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Kurzfassung

Die Bewegungsplanung für automatisierte Fahrzeuge (AVs) in gemischtem
Verkehr ist eine herausfordernde Aufgabe. Hierbei bezeichnet gemischter
Verkehr, Verkehr bestehend aus von Menschen gefahrenen Fahrzeugen sowie
automatisierten Fahrzeugen. Um die Komplexität der Aufgabe zu reduzieren,
verwenden state-of-the-art Planungsansätze oft die vereinfachende Annahme,
dass das zukünftige Verhalten umliegender Fahrzeuge unabhängig vom Plan
des AVs vorhergesagt werden kann. Während die Trennung von Prädiktion und
Planung für viele Verkehrssituationen eine hilfreiche Vereinfachung darstellt,
werden hierbei Interaktionen zwischen den Verkehrsteilnehmern ignoriert, was
besonders in interaktiven Verkehrssituationen zu suboptimalem, übermäßig
konservativem Fahrverhalten führen kann.

In dieser Arbeit werden zwei interaktionsbewusste Bewegungsplanungsalgo-
rithmen vorgeschlagen, die in der Lage sind übermäßig konservatives Fahrver-
halten zu reduzieren. Der Kernaspekt dieser Algorithmen ist, dass Prädiktion
und Planung gleichzeitig gelöst werden. Mit diesen Algorithmen können
anspruchsvolle Fahrmanöver, wie z. B. das Reißverschlussverfahren in dichtem
Verkehr, durchgeführt werden, die mit state-of-the-art Planungsansätzen nicht
möglich sind.

Der erste Algorithmus basiert auf Methoden der Multi-Agenten-Planung.
Interaktionen zwischen Verkehrsteilnehmern werden durch Optimierung
gekoppelter Trajektorien mittels einer gemeinsamen Kostenfunktion approx-
imiert. Das Kernstück des Algorithmus ist eine neuartige Multi-Agenten-
Trajektorienplanungsformulierung, die auf gemischt-ganzzahliger quadratischer
Programmierung (MIQP) basiert. Die Formulierung garantiert global optimale
Lösungen und ist somit in der Lage das kombinatorische Problem zu lösen,
welches kontinuierliche Methoden auf lokal optimale Lösungen beschränkt.
Desweiteren kann durch den vorgestellten Ansatz ein manöverneutrales Ver-
halten erzeugt werden, das Manöverentscheidungen in ungewissen Situationen
aufschieben kann.
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Kurzfassung

Der zweite Ansatz formuliert Interaktionen zwischen einem menschlichen
Fahrer und einem AV als ein Stackelberg-Spiel. Im Gegensatz zu bestehen-
den Arbeiten kann der Algorithmus allgemeine nichtlineare Zustands- und
Eingabebeschränkungen berücksichtigen. Desweiteren führen wir Mechanis-
men zur Integration von Kooperation und Rücksichtnahme in die Planung
ein. Damit wird übermäßig aggressives Fahrverhalten verhindert, was in der
Literatur als ein Problem interaktionsbewusster Planungsmethoden identifiziert
wurde. Die Wirksamkeit, Robustheit und Echtzeitfähigkeit des Algorithmus
wird durch numerische Experimente gezeigt.
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Abstract

Motion planning for automated vehicles (AVs) in mixed traffic, where AVs
share the road with human-driven vehicles, is a challenging task. To reduce the
complexity, state-of-the-art planning approaches often utilize the simplifying
assumption that the future motion of surrounding vehicles can be predicted
independently of the AV’s plan. While separating prediction from panning is a
good approximation for many traffic situations, the mutual influence between
traffic participants is ignored, which can lead to suboptimal, overly conservative
behavior, especially in highly interactive traffic situations.

This thesis proposes two interaction-aware motion planning algorithms that
are able to overcome this overly conservative behavior. The key aspect of
these algorithms is that the prediction and the planning problem are solved
simultaneously. These algorithms can be used to perform challenging driving
maneuvers, such as merging in dense traffic, that are not possible with state-of-
the-art planning approaches.

The first algorithm is based on multi-agent planning methods. Interactions
among traffic participants are approximated by optimizing coupled trajectories
using a joint cost function. A core element of this algorithm is a novel
multi-agent trajectory planning formulation based on mixed-integer quadratic
programming (MIQP). The formulation guarantees globally optimal solutions
and is thus able to solve the combinatorial problem, which commonly restricts
continuous methods to locally optimal solutions. Furthermore, the proposed
algorithm enables maneuver-neutral driving to postpone maneuver decisions in
highly uncertain situations.

The second approach formulates the interaction between a human driver and
an AV as a Stackelberg game. In contrast to existing works, the algorithm can
account for general nonlinear state and input constraints. Further, we introduce
mechanisms to integrate cooperation and courtesy into motion planning. This
prevents overly aggressive driving behavior, which has been identified in the
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Abstract

literature as a problem of interaction-aware planning methods. The efficacy,
robustness, and real-time capability of the algorithm are shown via numerical
experiments.
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1 Introduction

Today academia and industry are rapidly advancing towards deploying automated
vehicles onto public roads, bringing the vision of self-driving cars closer to
reality. While enormous progress in sensor development, computing power,
environment perception and algorithm design has been made in recent years,
significant challenges still need to be solved before automated vehicles (AVs)
can enter our daily lives. In addition to safety and reliability aspects, generating
behavior to drive naturally among humans is still an open field of research. The
work presented in this thesis aims to provide solutions for this open issue by
presenting motion planning algorithms that are able to generate interaction-
aware behavior and therefore enable more human-like driving behavior. The
motivation, the problem statement of motion planning in the vicinity of humans,
as well as the thesis approach are presented in the following.

1.1 Motivation

When automated vehicles first enter traffic, they will not drive in isolation but
share the road with predominantly human drivers. Thus, interacting with them
and driving in a similar way to humans is crucial for smooth and efficient
operation. This is especially important in situations where the actions of
multiple drivers are tidy coupled. For instance, a driver on a highway might
decide to slow down or switch lanes so that another driver on the on-ramp
can merge. Similar, in dense traffic, a driver might start to nudge into the
adjacent lane, hoping that the driver behind will slow down and open a gap.
Slowing down at intersections to signalize that another car can go first is another
example.

While humans intuitively handle such highly interactive scenarios, generating
an interaction-aware behavior for AVs to master such scenarios is still an
open problem. Considering the mutual influence among traffic participants,
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1 Introduction

e.g., anticipating how humans might react onto actions of an AV, dealing
with uncertain reactions of humans, and communicating and, if necessary,
negotiating the intention in unregulated traffic scenarios, makes interactive
driving particularly difficult for AVs. However, AVs will eventually need to
master such interactive scenarios to drive in everyday traffic.

