with low resolution (d) - (l). The coloured dotted lines corresponds to v′′w′′/U2

b values
of (±0.0001, ±0.0005). Isolines of the streamwise mean velocity are shown in grey. Adopted from Schäfer
et al. (2022b).

wall-normal location at which k is extracted corresponds to the one where 〈ṽṽ〉 is largest for the
protruding roughness case and where a downwash is present above the smooth wall. The observed
difference in k is thus probably related to the different strength of the secondary motion in these
two cases."(Schäfer et al. 2022b)
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"The local peaks of k at the edges of the protruding (h = 0) or partially protruding (h = 0.5k̄r)
roughness are known for ridge-type roughness (Hwang and Lee (2018), Schäfer et al. (2019)) and
can be related to the upwash that occurs on the corners, while the distribution of k above the
recessed roughness is similar to the one above strip-type roughness (Anderson et al. 2015); i.e.
with the largest values of k in the centre of the roughness strip. The PFA model captures these
qualitative differences well. In particular it can be seen that the distribution of k resembles the one
for strip-type roughness for h = 1.25k̄r and h = 1.50k̄r. Starting from h = 1.70k̄r local peaks of
k at the transition between rough and smooth strips start to emerge again. These peaks are located
further towards the smooth region than for smaller h, indicating that the elevated smooth surface
starts to influence the turbulent flow in a ridge-typemanner, despite the fact that k is generally larger
above the rough-wall region at the considered wall-normal distance (see cross-sectional distribution
of k shown in the Appendix in figure A.2)."(Schäfer et al. 2022b)

The spatial distribution of v′′w′′ is shown in figure 3.10. Considering first the IBM-resolved
roughness cases in (a-c) it can be observed that "the magnitude of v′′w′′ is strongest for h = 0 and
a switch of sign above the rough surface strip can be seen for [h = 1.70k̄r]. The distribution for
[h = 1.70k̄r] corresponds to the one found over strip-type roughness (Chung et al. 2018), while
the distribution for h = 0 is in good agreement with the studies of ridge-type roughness (Hwang
and Lee 2018, Vanderwel et al. 2019). The opposing signs of v′′w′′ for h = 0 and [h = 1.70k̄r]
around the smooth–rough transition location can be directly related to the different deflection of
spanwise velocity fluctuations. The sign of the generated correlation between v′′ and w′′ differs
above the rough to smooth transition, depending on whether the roughness or the smooth part of
the wall forms the protruding surface."(Stroh et al. 2020b)

"In the case of the recessed roughness [(h = 1.70k̄r)] the deflection on the protruding smooth
surface part supports the v′′w′′ distribution found on non-elevated surfaces with increased drag. In
consequence, only one pair of secondary vortices is present, which coincides with the one found
for strip-type roughness. For the protruding roughness (h = 0), on the other hand, the v′′w′′

distribution opposes the one for strip-type roughness. In the present case, this influence of the
local mean surface elevation dominates the secondary flow formation, and thus yields a different
rotational direction than for [h = 1.70k̄r]. For the case with [h = 0.97k̄r], where the melt-down
height of the roughness is [roughly] the same as the smooth surface height, the v′′w′′ distribution
appears to be dominated by the protruding parts of the surface roughness for the present geometry.
At the same time its influence on the secondary flow formation appears to be weak. [These results
suggest] that the variation of rotational direction for different roughness heights is strongly related
to the difference in the introduced wall-normal deflections of spanwise velocity fluctuations."(Stroh
et al. 2020b)

Comparing the distributions of v′′w′′ between the IBM-resolved and PFA-modelled cases shows
that "the spatial extent of the v′′w′′ contours for the protruding roughness cases in figure 3.10 (a)

and (d) are similar; however, the modelled case (figure 3.10 (d)) exhibits a localised maximum
region at the upper edge of the roughness region, while the region of large v′′w′′ is more spread
out for the resolved roughness (figure 3.10 (a)). This can directly be related to the highly localised
transition from smooth to rough for the PFA model, which is obviously more gradual for the
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3 Ridge- and strip-type induced secondary motions

resolved case if viewed from the streamwise-averaged perspective employed in the present plots.
Along the same line the smaller penetration of the v′′w′′-contours into the modelled roughness
region can also be explained with the spatial homogenization of the model in the rough surface
region. The maximum intensity of v′′w′′ is larger for figure 3.10 (a), indicating stronger deflection
events at the transition from smooth to rough. This is likely to be caused by individual larger
roughness elements which are not present in the roughness model."(Schäfer et al. 2022b)

"For the intermediate roughness case, h ≈ k̄r, the v′′w′′ contours resemble those of the protrud-
ing roughness (h = 0) but with slightly smaller wall-normal extent and lower magnitudes. In
this scenario the resolved roughness case (figure 3.10 (b)) already comprises very small regions
of oppositely signed v′′w′′ at the smooth-wall edge inside the roughness region, indicating that
deflections in the opposite direction are already present. This can only occur for flow located
inside individual roughness valleys in which spanwise fluctuations towards the elevated smooth
region are deflected upward. This effect is not present in the corresponding homogenized roughness
model (figure 3.10 (f)). However, when h is elevated further for the modelled roughness the first
indications of oppositely signed v′′w′′ at the transition from a smooth to a rough surface occur for
h = 1.5k̄r (h) (figure 3.10 (h)). This similarity in the qualitative distribution of v′′w′′ between
figures 3.10 (b) and (h) coincides with a similar secondary flow topology (see figure 3.7)."(Schäfer
et al. 2022b)

"The fact that larger values of h are required for the modelled roughness in order to achieve a
similar distribution of v′′w′′ can also be seen for the recessed roughness. The resolved roughness
h = 1.70k̄r (figure 3.10 (c)) bears large similarities to the modelled roughness h = 2.00k̄r (figure
3.10 (j)). Again, this case exhibits a highly similar secondary motion which also induces similar
deflections to the streamwise mean velocity profile. In general, an increase in h induces a sign
reversal of v′′w′′, indicating that the smooth-wall area starts to act as the protruding surface part as
already noted in respect to the spatial distribution of k. This is most pronounced for [h = 3.00k̄r]
(figure 3.10 (k)). The sign reversal does not occur at identical h-values for resolved and modelled
roughness but requires a larger smooth-wall elevation for the modelled roughness. This shift can
be related to the homogenizing nature of the PFA model which does not capture the turbulence
present in individual roughness valleys and its interaction with the elevated smooth wall. Overall,
the present results confirm that v′′w′′ has a strong impact on the formation of secondary flows and
their respective strength."(Schäfer et al. 2022b)

"The limiting case of strip-type roughness, in which a smooth wall with different shear stress is
considered, cannot be realised with the present scale separation where deflections at the roughness
edges appear to be present in all cases. Considering the v′′w′′ distribution, the case of h =

k̄r is still clearly dominated by the ridge-type behaviour of the rough surface part. For the
PFA cases the minimum influence of v′′w′′ appears to exist around h = 1.5k̄r for the present
roughness strips which is also the case with the lowest wall-normal mean velocities (cf. figure
3.8). Assuming v′′w′′ to be an indicator for protrusion triggered secondary motion (Hwang and
Lee 2018) suggests that h ≈ 1.5k̄r most closely generates a strip-type behaviour. For the present
roughness configuration this case does not induce secondary motions that significantly alter the
streamwise mean flow."(Schäfer et al. 2022b)
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3.3 Discussion

3.3.1 Rotational direction of secondary motions

Ridge- and strip-type induced secondary motions show different rotational directions in the sense,
that for ridge-type roughness the upwelling of the secondary motion is observed over the shear-
inducing protruding ridge, while for strip-type roughness the upwelling occurs over the lower shear
stress region. Which turbulent quantity is decisive for the different rotational direction between
ridge- and strip-type induced secondary motion is not yet clearly determined.

For the present configuration "[...] the areas with high turbulent kinetic energy [...] are concentrated
above the rough stripes for all investigated cases, [such that this quantity] cannot be directly related
to the observed switch in rotational direction. The turbulence property that is found to be related to
this switch is the v′′w′′ Reynolds stress component. This quantity, which is related to the transport
of turbulent kinetic energy (Hwang and Lee 2018) and whose spatial gradients occur in the mean
momentum budget for v̄ and w̄ (Stroh et al. 2016), switches sign in agreement with the rotational
direction of the secondary motion. This sign switch is related to the relative roughness height
through the different deflections that spanwise velocity fluctuations experience for protruding or
recessed roughness. For recessed roughness the generated v′′w′′-distribution is similar to the
one for idealized strip-type roughness. Therefore, an elevated smooth surface part potentially
enhances the strength of the secondary motion. For protruding roughness the deflections at the
rough–smooth transition are such that a competing mechanism for the secondary flow formation is
generated. With increasing roughness height this effect is increasingly dominant and can generate a
switch of the large-scale rotational direction of the secondary motion. Thus the relative roughness
height is identified as a key quantity for the rotational direction of secondary flow over spanwise
heterogeneous roughness."(Stroh et al. 2020b)

"While the secondary flow generated above protruding rough strips (h = 0) resembles that of
protruding smooth ridges with smooth valleys ( Hwang and Lee 2018, Medjnoun et al. 2018, Stroh
et al. 2020a) or ridges and valleys with identical roughness (Vanderwel and Ganapathisubramani
2015, Vanderwel et al. 2019), the present results indicate an interesting difference for a protruding
smooth ridge with rough valleys [(up to h = 2.5kr)]. The latter encompasses one large-scale
vortex pair only, while the other ridge-type cases typically contain three vortex pairs, as discussed
in relation to figure 3.7 (a, d). This difference probably originates from the fact that the turbulent
kinetic energy is consistently higher above the rough surface region than above the smooth one.
In agreement with the suggestion of Hinze (1967, 1973), the secondary motion in the near-wall
region is always directed from the region of high k towards the region of lower k (located above the
smooth surface region). Deflections (v′′w′′) on a protruding rough ridge counteract the secondary
motion induced by the spanwise gradient of k, leading to the formation of multiple vortex pairs.
However, the opposite occurs over surfaces with rough valleys. In this case deflections on the edges
of the protruding smooth surface region enhance the secondary motion induced by the gradient
of k such that the secondary motions do not indicate a difference between protruding ridge-type
surface structures and non-protruding strip-type ones."(Schäfer et al. 2022b)
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3 Ridge- and strip-type induced secondary motions

For the recessed roughness case h = 3.00k̄r the protruding smooth-wall strip is sufficiently high,
such that a small vortex pair can now emerge above the smooth-wall strip, which indicates that
ridge-type behaviour becomes more dominant. This is accompanied by similar v′′w′′-distribution
as the protruding roughness strip h = 0 and the distribution of turbulent kinetic energy in figure
A.2 reveals the formation of stronger peaks at the edges of the protruding smooth strip. "It is likely
that a further increase of h beyond the parameter space of the present study will [further] reduce
the relevance of high k above the rough surface such that the peak of k in the near-wall region
of the elevated smooth surface will eventually dominate along a wall-parallel line. In this case, a
recovery of the classical ridge-type secondary flow topology is expected."(Schäfer et al. 2022b)

3.3.2 Modelling spanwise heterogeneous surfaces

"The PFA roughness model developed for the modelling of homogeneous rough surfaces (Busse
and Sandham 2012, Forooghi et al. 2018) is used to predict the turbulent flow over spanwise
heterogeneous roughness for different relative roughness elevations. [...] While the roughness
model is applied in a clearly defined spanwise region of width W , the roughness-resolving IBM
based DNS is not set up with a sharp cut at the edges of the rough region since this would have
altered the roughness statistics of the rough strip. Instead, all roughness elements, whose centre
position is located outside the rough region, are removed to create smooth strips. In consequence,
foothills of roughness elements located close to the roughness edges can reach either onto the
neighbouring smooth strips in the case of protruding rough strips or merge with the elevated
neighbouring smooth strips in the case of recessed roughness. Therefore, the effective width of
the rough strip is slightly larger for the protruding roughness (h = 0) and slightly smaller for the
recessed roughness (h = 1.70k̄r). This difference directly reflects in the global flow properties in
the sense that relatively larger drag is generated for resolved protruding roughness (due to effectively
wider roughness strips) and relatively smaller drag is present for resolved recessed roughness (due
to effectively narrower roughness strips)."(Schäfer et al. 2022b)

"The comparison of the global effective friction coefficient achieved with the resolved andmodelled
roughness approaches reflects the discussion above. Compared with the IBM based DNS, the PFA
roughness model predicts a smaller friction coefficient for h = 0 and a larger one for h = 1.70k̄r

while good agreement is obtained for h ≈ k̄r. In general, the relative drag increase of the
heterogeneous roughness compared with the area-averaged mean value for smooth and rough
contributions is well captured by the PFA model. Its simpler structure compared with IBM
resolved roughness not only allows us to reduce the computational effort to the one of smooth-
wall turbulent flow DNS but also to systematically investigate the effect of single parameters of
heterogeneous rough surfaces, such as e.g. the relative roughness elevation in the present study, in
a more straightforward manner."(Schäfer et al. 2022b)

"In this context, the present results show that the PFA roughness model is able to capture all salient
features of heterogeneous rough surfaces. In particular, the PFA model captures the transition of
secondarymotion from ridge- to strip-type behaviour through variation of h and the related reversed
rotational direction (Stroh et al. 2020b) which cannot be resolved with other numerical roughness
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modelling approaches that rely on the prescription of an effective wall-shear stress (Anderson et al.
2015, Chung et al. 2018)."(Schäfer et al. 2022b)

"The relative drag increase of spanwise inhomogeneous surfaces in turbulent channel flows is to a
first approximation qualitatively similar to the one obtained in corresponding laminar flow (Daschiel
et al. 2012); i.e. relative drag increase is obtained for spanwise wavelengths of the order of the
channel height (as in the present case) while relative drag decrease can be obtained with much
larger wavelengths. The present PFA based results indicate the presence of a relatively constant drag
coefficient in the range of 0.5k̄r < h < 1.5k̄r k which coincides with weak secondary motions. An
increasing strength of secondary motions induces an increase of the drag coefficient. In the case
of protruding roughness (h = 0) this drag increase occurs because the secondary motion enhances
the inhomogeneity of the streamwise velocity distribution. In case of recessed roughness, when
the smooth-wall region starts to emerge as a protruding region, the secondary motion is such that
it enhances low momentum pathways over the smooth regions and high momentum pathways in
the rough regions. While this phenomenon occurs first in the bulk of the flow (h = 1.70k̄r) a
further increase of h also induces clearly visible high momentum pathways in the near-wall region
of the rough surface part (h = 2.50k̄r and [h = 3.00k̄r]). Therefore, the relative influence of the
rough region on the total drag is increased. Overall, the presence of secondary motions (which are
triggered through protruding rough or smooth strips in the present study) generally leads to larger
drag increase; however, the underlying physical mechanisms differ for protruding and recessed
roughness strips."(Schäfer et al. 2022b)

"A direct comparison of the secondary flow topology between modelled and resolved roughness
reveals that a shift towards larger values of h is required for the PFA model to reproduce the IBM
results. This suggests that the PFA roughness model induces a larger wall offset when applied in
heterogeneous instead of homogeneous rough-wall flow conditions. While the PFA forcing 3.3 is
applied in streamwise and spanwise directions only, the local wall-normal mean velocity shown in
figure A.1 shows that the PFA model nevertheless prevents the occurrence of downwash into the
roughness region (negative values of ṽ) which is visible for the resolved roughness. The secondary
motions present for heterogeneous roughness generally induce a net downward motion above the
roughness centres which penetrates further into the resolved rough region. In consequence, the fluid
in resolved roughness valleys can interact with neighbouring smooth regions. This is particularly
important in the case of recessed roughness strips where wall-normal deflections of spanwise
velocity fluctuations can occur at the edges of the protruding smooth-wall region. The reduced
wall-normal penetration in case of the PFA model thus yields smaller values of v′′w′′ which is
known to be the primary driving force for the secondary motions above ridge-type roughness
(Hwang and Lee 2018). The reduced secondary motion strength predicted with the PFA roughness
model compared with IBM for h = 1.70k̄r is thus caused by the reduced intensity of v′′w′′. The
comparison of the global drag for these two cases (see table 3.1) is governed by two factors:
PFA induces lower drag due to weaker secondary motions, but higher drag due to the effectively
narrower roughness strip width for IBM. The latter phenomenon dominates in the present set-up,
which indicates a possible advantage of using a simplified roughness model instead of IBM if
the sensitivity of global flow properties towards individual parameters is investigated. For such
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investigations the PFA roughness model can be used without any particular fine tuning."(Schäfer
et al. 2022b)

"We note that a pure strip-type behaviour can probably not be obtained with the scale separation
(k̄r/δ) of the present DNS, since v′′w′′ generated at any protruding surface part appears to have
a strong influence on the secondary flow formation. However, the corresponding influence is
weak for h ≈ 1.50k̄r, indicating a small difference in the effective virtual wall location between
smooth and rough surface parts for the present configuration. Since protruding smooth surface
parts will enhance the ridge-type secondary flow, it is advisable to work with such a configuration
if the effect of strip-type roughness is to be investigated numerically (with resolved roughness) or
experimentally."(Schäfer et al. 2022b)

3.4 Summary

In this chapter DNS of turbulent open-channel flow over streamwise-aligned alternating smooth-
and rough-wall strips are studied. The rough surfaces are modeled by two different numerical
approaches. First, the individual roughness elements are fully resolved by an IBM, while in
the second case the effects of the rough surface are numerically represented as a statistically
homogeneous model by the PFA (Forooghi et al. 2018). "While the statistical properties of the
roughness texture as well as the width and spacing of the rough areas are kept constant, the
elevation of the smooth wall is systematically varied. This set-up allows identifying the relevance
of protruding or recessed roughness for the secondary flow formation. In addition, it couples the
effect of lateral drag variation and relative roughness elevation, whose effects on the secondary flow
formation have been mostly studied separately in literature up to now (strip-type roughness versus
ridge-type roughness)."(Stroh et al. 2020b)

The present results reveal that the rotational direction of the secondarymotion depend on the relative
mean height difference between the smooth- and rough-wall strips. For the case of protruding
roughness the secondary motion induce an upward motion above the roughness strip, while for
recessed roughness a downward motion is observed there. The flow topology and characteristics of
the secondary motion for the protruding roughness resembles the behaviour of ridge-type induced
secondary motions. The recessed roughness cases on the other hand show clear similarities to
strip-type induced secondary motions, unless the relative height difference becomes sufficiently
large. In the latter case the protruding smooth-wall edges introduce effects of ridge-type induced
secondary motions such as the formation of tertiary vortices over the smooth-wall strip.

The relative drag increase over the heterogeneous rough surfaces correlates with the strength of
the secondary motion. This in turn increases with larger relative height difference between smooth
and rough strips, as can be seen for protruding roughness or protruding smooth-wall strips with
recessed roughness. These two extreme cases also show typical ridge-type behaviour in the sense
that they exhibit strongly pronounced wall-normal deflections of spanwise velocity v′′w′′ with
similar patterns at the protruding surfaces. This quantity and its distribution are also strongly
linked to the reorientation of the secondary motion, since the switch of the rotational direction of
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the secondary motions is accompanied by a change in the sign of v′′w′′ at the smooth-to-rough
strip transition.

The comparison between the roughness resolved andmodelled cases shows "that the PFA roughness
model is able to capture all salient features of heterogeneous rough surfaces. In particular, the
PFAmodel captures the transition of secondary motion from ridge- to strip-type behaviour through
variation of h and the related reversed rotational direction. [...] We conclude that the PFA roughness
model constitutes an attractive alternative for roughness-resolving DNSwhen investigating not only
the effect of homogeneously but also of heterogeneously rough surfaces in turbulent channel flows.
The PFA roughness model allows one to systematically study the effect of individual roughness
parameters which can often be strongly interlinked for the resolved case. We are of the opinion
that such parameter studies do not necessarily require a fine tuning of the PFA model to a particular
rough surface (which would require additional roughness-resolving DNS) but can be used in an a
priori manner, at least for turbulent channel and equilibrium boundary layer flows. However, for
significantly different flow conditions (especially including flow impingement on rough surfaces)
the model should not be applied without further checks."(Schäfer et al. 2022b)
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4 Interaction between secondary
motions and turbulent
large-scale structures

The objective of this chapter is to investigate the instantaneous characteristics of ridge-type induced
secondarymotions and their connection and distinction to turbulent large-scale structures occurring
naturally in smooth-wall turbulent channel flows. The majority of studies to date have focused on
the characteristics of time-averaged secondary motions, while only a few studies focused on the
time-dependent characteristics of secondary motions, showing that these characteristics might be
masked by the averaging procedure (Vanderwel et al. 2019, Zampiron et al. 2020, Wangsawijaya
et al. 2020). Recent studies suggested that instantaneously secondary motions appear similar to
large-scale motions (LSM/VLSM) as meandering low- and high-momentum streaks and in a mean
sense as counter-rotating vortices. However, unlike turbulent large-scale structures, the secondary
motions are spanwise locked at the ridges or at the transition of the wall heterogeneity for strip-
type surfaces. Coexistence of secondary motions and VLSM was shown for strip-type surfaces
(Wangsawijaya et al. 2020), however for streamwise-aligned ridges on hydraulically rough beds,
the coexistence of secondary motions and VLSMs could not be found for small spanwise ridge
spacings S ≤ 2δ (Zampiron et al. 2020).