The demand to generate interactive behavior raises several fundamental ques-
tions we want to analyze in this thesis. How can we model interactions? What
is a suitable framework to express dependencies among traffic participants?
How can we generate motion planes which incorporate interactive behavior?
Furthermore, how can we leverage interactions to drive more naturally among
humans and prevent overly conservative driving?

1.2 Problem Statement

A key aspect to achieve a human-like driving behavior is to design algorithms
that can consider interactions between human drivers and the AV. However, to
reduce the computational complexity of motion planning, most state-of-the-art
planners follow a structure that overlooks these mechanisms. In particular,
most motion planning algorithms in robotics follow a predict-then-plan scheme.
Here, the motion planning is separated into a prediction step, where the future
motion of surrounding drivers is predicted, and a subsequent planning step,
where the motion of the AV is determined. During the planning, surrounding
vehicles are treated as moving objects with an immutable trajectory. Due to
their structure, these planning methods are also referred to as pipeline planners.

While this separation poses a useful simplification for many traffic scenarios,
planners utilizing this separation struggle to produce desirable behavior in
highly interactive scenarios. This can even lead to situations similar to the
frozen robot problem [TK10], a state in which the predictions of other traffic
participants block all paths, and thus the planner is not able to find a safe
trajectory to the goal anymore.

To illustrate this, the merge scenario in Fig. 1.1 is investigated. We first consider
the merge scenario in low traffic. Following a pipeline approach, a separate
module will provide the predictions of surrounding vehicles used to plan the
AV’s motion. Depending on the speed and the gap size, the AV decides either
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1.2 Problem Statement

to accelerate and merge in front or to adapt its velocity and merge behind a
target vehicle on the highway, see Fig. 1.1.

(a) (b)

Figure 1.1: Following a pipeline planner, the automated vehicle, in blue, first predicts the future
motion of the white vehicle. In a subsequent step the AV plans its trajectory avoiding
collisions with the predicted states of the white vehicle. As illustrated, the AV is able
to perform a merge onto the highway in low traffic.

Next, we consider the same scenario during rush hour, where the traffic density
is significantly higher, as shown in Fig. 1.2. Following the same procedure,
first predict then plan, will result in a lane blocked by the predictions of others,
making it impossible for the motion planner to find a collision-free trajectory
onto the highway. As a result, the automated vehicle will decelerate and stop at
the end of its lane.

(a) (b)

Figure 1.2: Merge scenario in high traffic. Following a pipeline scheme, the AV is unable to find a
collision-free trajectory onto the highway and stops at the end of the lane. While in low
traffic, separating prediction and planning is a useful simplification, in high traffic it
can lead to suboptimal, overly conservative driving behavior of the AV.

In such situations, a more desirable behavior is to actively approach a gap hoping
that these actions might trigger other drivers into opening a gap. However, due
to the separation of prediction and planning, pipeline planners are incapable
of capturing the influence their own actions have on the actions of others, e.g.,
how will the prediction of the other vehicle change if the AV tries to merge?
This separation restricts the solution space which can lead to undesirable, overly
conservative behavior, e.g., stopping at the end of the on-ramp.
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1 Introduction

1.3 Thesis approach

Following a predict-then-plan scheme, instead of interacting with surrounding
drivers, the AV’s task is reduced to simple collision avoidance. Further, with
this structural decomposition, the AV is incapable of capturing the effect its
own actions will have on others, thereby neglecting the interactive nature of
traffic. To solve this, expressive methods that are able to capture interactions
are needed.

The goal of this thesis is to develop such models and motion planning algorithms
that can handle interactions among traffic participants, enabling theAV to behave
more naturally among humans in everyday traffic. The key insight to capture
the interactive nature of traffic is to design algorithms that overcome the
structural limitation of pipeline approaches and solve prediction and planning
simultaneously as a joint problem.

This thesis presents two approaches that are able to generate interaction-aware
motion for AVs. Both algorithms do not rely on external predictions of other
traffic participants but plan collective trajectories. Further, both approaches
utilize derivative-based methods, which consider continuous state and input
spaces.

The first approach is based on multi-agent-system methods. It is assumed that
every traffic participant is working towards a joint objective. Interactions are
modeled implicitly in this formulation by assuming that traffic participants
cooperatively work towards this joint objective.

The second approach utilizes ideas of game theory and models interactive traffic
as a Stackelberg game. In this formulation, it is explicitly considered how own
actions can influence the actions of others, which makes it especially suited to
purposefully initiate interactions, e.g., starting to nudge in the adjacent lane
when doing a lane change.

1.4 Contributions

The contributions presented in this thesis are the following:
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1.4 Contributions

• A novel multi-agent trajectory planning formulation based on mixed-
integer quadratic programming (MIQP). This formulation is able to
overcome the typical limitations of optimization-based methods, namely
the combinatorial problem, which originates from the non-convexity of
the motion planning task. The presented method guarantees a globally
optimal solution for an ensemble of AVs without the restriction of a
discretized search space. In contrast to existing approaches, the method
exploits the entire configuration space, which enables the generation of
cooperative trajectories that are not possible otherwise.

• A cooperative interaction-aware trajectory planning framework based
on the aforementioned multi-agent formulation. The main contributions
of this extended approach are a planning framework that can generate
interaction-aware trajectories and is able to cope with uncertain human
driving behavior. Further, a formulation of different intentions, which is
independent of the traffic scenario or map layout, is presented. Opposed
to most optimization-based methods, the trajectory of the AV is optimized
for multiple future outcomes, which ables the AV to postpone a decision
for a certain maneuver until the scene becomes more certain.

• A method to generate interaction-aware behavior based on a Stackelberg
game formulation. The method enables anticipating how surrounding
drivers might react to the AV’s future motion. This can be leveraged to
plan more efficient trajectories by exploiting interaction, to overcome
overly conservative behavior produced by pipeline planners. Further, the
formulation provides a direct link between the actions of the AV and the
response of a human driver, giving the possibility to purposefully influence
the state of the human. One of the main novelties of this game-theoretic
algorithm is its ability to consider general nonlinear constraints, thereby
ensuring feasibility of the solution. Further, to overcome the overly-
aggressive behavior generated by existing interaction-aware planners,
methods to introduce cooperativity and courtesy into the motion planning
of the AV are proposed. Finally, a method that provides the ability to
easily adjust the degree to which the impact on others is considered during
planning is presented. This enables the design of planning methods that
generate driving behavior ranging from overly conservative to overly
aggressive.
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1 Introduction

1.5 Overview

The remainder of this thesis is structured as follows. In Chapter 2, a survey of
motion planning techniques and algorithms is provided. Apart from presenting
the basic terminology of motion planning, the focus is on derivative-based
methods, which consider continuous state and input spaces. Chapter 3 follows by
presenting the fundamentals necessary for this thesis. Concepts of mathematical
optimization and special optimization classes such as MIQP, mathematical
program with complementarity constraints (MPCC), bi-level problems, and
ways to solve them are presented. Chapter 4 consists of two major parts. First,
the novel multi-agent trajectory planning algorithm based onMIQP is presented.
This formulation is already a stand-alone contribution and can be used to
control an ensemble of fully automated vehicles. An interaction-aware planning
framework for mixed traffic is presented in Section 4.2. At the core of this
framework is the novel MIQP formulation. In Chapter 5, the game-theoretic
formulation for interaction-aware trajectory optimization is presented. Finally,
Chapter 6 summarizes the thesis and gives an outlook on future work.
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2 Survey Motion Planning

This chapter provides an introduction into motion planning, focusing on
techniques used for automated driving. After presenting common categories, a
review of optimization-based methods, emphasizing interaction-aware planning
approaches, is provided.

2.1 Problem Statement

The task of motion planning is to generate a path or trajectory from an initial
state to a goal state or region. The resulting path or trajectory has to avoid
collisions with obstacles and need to satisfy various types of constraints, e.g.,
state and input constraints or dynamics bounds. We adopt the widely used
naming convention that a path is a time-independent, purely geometric curve,
whereas a trajectory additionally requires velocity information at which a curve
should be traversed.

In dynamic environments, motion planning is best described in the framework
of trajectory optimization. The goal is to obtain a trajectory, i.e., a time-
parametrized function ξ(t) : [0,T] → X that describes the evolution of the
vehicle’s state in time. X is the set that contains all possible states. Further, let
Ξ(X, [0,T]) be the set of all continuous functions that map [0,T] → X and let
ξ(0) = xinit be the initial state of the vehicle and Xgoal ⊆ X the goal region. The
set Xfree(t) ⊆ X contains all allowed states at time t ∈ [0,T] and encodes, e.g.,
collision avoidance. Additionally, dynamic constraints on the trajectory can
be enforced by F(ξ(t), Ûξ(t), Üξ(t), . . . ) = 0. Finally, let J(ξ) : Ξ(X, [0,T]) → R
denote the cost functional used to evaluate the quality of a trajectory ξ(t).
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2 Survey Motion Planning

With the introduced expressions, the trajectory optimization problem can be
formulated as:

ξ∗ := arg min
ξ ∈Ξ

J(ξ)

s.t . ξ(0) = xinit
ξ(T) ∈ Xgoal
ξ(t) ∈ Xfree(t) ∀t ∈ [0,T]
F(ξ(t), Ûξ(t), Üξ(t), . . . ) = 0 ∀t ∈ [0,T]

(2.1)

Note that without loss of generality, we can also address path planning problems
since path planning can be considered as trajectory optimization over the unit
time interval.

2.2 Motion Planning for Automated Vehicles

Motion planning is a broad field of research and a central aspect of robotics.
While many methods have been developed, this review focuses on motion
planning techniques for automated vehicles (AVs). A comprehensive overview
and general introduction to motion planning can be found in [Cho+05; LaV06].

2.2.1 Important Properties

The most relevant properties to describe motion planning algorithms for this
work are explained below.

Feasible vs. optimal methods A property that is often used to categorize
planning methods is the type of solution they yield. It is distinguished between
feasible and optimal solutions.

If a solution satisfies all constraints of a problem, it is considered a feasible
solution. Algorithms that only search for such solutions are also referred
to as feasible planning methods. Here, the quality of the solution is of
minor importance and is typically not further evaluated. Most path planning
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2.2 Motion Planning for Automated Vehicles

approaches follow this principle, since the major challenge is finding a feasible
path at all. A common use case is driving on parking lots.

In optimal planning, there are typically many feasible solutions, and the focus is
to find an optimal among them. In order to evaluate and compare the quality of
feasible solutions, a cost function is used. This function can consist of multiple
measures, which might even be contradictory. E.g., driving fast but also being
energy efficient.

Global vs. local methods Most trajectory planning approaches can be
categorized into combinatorial – global, or continuous – local methods.

Combinatorial approaches usually guarantee a globally optimal solution in the
discretized search space, even for complex problems. However, these approaches
have the limitation that they are limited in accuracy by their discretization,
and the actual globally optimal solution to the original problem may not be
contained in the search space. They are also particularly affected by the curse
of dimensionality and suffer in high-dimensional spaces.

Local continuous approaches, on the other hand, start from an initial trajectory
that is locally improved. This can avoid the limitation of discretization. In
complex search spaces, however, these approaches can at best guarantee local
optima.

2.2.2 Motion Planning Methods

While there are numerous ways to categorize algorithms for path and trajectory
planning, [Pad+16; Gon+16] identified the following major subfields:

Graph methods The goal of these algorithms is to search for an optimal
solution in a constructed graph. Due to their structure, these methods are
well suited for complex nonconvex optimization problems, but at the same
time, rely on a discretized state and or input space which limits the space of
possible solutions. How the graph is constructed and which methods are used
to search the graph are essential properties to distinguish existing algorithms.
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2 Survey Motion Planning

Two popular examples of graph search algorithms are the well-known Dijkstra
algorithm [Dij59] and its extension A∗ [HNR68].

Sampling methods The idea of sampling-based methods is to sample con-
figurations in the state space and check for connectivity [ES14]. If the sampled
state is collision-free, it is connected to neighboring samples, and a graph is
constructed. This graph is then used to find a solution utilizing graph search
methods in a subsequent step. Instead of building a graph by sampling first and
searching the graph in a second step, incremental methods like RRT [LK99] and
RRT∗ [LK99] combine the sampling and the search by incrementally growing
a reachability graph, e.g., a tree structure in the configuration space until the
graph is large enough and a node is in the goal region.

Interpolation methods Interpolation methods generate smooth trajectories
from a set of reference points, e.g., a sequence of waypoints in a map [Lab+08].
As a result, the original set of reference points is altered and or augmented in
favor of attributes like passenger comfort and dynamic feasibility. Different
interpolation schemes are applied to path and trajectory planning, ranging from
line and circular to spline-based interpolation methods [Gon+16].

Optimization-based methods The goal of optimization-based methods is to
formulate the trajectory optimization problem as a mathematical optimization
problem which is then optimized with respect to a cost function or reward
function. One advantage of these methods is that the generated trajectory
is, in general, smoother than those of other methods [SAR18]. Additionally,
optimization-based methods provide an elegant way to systematically consider
constraints, e.g., arising from vehicle dynamics, in the problem formulation.
Compared to other methods, optimization-based methods use local information
about the problem to solve for the optimal trajectories. This becomes important,
especially in high-dimensional spaces, where sampling-based methods are
affected by the combinatorial explosion.