In this chapter the heterogeneous surface consists of streamwise-aligned Gaussian ridges. In par-
ticular, cases with larger S are investigated than in the previous experiments to study a possible
interaction and coexistence between secondary motions and VLSM. This interaction is further ex-
amined by variation of the ridge height. Besides spectral analyses, the instantaneous characteristics
of secondary motions and turbulent large-scale structures are further analysed by means of proper
orthogonal decomposition. Furthermore, a passive scalar is considered in the simulations, which
allows the investigation of the influence of the secondary motions on the heat transfer. Preliminary
results of the data presented in this chapter were previously reported in (Schäfer et al. 2022).
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4.1 Flow configuration

The present flow configuration is a turbulent open-channel flowwith streamwise-aligned ridges and
smooth-wall properties as depicted in figure 4.1. The continuity equation, Navier-Stokes equation
and temperature equation are

∂ui
∂xi

= 0,
∂ui
∂t

+
∂uiuj
∂xj

= − 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ Π δi1 + FIBM,i, (4.1 a,b)

∂T

∂t
+
∂Tuj
∂xj

= α
∂2T

∂xj∂xj
+Qs +QIBM, (4.2)

which are numerically solved by the open-source code Xcompact3d, described in detail in section
2.4. The flow is driven by a constant pressure gradient Π and the volume force term FIBM,i

and the heat source term QIBM are introduced to numerically represent the ridges in the open-
channel flow. Periodic boundary conditions are applied in the horizontal directions, while at the
wall no-slip boundary conditions and at the top of the domain symmetry boundary conditions
(v = 0, ∂u/∂y|y=δ = ∂w/∂y|y=δ = 0) are imposed. For the temperature boundary conditions a
constant bottom wall temperature Tb and a zero heat flux (∂T/∂y|y=δ = 0) at upper part of the
domain are imposed. In order to prevent heating of the fluid by the selected boundary conditions, a
volumetric cooling is introduced by the heat source termQs to maintain the volume-averaged fluid
temperature at 0.5Tb.

The considered flow is characterised by the friction Reynolds number Reτ and Prandtl number
Pr, which are set to Reτ = 540 and Pr = 1. The friction Reynolds number Reτ is based on the
effective half-channel height δeff, whose determination is defined in the following paragraph. A
relative large domain size is used,Lx, Lz = 36δ, 12δ, to be able to capture the spatial characteristics
of VLSMs. The spanwise ridge spacing S is systematically varied between S/δ = 0.5, 1, 2, 4, 12,
such that for the large S cases the interaction between secondary motions and VLSMs can be
studied. All investigated cases are listed in table 4.1. The statistical convergence of the results
is checked by the variation of the global properties and turbulent mean profiles of the flow for
different time integration intervals. For dense ridge spacing cases S ≤ 2δ time integration of at
least 800tb were collected, while for coarser ridge spacings at least 1400tb were collected, in order
to obtain converged results for streamwise and time-averaged quantities.

"The spanwise height distribution of the streamwise-aligned ridges follows a Gaussian distribution
for each individual ridge, which is defined by

hGauss(z) =

ng∑
i=1

hg exp(−(z − zc,i)2/(2σ2)), (4.3)

where ng is the total number of Gaussian ridges at one wall, hg is the maximum height of a
single Gaussian ridge, zc,i is the spanwise centre position of each individual ridge, given by
zc,i = S (i + 0.5) with S as the spanwise spacing between two Gaussian ridges. The parameter
σ represents the spanwise extent of an individual Gaussian ridge. In this study the parameters of
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Figure 4.1: Sketch of the domain of the open-channel flow with streamwise-aligned Gaussian ridges at the wall.

the Gaussian ridges is set to hg = 0.1δ and σ = 0.05δ. The cross-sectional area occupied by
a single ridge is given by AGauss =

√
2π hgσ. Thus, the effective half-channel height is given

by δeff = δ − δmelt with the melt-down height δmelt = ngAGauss/Lz ."(Schäfer et al. 2022a) Due
to the presence of the Gaussian ridges the wetted surface of the wall increases compared to the
smooth-wall case. The wall length in the spanwise domain −δ/4 ≤ z′ ≤ δ/4 with one Gaussian
ridge centred at z′ = 0 is given by

Lg =

∫ δ/4

−δ/4

√
1 + h2g/σ

4z2 exp(−z2/σ2)dz = 0.684δ, (4.4)

which is numerically integrated by the trapezoidal rule. The total wetted surface for different ridge
spacings can thus be expressed by Ls = Lz + ng(Lg − 0.5δ).

In this chapter the "spatial averages are based on intrinsic averaging. This procedure excludes the
values at the grid points inside the immersed (solid) body, while the values on the surface are
included in the integration. In consequence, the average is computed through normalisation with
the fluid area only. This affects the evaluation of global quantities, e.g. the bulk velocity ub, which
are integrated in time and all three spatial directions and are defined for the present configuration
as

Φ =
1

2δeff Lz

∫ Lz

0

∫ δ

yb(z)
φ̄ dy dz, (4.5)

where φ represents an arbitrary quantity and Φ is its volume- and time-average, while yb(z) [is]
the wall-normal surface elevation at the bottom [...] wall."(Schäfer et al. 2022a)

4.2 Results

4.2.1 Mean flow properties

The results of the global flow properties are presented in table 4.1, where the different flow
configurations are arranged with decreasing S and the smooth-wall case is indicated by S = ∞.
The skin-friction coefficient Cf = 2u2τ/u

2
b characterises the drag of the flow, while the heat

transfer is characterised by the Nusselt number defined as Nu = δeffqw/(α∆〈T 〉). Both, uτ and
qw are obtained by extrapolating the total shear stress and heat flux from the bulk region to the
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Reτ,eff S/δ hg/δ δeff/δ Reb Cf Nu St Kc/u
2
τ usm/ub

(·10−3) (·10−3) (·10−2) (·10−2)

540 ∞ - 1.0 9850.4 6.015 15.04 1.527 0.05 0.23
540 12 0.1 0.999 9777.8 6.100 15.12 1.546 0.52 1.32

540 4 0.1 0.997 9618.2 6.300 15.30 1.590 1.56 1.37
540 4 0.05 0.998 9775.4 6.101 15.11 1.546 0.51 0.73
540 4 0.025 0.999 9831.7 6.031 15.04 1.530 0.09 0.22

540 2 0.1 0.994 9410.0 6.596 15.56 1.654 2.71 1.32
540 1 0.1 0.987 9232.2 6.841 15.86 1.718 2.47 1.30
540 0.5 0.1 0.975 9097.5 7.051 16.20 1.781 1.56 1.04

Table 4.1: Global flow properties of DNS of smooth-wall case and streamwise-aligned Gaussian ridges with varying
ridge spacing S and different ridge heights hg .

wall-normal position yw = δ − δeff, respectively (Chan-Braun et al. 2011). The introduction of
the ridges increases the drag exerted on the flow compared to the smooth-wall conditions, which
in case of a constant pressure gradient results in a reduction of ub and Reb, while Cf is increased.
Similar, the ridges increase the heat transfer expressed in terms of the non-dimensionalized wall
heat flux by Nu, which monotonically increases with smaller S. The relative increase of Cf and
Nu for cases S = 12δ, 4δ, 2δ, δ and 0.5δ with the smooth-wall case are 1.5%, 4.8%, 9.7%, 13.7%,
17.2% and 0.6%, 1.7%, 3.4%, 5.4%, 7.7%, respectively. In addition, the heat transfer of the flow
is characterised by the Stanton number St = Nu/(RebPr), which accounts for the changes by
the flow rate, which due to the reduction of Reb with increasing S results in larger relative heat
transfer increase, e.g. 16.6% for case S = 0.5δ. The comparison with the relative increase of the
wetted surface, which gives values of 1.5%, 4.6%, 9.2%, 18.4%, 36.8% for the considered ridge
cases, shows a good agreement of the relative change between Cf and wetted surface, while for
denser ridge spacings the relative increase of Cf is larger than the increase of wetted surface. The
reduction of the ridge height for case S = 4δ shows a significant reduction of Cf and Nu of the
cases hg = 0.05δ and 0.25δ compared to case hg = 0.1δ and for the smallest ridge height the values
are almost identical to the smooth-wall case. A measure for the strength of the secondary motions
is isKc, which is the volume average of the coherent turbulent kinetic energy k̃c = 0.5 ·(ṽṽ+w̃w̃),
which is shown in table 4.1. The maximum value of Kc occurs for S = 2δ, followed by slightly
smaller values for S = δ. For comparison with the strength of secondary motions over alternating
rough- and smooth-wall strips in chapter 3, the intensity usm is shown in addition in table 4.1,
which is determined by equation 3.8. Note, that for the coarse ridge spacings S > 2δ, only the
spanwise region centred around the ridges with a spanwise window size of 2δ is considered for
the determination of usm, since it will be shown later that the spanwise extent of mean secondary
motions is in this order. Comparing the results with those obtained in chapter 3 it can be seen that
the present ridge cases with hg = 0.1δ induce stronger secondary motions than the largest relative
height difference case h = 3k̄r from chapter 3, while case S = 0.5δ has a comparable value.

Profiles of the mean streamwise velocity and mean temperature for the different spanwise ridge
spacings S are shown in figure 4.2 in logarithmic scaling, where the mean temperature is scaled
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4.2 Results

Figure 4.2:Mean streamwise velocity profile in (a) and mean temperature profile in (b) for varying ridge spacing S
scaled in viscous units. Black dashed line indicates smooth-wall case and the ridge height hg = 0.1δ is
shown by the black dotted line.

by the the friction temperature Tτ = Q/ρcpuτ . As can be seen, the reduction of S contributes
to a successive reduction of the mean streamwise velocity and temperature, due to the additional
drag introduced by the secondary motions. For small ridge spacings, the reduction of 〈u〉 at the
free surface is less pronounced compared to S = 2δ, showing that the influence of the secondary
motion becomes more limited to the near-wall region for these cases. For the mean temperature,
this reversal cannot be observed, and the profiles at the free surface converge to similar values for
smaller S, while near the wall, the temperature deficit increases with decreasing S.

The secondary motions introduce a spanwise heterogeneity of the mean flow field by large-scale
counter-rotating vortices which is shown for different S in figure 4.3. The largest spatial extent of
the secondary motions is found for S ≥ 2δ, which measures roughly 2δ in the spanwise direction,
while for smaller S the spatial extent reduces and scales with S (Zampiron et al. 2020). Thus,
for case S = 2δ the secondary motions fill the entire channel domain, which is also reflected by
the observation of the strongest secondary motions in terms of Kc for this spacing (see table 5.1).
The spatial reduction can be also observed for the centre position of the secondary motion cells,
which is indicated by a blue cross for one secondary motion cell in figure 4.3. For S = 4δ an
additional upward bulging of u appears at the centre of the valleys with a smaller and weaker pair of
counter-rotating vortices, which is referred to as tertiary flow (Vanderwel and Ganapathisubramani
2015). A similar observation was made by Zampiron et al. (2020) for their case with a single ridge
in the centre of the channel, having a distance of 4δ to both sidewalls. In this case, the upward
bulging in the valley is slightly asymmetric, since the sidewalls generate secondary motions with
different strength and shape than the ridge-type induced secondary motions. For the larger ridge
spacing case S = 12δ a slight upward bulging can still be observed in the vicinity of the ridge that
occurs approximately 2δ to the side of the ridge. Thus, the upward bulging for S = 4δ in the valley
can be understood as a superposition of the upward bulging of neighbouring ridges. The observed
spatial heterogeneity of the mean streamwise velocity is also found for the mean temperature field,
where large temperature values extending in the bulk region above the individual ridges (not shown
here).
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4 Interaction between secondary motions and turbulent large-scale structures

Figure 4.3:Mean streamwise velocity in cross-sectional plane for Reτ = 540 and varying ridge spacing S. The cross-
sectional mean velocity components are illustrated by arrows and are scaled by ub. Blue crosses indicate
position of one secondary motion’s cell-centre.

The trend of the wall-normal and spanwise position of the secondary motion’ cell-centre, indicated
by ysc and z′sc, with respect to S is shown in figure 4.4. The spanwise coordinate z′ is obtained by
applying phase-averaging such that it describes the spanwise distance to the centre position of the
ridge (z′ = 0). As shown by Zampiron et al. (2020) the wall-normal and spanwise position for small
ridge spacings S ≤ 2δ follows a linear trend with ysc/δ = 0.0909+0.21S/δ and z′sc/δ ≈ ±0.2S/δ

(here δ is obtained by averaging the mean channel heights for all flow cases). The present data also
suggest a linear trend ysc/δ = 0.0635 + 0.198S/δ and z′sc/δ = ±0.0208± 0.166S/δ for S ≤ 2δ,
displaying a smaller slope and offset for ysc compared to Zampiron et al. (2020). The difference
between the present relation and the one found in Zampiron et al. (2020) can be reduced if the wall-
offset introduced by the micro-cylindrical roughness elements of the experiments, which reside in
the valley, are taking into account. This results in a new relation of ysc/δ = 0.0692 + 0.21S/δ

for the data of Zampiron et al. (2020), such that the difference to the present data is reduced below
10%. As can be seen in figure 4.4 the wall-normal and spanwise position of the secondary motion
cell-centre saturate for large ridge spacings S ≥ 2δ, with values of ysc ≈ 0.475 and zsc ≈ 0.36.
This illustrates that for sufficiently large ridge spacings the spatial extent of secondary motions is
constrained by the channel height, while for denser ridge spacings S ≤ 2δ the secondary motions
does not experience this constraint. Consequently, the secondary motions does not grow beyond
a spanwise extent of 2δ, which can be considered as the natural spanwise extent of secondary
motions.

In figure 4.5 the spanwise distribution of the phase-averaged mean streamwise velocity is shown
at the wall-normal location of the secondary motion cell centre y = ysc for the different S
cases. The mean streamwise velocity is scaled with ∆U = max[u(z′)] − min[u(z′)], which is
the difference between the maximum and minimum mean streamwise velocity u. The minimum
of streamwise velocity occurs above the ridge in the upward bulging of the secondary motion,
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Figure 4.4:Wall-normal and spanwise cell-centre position of mean secondary motion for different ridge spacings S.
Black dashed line indicates linear regression fit of present data and gray dashed line for the experimental
data of Zampiron et al. (2020) for S ≤ 2δ.

Figure 4.5: Phase-averaged spanwise distribution of mean streamwise velocity at y = ysc. The spanwise coordinate z′
is scaled with the half-channel height δ in (a) and with the ridge spacing S in (b). Crosses in (a) indicate
spanwise position of the closest inflection point to the ridge.

while the maximum occurs in the downward region of the secondary motion (compare with figure
4.3). When the spanwise coordinate is scaled in outer units with δ the mean streamwise velocity
profiles of the coarse ridge cases S ≥ 2δ perfectly collapse. This self-similar distribution of the
mean streamwise velocity in the ridge region supports the previous observations, that for large
ridge spacing, the secondary motions has reached its natural size. Scaling the spanwise coordinate
with S results in a self-similar distribution of the mean streamwise velocity profiles for S ≤ 2δ as
can be seen in figure 4.5 (b), reflecting the linear scaling of mean secondary motions with S (see
figure 4.4). The second minimum of case S = 4δ and S = 12δ indicate the appearance of tertiary
vortices adjacent to the ridges with the upward bulging of u. Consequently, case S = 2δ marks the
transition between the two different scaling regimes.

4.2.2 Instantaneous flow fields

The instantaneous streamwise velocity fluctuation u′ at the horizontal midplane (y = 0.5δ) is
shown in figure 4.6, where instantaneous turbulent large-scale structures, such as low- and high-
momentum regions (LMRs/HMRs), can be observed. As can be seen, the smooth-wall caseS =∞
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Figure 4.6: Instantaneous streamwise velocity fluctuations in horizontal plane at y = 0.5δ for different cases. The black
horizontal lines at the outer right figure frame indicate the spanwise position of the ridges.

exhibits VLSMs with long meandering LMRs and HMRs. For example a high-momentum streak
with a streamwise wavelength of λx ≈ 24 is found at z/δ ≈ 9, while a long low-momentum
streak appears at z/δ ≈ 4. For the ridge case S = 12δ a very pronounced LMR is located at the
ridge position (z/δ = 6), while in the centre of the valley region a long high-momentum streak
similar to the smooth-wall case can be observed. Similar strong and long low-momentum streaks
are found for the ridge cases S = 4δ and S = 2δ at each ridge position, which contribute to the
upward bulging of the mean streamwise velocity above the ridges seen in figure 4.3. For S = 4δ

a weaker but fixed long low-speed streak is found in the middle between adjacent ridges, which
contributes to the upward bulging of u in the centre of the valley as found in figure 4.3. For the
two densest ridge spacings S = δ and S = 0.5δ the long streamwise coherence of the low-speed
streaks found for the coarse ridge cases is broken. This suggest that the individual low-momentum
streaks forming at each ridge can interact with their neighbouring streaks in such a way that the
formation of long coherent low-momentum streaks is inhibited. While for S = 4δ VLSMs can
still be seen in a weak form, no VLSMs are observed for the denser ridge spacings S ≤ 2δ. This
is interesting to note, since for case S = 0.5δ the horizontal plane shown in figure 4.6 (f) is
above the wall-normal location up to which the mean secondary motions extents (see figure 4.3),
illustrating that secondary motions are able to prevent the formation of VLSMs for dense ridge
spacings (Zampiron et al. 2020).
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Figure 4.7: Contour lines of two-dimensional pre-multiplied streamwise energy spectra κxκzΦu′u′(λx, λz) at wall-
normal height y = 0.5δ for smooth-wall case S/δ =∞ and different ridge spacings S. Dashed white line
indicates λz = 2δ, which is the spanwise wavelength at which VLSMs are fixed; solid white line illustrates
that spanwise wavelength of turbulent structures increases linear with the streamwise wavelength (Cameron
et al. 2017).

4.2.3 Spectral analysis

The large-scale low- and high-velocity streaks seen in the instantaneous velocity planes in figure 4.6
contain a large fraction of turbulent kinetic energy, which can be quantified by the two-dimensional
power spectral density Φu′u′ of the streamwise velocity, defined by

〈u′u′〉(y) =

∫ ∞
0

∫ ∞
0

Φu′u′(κx, y, κz) dκx dκz, (4.6)

where κx ≡ 2π/λx and κz ≡ 2π/λz are the streamwise and spanwise wavenumber, while λx
and λz are the streamwise and spanwise wavelength. Figure 4.7 presents the two-dimensional
pre-multiplied streamwise energy spectra for the different S cases at the same wall-normal height
y = 0.5δ as the instantaneous velocity fields shown in figure 4.6. The white inclined line illustrates
that the streamwise length scale of turbulent structures scales with λz (Cameron et al. 2017), which
holds approximately up to λz = 2 (white dashed line), where structures of significantly larger λx
start to emerge.

The smooth-wall case displays a strong peak in the spectra at large wavelengths (18 ≤ λx/δ ≤
36, 1.71 ≤ λz/δ ≤ 2.4) which corresponds to the presence of VLSMs and the second peak at
λx/δ ≈ 3 is related to LSMs. This is consistent with previous experiments in rough-bed open-
channel flows of Cameron et al. (2017) and Zampiron et al. (2020), where it was found that the
spanwise wavelength of VLSMs is anchored near λz ≈ 2δ with streamwise wavelengths in the
range of λx ≈ 10δ − 40δ. In case of wide ridge spacing S = 12δ the energy contribution of
VLSMs at large λx is still apparent but reduced in strength compared to the smooth channel case.
For S = 4δ the clear peak of VLSMs is no longer present, though high energy contributions up to
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λx ≈ 18δ at λz = 2δ can be observed with a energy peak around λx ≈ 9δ− 12δ. This emergence
of the energy peak at λz = 2δ is also found for S = 2δ, which is stronger compared to case S = 4δ

and its peak location is found at smaller λx in the range λx ≈ 5δ − 10δ. The spanwise wavelength
of this spectral feature coincides with the wavelength of the repetition of up- and downdrafts of
secondary motions (≈ 2δ) seen in the mean and instantaneous velocity fields in figure 4.3 and
4.6, and the location of its peak in terms of streamwise wavelength is located between the one of
LSM and VLSM. Similar observations were made by Zampiron et al. (2020), who discovered a
new spectral feature in one-dimensional streamwise energy spectra that also appears between the
streamwise wavelength range of LSM and VLSM. This spectral feature was found at the transition
between low- and high-momentum regions within the secondary motions, and Zampiron et al.
(2020) named the associated mechanism to this spectral feature as "secondary current instability"
(SCI), which will be further discussed at the end of this section. The densest ridge spacings S ≤ δ
also don’t show an energy contribution of VLSM, whereas the energy is significantly increased in
the range λx = 2δ − 7δ and λz = 0.7δ − 2δ. The observation of Zampiron et al. (2020) that the
formation of VLSMs is suppressed by ridge-induced secondary motion for small distances S ≤ 2δ,
is supported by the present results and can be even extended to larger ridge spacings S < 4δ, while
for larger ridge spacings coexistence between secondary motions and VLSMs exists.