Learningmethods Besides classical approaches tomotion planning, learning-
based methods gained popularity in recent years [BKO19; Zen+20; Zen+19;
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Wei+21]. Two of the most common techniques are based on reinforcement
and imitation learning. An approach that gained particular attention was the
end-to-end imitation learning approach presented in [Boj+16].

The approaches presented in this work belong to the area of optimization-based
methods. A review of representative works is presented in Section 2.4. For a
more general review of existing methods the reader is referred to the following
surveys [Kat+15; Gon+16; Pad+16; Pen+17; SAR18; Ara22].

2.3 Architectures

To put the motion planner into context with other parts of an automated vehicle,
a typical system architecture is introduced in this section.

The goal of an automated vehicle is to safely drive from an initial position
towards a destination. To do so, the motion planner needs information about
surrounding static and dynamic objects as well as the state of the vehicle. This
information is provided by sensing the environment. The collected data is then
used to identify objects and localize the vehicle.

A common way to structure the system of an automated vehicle is to separate
different functional domains into dedicated modules. While there are various
concepts [SPV20; Taş+16; Taş+17], a representative system architecture is
shown in Fig. 2.1.

Sensors Perception

Localisation

Motion Planning Actuators

Braking

Throttle

Route
Planning

Trajectory
Planning

Control

Perception

Sensor
Fusion

Object
Detection

HD-Map

Camera

Radar

Lidar

GNSS

IMU

Steering

Behavior
Planning

Figure 2.1: Common system architecture for AV.
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It is worth noting that also less structured system architectures exist, e.g., in the
case of end-to-end learning [Boj+16], where no separate modules exist.

The algorithms presented in Section 2.2 typically only address certain aspects
of the motion planning task where high-level decisions, e.g., which lane to drive
on or where to turn at intersections, were already made. While formulating
a continuous trajectory optimization problem that addresses all these aspects
simultaneously is possible, the motion planning problem is commonly divided
into subproblems to keep it tractable.

A commonly used structure is to divide the problem into the following layers
[Pad+16; Sch+18a]:

Route layer The route layer or route planner provides a plan that navigates
from start to the goal, typically on a road topology level. The outcome is a
plan through the road network and includes information like which road to take,
which lanes to drive on, or where to turn at intersections.

Maneuver layer The maneuver layer addresses the combinatorial nature of
driving in dynamic environments. Given a route, discrete decisions, e.g.,
whether to stop in front of a pedestrian crossing, passing an intersection before
or after a crossing vehicle, selecting a gap to merge into during a lane change,
or on which side to pass an obstacle are made here.

These discrete decisions are often interpreted as different maneuvers. While
there is no common definition of a maneuver [Hub19, p.14], it is often seen as
a homotopy from a mathematical viewpoint.

Since local methods are often used in the subsequent trajectory layer, the
maneuver layer’s goal is to limit the continuous solution space to a certain
homotopy. This is especially important for optimization-based methods since
the solution is generally bound to the homotopy in which the problem was
initialized.

The maneuver decisions are encoded in a rough reference which is then passed
to the trajectory layer. This generated reference is not necessarily collision-free,
nor is it optimized regarding attributes like passenger comfort or progress
towards the goal.
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Trajectory layer The trajectory optimization problem is parametrized by the
maneuver and route layer via a rough reference. It has no information on
higher-level goals and sole optimizes for a smooth collision-free continuous
trajectory respecting the dynamic constraints and criteria like passenger comfort
and efficiency.

Control layer Finally, the control layer is responsible for tracking the generated
trajectory by setting the appropriate control inputs for the vehicle.

Prediction The prediction module is often addressed seperatly to the before
mentioned layers. It provides predictions of the future motion of surrounding
objects. These predictions are essential to drive in the vicinity of dynamic
objects safely.

Route Planner

Maneuver Planner
Trajectory Planner

Control

δ, a
Prediction

Plan through
the road network Rough reference to

specify maneuver Continuous
trajectory

Figure 2.2: Commonly used layers for motion planning in the domain of AVs.

The presented subproblems are not necessarily structured hierarchically. In
fact, the way in which the different layers are addressed and interconnected is a
major characteristic to distinguish existing planning approaches for automated
vehicles. Of particular interest for this work is how predictions are considered
in the planning.

Although numerous approaches exist, they mostly assume that the prediction
of other traffic participants can be made independently of the ego vehicle’s
behavior. In this case, the prediction is provided by an upstream model and
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treated as immutable during planning. This clear separation between prediction
and planning is often referred to as a predict-then-plan or pipeline concept.

While this separation greatly reduces the computational complexity, it also
significantly limits the vehicle’s ability to interact with surrounding traffic
participants. Prediction and planning need to be solved simultaneously to
generate an interactive behavior.

In line with the focus of this work, a detailed review of interaction-aware
methods is provided in Section 2.5.

2.4 Optimization-Based Planning for Automated
Vehicles

Optimization-based methods solve the motion planning problem by utilizing
optimal control and numerical optimization methods [Bet98].

In the context of these methods, the problem of Eq. (2.1) is commonly stated in
the following form:

ξ∗ := arg min
ξ ∈Ξ

J(ξ)

s.t . ξ(0) = xinit
ξ(T) ∈ Xgoal
h(ξ(t), Ûξ(t), . . . ) = 0 ∀t ∈ [0,T]
g(ξ(t), Ûξ(t), . . . ) ≤ 0 ∀t ∈ [0,T]

(2.2)

where collision avoidance, dynamic, and other constraints are formulated as
equality and inequality constraints.

Eq. (2.2) describes a variational problem, where the solution is a continuous
function in state and time. These problems are generally hard to solve, and an
analytic solution can only be found for some special cases. One example is
presented in Takahashi et al. [Tak+89]. It is shown that jerk-optimal trajectories
in free-space are quintic polynomials. Another example is the widely used
linear quadratic regulator (LQR), which is based on the solution of the Riccati
differential equation.
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While analytic solutions are computationally very efficient, the necessary
assumptions are often too restrictive to find these solutions for real applications.
However, the results can still be useful, e.g., as approximations or as initial
guesses when combined with other methods. E.g., in [Wer+10; Wer+12],
jerk-optimal quintic polynomials are sampled in a road-aligned coordinate
frame. These sampled trajectories are then transformed into the original frame,
and their quality is evaluated.

In most cases, numerical methods are used to approximately solve Eq. (2.2). To
do so, it is necessary to discretize the infinite-dimensional function space to a
finite-dimensional vector space, where the solution is a vector of values instead
of a continuous function in time. Different discretization methods are presented
in Section 3.2. The trajectory optimization problem can then be formulated as
a non-linear continuous optimization problem.