To illustrate at which spanwise locations VLSMs occur for wide ridge spacings the one-dimensional
pre-multiplied streamwise energy spectra κxΦu′′u′′ across the spanwise direction z at y = 0.5δ is
shown in figure 4.8 (a). The one-dimensional power spectral density is defined by

〈u′′u′′〉(y, z) =

∫ ∞
0

Φu′u′(κx, y, z) dκx. (4.7)

For the smooth-wall case S = ∞ the energy contributions of the VLSM (λx ≥ 18δ) occur over
the entire channel width. As can be seen individual peaks of VLSM are found, which are a result
of the limited time integration of the simulation, such that individual VLSMs reside longer at
certain spanwise locations and thereby contributing to these local peaks. For case S = 12δ, a clear
spanwise separation of the streamwise energy contribution can be seen for large λx, where the
contribution of VLSM occurs only in the valley, while no contributions are found in the vicinity
of the ridges. This illustrates that also for wide ridge spacings secondary motions suppresses the
formation of the VLSMs in the vicinity of the ridges, such that they occur in areas that are not
affected by the mean secondary motions. In the valleys of case S = 4δ, contributions from VLSM
can be observed, although they are much weaker than for the cases S = ∞ and S = 12δ, which
is the reason why they can hardly be seen in the two-dimensional spectrum in figure 4.7. No
VLSMs occur for smaller ridge spacing S ≤ 2, which is now illustrated by the lack of VLSMs in
the valleys of ridges. The presence of instantaneous structures of secondary motions can be seen
by increased values of Φu′′u′′ at the ridge position in the range of λx ≈ 2δ − 12δ, which are in
addition demarcated by areas of low values on both sides of the ridges. This concise pattern in
the streamwise energy spectra of secondary motion at each ridge is similar for S ≥ 2δ, which is a
further indicator of the self-similarity of secondary motions for coarse ridge spacings. As the ridge
spacing decreases S ≤ δ, this pattern diminishes and is further weakened, reflecting the mutual
influence of neighbouring ridges on the formation of instantaneous secondary motions.
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Figure 4.8: Pre-multiplied spectra κxΦu′′u′′(λx, z) (a) and co-spectra κxΦu′′w′′(λx, z) (b) for different S and y =
0.5δ. The black vertical lines at the outer top figure frame indicate the spanwise position of the ridges.

The spectral feature associated with secondary motions (SCI) is also observed in the one-
dimensional pre-mulitplied co-spectra κxΦu′′w′′ in the vicinity of the ridges (Zampiron et al.
2020), which is shown in figure 4.8 (b) for the present cases. The secondary motion induce a
spatial heterogeneity of the mean velocity near the ridges, such that turbulent spanwise fluctuations
w′′ in this region lead to a non-vanishing contribution of the covariance u′′w′′. The different
signs of the co-spectra Φu′′w′′ on each side of the ridges in figure 4.8 (b) can be explained by
the spanwise profiles of u in figure 4.5, such that positive w′′ lead to positive u′′ on the left side
of the ridge and, conversely, to negative u′′ on the right side. In the case of the smooth channel,
these contributions do not occur as the turbulent structures can travel over the entire width of the
channel and thus these contributions vanish for long time integration. As can be seen in figure 4.8
(b) for S ≥ 2δ, the contributions of the co-spectra Φu′′w′′ occur in a similar range of λx as the
enhanced values of Φu′′u′′ of the secondary motions in figure 4.8 (a), with strong contribution at
λx ≈ 2δ − 10δ. While for the densest ridge spacing cases S = δ and S = 0.5δ (not shown here)
the intensity of Φu′′w′′ decreases and the peak values shift to smaller λx, examinations of Φu′′w′′ in
horizontal planes closer to the wall (y = 0.15δ/0.25δ) show that the co-spectrum Φu′′w′′ becomes
more similar to those of the coarse ridge spacings and likewise high contributions at the ridges are
observable up to λx ≈ 12δ.

A linear relationship between the characteristic wavelength of the SCI and the vorticity thickness
was found by Zampiron et al. (2020), which suggests that the meandering of the instantaneous
secondary motions is caused by instabilities resulting from inflection points in the spanwise profile
of mean streamwise velocity. This characteristic wavelength λx,SCI is determined by Zampiron
et al. (2020) based on the maximum value of the phase-averaged one-dimensional pre-multiplied
spectra κxFu′′u′′ at y = ysc and z′ = ±0.2S. Since it has been shown for the present cases that
for large S the spectral properties of the secondary motions no longer grow into the spanwise
direction and are self-similar, λx,SCI is determined for the present cases at the spanwise position of
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Figure 4.9: Phase-averaged one-dimensional pre-multiplied spectra of streamwise variance at y = ysc and z = zsc
for different S in (a). The position of λx,SCI at the maximum value of κxFu′′u′′ is indicated by open
circles. In (b) streamwise wavelength of secondary current instability λx,SCI over vorticity thickness δω
for different ridge spacings S. Black triangles indicate ridge cases 1 ≤ S/δ ≤ 2 of Zampiron et al. (2020)
and black dashed line represents the fitted relation λx,SCI/δ ≈ 9.0δω/δ for these cases. Black solid line
represents linear fitted relation λx,SCI/δ ≈ 7.24δω/δ + 2.03 based on cases S ≤ 2δ. In (b) the cases
hg = 0.05δ and hg = 0.025δ for S = 4δ are indicated by a red open circle and square, respectively.

the secondary motion cell’s centre z = zsc. The corresponding pre-mulitplied streamwise energy
spectra at y = ysc and z = zsc is shown in figure 4.9 (a) for the different ridge cases and the
maximumvalues are indicated by open circles. As can be seen, λx,SCI increasesmonotonicallywith
S for S ≤ 2δ, and the largest ridge spacings S ≥ 2δ remain in a similar range of λx,SCI ≈ 6δ−9δ.
Note that the exact determination of the maxima is limited due to the coarse discrete resolution of
the spectrum in this range of wavelengths (resolution of discrete wavelengths is λx = Lx/n, with
n = 1, ..., Nx/2) such that the maxima for the cases S ≥ 2δ occur at adjacent discrete locations
(λx = 6.0, 7.2, 9.0).

The vorticity thickness δω, which is a characteristic length scale describing the width of mixing
layers (Raupach et al. 1996), is defined as δω = ∆U/max|∂u/∂z′|y=ysc which is the ratio of the
maximum velocity difference∆U of the spanwise velocity profile u(y = ysc, z

′) and the maximum
spanwise velocity gradient (Zampiron et al. 2020). The relationship between λx,SCI and δω for the
present cases is shown in figure 4.9 as well as for the cases of Zampiron et al. (2020) (δ ≥ S ≥ 2δ)
which are used to obtain the linear relationship λx,SCI =≈ 9.0δω (dashed black line). Smaller
ridge spacing cases were neglected for the fit by Zampiron et al. (2020) due to complications in the
determination of λx,SCI caused by overlapping of spectral properties of LSMs. Using the cases
S ≤ 2δ, a linear fit of λx,SCI/δ ≈ 7.24δω/δ + 2.03 is obtained for the present configurations.
Despite the differences in Reynolds number, ridge geometry and wall properties of the valleys of
the open-channel flow between experiments and current simulations, as well as in the approach
to determine λx,SCI (Taylor’s frozen hypothesis for experiments), the current results confirm the
tendency of a linear trend between λx,SCI and δω. This linear relation suggests that the analogy
between turbulent mixing layer and canopy flows from Raupach et al. (1996) might be applied
to the formation of instantaneous secondary motions as well. This implies that the streamwise
meandering of instantaneous secondary motions is the result of a Kelvin-Helmholtz wave in the
horizontal plane, with positive and negative fluctuations in wall-normal vorticity ω′′y having a
streamwise wavelength of λx,SCI (Finnigan et al. 2009).
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Figure 4.10: Instantaneous random fluctuations of wall-normal vorticity ω′′y in horizontal plane at y = 0.5δ for case
S = 2δ and S = 12δ. The black horizontal lines at the outer right figure frame indicate the spanwise
position of the ridges.

As a first indication for this relation, figure 4.10 presents the random fluctuations of wall-normal
vorticity ω′′y exemplary for case S = 2δ and S = 12δ in the horizotnal midplane y = 0.5δ. It
can be seen for S = 2δ that there are increased fluctuations of ω′′y in the low-momentum regions
over all ridges, which extend over the entire channel length and exhibiting streamwise waviness
of O(5δ). Thereby, clockwise and counter-clockwise rotating vorticies (red and blue contours)
appear jointly at the upper and lower regions of the LMRs, which is consistent with the view of
a Kelvin Helmholtz instability described before. For S = 12δ, similar fluctuations of ω′′y can
be found at the ridge location (e.g. x ≈ 17δ − 36δ). In addition, the fluctuations occurring in
the smooth-wall valley region have similar intensities as those at the ridges with comparable long
streamwise coherence, but in contrast they are not spanwise fixed and can extend laterally along the
spanwise direction. This illustrates the similarity of turbulent instantaneous structures that occur
over the smooth-wall region and the those associated with instantaneous secondary motions at the
ridges.

4.2.4 Ridge height influence on secondary motions

In the previous section it was shown that VLSMs are suppressed by the presence of ridge-induced
secondarymotions. In this section, the effect of the ridge height hg on the suppression or weakening
of VLSMs is investigated. For this purpose, the ridge case S = 4δ is used, for which it was
shown that VLSMs are strongly weakened and only small energy contributions are found in the
valleys as shown in figure 4.8 (a). The ridge height is reduced from hg = 0.1δ to hg = 0.05δ and
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Figure 4.11: Influence of the ridge height on mean streamwise velocity u in (a), pre-multiplied spectra κxFu′′u′′(λx, z)
in (b) and co-spectra κxFu′′w′′(λx, z) in (c). The spectra are shown at the wall-normal location y = 0.5δ.
Top row presents hg = 0.05δ and bottom row hg = 0.025δ. The colour ranges of the spectra are the same
as used in figure 4.3 and 4.8.

hg = 0.025δ. The reduction of the ridge height leads to a weakening of themean secondarymotion,
which is characterised by a weaker upward bulging of u above the ridges, which can be seen in figure
4.11 (a). The centre position of themean secondarymotions reduce to (ysc, |zsc|) = (0.44δ, 0.35δ)

and (0.38δ, 0.30δ) for hg = 0.05δ and 0.025δ, respectively. The strength of the secondary motion
decreases in terms of Kc by 70.5% for hg = 0.05δ and 93.5% for hg = 0.025δ compared to
hg = 0.1δ (see table 4.1). The effect of the ridge height on the instantaneous secondary motions is
shown for the one-dimensional pre-multiplied streamwise energy spectra κxFu′′u′′ in in figure 4.11
(b). As can be seen, more energy contributions of VLSMs are present in the valleys than observed
for case hg = 0.1δ (shown in figure 4.8 (a)). For hg = 0.05δ energized wavelengths λx ≈ 2δ−5δ

at the ridges are still observable as well as the separation regions with reduced energy contributions
to the sides of the ridges in κxFu′′u′′ , which is no longer clearly visible for hg = 0.025δ. For
the latter case VLSMs are able to form above the ridges, as seen for example at z = 6δ in figure
4.11 (b), suggesting that small ridges don’t represent a spatial barrier to the lateral movement of
VLSMs anymore, as expected for smooth-wall conditions. Another indicator of the weakening of
instantaneous secondary motions can be seen in the co-spectrum κxFu′′w′′ figure 4.11 (c), where
the energy contributions of u′′w′′ on both sides of the ridges decrease continuously with decreasing
hg. While the upward bulging of the mean streamwise velocity is significantly less pronounced
for smaller ridge heights, the vorticity thickness reduces slightly from 0.54 (hg = 0.1δ) to 0.53
(hg = 0.05δ) and 0.47 (hg = 0.025δ), as can be also seen in figure 4.9 (b). The characteristic
wavelength of the instantaneous secondary motion λx,SCI however reduces with decreasing hg
to λx,SCI = 4.5δ for hg = 0.05δ and λx,SCI = 2.57δ for hg = 0.25δ. This illustrates that
λx,SCI correlates with the strength of the mean secondary motions and for small ridge heights
(e.g. hg = 0.025δ) approaches the streamwise wavelength of LSMs of smooth-wall conditions
(λx ≈ 2− 3δ).
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Figure 4.12: Relative energy contribution of POD modes in (a, c) and cumulative energy contribution in (b, d). Span-
wise window size to compute POD modes corresponds to S, except for case S = 12 with Lz,win = 4δ
and smooth-wall case S =∞ with Lz,win = 2δ. In (c, d) the spanwise window size is Lz,win = 2δ for
all S cases

4.2.5 Proper orthogonal decomposition

The characteristics of instantaneous secondary motions is further investigated by applying the
proper orthogonal decomposition to extract energetically dominant flow structures. The spatial
modes are computed by means of the snapshot POD, which is described in section 2.5. The
instantaneous snapshots for the computation of the PODmodes are collected at nine cross-sectional
planes which are spaced 4δ apart in the streamwise direction. The cross-sectional planes are further
divided into non-overlapping windows of width Lz,win and in case of ridges, the windows are
centred at ridge positions. A total of at least 22000 snapshots were used for all cases, and the time
interval between each time step is ∆t ≈ 0.92tb, except for case S = 12δ, where a smaller time
step ∆t ≈ 0.35tb was used due to the smaller number of ridge windows. The convergence of the
POD results for case S = 12δ is examined by using only half and one third of the total number of
snapshots, which yields a change of less than 1% for the eigenvalues of the most energetic POD
modes.

The relative and cumulative energy contributions of the kth POD mode for the different S cases
is shown in figure 4.12. For the computation of the POD modes in figure 4.12 (a, b) a spanwise
window size of Lz,win = S is applied, which has been used in previous studies (Vanderwel et al.
2019, Zampiron et al. 2020). For the coarsest ridge spacing caseS = 12δ the window size is limited
to Lz,win = 4δ, in order to neglect energetic structures present in the smooth-wall valley region.
Since the spanwise width of VLSM is anchored around 2δ the window size for the smooth-wall
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case is Lz,win = 2δ (Cameron et al. 2017). The results shown in 4.12 (a) are similar to the one
obtained by Zampiron et al. (2020), where the relative energy contribution of the lowest POD
modes increases with decreasing S, which was assumed to be an effect of the different window
sizes (Zampiron et al. 2020). As the cumulative energy contributions in figure 4.12 (b) show, this
leads to the energy being distributed among more POD modes for larger S. The number of modes
to represent 50% of the energy agrees very well with those of Zampiron et al. (2020), for example
15 and 48 modes are needed for cases S = 0.5δ and S = 2δ, while 15 and 50 modes are required
for cases S = 0.39δ and S = 1.97δ of Zampiron et al. (2020). The two largest ridge spacings
S = 4δ and S = 12δ require a similar number of modes, namely 87 and 91, but it should be noted
that this is an effect of the same window size being used. Figure 4.12 (c, d) present the relative and
cumulative energy for the different S cases with the same window size Lz,win = 2δ used for the
POD computation. The choice of Lz,win = 2δ is discussed in more detail in the following text. As
can be seen the relative and cumulative energy distribution equalize among the different S cases,
and for the reconstruction of 50% of the energy, between 46 and 53 modes are now required.

The spatial pattern of the first six POD modes with Lz,win = S are shown in figure 4.13. This
number of spatial POD modes is commonly used in previous studies since these modes are
associated with large-scale δ-scale motion of the instantaneous secondary motions (Vanderwel
et al. 2019, Zampiron et al. 2020). As can be seen, the first POD modes form large-scale vortices
for all S cases, and as observed in previous studies, the size of the spatial pattern decreases with
the POD mode number (here for S ≤ 2δ). Comparison of the modes with Zampiron et al. (2020)
for S ≤ 2δ and Vanderwel et al. (2019) for S = δ shows very good agreement with the present
corresponding S cases. The first two PODmodes, as seen for S ≤ 2δ, form the dominant energetic
modes (see figure 4.12 (a)) and are characterised by large-scale motion filling the entire channel
height. This pair of modes was also identified as a distinctive dynamical behaviour associated
with lateral shifts of the instantaneous secondary motions (Vanderwel et al. 2019). The first mode
represents the sidewards-leaning of the instantaneous secondary motion, while the second mode
(e.g. S ≤ 2δ) indicates whether low- or high-momentum streaks are located above the ridge. For
case S = 4δ the first mode possesses a similar energetic pattern as seen for S ≤ 2δ, which has
a maximum spanwise extent of approximately 2δ (also seen for case S = 12δ, not shown here).
The second mode of the cases S ≤ 2δ with counter-rotating vortices can be found for S = 4δ in
an attenuated form in mode 6. The modes between the first and the sixth of S = 4δ represent
turbulent large-scale structues that appear in the valley region and are not related to instantaneous
secondary motions at the ridges.

As seen in the previous section, the first two characteristic POD modes of instantaneous secondary
motions are constrained in the spanwise direction for small ridge spacings (S ≤ δ), while their
maximum spanwise extent is approximately 2δ for S ≥ 2δ. Therefore, a window width of
Lz,win = 2δ is used in the following part for the computation of the PODmodes. The corresponding
POD modes are shown in figure 4.14 and it can be seen that for the first two modes the shape and
spatial extent are similar among all S cases. Only for S = 0.5δ the first two modes are reversed
compared to the otherS cases, due to similar relative energy contributions as seen in figure 4.12 (c).
For small ridge spacings S ≤ δ, the mutual influence neighbouring ridges can be seen by changes
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4.2 Results

Figure 4.13: First six POD spatial modes of streamwise component Φu,k (k = 1, . . . , 6) for different ridge spacings S.
The arrows represent the wall-normal Φv,k and spanwise component Φw,k of the kth POD mode. The
spanwise window size used for the POD is Lz,win = S.

in the shape and distribution of the first two modes. As a consequence the central vortex of the
first POD mode loses its spanwise spread in the upper half of the channel, while the second POD
mode no longer depicts a clear funnel-like opening towards the bulk region. The instantaneous
structures at the neighbouring ridges for S ≤ δ appear for lower mode numbers, where spatial
structures with similar dimensions to those seen for the first two modes appear at the neighboring
ridges. The results illustrate that the dominant structures of the instantaneous secondary motions
have similar spatial dimensions and shapes and are independent of the ridge spacing S. This could
not be observed for small ridge spacings in the previous studies due to the a priori specification of
the POD window size of Lz,win = S.

The influence of the ridge height for case S = 4δ on the first four POD modes is shown in
figure 4.15, as well as the POD modes obtained for the smooth-wall case S = ∞. The first two
POD modes of case hg = 0.05δ are similar to the one obtained for hg = 0.1δ in 4.14, while
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4 Interaction between secondary motions and turbulent large-scale structures

Figure 4.14: Spatial POD modes for different ridge spacings S (k = 1, . . . , 6). The colour contour represents the
streamwise component and the arrows the cross-sectional components of the POD modes. The same
spanwise window size Lz,win = 2δ is used for all cases.

for hg = 0.025δ the first POD mode does not depict anymore the large-scale vortex centred at
the ridge. For the latter case the first two modes represent large-scale counter-rotating vortices
and their upward motion is centred slightly to the sides of the ridge. The first two modes of the
smooth-wall case S = ∞ exhibit a pair of large-scale counter-rotating vortices with wavelength
2δ, which are shifted with respect to each other by a quarter wavelength in the spanwise direction.
These modes show similarities to the POD mode with counter-rotating vortices found for ridge
cases, as for example for the second mode of cases S ≥ δ. Comparing the modes of hg = 0.025δ

with the ones of the smooth-wall case show a very close resemblance, however the first two modes
for hg = 0.025δ are centred at the ridge with a slight shift to the sides. This indicates that the
ridges are less able to lock intense structures at the ridge position when hg decreases, such that the
energetic structures will approach a similar behaviour to those found for smooth-wall conditions.
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4.2 Results

Figure 4.15: Influence of ridge height on POD modes for case S = 4δ in the first two rows and the smooth-wall case
is shown in the bottom row. The colour contour represents the streamwise component and the arrows the
cross-sectional components of the POD modes. A window size Lz,win = 2δ is used for all cases.

In the following, the time coefficients of the first two POD modes are considered in more detail,
since they represent the instantaneous large-scale structures of secondary motions. The time
variation of these two time coefficients is shown for example for case S = 4δ in figure 4.16
for a small time section of the entire time series. Both time coefficients are normalised by the
corresponding root-mean-square value ai,rms, which is equivalent to the standard deviation, since
the time coefficients have zero mean. As can be seen, the time coefficients fluctuate around the
mean and stay most of the time in a range within ±ai,rms (marked by black dashed lines), while
extreme values occur occasionally. These extreme events however contribute particularly strongly
to the turbulent kinetic energy, since by definition (see equation 2.56) the time coefficients enters
k by a2i .

The coloured vertical lines in the upper part of figure 4.16 illustrate times at which both time
coefficients fulfill different conditions. Extreme positive or negative values of the first time
coefficient a1(t) indicate strong lateralmovement to the right and left of the instantaneous secondary
motion, while positive and negative values of the second time coefficient a2(t) indicate whether
the symmetric counter-rotating vortices move down- or upward above the central ridge (compare
figure 4.14). Thus, the dark blue colour illustrates strong leftwards directed motion above the
central ridge, while the opposite is indicated by the red colour. For the light blue and orange
colours, an additional stronger upward motion occurs over the central ridge compared to dark blue
and red events. The yellow colour represents events with strong upward motion above the central
ridge, while no strong lateral motions to the right or left are present. As can be seen by the colour
sequence in figure 4.16, these events mostly occur isolated, while there are few sequences where
these events follow each other (for example t/tb ≈ 12 from orange to red). This illustrates that the
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4 Interaction between secondary motions and turbulent large-scale structures

Figure 4.16: First two POD time coefficients of case S = 4δ normalised by the root mean square value of the respective
time coefficient. For clarity the time coefficients are shown for a smaller subset of the complete time
series. Dashed black lines indicate values of ai = ±1. coloured vertical line in top panel indicate different
conditions of POD time coefficients: dark blue a1/a1,rms ≥ 1 and −1 < a2/a2,rms < 1; light blue
a1/a1,rms ≥ 1 and a2/a2,rms ≤ −1; yellow −1 < a1/a1,rms < 1 and a2/a2,rms ≤ −1; orange
a1/a1,rms ≤ −1 and a2/a2,rms ≤ −1; red a1/a1,rms ≤ −1 and −1 < a2/a2,rms < 1.

left- or right-leaning behaviour of the instantaneous secondary motion do not alternate in time, but
rather suggest intermittent events.

These conditions of the first two time coefficients are used in the following to compute conditional
averages of the instantaneous snapshots to extract time-dependent behaviour of the secondary
motions (Bai et al. 2021). The conditional averages of the mean velocity field in the cross-sectional
plane based on different pairs of conditions are shown in figure 4.17 for the smooth-wall case and
different ridge cases S ≤ 2δ. Conditional averages based on the value of one of the two time
coefficients are shown in (a-d), while the one based on the values of both time coefficients are
depicted in (e-i). For a better comparison of the POD modes between the different ridge cases,
the order of the first two POD modes of case S = 0.5δ is reversed for the following analyses.
The results for case S = 4δ and S = 12δ are very similar to case S = 2δ, such they are not
presented here. The conditional-averaged velocity fields in (a) and (b) show events, when the
first time coefficient has large negative or positive values, respectively, which for the ridge cases
corresponds to the sidewards-leaning behaviour of the instantaneous secondary motions. For the
extreme conditions a2/a2,rms ≥ 1 in (c) and a2/a2,rms ≤ −1 in (d), the secondary motion is
either strongly restricted in their spatial extent (S = 2δ) or clearly enhanced compared to the
mean secondary motion (compare figure 4.3). Interestingly, for narrow ridge spacings S ≤ δ, the
opposite behaviour occurs simultaneously at the neighboring ridges than found at the central ridge,
such that for the neighbouring ridges an upward bulging occurs in (c) and a downward bulging in
(d). For the smooth-wall case the conditional averages reveal similar counter-rotating vortices for
all conditions and their up- and downward motion appears at different spanwise locations, since
they are not spanwise locked by the presence of ridges. The conditional averages in (a-d) account
for 16.1%-18.2%, 14.3%-17.2% and 14.8%-18.7% of the total number of snapshots among the
different ridge spacings S.

Examining the conditional averages based on both time coefficients draws a more differentiated
picture of the instantaneous structures, which is shown in figure 4.17 (e− i). In (e), first the case
can be seen when both time coefficients fall within the standard deviation 1 > a1/a1,rms > −1
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Figure 4.17: Conditional-averaged velocities arranged by the first two POD time coefficients for smooth-wall case and
ridge cases S ≤ 2δ. Contours represent conditional-averaged mean streamwise velocity uc and arrows
cross-sectional velocity components vc and wc. Conditions based on value of single time coefficients:
a1/a1,rms ≥ 1 in (a), a1/a1,rms ≤ −1 in (b), a2/a2,rms ≥ 1 in (c), a2/a2,rms ≤ −1 in (d), and
conditions based on values of two time coefficients: 1 > a1/a1,rms > −1 and 1 > a2/a2,rms > −1
in (e), a1/a1,rms ≥ 1 and a2/a2,rms ≥ 1 in (f), a1/a1,rms ≤ −1 and a2/a2,rms ≥ 1 in (g),
a1/a1,rms ≥ 1 and a2/a2,rms ≤ −1 in (h), a1/a1,rms ≤ −1 and a2/a2,rms ≤ −1 in (i).
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4 Interaction between secondary motions and turbulent large-scale structures

Figure 4.18: Comparison of sum of conditional averaged mean streamwise velocities uc and mean streamwise velocity
u of case S = 2δ in (a), case S = δ in (b) and case S = 0.5δ in (c). First two column represent
conditional averages from 4.17 (c, d), and their sum is shown in the third column. The used colour bar is
the same as in figure 4.17.

and 1 > a2/a2,rms > −1 (43.0% - 45.3% of the snapshots), and the resulting conditional averages
are almost identical to the mean secondary motions for all ridge cases, while for S =∞ a spanwise
homogeneous velocity field similar to the mean is found. This illustrates that the instantaneous
events of the positive and negative time coefficients compensate for each other. The sideward
leaning of the instantaneous secondary motions from the conditional average in (a) and (b) can
be further distinguished by considering the condition of the second time coefficient, e.g. in (f)

and (g). These cases represent occasions when the second mode takes strongly positive values
(a2/a2,rms ≥ 1), meaning that a downward motion occurs above the central ridge. As a result,
the leaning of the instantaneous secondary motion is more pronounced to the sides, and more high
momentum flow from the bulk can impinge on the central ridge. For dense ridge spacings S ≤ δ,
the upward bulging of the sideward-leaning secondary motion combines with the upward bulging
at the adjacent ridge, resulting in a stronger upward bulging at the corresponding side. The cases
where in addition to the sideward-leaning behaviour of the instantaneous secondary motion (in (a)

and (b)), a strong upward bulging now also occurs above the central ridge (a2/a2,rms ≤ −1) are
shown in figure 4.17 (h) and (i). Compared to the conditional averages in (a) and (b), stronger
secondary motions are now observed whose leaning is less pronounced. For the densest ridge
spacing S = 0.5δ, it can be seen that the upward bulging is concentrated between the central and
adjacent ridge, and the adjacent ridge contributes to the upward bulging in a similar manner as the
central ridge. For the smooth-wall case the conditions in (f − i) depict similar counter-rotating
vortices as in (a− d), however at spanwise locations in between the latter ones. This demonstrates
that instantaneous large-scale structures over smooth walls can appear at any spanwise location of
the channel.

The conditional averages in figure 4.17 show for dense ridge spacings S ≤ δ, that instantaneously
large-scale secondary motions can form, which fill the entire channel height and extend over
neighbouring ridges, which is not expected by considering the mean secondary motions. This
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means that for these cases the instantaneous extent of the secondary motions is masked by the
averaging procedure, which is further illustrated in figure 4.18. For the ridge cases S ≤ 2δ the
conditional averages with a2/a2,rms ≥ 1 and a2/a2,rms ≤ −1 are shown in the first two columns
(compare figure 4.17 (c) and (d)), and the result of averaging both conditional averages is shown in
the third column. The aforementioned mechanism of the averaging can be nicely observed and for
dense ridge spacings S ≤ δ the strong upward bulging of secondary motion over the central ridge
(column 2) superimpose with downwardmotion of the strong secondarymotion at the neighbouring
ridges (column 1) resulting on average in smaller and spatially confined secondary motions.

4.3 Discussion and summary

This chapter investigates the interaction between secondary motions and turbulent large-scale
structures and their similarities in turbulent open-channel flow with streamwise-aligned Gaussian
ridges.

Recent experiments of secondary motions over strip-type surfaces have shown the coexistence
between secondarymotions and turbulent large-scale structures (LSM/VLSM) (Wangsawijaya et al.
2020), while coexistence between secondary motions and VLSMs was not found for ridge-type
surface (Zampiron et al. 2020). The investigation in the present chapter confirms this observation
that ridge-type induced secondary motions suppress the formation of VLSMs for ridge spacings
of S ≤ 2δ and ridge heights hg = 0.1δ. In addition, the present results show that for larger ridge
spacings, coexistence between secondary motions and VLSMs begins at S ≈ 4δ. The large ridge
spacing cases illustrate that the spanwise extent of the mean secondary motions is fixed around
2δ, such that VLSMs can form in the smooth-wall valley region between the ridges. However, for
S = 4δ the VLSMs occurring in the valley are weakened compared to the VLSMs observed in
smooth channel flows, indicating that the secondary motions at the ridges are still able to affect the
valley region. This influence of the secondary motions is further illustrated by the formation of
tertiary vortices in the middle of the valley, though these cause a much weaker upward bulging of
u than the one observed at the ridges by the secondary motion. For larger ridge spacings S = 12δ,
the width of the valleys is sufficiently large, such that areas exist that are not influenced by the mean
secondary motion, where eventually VLSMs can form with similar strength and characteristics as
those occurring in smooth channel flows.

The suppression of the VLSMs by the secondary motions is attributed to the strong spatial het-
erogeneity of the mean velocity field at the ridges (Zampiron et al. 2020). By reducing the ridge
height hg the strength of secondary motions and the induced flow heterogeneity can be reduced,
and these effects on the interaction between secondary motions and turbulent large-scale structures
are considered in the present configuration for case S = 4δ. While for hg = 0.1δ the VLSMs in
the valleys are weaker compared to the ones observed for smooth walls, the reduction of hg shows
that VLSMs first increase in strength for hg = 0.05δ (h+g = 27) and eventually for hg = 0.025δ

(h+g = 13.5) are able to appear in the entire channel width. In the latter case the ridge height
is sufficiently small and the VLSMs are strong enough such that the ridges do not represent a
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spatial barrier for the lateral movement of the VLSMs anymore. The comparison with the intensity
of secondary motions over alternating smooth- and rough-wall strips from chapter 3, shows that
case hg = 0.025δ induces secondary motions with similar strength as the pure strip-type surface
cases h = 1.5kr-1.70kr. Consequently, the different observations of the coexistence of secondary
motions and VLSMs over strip- and ridge-type surfaces are a consequence of the different strength
of the respective secondary motions.

Regarding the question of the formationmechanism of secondarymotions it is still not clear whether
there is a single mechanism that describes the formation of both strip- and ridge-type induced sec-
ondary motions, or whether two different mechanisms exist. Based on the results of instantaneous
secondary motions over strip-type surfaces, Wangsawijaya et al. speculated that secondary motions
might be natural VLSMs that are spanwise phase-locked at the roughness transition. However,
this explanation seems not suitable for ridge-type surfaces due to the suppression of VLSMs by
secondary motions. On the other hand, Zampiron et al. (2020) suggested that the meandering of
instantaneous secondary motions might be related to an instability caused by inflection points in
the spanwise profile of mean streamwise velocity. This hypothesis was supported by the finding
of a linear relationship between the characteristic streamwise wavelength of the instantaneous sec-
ondary motions λx,SCI and the vorticity thickness δω. The trend of a linear relationship is also
found for the present cases, but the slope differs from the one found in the experiments of Zam-
piron et al. (2020), which is attributed to differences in surface conditions and Reynolds number
between the experiments and the present simulations, as well as different approaches to determine
the velocity spectra. While the characteristic streamwise wavelength of secondary motions λx,SCI
lies for ridge heights of hg = 0.1δ between those of LSMs and VLSMs, reducing hg leads to
smaller values of λx,SCI approaching the typical streamwise wavelength of LSM (λx ≈ 2δ-3δ).
This behaviour shows some interesting similarities to a recently proposed model describing the
formation mechanism of LSMs in turbulent channel flows (de Giovanetti et al. 2017). In this
model, an artificial body forcing is used to create a streamwise uniform low-momentum streak
in the outer region, with similarities to VLSMs, and for sufficient forcing this streak undergoes
an instability forming streamwise vortical flow structures with similar properties as naturally oc-
curring LSMs. For moderate forcings the LSMs in the model exhibit streamwise wavelengths of
1-2δ, while stronger body forces can lead to larger λx ≈ 10δ, which is in a similar range as the
λx,SCI of the secondary motions found for different ridge heights hg in the present study. Thus, an
increase of the body forcing in the model might corresponds to the effects of increasing the ridge
height. In this sense, the instantaneous secondary motions arise similar to the LSM in the model,
by an streak-vortex instability of the streamwise coherent low-momentum streaks over the ridges.
Interestingly, it has recently been observed that LSMs in open-channel flows are responsible for the
formation of sediment ridges (Scherer et al. 2022). These sediment ridges in turn induce for time
averages ofO(10) time bulk units secondary motions, which are considered as statistical footprints
of the spanwise organised LSMs. Further investigations for alternating smooth- and rough-wall
strips with variations in relative height differences, similar to the cases in chapter 3, could clarify
if the streak-vortex instability mechanism might be also applicable for the formation of strip-type
induced secondary motions.
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The instantaneous characteristics of secondary motions are further examined by means of proper
orthogonal decomposition. First, it is shown that the dominant POD modes which are associated
with instantaneous structures of secondary motions are strongly affected by the choice of spanwise
POD window size. In previous studies a POD window size of S was used (Vanderwel et al.
2019, Zampiron et al. 2020), and the present results demonstrate that this choice constrains the
spatial extent of dominant structures associated with secondary motions for small ridge spacings
(S < 2δ). For all S cases the dominant POD modes are large-scale structures with spanwise
extents of roughly 2δ and the shape and structure of these modes are similar among the different
ridge spacing cases. Unlike the mean secondary motions for small ridge spacing suggests, the
instantaneous secondary motions for these cases can extend over adjacent ridges. The smooth-wall
case depicts counter-rotating vortices as dominant POD modes, which have close resemblance to
the second PODmode found at the ridges for the different S cases. Since for the latter cases VLSM
are absent at the ridges, and LSM are characterised by strong cross-sectional coherent motion, this
further illustrates the similarities between instantaneous secondarymotions and naturally occurring
LSMs. Conditional averages, based on the first twoPOD time coefficients, reveal stronger secondary
motions than observed in the complete time mean. Furthermore, the conditional averages depict
a lateral sidewards-leaning behaviour of instantaneous secondary motions, which has been also
observed for secondary motions appearing over converging-diverging riblets (Kevin et al. 2017)
and strip-type induced secondary motions (Wangsawijaya et al. 2020). For dense ridge spacings
S ≤ δ, large-scale counter-rotating vortices are also detected in the conditional mean, such that
the upward motion forms at one ridge, while suppressing the upward motion at the neighbouring
ridges and vice versa, depending on the time instances. Consequently the superposition of these
events by the averaging procedure results in a masking of the instantaneous behaviour of secondary
motions, and thus the mean secondary motions appear smaller and scale with S for (S ≤ δ).
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5 The effects of heterogeneous
surfaces on mixed convection

In the previous chapter it was shown that heterogeneous surfaces, in form of streamwise-aligned
ridges, increase themomentum and heat transfer of turbulent forced convection flows. The objective
of this chapter is to investigate how these effects of heterogeneous surfaces translate to turbulent
channel flows under mixed convection conditions. These flows are known to generate different
large-scale flow structures as outlined in section 2.3.3, depending on the relative importance between
buoyancy and shear effects. How heterogeneous surfaces influence these flow structures, and how
the transitions between the different flow regimes are affected, i.e. from forced convection structure
to streamwise rolls and from these to convective cells, are not yet sufficiently investigated. Similar
to the previous chapter, streamwise-aligned ridges are chosen to represent heterogeneous surfaces,
such that secondary motions are present under forced convection conditions. By systematically
varying the strength of buoyancy, their effect on the formation of secondary motion is investigated
in more detail. In addition, the possibility of an interaction between secondary motions with
streamwise rolls occuring under mixed convection conditions, can be thus examined. The effect
of increased momentum and heat transfer by the heterogeneous surface on mixed convection is
controlled by systematically varying the spanwise ridge spacing.

This chapter is based on the publication The effect of spanwise heterogeneous surfaces on mixed
convection in turbulent channels (Schäfer et al. 2022a). Compared to the publication, some symbols
of physical quantities have been adapted to be consistent with the notation introduced in this thesis.
Additional discussions regarding the dynamics of streamwise rolls for different heterogeneous
surface conditions, which go beyond the results presented in the publication, are complemented in
section 5.2.5.

5.1 Flow configuration

The present flow configuration is a turbulent channel flow with streamwise-aligned Gaussian ridges
sketched in figure 5.1. The governing equation are solved by the simulation code Xcompact3d,
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Figure 5.1: Sketch of the numerical channel domain with streamwise-aligned Gaussian ridges at the walls. Adopted
from Schäfer et al. (2022a)

as presented in section 2.4. The continuity equation, Navier-Stokes equation under Boussinesq
approximation, and temperature equation are

∂ui
∂xi

= 0, (5.1)

∂ui
∂t

+
∂uiuj
∂xj

= − 1
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+ ν

∂2ui
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+ βgTδi2 + Π δi1 + FIBM,i, (5.2)

∂T

∂t
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∂Tuj
∂xj

= α
∂2T

∂xj∂xj
+QIBM, (5.3)

where the forcing term Π maintains a constant volume flow rate. The Gaussian ridges are repre-
sented in the momentum and temperature equation by the volume forcing term FIBM,i and temper-
ature source term QIBM, respectively. Periodic boundary conditions are applied in the horizontal
directions and Dirichlet boundary conditions are applied in the wall-normal direction to impose
zero velocities and constant temperatures throughout the structured walls. "The simulations were
performed on a domain size Lx×Ly ×Lz = 16δ× 2δ× 8δ, which is in agreement with Pirozzoli
et al. (2017), who reported for this domain size insensitivity of the mean velocity and temperature
profiles.[...] The existing code was extended for the simulation of buoyancy effects and the code
was validated with the data base for mixed convection and Rayleigh-Bénard flows of Pirozzoli et al.
(2017) as documented in Appendix A.2."(Schäfer et al. 2022a) Spatial averages in this chapter are
based on intrinsic averaging, and the definitions are outlined in section 4.1, which also apply for
the present configuration.

"The considered flow is characterised by three non-dimensional numbers, namely the Prandtl
number Pr, which is the ratio of momentum and thermal diffusivity, the bulk Reynolds number
Reb, describing the ratio of inertial and viscous effects, and the Rayleigh numberRa, characterising
the ratio of buoyant and viscous effects, and their definitions are given by

Pr =
ν

α
, Reb =

ub δeff
ν

, Ra =
(2 δeff)3βg∆T

αν
. (5.4 a,b,c)

The bulk velocity is defined as ub = 1/(2δeff Lz)
∫ Lz
0

∫ yt(z)
yb(z)

ū dydz. Here, ∆T is the imposed
and constant temperature difference between the bottom and top wall surfaces ∆T = Tb−Tt. The
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5.1 Flow configuration

Prandtl number is set to Pr = 1 for all considered cases. Following the work by Pirozzoli et al.
(2017), the bulk Richardson number is defined as

Rib =
2δeff βg∆T

u2b
=

Ra

4Re2bPr
, (5.5)

to characterise the relative importance of buoyancy and inertial effects. Please note that positive
values ofRib indicate convectively unstable conditions, while in atmospheric flows positive values
commonly indicate convectively stable conditions (Wyngaard 2010). Another quantity widely used
in the ABL community to categorise the flow is the ratio of the boundary layer depth zi and the
Obukhov length L, which is known as the stability parameter −zi/L (Wyngaard 2010). For the
present channel flow configuration with ridges, this translates into the ratio of δeff and L, with
L = −u3τ/(κ qw βg), where κ is the von Kármán constant with κ = 0.4 (Wyngaard 2010), while
uτ and Q are the friction velocity and the vertical heat flux, respectively (both defined in the next
paragraph)."(Schäfer et al. 2022a)

"The drag exerted on the flow is quantified by the skin friction coefficientCf and friction Reynolds
number Reτ , which are defined as Cf = 2u2τ/u

2
b and Reτ = uτ δeff/ν. [...] The wall-shear stress

is determined by extrapolating the total shear stress from the bulk region (0.5 ≤ y/δ ≤ 1.5) to
the virtual wall location y0 = δ − δeff (Chan-Braun et al. 2011). The heat transfer of the flow is
characterised by the Nusselt number Nu = 2δeff qw/(α∆T ), [where qw equals the constant total
heat flux q of the system which is] determined by evaluating the time and horizontally averaged
temperature transport equation at the half-channel height q = 〈v′T ′〉|δ −α∂〈T̄ 〉/∂y|δ (Stroh et al.
2020a)."(Schäfer et al. 2022a)

"The turbulence level is quantified in this study by the Reynolds number Rek =
√
Kδeff/ν,

where K corresponds to the time- and volume-averaged turbulent kinetic energy. This quantity
is computed by applying the averaging procedure given in equation 4.5 [to] k = 0.5 · u′iu′i. A
characteristic velocity scale for natural convection is the free-fall velocity vf = (2δeff βg∆T )1/2

and together with the effective channel height the free fall time tf can be defined tf = 2δeff/vf =

(2δeff/(βg∆T ))1/2. The time scale characterising the forced convection processes is the bulk
time unit tb = δeff/ub. From the given definitions, the ratio of tb and tf results in the following
relationship tb/tf =

√
Rib/2."(Schäfer et al. 2022a)

5.1.1 Cases

"The transition between forced convection structures and streamwise rolls as well as the transition
between streamwise rolls and convective cells in mixed convection flows is controlled by the
mean shear and buoyancy forcing, which are determined by the imposition of the Reynolds Reb
and Rayleigh number Ra. There are several possibilities which may be used to vary these two
dimensionless numbers to achieve the same Richardson number Rib, as depicted by the black
solid and dashed lines in figure 5.2 (a). The simplest approach is to fix one of the dimensionless
numbers, while varying the other one and vice versa. In the study of Pirozzoli et al. (2017), a
smooth-wall channel flow is explored for a large parameter space of Reb and Ra, covering all flow

77



5 The effects of heterogeneous surfaces on mixed convection

Figure 5.2: Parameter space of RayleighRa and bulk Reynolds numberReb in (a). The green marks in (a) indicate the
flow parameters of the present simulations and solid and dashed black lines represent isolevels with constant
Rib. The dashed lines highlight Rib values, for which Re-effects are investigated. The Nusselt number Nu
over bulk Reynolds numberReb of the turbulent mixed convection channel flow from Pirozzoli et al. (2017)
for various Rayleigh numbers is shown in (b). The vertical solid black line separates the transitional and
turbulent range for pure forced convection flows. Adopted from Schäfer et al. (2022a)

regimes, which is shown in terms of the resulting Nu in figure 5.2 (b). For fixed Ra, the initial
reduction of Nu with increasing Reb is associated with the emergence of streamwise rolls, which
reduce the effective heat exchange of the convective plumes from the natural convection case. For
larger values of Reb the flow transitions to the forced convection regime where Nu increases with
increasing Reb."(Schäfer et al. 2022a)