Due to their advantages stated in Section 2.2, optimization-based methods are
widely used in automated vehicles [Gon+16; Pad+16; Kat+15; SAR18]. While
some focus on algorithm design for specific traffic scenarios, e.g., highway
driving [Liu+18], passing unsignalized intersections [KKJ17; AdL16; Qia+17;
Ple17], parking [Zha+18], or cooperative driving with V2V communication
[Taş+18], others try to cope with as many scenarios as possible [Zie+14; Liu+17;
APdL17; Sch+18b; TS18].

A particularly interesting field for optimization-based methods is automated
racing. Racetracks are often used to benchmark the performance of different
approaches due to their well-defined environment. Many methods used in
automated driving originate from ideas and results of this field [LDM15; AM18;
PPB20; APdL17; LL20; Váz+20; Ver+14; RCB17].

The results are particularly useful for emergency scenarios where the vehicle is
operated close to its dynamic limits. In these scenarios, it is crucial to fully
utilize the available motion capabilities to increase the vehicle’s capacity to
avoid accidents [Fun+17; Jai+19; Sve+19].

Model predictive control (MPC) methods are particularly popular among
optimization-based approaches. Two often-used characteristics to distinguish
MPC methods are the type of vehicle model used and whether the problem is
formulated in a spatial or temporal domain. While formulating the problem
in the temporal domain is very common, formulating it in the spatial domain
is done, e.g.,in [Gao+12; Gra+12; Gra+18; LB14; KMS16] and is especially

15



2 Survey Motion Planning

beneficial when spatio-temporal constraints have to be considered. E.g., when
specific waypoints have to be traversed at certain times, as is the case at
intersections [Ple17].

Different vehicle models are used depending on the intended application, which
consider increasingly complicated lateral vehicle dynamics. Simple point-mass
models, the kinematic single-track model, the single-track model, also often
referred to as bicycle model, and multi-body models are some of the most
popular ones. A detailed introduction to the models used for this work is given
in Section 2.6.

Since most optimization-based methods are limited to finding local solutions, a
major research challenge originates from the combinatorial nature of driving
in dynamic environments [Ben+15]. The combinatorial aspect leads to an, in
general, nonconvex cost function with multiple minima. Each minimum can
be thought of as a different driving maneuver, see also Section 2.3. Especially
purely optimization-based methods struggle if the problem includes such
discrete decisions [Zie+14; LDM15].

One way to mitigate this issue is to a priori enumerate a set of maneuvers and
solve the problem with different initializations, hoping that the global solution
will be among the local solutions [Ben+15; SA17].

As explained in Section 2.3, the motion planning problem is often divided
into several layers addressing different time horizons and decision problems.
This separation also corresponds well with the nonconvex nature of automated
driving and is often used to mitigate the effect the combinatorial problem has
on local methods.

A class of continuous methods that can overcome the typical limitations of
optimization-based methods is mixed-integer programming (MIP) [Sch+01;
NS13; Qia+16; BL18; ES18a; MPA18; EKK20]. Despite a nonconvex cost
function, these methods can find a global optimum.

2.5 Interaction-Aware Planning

While state-of-the-art planning techniques can cope well with static environ-
ments, e.g., consisting of static road bounds and static obstacles, handling
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dynamic objects is still an open field of research. However, considering dynamic
objects, e.g., pedestrians and human-driven vehicles, is essential for driving
in real traffic. Further, the automated vehicle should not only react to other
traffic participants but also interact with them, leading to an interactive and
cooperative driving behavior.

Driving in the vicinity of dynamic objects requires a prediction to describe
the possible future motion of these objects. However, predicting the future
motion of surrounding traffic participants is very hard, especially for longer time
horizons. While for durations up to one second, the future motion can mainly
be inferred from the current state, the prediction for a longer horizon strongly
depends on the intention of a road user. It, therefore, becomes increasingly
more difficult as the considered time horizon grows [Sch+18c]. What adds to
the complexity is that possible interactions with the ego vehicle should also be
considered.

As mentioned in Section 2.3, a widely used simplification is to predict the
motion of other road users independently of the ego motion by an upstream
module [LVL14]. This results in a pipeline approach, where the future motion
of surrounding traffic participants is anticipated first, and in a second step, the
ego vehicle plans its motion to stay safely out of the way of others.

These approaches provide good results in many scenarios but exhibit overly
defensive behavior in interactive scenarios. A merge in dense traffic, for
example, describes such an interactive scenario. Here, the behavior of other
road users cannot be adequately assessed without knowledge of one’s own plan.
In the case of a merge, this can even lead to a standstill, as illustrated in figure
2.3

(a) predict-then-plan (b) interaction-aware

Figure 2.3: Merge in dense traffic. In a) the prediction of the white vehicle is done first, and the
ego vehicle (blue) then planes around that prediction, leading to a stop at the end of
the lane. b) When prediciton and planning are solved together, the ego vehicle can
anticipate that the white vehicle will slow down, allowing for a merge.
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Due to the separation of prediction and planning, interactions are ignored, and
the ego vehicle has no way to influence other road users purposefully. Moreover,
neglecting interactions can lead to the so-called frozen robot problem, which
arises if no safe trajectory to the goal can be found by the planner [TK10]. Any
interactive behavior observed in such approaches is purely reactive and based
on replanning which is not intentional.

To capture the interactive nature of driving, it is essential to simultaneously
predict the motion of others while planning one’s own motion. A review
of motion planning methods that explicitly consider interactions is given in
the following. Consistent with the focus of this thesis, the emphasis is on
optimization-based approaches.

Coupled Planning/ Multi Agent Planning One possible technique to gener-
ate interaction-aware behavior is coupled planning. The scene is modeled as a
multi-agent problemwith a joint objective. The underlying assumption is that all
traffic participants, the ego-vehicle included, are on the same team, optimizing a
joint cost function [CFS13; Kre+16; LKK16; Sch+17; BL18; Ban+18; BSL20].
Each agent then solves the multi-agent problem and executes its part of the plan,
assuming all others will as well. To cope with the uncertain driving behavior of
humans, these methods are combined with tracking approaches to estimate if
the human roughly follows the same model or optimizes for something entirely
different [Sch+17; BSL20].

As shown in [LKK16], the result of such methods highly depends on how
the different vehicles’ costs are considered in the joint cost function. Varying
weights can be used to model different levels of cooperation or incorporate
asymmetries in the traffic scene [BL18].