"In the current study the spanwise spacing of the Gaussian ridges S is varied in the range of
S/δ = 0.5, 1, 2, 4,∞, where S = ∞ corresponds to the smooth-wall case. This translates into
an effective half-channel height of δeff/δ = 0.975, 0.987, 0.994, 0.997 for the four ridge cases,
respectively. Furthermore, the bulk Richardson number Rib is varied in such a way as to cover
the different flow regimes of mixed convection and their transition ranges. The variation of Rib is
achieved by two parameter sweeps, one at constantRa = 107 and varyingReb and the other sweep
for changing Ra at constant Reb = 2800. These two parameter sweeps for the simulations of the
present study are represented in figure 5.2 (a) with green crosses, which results in a total number
of 65 direct numerical simulations. These two parameter sweeps intersect in the vicinity of the
minimum of Nu for Ra = 107 shown in figure 5.2 (b), which allows us to study the parameter
sensitivity of the transition processes from two sides. The two black dashed lines in figure 5.2
(a) indicate isolines of constant Rib at which the two transition ranges of mixed convection occur.
As will be shown later, the lower isoline Rib = 0.025 lies within the transition range of forced
convection structures to streamwise rolls, while the upper isoline Rib = 3.19 is in the transition
range between streamwise rolls to convective cells. For the present simulations two parameter
points with similar Rib exist within the two transition ranges, allowing us to study the effect of Re
on the flow organisation."(Schäfer et al. 2022a)

"From forced convection flows it is known that the strongest secondary motion occurs for S/δ ≈
O(1) with a spanwise extent of≈ δ (Vanderwel et al. 2019). Since secondary motions of Prandtl’s
second kind occur only in turbulent flows, the parameter sweep with fixed Reb = 2800 will
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accommodate these secondary motions for all Ra, which will allow us to study the effect of
buoyancy on the secondary motions as well. In the case of the Ra-sweep, this will partly be
the case. The spanwise extent of the convection cells and streamwise rolls found in Pirozzoli
et al. (2017) are roughly 4δ, such that the chosen values of S cover the width of the different
aforementioned flow structures."(Schäfer et al. 2022a)

"The grid resolutions for the simulations are chosen according to those used by Pirozzoli et al. (2017)
for a second-order finite difference code. The grid requirements for mixed convection simulations
in conjunction with Gaussian ridges represented by an IBM were investigated in a resolution study
presented in Appendix A.3. It is found that the present grid resolution for smooth-wall mixed
convection cases at Ra = 107 is sufficient for the representation of streamwise Gaussian ridges
and a further increase of the resolution results in no significant differences of the mean quantities
and profiles. Only for lower Ra does the spanwise grid resolution need to be slightly increased to
achieve grid-independent statistical results for the streamwise-aligned ridge cases. The statistical
time integration is carried out over at least 1500 tb for cases Rib ≤ 0.32, except for the high Reb
cases with Rib = 0.025 with time integration of at least 300 tb. For cases with Rib ≥ 1.0 the time
integration comprises at least 400 tf , while the high Ra cases with Rib = 3.2 and Ra = 108 were
averaged over at least 120 tf ."(Schäfer et al. 2022a)

5.2 Results

5.2.1 Global flow properties

"The results of the global flow properties for the different simulations are presented in table 5.1,
where the configurations are arranged according to the parameter triad (Ra,Reb,S/δ). The smooth-
wall configurations are indicated by S =∞ and the configurations with streamwise-aligned ridges
are listed with decreasing S. Since the forced and mixed convection cases are run at constant flow
rate (CFR), the presence of the Gaussian ridges will increase the drag, which translates into an
increase of Cf and Reτ compared to the respective case with smooth-wall conditions. As can be
seen for all considered cases, the steady decrease of S leads to a monotonic increase of Cf and
Reτ compared to the smooth-wall case. For forced convection the increase of Cf is up to 26%,
while the largest increase is found for Rib = 10 with 45%. Due to the changing friction drag, the
ridge height in wall units h+g changes for all cases as well, and ranges between 7 ≤ h+g ≤ 60 for the
current configurations. In case of pure forced convection, turbulent secondary motions induced by
streamwise-aligned ridges are known to increase the global friction as well as the heat transfer of the
flow compared to smooth-wall conditions (Stroh et al. 2020a). This behaviour is also observed for
the present forced convection case with streamwise-aligned Gaussian ridges, where for the densest
ridge spacing S = 0.5δ the heat transfer increases 16% compared to the smooth-wall case. In a
similar range with 17% is the increase for the natural convection case, and the largest increase is
found for Rib = 3.2 with 32%."(Schäfer et al. 2022a)
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Ra Reb Rib S/δ Nx ×Ny ×Nz Reτ Rek Cf (·10−3) Nu −δeff/L

0 2800 0 ∞ 512× 193× 384 178.5 228.1 8.1 7.4 -
0 2800 0 4 512× 193× 384 180.0 236.9 8.3 7.5 -
0 2800 0 2 512× 193× 384 181.7 244.1 8.5 7.7 -
0 2800 0 1 512× 193× 384 184.2 250.8 8.8 8.0 -
0 2800 0 0.5 512× 193× 384 196.3 258.5 10.2 8.6 -

105 2800 0.003 ∞ 512× 193× 256 179.3 229.1 8.2 7.5 0.003
105 2800 0.003 4 512× 193× 384 180.4 238.3 8.3 7.7 0.003
105 2800 0.003 2 512× 193× 384 182.0 244.7 8.5 7.8 0.003
105 2800 0.003 1 512× 193× 384 184.7 251.2 8.9 8.1 0.003
105 2800 0.003 0.5 512× 193× 384 196.7 259.1 10.2 8.6 0.003

5.0 · 105 2800 0.016 ∞ 512× 193× 256 180.5 234.3 8.3 8.1 0.017
5.0 · 105 2800 0.016 4 512× 193× 384 181.8 240.9 8.5 8.1 0.017
5.0 · 105 2800 0.016 2 512× 193× 384 183.2 247.3 8.6 8.2 0.017
5.0 · 105 2800 0.016 1 512× 193× 384 186.1 253.0 9.0 8.4 0.016
5.0 · 105 2800 0.016 0.5 512× 193× 384 198.1 261.1 10.4 9.0 0.014

7.5 · 105 2800 0.024 ∞ 512× 193× 256 180.4 249.1 8.3 9.4 0.030
7.5 · 105 2800 0.024 4 512× 193× 384 181.8 249.5 8.5 9.2 0.029
7.5 · 105 2800 0.024 2 512× 193× 384 183.6 252.2 8.7 9.1 0.028
7.5 · 105 2800 0.024 1 512× 193× 384 187.0 254.1 9.1 8.6 0.025
7.5 · 105 2800 0.024 0.5 512× 193× 384 199.4 262.7 10.5 9.2 0.022

106 2800 0.032 ∞ 512× 193× 256 178.9 257.1 8.2 9.7 0.042
106 2800 0.032 4 512× 193× 384 180.9 256.7 8.4 9.7 0.041
106 2800 0.032 2 512× 193× 384 183.2 261.1 8.6 9.8 0.040
106 2800 0.032 1 512× 193× 384 186.8 261.4 9.1 9.6 0.037
106 2800 0.032 0.5 512× 193× 384 198.9 266.2 10.5 10.0 0.032

107 0 ∞ ∞ 1024× 257× 512 - 237.2 - 15.7 ∞
107 0 ∞ 4 1024× 257× 512 - 236.9 - 16.0 ∞
107 0 ∞ 2 1024× 257× 512 - 236.7 - 16.3 ∞
107 0 ∞ 1 1024× 257× 512 - 238.9 - 16.9 ∞
107 0 ∞ 0.5 1024× 257× 512 - 245.7 - 18.4 ∞

107 500 10.0 ∞ 1024× 257× 512 71.0 250.0 40.3 13.9 9.743
107 500 10.0 4 1024× 257× 512 72.1 243.7 41.8 14.2 9.461
107 500 10.0 2 1024× 257× 512 73.2 239.9 43.2 14.4 9.213
107 500 10.0 1 1024× 257× 512 77.5 226.9 48.8 15.1 8.122
107 500 10.0 0.5 1024× 257× 512 83.9 235.7 58.4 17.2 7.275

107 885 3.19 ∞ 1024× 257× 512 97.7 263.4 24.4 12.6 3.373
107 885 3.19 4 1024× 257× 512 99.3 262.5 25.2 12.9 3.300
107 885 3.19 2 1024× 257× 512 101.0 252.5 26.2 13.1 3.174
107 885 3.19 1 1024× 257× 512 105.5 240.0 28.9 13.6 2.903
107 885 3.19 0 1024× 257× 512 111.7 236.1 33.0 15.2 2.729

107 1581 1.0 ∞ 1024× 257× 512 134.2 304.1 14.4 11.9 1.231
107 1581 1.0 8 1024× 257× 512 135.2 300.6 14.7 12.0 1.210
107 1581 1.0 4 1024× 257× 512 136.7 300.2 15.0 12.1 1.184
107 1581 1.0 2 1024× 257× 512 138.9 285.6 15.6 12.2 1.140
107 1581 1.0 1 1024× 257× 512 143.1 278.5 16.7 12.6 1.072
107 1581 1.0 0.5 1024× 257× 512 152.5 275.2 19.3 13.9 0.979
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Ra Reb Rib S/δ Nx ×Ny ×Nz Reτ Rek Cf (·10−3) Nu −δeff/L

107 2800 0.32 ∞ 1024× 257× 512 190.4 353.2 9.3 12.3 0.446
107 2800 0.32 4 1024× 257× 512 193.9 350.6 9.6 12.7 0.434
107 2800 0.32 2 1024× 257× 512 198.1 352.8 10.1 13.1 0.422
107 2800 0.32 1 1024× 257× 512 204.9 348.8 10.9 13.8 0.401
107 2800 0.32 0.5 1024× 257× 512 216.2 349.8 12.4 15.1 0.373

107 5000 0.1 ∞ 1024× 257× 512 304.5 499.1 7.4 17.1 0.152
107 5000 0.1 4 1024× 257× 512 306.4 497.0 7.5 17.3 0.150
107 5000 0.1 2 1024× 257× 512 311.4 501.7 7.8 17.7 0.146
107 5000 0.1 1 1024× 257× 512 316.9 499.9 8.2 18.2 0.143
107 5000 0.1 1 1024× 257× 512 328.9 504.0 8.9 19.3 0.135

107 10000 0.025 ∞ 1536× 513× 1024 552.2 847.6 6.1 28.4 0.042
107 10000 0.025 4 1536× 513× 1024 555.0 822.7 6.2 28.1 0.041
107 10000 0.025 2 1536× 513× 1024 558.3 841.3 6.3 28.4 0.041
107 10000 0.025 1 1536× 513× 1024 570.5 825.5 6.6 28.1 0.038
107 10000 0.025 0.5 1536× 513× 1024 585.2 831.9 7.0 27.1 0.034

108 2800 3.19 ∞ 2048× 513× 1024 246.1 749.3 15.5 25.6 4.297
108 2800 3.19 4 2048× 513× 1024 249.5 791.9 15.9 26.9 4.327
108 2800 3.19 2 2048× 513× 1024 259.3 718.1 17.3 27.6 3.964
108 2800 3.19 1 2048× 513× 1024 269.3 695.1 18.7 29.4 3.761
108 2800 3.19 0.5 2048× 513× 1024 295.1 710.6 22.8 33.7 3.277

Table 5.1: List of simulation configurations with flow parameters and resulting global flow properties. Adopted from
Schäfer et al. (2022a)

"While the skin friction drag increases with decreasing S and increasing wetted surface area, this
behaviour is not found for the heat transfer for all present cases. This is illustrated for the two
parameter sweeps at constant Reb = 2800 in figure 5.3 (a) and at constant Ra = 107 in figure
5.3 (b). The forced convection case Ra = 0 and weak convective case Ra = 105 in figure 5.3
(a) show the successive increase of Nu with decreasing ridge spacing S. An increase of Ra
or Rib introduces an additional buoyant contribution to the vertical mixing, resulting in larger
heat transfer and for large Rayleigh numbers (Ra > 106), which represent configurations where
buoyancy is comparable to shear or even stronger, the monotonic increase of Nu with decreasing
S is also found. However, for the particular cases Ra = 7.5 · 105 (Rib = 0.024) and Ra = 106

(Rib = 0.032) heat transfer does not monotonically increase with decreasing S, which is visible in
the inset of figure 5.3 (a)."(Schäfer et al. 2022a)

"In figure 5.3 (b) the natural convection case is given by Reb = 0 and the influence of buoyancy
is successively reduced by increasing Reb. The minimum found for Nu is associated with the
break-up of the thermal plumes of the Rayleigh-Bénard case, when shear is added, and has been
reported for unstable thermal stratification in Poiseuille and Couette flows (Scagliarini et al. 2014,
Blass et al. 2020). The non-monotonic behaviour of Nu with decreasing S seen in figure 5.3 (a)

also occurs for the largest Reb = 10000 case (Rib = 0.025), which is in a similar bulk Richardson
number range as the former cases. Thus, all cases which depict a non-monotonic behaviour ofNu
with respect to S fall within a range of bulk Richardson values Rib = 0.016− 0.032, where shear
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5 The effects of heterogeneous surfaces on mixed convection

Figure 5.3: Nusselt number Nu as a function of Rayleigh number Ra in (a) and bulk Reynolds number Reb in (b) for
different ridge spacings S. In (a) the bulk Reynolds number Reb = 2800 and in (b) the Rayleigh number
Ra = 107 is kept constant. Adopted from Schäfer et al. (2022a)

effects are strong and buoyancy effects are weak. It will be shown that this range of Richardson
numbers marks the transition from forced convection structures to streamwise rolls and the ridge
spacing S affects and alters this transition."(Schäfer et al. 2022a)

"In case of mixed convection, turbulence is driven by two generation mechanisms, the production
by shear and by buoyancy, and the exact turbulence level cannot be inferred a priori byRa andReb.
The same holds for the bulk Richardson number Rib. To rule out effects caused by the different
turbulence levels or Reynolds number effects, which will be discussed in section 5.2.6 we separate
those cases with significantly higher turbulence levels from the cases with comparable values. For
the subsequent discussion and sections only cases which fall in a range of Reynolds number values
Rek = 200 − 355 are considered. This selection includes only those cases of the two parameter
sweeps for which Ra ≤ 107 and Reb ≤ 2800. Instead of using the pairs of Ra and Reb, the
bulk Richardson number Rib is used in the following to characterise the relative importance of
buoyancy and shear effects. In analogy to Rib = Ra/(4Re2bPr), Nu is replaced by the Stanton
number St = Nu/(RebPr). The corresponding results are presented in figure 5.4 (a) and reveal
an increase of St with Rib."(Schäfer et al. 2022a)

"The relative increase between heat and momentum transfer is characterised by the ratio St/Cf
which is shown in figure 5.4 (b). For each S it can be seen that larger values of Rib induce larger
St/Cf values. This implies that buoyancy effects lead to a larger increase of heat transfer than
of momentum transfer. In addition, a consistent influence of the ridges can be observed in this
representation. A decrease of S results in less St/Cf for all Rib. This is also reflected in the
stability parameter −δeff/L in table 5.1, which is another quantity to compare the relative heat and
momentum transfer. The most distinct property of figure 5.4 (b) is the strong increase of St/Cf
in the range Rib = 0.016 − 0.032. This increase is delayed to larger Rib with decreasing S and
can be linked to a reorganisation of the turbulent flow structures as discussed in the following
section."(Schäfer et al. 2022a)
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Figure 5.4: Stanton number St in (a) and ratio of St to Cf in (b) as a function of bulk Richardson number Rib for
different ridge spacings S. The selected cases have values of the Reynolds number Rek in a similar range.
Adopted from Schäfer et al. (2022a)

5.2.2 Instantaneous flow fields

"The different flow organisation of mixed convection flows observed over smooth-wall conditions
can be visualised by instantaneous velocity or temperature fluctuations in horizontal planes (Salesky
et al. 2017). The influence of heterogeneous surfaces on this flow organisation is shown for various
pairs of Rib and S for the instantaneous temperature fluctuations in wall-parallel planes located at
the half-channel height (y = δ) in figure 5.5 and slightly above the top of the ridges (y = 0.15δ)
in figure 5.6. Please note that the discussion for the near-wall region refers to the bottom wall,
unless stated otherwise. Both horizontal planes display the same instantaneous realisation of the
flow field and comprise cases that fall in a similar range of turbulent Reynolds number Rek. The
Rib increases from top to bottom, starting with the forced convection case Rib = 0 (Reb = 2800,
Ra = 0) at the top and the natural convection case Rib =∞ (Reb = 0, Ra = 107) at the bottom
panel. The ridge spacing S/δ decreases from left to right, with the smooth-wall case at the outer
left panel side."(Schäfer et al. 2022a)

"Considering the smooth-wall cases S = ∞ first, the flow topology of the forced convection
case has a spotty organisation which is also the case for the mild convective case Rib = 0.003

(Reb = 2800, Ra = 105) in figure 5.5. The transition to streamwise rolls takes place for slightly
larger buoyant forcing at case Rib = 0.016 (Reb = 2800, Ra = 5 · 105), but the rolls still display
some patchiness. This transition also results in a change of the near-wall structures as can be
seen in figure 5.6, where strong elongated temperature fluctuations preferentially locate in regions
of the streamwise roll updrafts, while less pronounced in the downdraft region. These elongated
temperature fluctuations coincide with the near-wall low-speed streaks (not shown here), since for
neutral and moderately convective cases the temperature behaves like a passive scalar with strong
correlation with the streamwise velocity (Khanna and Brasseur 1998). The formation mechanism
of streamwise rolls is strongly linked to localised buoyancy forces, which concentrate in low-speed
streaks and thereby create linear updrafts (Khanna and Brasseur 1998). Multiple updrafts can
merge to a strong buoyancy-enhanced streak, forming the updraft region of the streamwise roll in
figure 5.5. This updraft is reaching the opposing wall and reduces or destroys the coherence of the
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Figure 5.5: Instantaneous temperature fluctuation fields at the half-channel height position y = δ for varying Richardson
number Rib and different spanwise spacing S of the Gaussian ridges. The spanwise position of the ridges
is indicated by the black lines on the right outer frame of the figures. The horizontal sections show the full
simulation domain of size 16δ × 8δ. Adopted from Schäfer et al. (2022a)

low-speed streaks there. At the same time, between these impingement region of the updrafts at
the opposite wall, buoyancy-enhanced low-speed streaks can form, which in turn generate a strong
localised downdraft and in combination with the updrafts result in a large-scale streamwise roll
motion in the cross-section."(Schäfer et al. 2022a)

"In contrast to case Rib = 0.016, the streamwise roll of case Rib = 0.024 in figure 5.5 is
more articulated in its structure, which is associated with a sudden increase of St/Cf in figure
5.4 (b). The streamwise rolls persist up to Rib = 1 in figure 5.5 with a spanwise wavelength
of approximately 8δ, such that the chosen domain size is able to accommodate a single pair of
counter-rotating rolls as reported by Pirozzoli et al. (2017). For the casesRib = 0.32 andRib = 10

in figure 5.5 the rolls show a strong waviness of the thermal up- and downdrafts, which is also seen
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in the near-wall region where the updraft region encompasses spanwise inclined near-wall streaks
in figure 5.6. When buoyancy forces become more important, the streamwise roll is more disrupted
and reduce its streamwise coherence, since thermal plumes become dynamically more important
(see case Rib = 10 in figure 5.5) (Salesky et al. 2017). The increased influence of buoyancy also
modifies the near-wall structures, where cell-like structures appear in the updraft region, which still
depict some streamwise coherence, as seen in figure 5.6. For the Rayleigh-Bénard case Rib =∞
(Reb = 0, Ra = 107) in figure 5.5, the streamwise roll is not present any more and the flow
organises in convective cells. These structures have a preferential roll orientation in the x− and
z−direction, also seen in the near-wall region in figure 5.6, which is due to the rectangular domain
size (Pirozzoli et al. 2017)."(Schäfer et al. 2022a)

"The introduction of the ridges displays no significant differences of the flow structures in the
channel centre for the forced convection case Rib = 0 and weak buoyancy case Rib = 0.003

compared to the smooth-wall case. However, the elongated high temperature fluctuations in the near-
wall region are more coherent in the streamwise direction in case of ridge spacings S = δ, 2δ, 4δ,
for which they preferentially occur at the spanwise ridge position. For mild buoyancy effects,
these elongated temperature regions collapse with lowspeed streaks (not shown here), forming low-
momentum pathways directly above the ridges. As such the preferential position of the low-speed
streaks coincides with the mean upward motion of the secondary motions, which will be shown in
section 5.2.3. For the densest ridge spacing S = 0.5δ these elongated structures still occur at the
ridges, however they appear less coherent in the streamwise direction."(Schäfer et al. 2022a)