Direct Response Methods A more direct way of generating interactive
behavior is to model interaction as a reaction other agents will take in response
to an action taken by the ego vehicle. E.g., in [Eve+16], the reaction is modeled
by the intelligent driver model (IDM) [THH00]. To generate the behavior of the
ego vehicle, first, a set of jerk minimum ego candidate trajectories is generated.
The reaction of other vehicles is then modeled by the IDM and obtained via a
forward simulation of the scene. Finally, each candidate trajectory is evaluated,
and the best one is selected.
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Most sampling-based planning methods that consider interactions can be
associated with this category. The reaction of other road users is obtained by a
forward simulation of the traffic scene. This requires a transition model that
describes how the traffic scene changes due to the action of the ego vehicle.
Among the sampling-based methods, approaches based on partially observable
Markov decision process (POMDP) are particularly promising [Hub+18]. In
contrast to optimization-based methods, the influence that the ego vehicle exerts
on others is not explicitly given, but must be determined by trying out several
actions and a subsequent forward simulation.

Game-Theoretic Methods A fundamental assumption of coupled planning
methods is that each agent is as interested in others reaching their goals as it is in
reaching its own goal. Unfortunately, this is often not the case in real traffic since
some drivers are only interested in optimizing their own driving. Therefore,
in scenarios with multiple decision-makers, each maximizing their individual
performance measure, potentially influencing each other, it is recommended to
take a multi-agent perspective [RN21, p. 43] instead.

Dynamic games have shown to be well suited to capture the interactive nature
among multiple decision-makers. Several approaches have been developed
considering a range of applications with some degree of game-theoretic inter-
actions. E.g., in automated driving, game-theoretic approaches were used for
lane changes, merge scenarios, intersection crossing, traversing roundabouts,
and overtaking [Sad+16a; Sad+16b; Sad+18; Fri+20; DG18; Fis+19; Wan+20;
LSM21; Wan+21]. E.g., in [Sad+16b], human-like driving behavior, e.g.,
slowing down before intersections or nudging into the adjacent lane while doing
a lane change, could be generated.

Other related applications of game-theoretic planning include agile maneuvering
of multiple ground vehicles in close proximity [Wil+18], automated car racing
[Wan+19; LL20; Not+20; Wan+21], as well as drone racing [Spi+20; WTS20;
WSS19]. For example, in the racing scenario [Wan+19], it is shown that a
game-theoretic planner yields complex strategies such as blocking and faking
and significantly outperforms a baseline MPC planner.

The presented works model the prediction and planning task jointly as a non-
cooperative game. In these games, there is no optimal solution in the traditional
sense, but depending on the game’s structure and symmetry among players,
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different solutions are possible, also referred to as equilibria. Therefore, an
important feature to categorize game-theoretic methods is the type of solution
they are solving for. Here it is distinguished between Nash and Stackelberg
equilibria.

A Nash equilibrium describes a set of strategies where no individual player
can benefit from unilaterally changing its strategy, given that all other agents
will stick to their strategy. This type of equilibria has been investigated, e.g., in
[LSM22; Fri+20; DG18; Wan+19; BDG19; Wil+18].

Compared to a Nash equilibrium, a Stackelberg equilibrium involves turn taking
and, therefore, an asymmetry in the decision-making process. It is typically
modeled for a two-player game, where one player is the leader, and the other
is the follower. The leader chooses its strategy first, and the follower then
optimizes its strategy as the best response to the leader’s strategy. In contrast,
the Nash solution can be seen as the best response from everyone to everyone
else without hierarchical turn-taking. Stackelberg equilibria are considered in
[Sad+16b; Sad+16a; Fis+19; LL20; YL13; YL14; LL20; Sun+18].

Objective Design The cost function is a central part of a planning algorithm
and provides incentives for desirable driving behavior. Traditional approaches
typically design the cost function somewhat selfishly with the primary objective
to optimize the ego vehicle’s comfort, efficiency, and safety. These selfish
incentives are not an issue in approaches that follow the predict-then-plan
philosophy, since the goal is to optimize comfort and efficiency while safely
staying out of the way of other drivers.

For interaction-aware planning methods, a cost function designed in a selfish
way can lead to overly aggressive driving behavior [LSM22; Fis+19; Sun+18],
e.g., cutting off other drivers or accelerating before intersections to go first
[Sad+16b]. The reason for this aggressive behavior is that interactive methods
like [Sad+16b] focus on how interaction can be handled, but it is generally
not considered how this interaction influences the comfort and safety of other
drivers.

Understanding how other drivers might be influenced enables the automated
vehicle to exploit interactions to further optimize their own costs, e.g., changing
lanes fast by cutting off other drivers. However, as pointed out in [Fis+19], a
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selfishly designed cost function could even lead to trivial solutions where a
leader does not consider the mutual collision constraints anymore, leading to
an overly aggressive leader and overly passive follower, ignoring the interactive
nature of the traffic scene.

While a more aggressive behavior is sometimes desirable, e.g., when merging
into dense traffic, this should not be the default. So as planning methods get
more sophisticated, special care must be taken when designing the cost function
to set the right incentives. Several works have focused on modifying the cost
function to mitigate the aggressive behavior.

Evestedt et al. [Eve+16], Sun et al. [Sun+18], and Bansal et al. [Ban+18]
introduce additional costs that penalize any inconvenience caused to other
drivers due to the behavior of the ego vehicle. E.g., in [Eve+16] additional
costs occur if other drivers experience high deceleration. The additional costs
enable the ego vehicle to be aware of the inconvenience caused by its behavior.
These methods go in line with the concept of cooperative driving according to
our previous work [Bur+17], suggesting that to achieve cooperative behavior,
not only the ego vehicle’s own costs should be considered but also the cost of
others.

A similar idea is utilized in [Sun+18], which is based on the work of [Sad+16b].
In [Sad+16b] interactions between a human and a robot are modeled as an
underactuated dynamic system, where the human plans its actions knowing that
these will not only affect its state but also the actions the human will take as a
response. Whereas in [Sad+16b], the focus is on how to model interactions, the
focus of [Sun+18] is what should be optimized and how interactions influence
other drivers. The cost function is extended by a courteous term. This term
penalizes the increase in other drivers’ costs given the ego vehicle behavior,
compared to an alternative best-case scenario for the other driver. Therefore, the
courteous term is a way to measure the inconvenience the ego behavior causes
to other drivers. When considering the courteous term, it is also demonstrated
that robot vehicles drive less aggressively in various traffic scenarios, e.g.,
leaving more space while performing a merge.

In [Ban+18], a selfishness factor is introduced to balance own interests with
those of others. This factor determines the relative weighting of the ego vehicle
and other vehicles in a joint cost function. Depending on the value, more or
less cooperative behavior can be generated.
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2.6 Vehicle Models

Vehicle models are a central part of motion planning algorithms. They are
used to approximate the vehicle’s behavior to a given control action. Several
models exist which consider the lateral vehicle dynamics in different levels
of complexity. While high-fidelity models like the multi-body model used in
[BBL07] more accurately describe the vehicle’s motion, they are commonly
associated with significant additional computational efforts. On the other hand,
overly simplified models might ignore important dynamical effects.