"Significant effects of the ridges can be seen for the transition between forced convection structures
and streamwise rolls in figure 5.5 for cases Rib = 0.016− 0.032. As shown before, the transition
towards streamwise rolls for smooth-wall conditions takes place at Rib = 0.016 and this transition
can be also observed for the coarsest ridge spacing S = 4δ, which however is more interrupted
by individual turbulent spots than the smooth-wall case. This is also reflected in a change of the
near-wall structures, where for case S = 4δ the elongated high temperature fluctuations still favour
the updraft region, but in contrast to the smooth-wall case, also occur inside the downdraft region at
the ridge position (figure 5.6). For denser ridge spacing S < 4δ the preferred concentration of low-
speed streaks is not observed anymore. Therefore the streamwise roll is not visible in the channel
core and the flow structures resemble those seen for the forced convection and weak buoyancy
cases Rib = 0.003. For slightly larger bulk Richardson number Rib = 0.024 the streamwise roll
is now clearly visible for the two coarsest ridge spacings S = 4δ and S = 2δ in figure 5.5, and
strong enough to reorganise the near-wall structures seen in figure 5.6, while for the denser ridge
spacings the streamwise roll is not present. Eventually, the streamwise roll is observed for all
ridge spacings S at Rib = 0.032, while for the denser ridge spacings still some spot-like structures
overlap with the rolls. Considering figure 5.4 (b) the delayed transition between forced convection
structures and streamwise rolls with decreasing S can be related to the increased drag introduced
by the ridges. Denser ridge spacings introduce more drag and shear in the near-wall region, and in
consequence larger buoyancy forces are required to form the streamwise rolls which in turn induce
an increase in heat transfer."(Schäfer et al. 2022a)
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Figure 5.6: Instantaneous temperature fluctuation fields at y = 0.15δ for varying Richardson numberRib and different
spanwise spacing S of the Gaussian ridges. Adopted from Schäfer et al. (2022a)

"The streamwise roll, present for the intermediate Richardson number Rib = 0.32 and Rib = 1.0

cases (figure 4.6), displays no significant influence of the ridges. This is likewise the case for
the near-wall region in figure 5.6, where it can be seen that the formation of high temperature
fluctuations occur inside the updraft region of the roll."(Schäfer et al. 2022a)

"At higher convective conditions for Rib = 10.0 the streamwise roll is present for the smooth-wall
case and the two coarsest ridge spacing S = 2δ, 4δ, while it completely disappears for denser ridge
spacings S ≤ δ. For S = δ the streamwise roll is replaced by convection cells, resembling the
one found for the Rayleigh-Bénard case with a spacing of S = 4δ. For the densest ridge spacing
S = 0.5δ rolls with a preferential orientation in the spanwise direction occur, which has similarities
to the densest ridge spacing S = 0.5δ of the Rayleigh-Bénard case. This transition from roll to cell
structures is also reflected in a transition of the nearwall structures in figure 5.6. The roll-to-cell
transition is also observed for the lower bulk Richardson caseRib = 3.2 (higherRek) for the same
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Figure 5.7: Effect of Richardson number Rib and S on wall-normal profiles of streamwise mean velocity and mean
temperature for different ridge spacings S scaled in wall units. Adopted from Schäfer et al. (2022a)

ridge spacings S (not shown). This result is remarkable, since the transition between roll to cell
structures over homogeneous wall conditions in atmospheric boundary layer is expected to begin
at larger values of the stability parameter −zi/L ≈ 26 (Salesky et al. 2017), while the stability
parameter for the cases Rib = 3.2 and Rib = 10.0 are ranging between−δeff/L = 3.4− 9.7. This
illustrates that streamwise-aligned ridges reduce significantly the range of Rib or −δeff/L in which
streamwise rolls appear. This suggest, that heterogeneous rough surfaces can trigger the roll-to-cell
transition at smaller buoyancy forces."(Schäfer et al. 2022a)

"As can be seen for the Rayleigh-Bénard case Rib =∞ in figure 5.5 decreasing the ridge spacings
S results in an increasingly preferential orientation of the convective cell towards the spanwise
direction z. The rolls with orientation in the x-direction experience increasing lateral drag as
S decreases, and for S ≤ 2δ these rolls can eventually no longer emerge and only rolls in the
z-direction whose circulation is along the ridge direction occur. This observation will be discussed
further in section 5.2.4. The increase of Nu for smaller S is also reflected by intensified thermal
up- and downdrafts in the channel centre plane. We note that additional simulations for S = ∞
and S = 0.5δ in a wider domain (Lx = Lz = 16δ) do not indicate a domain size dependence of
the obtained results."(Schäfer et al. 2022a)

5.2.3 Mean flow properties

"The effect of ridge spacing S and the relative strength of shear and buoyancy effects on the time
and horizontally averaged mean streamwise velocity and temperature profiles are shown in figure
5.7. The mean temperature is represented as the difference from the bottom wall temperature Tb
and scaled by the friction temperature Tτ = Q/ρcpuτ . Starting from forced convection, the trend
of the mean profiles to become flatter with increasingRib is consistent with the results of Pirozzoli
et al. (2017). The logarithmic region of 〈u〉 found for weak convective condition starts to deviate
at Rib = 0.032. The reduction of the spanwise ridge spacing S leads to a decrease of the mean
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Figure 5.8: Effect of spanwise spacing on mean streamwise velocity for forced convection case Rib = 0 (Reb = 2800,
Ra = 0). The spanwise spacing of the Gaussian ridges ranges from S = 4δ (a), S = 2δ (b), S = δ (c)
and S = 0.5δ (d). Arrows indicate cross-sectional velocity components and are scaled by bulk velocity.
Adopted from Schäfer et al. (2022a)

streamwise velocity and temperature profile, which is in agreement with increased surface drag (see
table 5.1 and figure 5.4 (b)). However, temperature profiles within the transition range from forced
convection structures to streamwise rolls show deviations from this behaviour close to the channel
core, which is highlighted by the inset of figure 5.7 (b). In this, it can be seen for Rib = 0.024 and
Rib = 0.032 that the temperature takes larger values with decreasing S in the channel centre and
at the same time the slope of the temperature increases. This indicates that the thermal mixing of
the flow is increasingly weakened by the ridges. The transition from streamwise rolls to spot-like
structures for case Rib = 0.024 can be also inferred from the similar slope of S = δ and S = 0.5δ

to the one of the forced convection cases. Interestingly, for case Rib = 0.032, where all S feature
streamwise rolls, the slope of the temperature profile for S = 0.5δ also resembles the one of
the forced convection cases, which indicates that the transition point is already close. As can be
seen, the influence and effects of the ridge spacing S is of the same order as a change of the bulk
Richardson number Rib."(Schäfer et al. 2022a)

"The occurrence of secondary motions over streamwise-aligned ridges in forced convection flows
is observed in time- and streamwise-averaged velocity fields in the channel cross-section, which
is shown for case Rib = 0 in figure 5.8. The relative strength of the coherent motion among the
different ridge spacings can be directly compared, due to the same scaling of the cross-sectional
velocity components in bulk units. The smooth channel flow exhibits no coherent motion in the
cross-section (not shown here), while for streamwise-aligned ridges the secondary motions appear
in the mean flow field as counter-rotating vortices at each ridge in figure 5.8. These vortices
introduce an upward motion above each ridge and a downward motion is located to the side of each
ridge. As can be seen the secondary motion induces a bulging of the mean streamwise velocity
above the ridge, transporting low momentum into the bulk region, and for large spacings S = 4δ

and S = 2δ reaching almost the half-channel height. The spacing between the ridges of case
S = 4δ in figure 5.8 (a) is large enough, so that a homogeneous region unaffected by the secondary
motion can form between the ridges. Decreasing the spanwise spacing S, the secondary motions
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5.2 Results

Figure 5.9: Effect of buoyancy on streamwise mean velocity and temperature for constant Reb = 2800 and S = 4δ for
different Richardson numbers. Arrows indicate cross-sectional velocity components and are scaled by bulk
velocity. Adopted from Schäfer et al. (2022a)

fill almost the entire channel domain for case S = 2δ (figure 5.8 (b)) and case S = δ (figure 5.8
(c)). However, for case S = δ the wall-normal extent of the secondary motions is slightly reduced
compare to case S = 2δ, which indicates that the secondary motions of adjacent ridges affect
each other at a spacing of S = δ. Further decrease of the ridge spacing to S = 0.5δ (figure 5.8
(d)) shows a significant reduction of the spatial extent of the secondary motion in the wall-normal
direction."(Schäfer et al. 2022a)

"The investigation of the horizontal fields of the instantaneous temperature have shown that the
transition of the flow topology for smooth-wall conditions is affected by the introduction of the
streamwise-aligned ridges. This reorganisation is also reflected in the mean streamwise velocity
and temperature field in the cross-section, which is shown in figure 5.9 for the transition from
forced convection structures to streamwise rolls at a ridge spacing of S = 4δ. The strength of the
cross-sectional velocity components are represented by the arrows in the mean streamwise velocity
field, while their flow topology is visualised by streamlines in the mean temperature field. The
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5 The effects of heterogeneous surfaces on mixed convection

Figure 5.10: Effect of ridge spacing S on streamwise mean velocity and temperature for constant Rib = 10. Adopted
from Schäfer et al. (2022a)

weak buoyancy case Rib = 0.003 is shown in figure 5.9 (a) and similar as the forced convection
case in figure 5.8 secondary motions are present in the mean velocity field which also leads to a
bulging of the mean temperature at the ridges."(Schäfer et al. 2022a)

"The transition towards streamwise rolls has been seen to occur for smooth-wall conditions at
Rib = 0.016, while for S = 4δ a slight tendency towards rolls was present. Figure 5.9 (b) shows
that secondary motions can still occur at the ridges, though two diminished roll structures emerge
that extend to the opposite wall. This in turn replaces the local bulging of the mean temperature at
the ridge by a significant wider bulging of the mean temperature. As Rib increases to Rib = 0.024

the secondary motions are replaced by streamwise roll. The upward and downward motion of the
convective rolls is located in the valley between two Gaussian ridges and each roll has a spanwise
extent of four half-channel heights. As can be seen in the streamwise mean velocity field, the rolls
induce stronger cross-sectional velocity in the entire channel, which introduces a recirculation zone
at the leeward side of the Gaussian ridges. The cross-sectional velocities of the streamwise roll
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further intensify as Rib increases, as can be seen for case Rib = 0.32 in figure 5.9 (e)."(Schäfer
et al. 2022a)

"Figure 5.10 shows the effect of S on the mean temperature and mean streamwise velocity for case
Rib = 10, which features the transition between streamwise rolls and convective cells. The bulging
of T and u due to the streamwise roll is found for smooth-wall conditions and S ≥ δ, while this
is not found for the densest ridge spacing S = 0.5δ. For the latter case this reflects the transition
from streamwise rolls to convective cells with preferential orientation in z-direction found in the
instantaneous temperature fields in figure 5.5 and 5.6, which results in the disappearance of the
cross-sectional motion in figure 5.10 (e). The up- and downdrafts of the streamwise rolls for
S = 4δ and S = 2δ are located in the valleys between adjacent ridges. For the former case the
lateral movement of the roll encounters the ridge in the middle between up- and downdrafts, where
large spanwise velocities of the roll occur. The ridges close to the up- and downdrafts for case
S = 2δ support the wall-normal motion of the roll by the upward deflection at the ridges, which
results in stronger bulging of u at the up- and downdraft region compared to S = 4δ. As can be
seen for case of S = δ in figure 5.10 (d) the strength of the cross-sectional motion is reduced
compared to the coarser S cases, since the roll experience more lateral drag by crossing the ridges
due to decreasing S."(Schäfer et al. 2022a)

5.2.4 Turbulent properties

"The mean velocity and temperature fields presented in the previous section have shown that
secondary motions and streamwise rolls manifest as large-scale coherent motion in the cross-
sectional plane. The energetics of these structures is further analysed by applying the decomposition
procedures of equations 2.38 and 4.5 to the turbulent kinetic energy k = 0.5 · u′iu′i. This separates
the turbulent kinetic energy k into its coherent contribution k̃ and random contribution k′′ given by
k = k̃ + k′′. In order to extract the influence of the cross-sectional motion, the coherent turbulent
kinetic energy k̃ is decomposed into its cross-sectional k̃c = 0.5 · (ṽṽ + w̃w̃) and streamwise part
k̃s = 0.5 · ũũ. Since the global mean velocity components 〈v〉 and 〈w〉 are zero, the coherent
components ṽ and w̃ represent the mean velocity motion in the cross-sectional plane (seen for
instance in figure 5.9). The coherence of the large-scale motion is quantified by Kc, which is the
volume average of the coherent turbulent kinetic energy of the cross-sectional components k̃c [...].
While Kc is a good measure of coherence for the majority of cases considered here, it will be
shown later that there are two cases for which Kc is not a useful measure. The first case applies
when the coherent motion involves strong temporal dynamics leading to a reduction of the coherent
velocities ṽ and w̃ by long time averages. The second case concerns any coherent motion in the
x-y plane, so that this coherence is masked in the random velocity variance contribution."(Schäfer
et al. 2022a)

"The influence of the transition between forced convection structures and streamwise rolls on
Kc is illustrated in figure 5.11 (a). As can be seen the forced convection case Rib = 0 and
weakly convective case Rib = 0.003 for smooth-wall conditions display no coherent energy in
the cross-sectional components due to the missing presence of coherent motion. However, the
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Figure 5.11: Volume-averaged coherent turbulent kinetic energy of the cross-sectional components for low Rib cases
scaled in wall-units in (a) and for large Rib cases scaled in free-fall units in (b). Adopted from Schäfer
et al. (2022a)

introduction of the Gaussian ridges and the appearance of secondary motions results in a coherent
kinetic energy contributionKc with the highest value for a ridge spacing of S = δ, consistent with
recent studies (Medjnoun et al. 2020, Wangsawijaya et al. 2020). At Rib = 0.016 the streamwise
rolls emerge for the smooth-wall case, which is reflected by an increase of Kc. This increase
induced by the streamwise rolls is eventually also present for ridge spacings S = 4δ and S = 2δ

for case Rib = 0.024. As shown in the previous sections, the two densest ridge spacing cases
display secondary motions at higher Rib, which leads to an unchanged and constant value of Kc

up to Rib = 0.024 for S = δ and S = 0.5δ. This behaviour is consistent with the observation of
the delayed increase in Nu with increasing Ra for these two cases in figure 5.3 (a), illustrating
the importance of the flow structures on the scaling of global quantities. Due to the presence of
streamwise rolls for all cases at Rib = 0.032, Kc also increases for all S, whose values almost
double compared to Rib = 0.024."(Schäfer et al. 2022a)

"The change of coherence due to the transition between streamwise rolls and convective cells with
increasing Rib is shown in figure 5.11 (b). For this range of values Rib, Kc is scaled in free-fall
units, which ease the comparison with the natural convection case Rib = ∞. For the smooth-
wall condition the coherence increases up to Rib = 1 and subsequently decreases to the natural
convection case. This maximum of Kc occurs for a value of −δeff/L = 1.23, which is consistent
with recent findings in ABL, for which the maximum coherence of streamwise rolls are found at
−zi/L = 1.08 (Jayaraman and Brasseur 2021). For the rough-wall cases the coherence decreases
monotonically with decreasing S only for Rib = 0.032 and Rib = ∞, while this behaviour is
not found for values in between. Comparing to the smooth-wall cases the introduction of coarsely
spaced ridges S = 4δ yield a large drop of Kc for Rib = 1 and Rib = 3.2. The reason for this
reduction is the aforementioned temporal variability of the streamwise rolls, which causes the up-
and downdrafts to slowly move in the spanwise direction over a long period of time instead of being
fixed, thereby reducing averaged values of ṽ and w̃ and thus Kc. This will be discussed in more
detail in the following section 5.2.5."(Schäfer et al. 2022a)
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"For Rib = 10 the value of Kc for S = 4δ is below S = 2δ, indicating that the coherence of the
streamwise roll is more affected by the coarser ridge spacing. In this case the reduction ofKc is not
related to time variability of the streamwise rolls, but to the relative position of the ridges to the up-
and downdrafts. As can be seen in figure 5.10 the up- and downdrafts for Rib = 10 occur between
the ridges, which for S = 4δ results in the roll encountering a ridge in the middle of its lateral
motion, which causes stronger lateral drag and thereby weaken the roll motion. For S = 2δ, the
ridges do not interfere the roll motion at their strongest lateral velocity. Instead, the adjacent ridges
at the up- and downdrafts support the upward motion of the roll by its wall-normal deflection at the
ridges. Even though denser ridge spacings contribute to more drag, the support of the deflections
compensate a part of the losses in Kc for S = 2δ, while this does not occur for S = 4δ."(Schäfer
et al. 2022a)

"For Rib = 3.2 and Rib = 10 the value of Kc vanishes for the densest ridge spacing S = 0.5δ,
which reflects that streamwise rolls are not present for these cases as can be seen in the instantaneous
temperature fields in figure 5.5. Also for the natural convection case the value of Kc approaches
zero for S ≤ 2δ, even though the instantaneous temperature fields in figure 5.5 suggest an increase
of the coherence in the x-direction due to rolls aligned in the z-direction. This reflects the property
of Kc that only coherent motion in the z-direction can be detected, while any coherence in the x-
direction is masked. Consequently, for the current ridge cases, a reduction ofS leads to a weakening
of the coherence in z-direction, which is equivalent to a weakening of rolls with orientation in x-
direction. Note, that for a further reduction of S down to the limit of S → 0 the surface will
approach a smooth wall again with a reduced cross-sectional area. Since Reb and Ra are kept
constant while varying S we expect the flow for S → 0 to be similar to the present smooth-wall
case S =∞."(Schäfer et al. 2022a)

"The strength of the different large-scale coherent motion is associated with different wallnormal
regions, where coherence is dominant. This is shown for the transition between the forced
convection structures and streamwise rolls for the horizontally averaged velocity stresses and
temperature variance in figure 5.12 for three different Rib cases. The dashed line represents the
Reynolds stresses (e.g. 〈u′u′〉), while the solid line indicates the coherent stress (e.g. 〈ũũ〉). The
difference of both contributions results in the random stress, e.g. 〈u′′u′′〉 = 〈u′u′〉 − 〈ũũ〉. For
the forced convection case Rib = 0 and rough-wall condition the coherent streamwise stress 〈ũũ〉
is concentrated close to the wall, with increasing peak values with decreasing S down to S = δ.
The densest ridge spacing S = 0.5δ has a similar peak value as S = δ, however extending less
into the bulk region, consistent with the reduced spatial extent of the mean secondary motions
for this ridge spacing seen in figure 5.8. This is also reflected by the wall-normal location of the
peak values of 〈ṽṽ〉 and 〈w̃w̃〉, which is located closer to the wall for S = 0.5δ. The coherent
temperature variance displays a similar trend as 〈ũũ〉 with respect to S, since temperature is a
passive scalar for this case resulting in a strong correlation between the streamwise velocity and
temperature."(Schäfer et al. 2022a)

"As discussed before, streamwise rolls are present for case Rib = 0.024 and S = ∞, 4δ, 2δ,
which can be seen most clearly by increased values of 〈T̃ T̃ 〉 and 〈T ′T ′〉 within the entire bulk
region in figure 5.12 (k). For these cases the coherent temperature variance 〈T̃ T̃ 〉 contributes for
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Figure 5.12: Velocity and temperature variances scaled in inner units for low bulk Richardson number Rib cases at
transition from forced convection structures to streamwise rolls. Black vertical dotted line indicates the
height of the Gaussian ridges. Adopted from Schäfer et al. (2022a)

a large fraction of the temperature variance 〈T ′T ′〉, which reflects the strong bulging of the mean
temperature seen in figure 5.9 (c). The induced coherence by streamwise rolls is also seen in the
coherent velocity stresses but less pronounced. Among them this ismost noticeable for the spanwise
coherent velocity stress 〈w̃w̃〉 in figure 5.12 (h), where stronger spanwise coherent stresses are
observed with respect to the forced convection cases (figure 5.12 (g)). A slight increase of 〈ũũ〉
and 〈ṽṽ〉 can be also found for these cases in the bulk region, which is illustrated by the figure insets
in figure 5.12 (b) and (e). Although the coherent velocity stresses of the streamwise rolls are for
this case rather weak, this motion is sufficient to cause a strong imprint in the coherent temperature
variance. For the two densest ridge spacings S = δ and S = 0.5δ where secondary motions occur,
the velocity stresses and temperature variances remain similar to the forced convection cases at
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Rib = 0. This further supports the fact that the increased drag and vertical mixing due to the
ridges for these two cases is strong enough to inhibit the formation of streamwise rolls."(Schäfer
et al. 2022a)

"For case Rib = 0.032, when all ridge configurations exhibit streamwise rolls, the two densest
ridge spacings S now also show a significant increase in the coherent temperature variance 〈T̃ T̃ 〉,
although their values are lower than for the streamwise roll cases of Rib = 0.024. Likewise, the
increase of coherent velocity stresses, which initiated at Rib = 0.024, continues, which is clearly
seen by 〈w̃w̃〉 in figure 5.12 (i). As can be seen the successive reduction of the ridge spacing
S results in a decrease of the coherent velocity stresses, indicating that the streamwise rolls are
damped by the presence of the ridges. For S = 0.5δ only a mild increase of 〈ũũ〉 and 〈ṽṽ〉 is found
in the bulk region (figure 5.12 (c, f)), and the near-wall peak of 〈ṽṽ〉, introduced by the secondary
motions, is still visible. The persistence of stronger wall-normal coherent motions near the wall for
S = 0.5δ, similar to the forced convection cases, is consistent with the streamwise rolls to appear
more spot-like as seen in figure 5.5."(Schäfer et al. 2022a)

"Figure 5.13 shows the velocity stresses and temperature variance for the transition from streamwise
rolls to natural convection. For case Rib = 1 the streamwise roll displays the strongest coherent
cross-sectional motion, which is illustrated by larger values of 〈w̃w̃〉 compared to the 〈ũũ〉. At
the same time the wall-normal Reynolds stresses have comparable magnitude to the streamwise
Reynolds stress in the channel centre region. The decrease of coherent velocity stresses with
decreasing S is found for the three densest ridge spacings, while case S = 4δ display significantly
lower values due to the time variability of the streamwise rolls. At the same time, the coherent
temperature variance in the bulk region increases with decreasing S (inset figure 5.13 (j)) and
〈T ′T ′〉 exhibits larger values in the near-wall region compared to the smooth-wall case."(Schäfer
et al. 2022a)

"As discussed in relation to figure 5.14 the coherence of streamwise rolls is reducedwhen increasing
Rib beyond values of Rib ≈ 1, which is reflected by a reduction of the coherent velocity stresses
for Rib = 10. For Rib = 10 and dense ridge spacings S = δ and S = 0.5δ the instantaneous
temperature fields in figure 5.5 have shown a transition from the streamwise rolls to convection
cells, which is reflected here by significant lower coherent stresses 〈ṽṽ〉 and 〈w̃w̃〉 compared to the
smooth-wall case. The increased peak value of 〈T ′T ′〉 with decreasing S indicates that ridges are
more efficient in mixing temperature close to the wall. For the densest ridge spacing S = 0.5δ

the convection cells are oriented along the spanwise direction, which is in agreement with the
observation of zero coherent spanwise stresses 〈w̃w̃〉 in figure 5.13 (h)."(Schäfer et al. 2022a)

"The observation that the coherence of convective cells oriented along thex-direction is significantly
reduced for S ≤ 2δ is also reflected by the coherent velocity stresses and coherent temperature
variance. The coherent contribution of 〈w̃w̃〉 for S = 4δ is significantly reduced compared to
smooth-wall conditions, as can be seen in figure 5.13 (i). The only increase of coherence can be
found for 〈T̃ T̃ 〉 in the near-wall region with decreasing S in figure 5.13 (l), while it vanishes in the
bulk region for dense spacings. The preferred orientation of the convective cells in the spanwise
direction, as seen in figure 5.5, needs to result in larger streamwise motion, which is reflected
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Figure 5.13: Velocity and temperature variances scaled in free fall units for high bulk Richardson number Rib cases at
transition from streamwise rolls to natural convection. Adopted from Schäfer et al. (2022a)

in the steady increase of 〈u′u′〉 with S (figure 5.13 (c)). This is also accompanied by a steady
increase of 〈T ′T ′〉with decreasing S, which suggest that the aligned ridges induce stronger thermal
plumes. Note, that in a square domain with smooth-wall condition the streamwise and spanwise
stresses have the same distribution due to the directional invariance of the cells (Pandey et al. 2018).
However, the smooth-wall case already displays slightly larger values for 〈u′u′〉 than 〈w′w′〉 and
this indicates that the convection cell are slightly more oriented in the spanwise direction before
introducing the aligned ridges."(Schäfer et al. 2022a)
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Figure 5.14: Short-time-averaged coherent kinetic energy Ks
c of case Rib = 1 and different ridge spacings over time.

The values ofKs
c are averaged for time intervals ∆ts ≈ 3.4tf . Adopted from Schäfer et al. (2022a)

5.2.5 Dynamics of streamwise rolls

"In the previous section it was found that the coherence of the streamwise rolls for coarse ridge
spacings S = 4δ drops significantly for case Rib = 1 and Rib = 3.2 compared with the denser
values of S, indicating weaker cross-sectional motion of the roll. However, the instantaneous
temperature visualisations in figures 5.5 and 5.6 for this specific case do not indicate weaker
streamwise rolls, suggesting that a time-varying behaviour of the streamwise rolls might be present.
For this purpose, the volume-averaged coherent turbulent kinetic energy of the cross-sectional
components Kc, which is based on the average of the entire time series, is now averaged for
shorter time windows. The short-time-averaged coherent turbulent kinetic energyKs

c (superscript
s indicates the short-time average) is computed over a time range of ∆ts ≈ 3.4tf . Note that the
value of the short-time average is the shortest available data for the present simulations. The time
evolution of Ks

c for consecutive short-time intervals is shown for case Rib = 1 in figure 5.14. As
can be seen, all cases feature a relatively slow dynamics and for S = ∞ and S ≤ 2δ the time
variations vary mildly around their full time-averaged values Kc in figure 5.11 (b). For S = 4δ

the time variation is more pronounced and the dynamics shows a clearly visible periodic reduction
of Ks

c with a period of O(t) ≈ 100 tf , which corresponds to O(t) ≈ 200 tb. For this analysis
an additional simulation with S = 8δ is performed and it shows similar time variation compared
with S = 4δ, however, with smaller amplitude. This observed dynamics is significantly slower
than observations in ABL where the dynamics of the flow reaches a statistically quasi-steady state
in roughly 6 tf (Moeng and Sullivan 1994). The time mean value of Ks

c is significantly larger
than the value Kc, which suggests that the streamwise rolls of S = 4δ and S = 8δ feature some
time variability, which is masked by considering quantities based on the average of the entire time
series. This time-varying behaviour is also found for Rib = 3.2 and S = 4δ, which also displayed
a significant reduction ofKc in figure 5.11."(Schäfer et al. 2022a)

"The variability of the streamwise rolls is illustrated by the time evolution of the short-time- and
streamwise-averaged temperature T s at the wall-normal channel centre y = δ along the spanwise
direction z in figure 5.15. The spanwise position of the thermal up- and downdrafts of the
streamwise roll is represented by the higher and lower temperature values, respectively. While the
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Figure 5.15: Streamwise and short-time-averaged temperature T s over time and spanwise position at the wall-normal
channel centre location y = δ for cases Rib = 1. The spanwise position of the ridges is indicated by the
black lines at the top figure frame. Adopted from Schäfer et al. (2022a)

spanwise location of the up- and downdrafts remain at the same position for S =∞ and S ≤ 2δ,
the spanwise location of the up- and downdrafts of case S = 4δ and S = 8δ is strongly varying
in time. The up- and downdrafts for these two cases exhibit strong lateral movement. While this
movement is almost periodic for S = 8δ and remains between the ridges, the up- and downdrafts
of S = 4δ are able to cross the ridges at some time instances, e.g. t/tf ≈ 100, while they are not
able to cross them at other time instances, e.g. t/tf ≈ 350. The large values ofKs

c of S = 4δ and
S = 8δ in figure 5.14 correspond to occasions when the up- and downdrafts are located close to or
directly at the ridges, e.g. t = 700−800tf , while small values ofKs

c correspond to locations of the
up- and downdrafts in between the ridges. This increase ofKs

c can be interpreted by the formation
mechanism of streamwise rolls proposed by Khanna and Brasseur (1998), which relates them to the
organisation of localised buoyancy forces within near-wall streaks. When the up- and downdrafts
are located at ridges, the ridges support the formation of strong localised buoyancy forces, leading to
strong local up- and downdrafts. Due to the symmetric arrangement of the ridges at both walls, the
up- and downdrafts impinge at another ridge on the opposite wall, which is supposed to counteract
the impinging roll by the formation of localised buoyancy forces with opposing direction. Thus,
for S = 4δ the ridges support the formation of strong up- and downdrafts, however, they cannot
remain at the spanwise location due to the counteraction of the opposing ridge, leading to the lateral
evasion. For case S = 8δ this enhancement at the ridges occurs only for the up- or the downdraft
and not simultaneously as for S = 4δ, which might be an explanation for the observation that up-
and downdrafts are not able to cross the ridges."(Schäfer et al. 2022a)

98



5.2 Results

Figure 5.16:Mean temperature in cross-section in (a) and short-time-averaged temperature T s over time and spanwise
position at y = δ in (b) for cases Rib = 1 and ridge spacing S = 4δ and S = 8δ with ridges only placed
at the bottom wall of the channel.

"For case S = 2δ a short time interval t ≈ 120tf with large values of Ks
c is present, which

corresponds to a time interval in which the up- and downdrafts are located above ridges. However,
most of the time the up- and downdrafts remain in between adjacent ridges, as has been shown in
figure 5.10, and only a slight meandering within this range is observed. The examination of time
series of cases Rib = 0.32 and Rib = 10 does not reveal this strong lateral movement of the up-
and downdraft locations, while for Rib = 3.2 and S = 4δ a similar lateral movement is found.
The results suggest that the dynamics of the streamwise rolls is very sensitive to ridge spacings of
the order of the spanwise rolls’ width, as seen for S = 4δ and S = 8δ. For denser ridge spacings
S ≤ 2δ several adjacent ridges contribute by localised buoyancy forces to the formation of the up-
and downdrafts which might be strong enough to inhibit disturbances by the opposing ridges and
thereby prevent lateral movement of the streamwise rolls."(Schäfer et al. 2022a)

The hypothesis that the opposing ridges causing the instability and lateral movement of the stream-
wise rolls is further examined by considering cases with only ridges located at the bottom wall for
Rib = 1 and ridge spacings S = 4δ and S = 8δ. The mean temperature in the cross-section of the
channel is shown for both cases in figure 5.16 (a), where it is already evident that the mean up- and
downdrafts of the streamwise rolls are stronger for S = 8δ than compared to S = 4δ, which is also
seen in terms of Kc/v

2
f amounting 0.0087 for S = 4δ and 0.0193 for S = 8δ. While the updraft

is located at the single bottom ridge for S = 8δ, the up- and downdrafts occur for S = 4δ between
the two bottom ridges. Inspection of the short-time- and streamwise-averaged temperature T s at
y = δ in figure 5.16 (b) reveals that the streamwise rolls for S = 4δ laterally meander and the up-
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Figure 5.17: Effect of turbulent Reynolds numberRek an spanwise ridge spacingS onmean temperature for caseRib =
0.024, Rek = 252-263 (Ra = 7.5·105,Reb = 2800) on the left side and caseRib = 0.025, Rek = 826-
841 (Ra = 107, Reb = 10000) on the right side. The spanwise spacing of the Gaussian ridges ranges
from S = 2δ (a), S = δ (b) and S = 0.5δ (c). Adopted from Schäfer et al. (2022a)

and downdrafts remain between the two bottom ridges, similar to case S = 8δ with ridges on both
walls in figure 5.15. This behaviour is in contrast to case S = 4δ with ridges on both walls (see
figure 5.15), where the rolls are also able to laterally cross the ridges at some time instances. These
observations suggest that the upper ridges are critical for this crossing and it is likely that a coupled
behaviour between the up- and downdrafts of the rolls favors this crossing. As can be seen for
S = 8δ with only bottom ridges (figure 5.16 (b)) the up- and downdrafts now remain fixed in span,
which is in contrast to case S = 8δ with ridges on both walls. The direct comparison between
these cases confirms that the counteraction of the opposing ridges are causing the lateral movement
of the streamwise rolls. The fixation of the rolls for case S = 8δ results in slightly stronger values
of Kc than compared to the smooth-wall case (see figure 5.11). Another way to fix the rolls with
ridges on both walls might be a staggered arrangement with S = 8δ, such that the ridges across the
walls are staggered by half a wavelength of the streamwise rolls and thus both up- and downdrafts
are supported and locked by ridges. A similar behaviour has been shown for secondary motions
where "the comparison of a symmetric and staggered arrangement of streamwise-aligned ridges in
forced convection flows (Stroh et al. 2020a) has shown that a staggered arrangement promotes the
coherence of the large-scale secondary motion."(Schäfer et al. 2022a)

5.2.6 Reynolds and domain size effects

"In the previous section the flow organisation of mixed convection flows was considered in terms
of varying bulk Richardson numberRib and ridge spacing S, while the Reynolds numberRek was
approximately constant. The effect of Rek on the transition between forced convection structures
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Figure 5.18: Instantaneous temperature fluctuation fields at the half-channel height position y = δ for cases Rib = 3.2
with Rek = 236-263 (Ra = 107, Reb = 885) in (a) and Rek = 695-792 (Ra = 108, Reb = 2800) in
(b) for different spanwise ridge spacing S. Adopted from Schäfer et al. (2022a)

and streamwise rolls is shown in figure 5.17, which presents the cross-sectional mean temperature
and flow topology for case Rib = 0.024 with values of Rek = 252-263 and case Rib = 0.025

with threefold larger values of Rek = 826-841. As can be seen figure 5.17 (a) both cases feature
a streamwise roll down to a ridge spacing of S = 2δ (not shown for S = ∞ and S = 4δ). The
comparison of the temperature fields between the low and high Rek cases depicts that the thermal
boundary layer is reduced for higher Rek due to the more efficient mixing of the flow in the near-
wall region. As shown in the previous sections, the streamwise rolls are replaced by secondary
motions for the lower Rek cases with Rib = 0.024 and S ≤ δ, while for the larger Rek cases
the streamwise roll remains for these ridge spacings. However, the streamwise roll appears more
distorted and affected by the ridges, as can be seen for S = δ and S = 0.5δ. In addition, secondary
motion in the form of one pair of counter-rotating vortices emerges at one ridge at the bottom wall
lying in the downdraft region of the roll. This illustrates that the ridges on the opposing wall of the
up- and downdraft regions are able to form coherent structures that counteract the large-scale roll
formation. For the densest ridge spacing S = 0.5δ in figure 5.17 (c) the streamwise roll for the
largeRek case is now confined to a smaller wall-normal region in the bulk flow. This is associated
with the recirculation zones at the leeward side of the ridges, which are connected between the up-
and downdraft regions, thereby forming a roughness sublayer which inhibits the attachment of the
lateral movement of the streamwise roll at the wall. These results suggest that the transition range
between forced convection structures and streamwise rolls with heterogeneous rough surfaces is
not solely determined by the pair of Rib and S, but also by the value of the Reynolds number Rek.
Due to the increased turbulent mixing for larger values of Rek the streamwise rolls can counteract
the additional shear by the ridges, such that the transition between forced convection structures and
streamwise rolls is shifted towards smaller values of Rib."(Schäfer et al. 2022a)

"The influence of Rek on the roll-to-cell transition is illustrated for two cases with Rib = 3.2 and
different Rek by the temperature fluctuation in the horizontal mid-plane in figure 5.18. As can be
seen, both cases exhibit streamwise rolls for smooth-wall conditions and S ≥ 2δ, while differences
in the flow structures start to appear at S = δ. At this ridge spacing the lower Rek case still shows
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streamwise rolls (figure 5.18 (a)), while for the larger Rek case the streamwise rolls are disturbed
by strong thermal plumes spanning almost the entire spanwise domain. For the lowerRek case with
S = 0.5δ no coherent streamwise rolls can be observed and, similar to S = δ, for the larger Rek
case thermal plumes emerge, which indicates the beginning of the transition to convective cells.
This shows that increasing Rek has a comparable effect on the flow organisation to the reduction
of the ridge spacing S. While smaller values of S increase the friction of the flow and weaken the
lateral motion of the streamwise rolls, the higher Rek increases the thermal mixing near the wall,
and both effects promote the formation of thermal plumes. The loss of coherence of the streamwise
rolls for case S = 0.5δ in figure 5.18 (a) is also supported by a vanishing value of Kc in figure
5.11 (b). Also the inspection of the time series ofKs

c reveals only a very weak contribution, which
is an order magnitude lower than for case S = δ. The observation that only convective cells with
preferential orientation in the z-direction occur for the natural convection cases S ≤ 2δ and for
Rib = 10 with S = 0.5δ is also seen for the large Rek case with S = 0.5δ. The influence of
Rek on the transition between streamwise rolls and convective cells is such that higher values of
Rek initiate this transition to convective cells at smallerRib, thus reducing the range of streamwise
rolls."(Schäfer et al. 2022a)

5.3 Discussion and summary

In this chapter, turbulent channel flows under mixed convection conditions and heterogeneous
surface properties are investigated using simulation results of DNS.

The investigation shows that "heterogeneous surfaces in formof streamwise-alignedGaussian ridges
have a significant influence on the flow organisation of mixed convection flows. The appearance
of streamwise rolls is considerably reduced for dense ridge spacings S, which is related to the
increased drag introduced by the ridges. Therefore, the formation of the rolls requires larger
buoyancy forces, such that the transition from forced convection structures to streamwise rolls
is delayed by the ridges towards higher Rib values than expected for smooth-wall conditions.
Specifically, this transition occurs for the smooth channel at Rib = 0.016, while for large ridge
spacings of S ≥ 2δ this transition occurs first at Rib = 0.024 and for denser ridge spacings S ≤ δ
at Rib = 0.032."(Schäfer et al. 2022a)

"The strongest influence of the heterogeneous surface on the flow organisation occurs between the
roll-to-cell transition range, where a change of the surface properties has a comparable effect to
a change of Rib for homogeneous wall conditions. This behaviour is observed by the inspection
of the instantaneous and mean cross-sectional velocity and temperature fields. In the range of
Rib = 3.2˘10, where streamwise rolls are present for smooth-wall conditions, dense ridge spacings
already trigger the transition from roll to cell structures. This is surprising, since this range of
bulk Richardson number, which corresponds to a range of stability parameter −δeff/L = 3.4˘9.7,
is below the range where commonly cell structures are observed in the ABL (Salesky et al.
2017). The results show that the increased lateral drag introduced by the densely spaced ridges
diminishes the coherence of the streamwise rolls, and eventually leads to the transition to convective
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cells at smaller Rib. In addition to the earlier roll-to-cell transition the ridges also affect the
orientation of the convection cells for denser ridge spacings. While the convective cells have no
preferential orientation for the smooth-wall natural convection case, they increasingly prefer to
orient perpendicular to the ridges with decreasing S. This is also explained by the additional drag,
which is experienced by ridge-aligned convective cells, such that the lateral near-wall motion of
these cells is increasingly disturbed for smaller S. This will eventually lead to their breakdown and
the flow prefers to stream only along the ridges, resulting in the occurrence of spanwise coherent
convective cells."(Schäfer et al. 2022a)

"For the moderate values of Reynolds numbers that can be afforded for the present simulations, we
find that an increase in Re favours the transition from forced convection structures to streamwise
rolls at smaller Rib, which is associated with the increased thermal vertical mixing at larger Re.
At the roll-to-cell transition range, an increase of Re promotes the transition towards convective
cells, such that convective cells appear for larger S if Re is increased."(Schäfer et al. 2022a)

"One particular observation is that the dynamics of streamwise rolls is very sensitive to ridge
spacings of the order of the rolls’ width, which is found for Rib = 1 and Rib = 3.2. For the
specific ridge spacing S = 4δ the up- and downdraft regions move over the entire channel slowly in
time, with time periods of approximately 100 free-fall time units or 200 time bulk units, which is in
contrast to denser ridge spacings and smooth-wall conditions, where the spanwise location of the
rolls is fixed. Due to this variation of streamwise rolls in the former case, some statistical features of
the rolls are masked by long time integration. This is seen for example for the strength of the roll’s
coherence, which almost vanishes for long time intervals. Inspection of consecutive short-time
averages reveals that the strength of the roll’s coherence depends on the spanwise location of the
up- and downdraft regions. The coherence is reduced if the up- and downdraft regions occur in the
valley of adjacent ridges, and is increased if they occur in the vicinity of the ridges. In the former
case the rolls experience stronger lateral drag due to their horizontal movement above the ridges,
while in the latter case the ridges support the formation of localised buoyancy forces at the ridges,
which in turn strengthens the up- and downdraft regions. Although the ridges reinforce the rolls,
they do not reside there permanently."(Schäfer et al. 2022a)

This lateral movement of the rolls is attributed to the mutual influence of opposing ridges on the
up- and downdraft due to the symmetric ridge arrangement. In this case, when up- and downdrafts
form over ridges, they impinge on a ridge on the opposing wall, which causes local buoyancy forces
acting in the opposite direction of the up- and downdrafts. By removing the ridges on the upper
wall, the hypothesis of this mutual influence of the ridges is demonstrated, such that for ridge
distances S = 8δ corresponding to the roll’s wavelength, the updrafts are fixed at the ridge on the
bottomwall. "While the formation mechanism of streamwise rolls is still not clear and under debate
(Etling and Brown 1993, Salesky et al. 2017), the present observations indicate that the formation
and the dynamics of streamwise rolls are very sensitive to heterogeneous surfaces."(Schäfer et al.
2022a)
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This thesis shows that heterogeneous surfaces strongly influence the formation of turbulent large-
scale structures and how their characteristics depend on surface properties and buoyancy effects. In
particular, spanwise heterogeneous surfaces are considered, where the surface heterogeneity occurs
perpendicular to the main flow direction. These surfaces are known to form turbulent secondary
motions appearing as large-scale counter-rotating vortices in the mean velocity field. The thesis
demonstrates that the strength of secondary motions is strongly related to relative height differences
that occur in the spanwise heterogeneous surfaces. Besides, the relation of secondary motions to
other turbulent large-scale structures, which also occur over smooth surfaces, are investigated and
how their instantaneous characteristics are affected by variations in the surface properties. Finally,
the effect of spanwise heterogeneous surfaces on the formation of buoyancy-induced large-scale
structures is explored, demonstrating that their occurrence is significantly reduced by the presence
of heterogeneous surfaces. As a main means of investigation, direct numerical simulations (DNS)
has been chosen. While the observations of each investigation are summarized at the end of the
respective chapter, this conclusion reflects on selected findings and their relation with regard to the
objectives of the thesis.