Selecting a vehicle model therefore poses a trade-off between model accuracy
and computational costs and highly depends on the intended application and
requirements. E.g., in emergency situations, sophisticated motion models are
required to capture the behavior of a vehicle close to its dynamic limits; simpler
models can be used for everyday driving situations. Even simpler models can
be used in highway scenarios where the longitudinal component dominates the
movement.

It is usually considered sufficient to focus on planar motion only in automated
driving applications. Further, it is commonly assumed that the center of gravity
(COG) is at the height of the road surface, and no roll and pitch dynamics or
load transfer due to accelerations occur.

The most widely used models for car-like vehicles include the point mass
model, the kinematic single track, and the (dynamic) single track model. An
introduction to these models is given in the following section. For a more
detailed overview, the reader is referred to [Raj12].

2.6.1 Point Mass Model

The point mass model, shown in Fig. 2.4, is the simplest, widely used vehicle
model which considers lateral dynamics. It is assumed that the vehicle can be
represented as a point mass and can move freely in any direction. There is no
steering action; instead, time derivatives of the position in x and y direction are
used as input. Depending on the order of the model, the inputs are either the
velocities, accelerations, or higher-order derivatives, e.g., jerks.
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x

y

vx

vy

px, py

Figure 2.4: Second order point mass model.

Let us denote �x and �y as the components of a variable � in x and y direction.
Further, let p describe the position, v the velocity, and a the acceleration in
a global frame. With the state x = (px, py, vx, vy)T and input u = (ax, ay)T a
possible representation for a 2nd order point mass model can be given as the
following linear system:

Ûx =
©­­­«
Ûpx

Ûpy
Ûvx
Ûvy

ª®®®¬ = Ax + Bu, with A =
©­­­«
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

ª®®®¬ , B =
©­­­«
0 0
0 0
1 0
0 1

ª®®®¬ (2.3)

Please note that in this formulation, the vehicle’s heading is not explicitly given
and has to be inferred by the velocity components of the velocity vector.

2.6.2 Kinematic Single-Track Model

The classical kinematic single tack model models the vehicle under the assump-
tion that each pair of wheels, rear, and front, can be represented by a single
virtual wheel placed in the middle of each axis, see Fig. 2.5. The resulting
model consists of two wheels connected by a rigid link similar to a bicycle,
hence it is often referred to as the bicycle model. It is further assumed that
there is no tire slip, and the motion is always aligned with the orientation of the
wheels.
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A simple example where the kinematic single track model is superior to a point
mass model is parking. A point mass model would not be sufficient in this
case since it does not capture the non-holonomic characteristic of the vehicle.
These characteristics describe that no lateral displacement is possible without a
simultaneous forward motion and is essential to calculate a minimum turning
radius.

Additional to the position of the reference point p, the yaw angle ψ, which
describes the vehicle’s orientation with respect to the x-axis and the absolute
velocity v at the reference point, are introduced. The inputs to the model are the
steering angel δ at the front wheel and the longitudinal acceleration a. Furter,
the wheelbase l is a necessary parameter.

The kinematic single tack model can be described by the state x = [px, py, ψ, v]T

and the input u = [δ, a]T .

Please note that slightly different differential equations are obtained depending
on the choice of the reference point. The two most common are 1) the center
point of the rear axis, see Fig. 2.5a and 2) the COG, see Fig. 2.5b.
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(a) Rear axis
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y

δ

ψ

βv

px, py

l
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(b) Center of gravity

Figure 2.5: Kinematic single tack model a) with the center of the rear axis as reference or b) with
the center of gravity as reference.
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For the center of the rear axis the model can be stated as:

Ûx =
©­­­«
Ûpx

Ûpy
Ûψ
Ûv

ª®®®¬ =
©­­­«
v cos(ψ)
v sin(ψ)
v
l tan(δ)

a

ª®®®¬ (2.4)

Here, the direction of the velocity vector is always aligned with the vehicle’s
longitudinal axis.

In case the COG is chosen as a reference point, an additional variable, the slip
angle β, and an additional parameter lr are required. The slip angle β measures
the angular difference between the velocity vector and the vehicle’s orientation.
lr is the distance from the rear axis to the COG. The system dynamic can then
be described as follows:

Ûx =
©­­­«
Ûpx

Ûpy
Ûψ
Ûv

ª®®®¬ =
©­­­«
v cos(ψ + β)
v sin(ψ + β)

v
l tan(δ) cos(β)

a

ª®®®¬
β = arctan

(
lr
l

tan(δ)
) (2.5)

A major limitation of the kinematic single track model is that the generated
motion is purely geometric and does not depend on the velocity. This behavior
can be best described as driving as on rails. As maneuvers get more dynamic
and lateral accelerations increase, the tire slip can not be neglected anymore,
and the model no longer approximates the vehicle’s real behavior well. Es-
pecially in higher velocities cornering scenarios, the kinematic single track
model significantly underestimates the required cornering radius and produces
trajectories the real vehicle cannot follow.

2.6.3 Dynamic Bicycle Model

The extension to the kinematic single track model is the (dynamic) single track
model. It considers that forces in the contact point between road and tire are
built up by tire slip. As a result, it is more accurate, and important driving
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effects like under and over steering are captured. One example where this level
of complexity is required is planning evasive maneuvers close to the vehicle’s
handling limit.

In addition to the variables and parameters of the kinematic single track model,
the yaw rate Ûψ, the yaw moment of inertia J and lateral and longitudianl tire
forces at the front and rear wheel Fflat, Frlat, Fflong, Frlong , as shown in Fig. 2.6, are
introduced.

v

px, py

l

lr

x

y

δ

ψ

β

αf

αr

Figure 2.6: The single track model with tire forces and side-slip angles
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Compared to the simpler kinematic model, the state is extended by the yaw
rate Ûψ and the slip angle β. Given state x = [px, py, ψ, v, Ûψ, β]T and input
u = [δ, Flong]

T , the dynamic model with respect to the COG can be stated as:

Ûx =

©­­­­­­­­­­«

v cos(ψ + β)
v sin(ψ + β)

Ûψ
−Fflat sin(δ−β)+Fflong cos(δ−β)+Frlat sin β+Frlong cos β

m
Fflong lv sin δ−Frlat lh+Fflat lv cos δ

J

− Ûψ +
Fflat cos(δ−β)+Fflong sin(δ−β)+Frlat cos β−Frlong sin β

mv

ª®®®®®®®®®®¬
With
[Fflong, Frlong ] = [γ, (1 − γ)]Flong

(2.6)

The formulation is adopted from [Wer11, p. 74] and [Fuc05, p. 98] Note that
instead of directly controlling the acceleration, the longitudinal force is chosen
alongside the steering angle as an input, where γ describes the force distribution
between front and rear wheels.