Previous studies have concentrated mainly on the characterisation and formation of secondary
motions over pure ridge- or strip-type surfaces, while combined effects of lateral drag variations
and relative wall height differences have not been systematically studied. These combined effects
are investigated in chapter 3, where spanwise alternating rough- and smooth-wall strips with
different relative height differences are studied in turbulent open-channel flow. It is shown that
the parametric forcing approach (PFA) can reproduce all characteristic flow features of spanwise
heterogeneous rough surface, such that surface parameter studies can be performed with less
numerical effort compared to roughness-resolved simulations with an immersed boundary method
(IBM). The results reveal that the rotational direction of the secondary motion depends on whether
the roughness strip is protruding or recessed. In the former case, the secondary motions resemble
the one found over ridge-type surfaces, while in the latter case it resembles the one over strip-type
roughness. When the smooth-wall strip is elevated significantly above the recessed roughness
(relative height difference of ∆h+ ≈ 40), ridge-type behaviour becomes more pronounced, which
is evident by the formation of tertiary vortices above the smooth-wall strips. The strength of
the secondary motion is observed to increase steadily with increasing relative height difference
independent of whether the roughness strip is recessed or protruding. A similar relation is found
for ridge-type induced secondary motions in chapter 4 where the strength reduces with decreasing
ridge height. The switch of rotational direction from protruding to recessed roughness strips
cannot be explained by the formation mechanism considering the imbalance between production
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and dissipation of turbulent kinetic energy, which was suggested for strip-type induced secondary
motions (Hinze 1967, 1973, Anderson et al. 2015). However, it is found that this switch is related
to the wall-normal deflections of spanwise velocity at the smooth-to-rough transition which change
direction when the relative height differences between smooth and rough strip reverse. These
deflections have been previously found to play an important role for the formation of ridge-type
induced secondary motions, where they significantly contribute to the transport of turbulent kinetic
energy (Hwang andLee 2018). Overall, these observations illustrate that the formation of secondary
motion strongly depends on the relative height differences and the associated velocity deflections.

Similarities are found between the instantaneous structures associated with secondary motions over
strip-type surfaces and turbulent large-scale structures (LSM/VLSM) (Wangsawijaya et al. 2020,
Wangsawijaya and Hutchins 2022). These results suggest that both might share a similar formation
mechanism and that secondary motions are spanwise locked turbulent large-scale structures . On
the other hand, it was found that ridge-type induced secondary motion suppress the formation of
VLSM (Zampiron et al. 2020). The investigation in chapter 4 further examines the relation between
secondary motion and turbulent large-scale motions in an open-channel flow with streamwise-
aligned ridges. The results support the recent findings that VLSM are suppressed by secondary
motions for dense ridge spacings S ≤ 2δ. In addition, it is shown that coexistence between
secondary motion and VLSM is possible for larger spacings S ≥ 4δ, such that VLSM form in
the valleys between the ridges, which are unaffected by secondary motions. The suppression of
the VLSM is related to the strength of secondary motions, and by reducing the ridge height, being
accompanied by a weakening of the spatial flow heterogeneity, VLSM can eventually reappear
at the ridge locations. Thus, the coexistence of VLSM and secondary motions over strip-type
surfaces can be explained by the observation that secondary motions over pure strip-type surfaces
are weaker in intensity than those occurring over surfaces with larger relative height differences, as
shown in chapter 3. The streamwise wavelength associated with instantaneous secondary motions
also depends on the strength of mean secondary motion. This indicates similarities to the streak-
vortex instability model proposed for the formation of LSM (de Giovanetti et al. 2017), where
the streamwise wavelength of LSM depends on the strength of the amplified low-speed large-scale
streak. Further evidence for the similarity between secondary motions and LSM comes from the
observation that instantaneously large-scale counter-rotating vortices are found at the ridges for
small ridges spacings (S ≤ δ), even though themean secondarymotion ismuch smaller in its spatial
extent and scales with S. This instantaneous behaviour is obscured by the averaging procedure
since the instantaneous secondary motions occur at adjacent ridges at different time instances such
that the superposition of these events by the averaging procedure masks the large-scale motion
in the mean. Interesting to note is, that LSMs have been recently observed to form streamwise-
aligned sediment ridges in open-channel flows, which in turn induce mean secondary motions for
time intervals of O(10) bulk time units (Scherer et al. 2022). Overall, the results shown in this
investigation illustrate that the similarities between turbulent large-scale motion and secondary
motion are also observable for ridge-type surfaces, suggesting a similar formation mechanism of
secondary motions regardless of the surface type.
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The effects of spanwise heterogeneous surfaces on convective large-scale structures, which are
driven by the combined effects of shear and buoyancy, are examined in a turbulent channel flow
with streamwise-aligned ridges in chapter 5. It is observed that secondary motions, which are
studied in the previous chapters under pure forced convection condition, are already suppressed by
the presence of mild buoyancy effects. They are replaced by large-scale streamwise rolls, which
occur under mixed convection conditions where the flow is driven by the combined effects of
buoyancy and shear. At the same time, the effect of increasing drag due to denser ridge spacings
delays the transition from secondary motions towards streamwise rolls, such that larger buoyancy
effects are required for the roll’s formation. The influence of heterogeneous surfaces on the
flow organisation of mixed convection is particularly pronounced at the transition from rolls to
convective cells, where due to increased drag the transition to cells already occurs for lower Rib
(at Rib ≈ 3.1 for S = 4δ, instead of Rib > 10 for smooth-wall conditions). As a consequence,
the range of Rib under which streamwise rolls can occur is significantly reduced compared to
smooth-wall conditions. Besides, it is found that ridges induce a slow dynamic of streamwise rolls
for Rib ≈ 1-3.1 when the spanwise ridge spacing is of the order of the roll’s width, such that
the up- and downdrafts of the rolls meander across the entire channel width. This behaviour is a
consequence of the symmetrical arrangement of the ridges on the upper and lower walls, which
hinders the formation of the roll’s up- and downdrafts at the ridges due to the flow interaction with
opposing ridges. This relation is further illustrated by removing the ridges at the upper wall, such
that the lateral movement of the rolls can be locked and the formation of their updrafts are fixed at
ridges on the bottom wall. This effect could also be of relevance for the example of the sand dunes
in the atmospheric boundary layer in chapter 1, suggesting that streamwise rolls are preferentially
located at already existing longitudinal sand dunes. Altogether, the study presented here illustrates
that spanwise heterogeneous surfaces have a strong influence on the formation and dynamics of
streamwise rolls and compared to smooth-wall conditions severely alter the flow organisation of
mixed convection flows.

Overall, this thesis has investigated new facets of the effects of spanwise heterogeneous surfaces on
the exchange processes of turbulent flows and their interaction with turbulent large-scale structures.
However, due to the variety of different surface properties and arrangement as well as various flow
conditions, a number of effects remain unexplored and should be addressed in future investigations.
For instance, the influence of secondary flow on heat transfer is still not systematically examined.
As shown in this thesis, the secondary motions over ridge-type surfaces increase the heat transfer
compared to smooth-wall conditions, but investigations for strip-type surfaces are missing so
far. Especially the reorientation of the secondary motions observed over protruding and recessed
roughness strips observed in chapter 3, represents an interesting scenario to study the effects of
lateral variations in drag and wall height differences on the heat transfer of secondary motions. This
could be of relevance for technical applications, where local enhancement or decrease of the heat
transfer is desired and can be imposed by heterogeneous surfaces. For this purpose, the PFA used
to model the effects of heterogeneous rough surfaces in chapter 3 is a promising approach which
could be extended for heat transfer problems, such that parameter studies of surface properties can
be performed with less numerical effort.
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While the influence of the surface parameters on the mean characteristics of secondary motions are
well studied, the knowledge about the dynamics and instantaneous structures of secondary motion
are not complete. The similarities between instantaneous secondary motions and turbulent large-
scale structures found over strip-type surfaces are also observed for ridge-type surfaces in this thesis.
However, an investigation bridging these observations over strip- and ridge-type surfaces is pending.
This could clarify if the similarities between secondary motions and LSMs are independent of the
heterogeneous surface type, and thereby resolving the question if secondary motions over strip- and
ridge-type surfaces share the same formation mechanism. For this purpose, the investigation of
chapter 4 with large open-channel flow domains could be extended by introducing the alternating
rough- and smooth-wall strips from chapter 3, such that the strip- and ridge-type behaviour can be
controlled by the lateral variation of the relative wall height differences.

Regarding the strong influence of spanwise heterogeneous surfaces on the flow organisation in
mixed convection flows, future investigations should examine to what degree this is related to
the drag increase by the ridges and to what extent to the spatial orientation of the heterogeneous
surfaces. One way to elucidate this is to study the flow organisation of mixed convection flows over
homogeneous rough surfaces, where the rolls do not experience different drag due to directional
dependence of the surface structure. Furthermore, it remains to be clarified how these observations
can be transferred to other flow configurations, such as for example atmospheric boundary layer
flows, where in addition the changing orientation of the wind direction to the heterogeneous surface
plays an important role. In conclusion, the results of this work and future studies based on them,
will contribute to a better understanding of turbulent flow phenomena over heterogeneous surfaces
that are, i.a., necessary to improve current weather and climate models and their predictions.
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Abbreviations

Symbol Description

CFR Constant flow rate

CPG Constant pressure gradient

DNS Direct numerical simulation
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LMP Low-momentum pathway

LMR Low-momentum region

LSM Large scale motion

PFA Parametric forcing approach
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VLSM Very-large-scale motion

Greek symbols and variables

Symbol Description

α Temperature diffusivity

α1 Parameter of compact finite difference scheme for first derivative

α2 Parameter of compact finite difference scheme for second derivative

β Thermal expansion coefficient

δ Half-channel height

δeff Effective half-channel height

δij Kronecker delta

δν Viscous length scale

ε Turbulent dissipation
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Abbreviations

ε Porosity of rough surface

κ Von Kármán constant

κx Wavenumber in streamwise direction

κs Scaled wavenumber

κs,c Cutoff wavenumber

κ′s Modified wavenumber for first derivative

κ′′s Modified wavenumber for second derivative

κT Constant for temperature log-law relation

λ Wavelength

λk k-th eigenvalue of POD

ν Kinematic viscosity

Φk k-th spatial POD mode

µ Dynamic viscosity

Π Pressure gradient

ρ Density

ρ0 Reference density

σ Parameter for spanwise extent of Gaussian ridges

Σ Diagonal matrix with singular values of data matrix

τ Total shear stress

τw Wall-shear stress

τij Stress tensor

ϕ Phase shift

Latin symbols and variables

Symbol Description

a1 Parameter of compact finite difference scheme for first derivative

a2 Parameter of compact finite difference scheme for second derivative

ak k-th time coefficient of POD

A PFA coefficient

Aw Constant in velocity log-law

AT Constant in temperature log-law

AGauss Cross-sectional area occupied by a single ridge

b1 Parameter of compact finite difference scheme for first derivative

b2 Parameter of compact finite difference scheme for second derivative
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Abbreviations

B PFA coefficient

c2 Parameter of compact finite difference scheme for second derivative

cD Effective drag coefficient for PFA model

Cf Skin friction coefficient

C Correlation matrix

f Frequency

FIBM,i Volume force term for immersed boundary method in i-direction

Fr,i Forcing term of parametric forcing approach in i-direction

fi Volume body force term in i-direction

g Gravitational acceleration

h Smooth-wall strip height

hg Height of Gaussian ridge

i Complex number

k Turbulent kinetic energy

kr Roughness height

kk Empirical constant for PFA model

Kc Volume-averaged coherent kinetic energy of cross-sectional velocity
components

L Obukhov length

Ls Spanwise wavelength of one pair of alternating smooth- and rough-
wall strips

Lx Streamwise domain length

Ly Wall-normal domain length

Lz Spanwise domain length

ng Number Gaussian ridges

Nφ Number of repeating phases for phase-averaging

Nx Number grid points in streamwise direction

Ny Number grid points in wall-normal direction

Nz Number grid points in spanwise direction

Nu Nusselt number

Pr Prandtl number

q Total heat flux

qw Wall heat flux

Qs Heat source term

QIBM Heat source term for immersed boundary method
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Abbreviations

Ra Rayleigh number

Reb Bulk Reynolds number

Reτ Friction Reynolds number

Rib Bulk Richardson number

s Total surface area of roughness

sf Total ‘windward-projected’ surface area of roughness

sij Fluctuating rates of strain tensor

S Spanwise spacing between streamwise-aligned ridges

St Stanton number

t Time

T Temperature

T0 Reference temperature

Tτ Friction temperature

T ′ Turbulent transport of turbulent kinetic energy

ui Velocity component in i-direction

ub Bulk velocity

uτ Friction velocity

U Data matrix for POD

∆U Spanwise difference between maximum and minimum streamwise
velocity

W Width of smooth-wall strip

Wφ Spanwise width of phase window for phase-averaging

x Streamwise coordinate

∆x Distance between streamwise grid points

y Wall-normal coordinate

z Spanwise coordinate

zi Boundary layer depth

Mathematical operators

Symbol Description

∂(·)/∂t Partial derivative in time

∂(·)/∂xi Partial derivative in spatial i-direction

D(·)/Dt Material derivative

(·) Time- and streamwise average
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Abbreviations

(·)s Short time average

〈(·)〉 Spanwise average
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A Appendix

A.1 Additional cross-plane figures for ridge- and
strip-type induced secondary motions

"As a supplementary illustration of the statements made in [chapter 3], the wall-normal spanwise
distribution of the wall-normal velocity ṽ and the turbulent kinetic energy k are shown for the
resolved and modelled roughness cases in figures A.1 and A.2, respectively. The comparison of the
wall-normal velocity distribution between the resolved and modelled roughness cases in figure A.1
demonstrates that the PFA model introduces a larger wall offset for the heterogeneous roughness
to resemble the resolved roughness case for a given smooth-wall height h. Figure A.2 illustrates
for ridge-type roughness that the turbulent kinetic energy distribution is characterised by local
peaks at the transition between smooth and rough strips, while for strip-type roughness these are
absent and an increased turbulent kinetic energy is found over the rough strip area. For the [higher]
smooth-wall positions of the PFA model in figure A.2 [(k-l)], two local peaks start to emerge at
the transition region, indicating that the smooth wall is now starting to influence the turbulent flow
in a ridge-type behaviour."(Schäfer et al. 2022b)
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A Appendix

Figure A.1: Contours of local wall-normal mean velocity ṽ for resolved roughness cases (a) - (c) and modelled
roughness cases (d) - (l). Isolines of the streamwise mean velocity are shown in grey. Adopted from
Schäfer et al. (2022b).
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A.1 Additional cross-plane figures for ridge- and strip-type induced secondary motions

Figure A.2: Contours of turbulent kinetic energy k for resolved roughness cases (a) - (c) and modelled roughness cases
with low resolution (d) - (l). Isolines of the streamwise mean velocity are shown in grey. Adopted from
Schäfer et al. (2022b).
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A Appendix

Ra Reb Rib S/δ Nx ×Ny ×Nz Cf Cf,ref εCf
Nu Nuref εNu

106 0 ∞ ∞ 512× 193× 256 - - - 8.257 8.288 0.38%

106 158.1 10 ∞ 512× 193× 256 0.0719 0.0745 3.49% 7.284 7.318 0.46%

106 500 1 ∞ 512× 193× 256 0.0267 0.0277 3.69% 6.312 6.356 0.70%

106 1581 0.1 ∞ 512× 193× 256 0.0100 0.0102 1.79% 6.798 6.780 0.26%

106 5000 0.01 ∞ 1024× 257× 512 0.00712 0.00715 0.39% 12.360 12.419 0.48%

107 0 ∞ ∞ 1024× 257× 512 - - - 15.687 15.799 0.71%

107 500 10 ∞ 1024× 257× 512 0.0403 0.0403 0.06% 13.921 14.000 0.56%

107 1581 1 ∞ 1024× 257× 512 0.0144 0.0146 1.28% 11.911 11.880 0.26%

107 5000 0.1 ∞ 1024× 257× 512 0.00742 0.00754 1.63% 17.112 17.250 0.80%

Table A.1: Simulation parameters and global flow properties of validation study for Rayleigh-Bénard and Mixed Con-
vection at Ra = 106 and Ra = 107. The skin friction coefficient and Nusselt number of Pirozzoli et al.
(2017) are given by Cf,ref and Nuref. Adopted from Schäfer et al. (2022a)

A.2 Validation of code implementation for mixed
convection flows in Xcompact3d

"The implementation of the active scalar in Xcompact3d is validated against the Rayleigh-Bénard
and mixed convection cases of Pirozzoli et al. (2017) atRa = 106 and 107. For a direct comparison
the same grid resolution is used as in Pirozzoli et al. (2017), which is given in Table A.1. The
mean difference in skin friction coefficient and Nusselt number with respect to the reference data
is indicated by εCf and εNu . While for the skin friction coefficient the two low Reynolds number
cases at Re = 106 show deviations up to 3.7%, this is reduced below 1.7% for the higher Rayleigh
number cases. The Nusselt number is in very good agreement for both chosen Rayleigh numbers
and stays below 0.8% for all simulation cases. The mean velocity and mean temperature profiles,
as well as the variances u′u′- and T ′T ′-profiles, are shown in Figure A.3 and the comparison to
the reference data shows very good agreement between the considered flow cases."(Schäfer et al.
2022a)
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A.2 Validation of code implementation for mixed convection flows in Xcompact3d

Figure A.3:Mean profiles for validation study forRa = 107 and different bulk Reynolds numbers. The marks indicate
the reference data of Pirozzoli et al. (2017), for clarity every fifth data point is shown. Adopted from Schäfer
et al. (2022a).
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A Appendix

A.3 Grid convergence study with Gaussian ridges
for mixed convection flows

"The grid resolution requirements for the simulations with Gaussian ridges is studied for different
flow configurations to show that the chosen grid resolution is sufficiently fine to capture the investi-
gated flow physics. The grid refinement study is performed for three different flow configurations,
namely pure forced convection, mixed convection and pure Rayleigh-Bénard flow. The domain size
for this study was reduced to Lx×Ly×Lz = 8δ× 2δ× 4δ to keep the grid study computationally
affordable. In all cases the spanwise spacing of the Gaussian ridges is S/δ = 1, corresponding to
four Gaussian ridges at each side wall. The different grid resolutions of the simulation cases and
the resulting global flow properties are given in Table A.2."(Schäfer et al. 2022a)

"For the pure forced convection case the mean variation in skin friction coefficient and Nusselt
number from the coarsest to the finest grid simulation is within a range of 0.5% and 0.7%,
respectively. The grid refinement does not reveal any significant changes in the mean velocity,
temperature and covariance profiles between all considered cases (not shown here). In order to
satifsfy the grid requirements proposed by Pirozzoli et al. (2017) for pure forced convection flows
and being conservative with the spanwise grid resolution for the representation of the Gaussian
ridges, the gridNx×Ny×Nz = 256× 193× 192 is chosen to be appropriate. This results for the
large domain simulation (Lx×Ly×Lz = 16δ×2δ×8δ) in a grid ofNx×Ny×Nz = 512×193×384

for pure convection flows with Gaussian ridges."(Schäfer et al. 2022a)

"The grid refinement study for the mixed convection case is performed atRa = 107, which requires
a finer grid compared to the grid study of the pure forced convection case atReb = 2800 according
to smooth-wall cases (see Table A.1). Furthermore, we increase the bulk Reynolds number to
Reb = 5000 in order to make this grid study more demanding in terms of the requirements of the
shear induced turbulence. The mean difference of all cases in Cf and Nu with respect to the finest
grid case, lies below 1.81% for the skin friction coefficient and 0.45% for Nusselt number. This
demonstrates, that the grid resolution for the plane wall mixed convection cases is already sufficient
for the additional numerical representation of Gaussian ridges by the immersed boundary method
based on polynomial reconstruction. Similar results are obtained for the pure Rayleigh-Bénard
case at Ra = 107, where the mean difference in Nu with respect to the finest grid case, is below
0.35% for all simulation cases. Consequently, for the investigation of mixed and natural convection
at Ra = 107 a grid of Nx ×Ny ×Nz = 1024× 257× 512 for the large domain cases is chosen.
For lower Ra cases, the chosen grid resoltion of the pure forced convection study marks the lower
bound to sufficiently represent the Gaussian ridges in these cases."(Schäfer et al. 2022a)
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A.3 Grid convergence study with Gaussian ridges for mixed convection flows

Ra Reb Rib S/δ Nx ×Ny ×Nz Cf (·10−3) Nu ∆ttot//tb ∆ttot//tf

0 2800 0 1 256× 193× 128 8.834 7.991 4719 -
0 2800 0 1 192× 193× 192 8.766 7.957 4719 -
0 2800 0 1 256× 193× 192 8.781 7.958 4719 -
0 2800 0 1 256× 193× 256 8.822 7.997 5271 -
0 2800 0 1 256× 257× 192 8.823 8.014 4719 -

107 5000 0.1 1 512× 193× 192 8.265 18.098 5423 864
107 5000 0.1 1 512× 193× 256 8.201 18.170 4254 677
107 5000 0.1 1 512× 257× 192 8.341 18.216 4301 684
107 5000 0.1 1 512× 257× 256 8.194 18.081 4150 660
107 5000 0.1 1 512× 257× 320 8.193 18.163 4123 657

107 0 ∞ 1 512× 193× 192 0 16.974 - 1171
107 0 ∞ 1 512× 193× 256 0 16.999 - 1026
107 0 ∞ 1 512× 257× 192 0 16.921 - 1038
107 0 ∞ 1 512× 257× 256 0 17.034 - 1135
107 0 ∞ 1 512× 257× 320 0 16.981 - 1052

Table A.2: Grid refinement study for pure forced convection, mixed convection and pure Rayleigh-Bénard flow with
Gaussian ridges at each side wall (S/δ = 1). The domain size for the study is set to Lx × Ly × Lz =
8δ × 2δ × 4δ. Adopted from Schäfer et al. (2022a).
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