As mentioned, the lateral tire forces Fflat, Frlat in Fig. 2.6 are functions of the
side slip angles αf , αr which are given as:

αf = δ − arctan
(

lf Ûψ + v sin β
v cos β

)
, αr = arctan

(
lr Ûψ − v sin β

v cos β

)
(2.7)

An often used simplifying assumption is that the lateral forces increase linearly
with the side slip angles Fflat = Cf αf , Frlat = Crαr . Here Cf ,Cr are the
cornering stiffnesses coefficients. While this approximation is often used, it
can lead to unbounded lateral forces and is only valid for small angles. More
sophisticated models, like the Pacejka Magic Formula [PB12, p.7], consider a
saturation in the tire forces and are better suited for bigger angles.

Despite its higher accuracy, the single track model is not always preferred. The
two main reasons are the additional computational burden and the numerical
issues at low velocities, leading to a singularity at a standstill. In order to avoid
the division by zero, it is common to switch to the kinematic model at lower
speeds as it is done e.g., in [Jai+19].
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2 Survey Motion Planning

The dynamic single track model is used for the simulation environments in
chapter 4 and 5.
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3 Fundamentals of
Optimization-Based Motion
Planning

The methods presented in this work can be categorized as optimization-based
motion planning methods. The essential concepts of mathematical optimization,
optimal control and model predictive control (MPC) to understand and solve
them are presented in this chapter.

3.1 Mathematical Optimization

As explained later, the methods developed in Chapter 4 and Chapter 5 are based
on transforming infinite-dimensional optimal control problems (OCPs) into
finite-dimensional optimization problems, which are then solved numerically.
An important class of finite-dimensional optimization problems are nonlinear
programs (NLPs) which in general can be stated as:

min
x∈Rn

f (x)

s.t. h(x) = 0 (3.1)
g(x) ≤ 0

where

• x ∈ R denotes the vector of decision variables.

• f (x) : Rn → R denotes the cost or objective function.

• h(x) : Rn → Rnh denotes the vector of equality constraints.
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3 Fundamentals of Optimization-Based Motion Planning

• g(x) : Rn → Rng denotes the vector of inequality constraints.

Two important NLP subclasses are:

• Linear programs (LP): have affine constraint functions h(x), g(x) and a
linear objective function f (x) = cTx.

• Quadratic programs (QP): also have affine functions h(x), g(x) and a
linear quadratic objective function f (x) = cTx+ 1

2xT Bxwith a symmetric
matrix B ∈ Rn×n

If the vector of decision variables also comprises discrete or integer-valued
variables, e.g.,z ∈ Znz , problems like 3.1 are generally referred to as mixed-
integer nonlinear programs (MINLP).

Feasible set: The feasible set Ω is defined as:

Ω := {x ∈ Rn | h(x) = 0, g(x) ≤ 0} (3.2)

and contains all points that satisfy all constraints.

Among all feasible points, we are interested in x∗, which minimizes the objective
function f (x). Generally, two types of minima are distinguished.

Global minimum: x∗ is a global minimizer if x∗ ∈ Ω and

f (x∗) ≤ f (x) ∀x ∈ Ω (3.3)

For general NLPs, the global optimum is challenging to find, and most solution
algorithms are limited to finding local minimizers.

Local minimum: x∗ is a local minimizer if x∗ ∈ Ω and there exists a
neighborhood N for which

f (x∗) ≤ f (x) ∀x ∈ Ω ∩ N (3.4)

holds.

A special class of optimization is convex optimization. An optimization problem
is convex if the following conditions hold [BV04, p.137]:

• the objective function f (x) is convex.
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3.1 Mathematical Optimization

• the equality constraints h(x) are affine.

• the inequality constraints g(x) are convex.

Convex function: A function f : Ω→ R is convex if Ω is a convex set, and if
∀x, y ∈ Ω and λ ∈ [0, 1] the following holds:

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) (3.5)

Graphically speaking, this means all secants are above the graph.

Convex set: A set Ω is convex if ∀x, y ∈ Ω and λ ∈ [0, 1] the following holds:

x + λ(y − x) ∈ Ω (3.6)

This means that the connecting line between any two points in the set is also
inside the set.

Convex optimization problems are of particular interest since every local
minimizer x∗ is also a global minimizer [BV04, p. 137].

For x∗ ∈ Ω to be a local minimizer of Eq. (3.1), the point has to satisfy the first
order necessary optimality conditions (FONC). If, in addition, the optimization
problem is convex, the necessary optimality conditions are even sufficient to
guarantee that x∗ is a global minimizer. If these conditions are not satisfied,
x can not be a local minimizer. Due to this fact, the FONC play a key role in
many solution algorithms.

The FONC for NLPs are called the Karush-Kuhn-Tucker (KKT) conditions
[NW06, p.321] and can be stated as follows:
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3 Fundamentals of Optimization-Based Motion Planning

KKT conditions: If x∗ is a local minimizer of the NLP 3.1 and x∗ is a
regular point of the equality and all active inequality constraints, then there
exist multipliers µ ∈ Rnh and λ ∈ Rng such that the following holds:

∇ f (x∗) + ∇h(x∗)λ∗ + ∇g(x∗)µ∗ = 0 (3.7a)
h(x∗) = 0 (3.7b)
g(x∗) ≤ 0 (3.7c)
µ∗ ≥ 0 (3.7d)

µ∗Tg(x∗) = 0 (3.7e)

The KKT-conditions can only be formulated for regular points, so not all
local minimizers are KKT-points. For x∗ to be a regular point, constraint
qualifications must be satisfied. A variety of such constraint qualifications
exist [NW06, p.338]. Due to its numerical benefits, the linear independence
constraint qualification (LICQ) is frequently used.

LICQ holds at x∗ ∈ Ω if the gradients of the equality constraints ∇hi(x∗) for
i ∈ {1, .., nh} and the gradients of all active inequality ∇gi(x∗)∀ gi(x∗) = 0 for
i ∈ {1, .., ng} are linearly independent.

3.1.1 Mixed-Integer Quadratic Program

Mixed-integer quadratic programmings (MIQPs) are a special class of MINLP
with a linear quadratic objective function and affine constraints. MIQPs are at
the core of the method presented in Chapter 4 and can, in general, be stated as:

min cTx +
1
2

xTQx (3.8a)

s.t . Ax − b = 0 (3.8b)
Cx − d ≤ 0 (3.8c)
x ∈ Zp × Rn−p (3.8d)
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With matrices Q ∈ Rn×n, A ∈ Rnh×n, C ∈ Rng×n and vectors c ∈ Rn, b ∈ Rnh ,
d ∈ Rng . The total number of decision variables is n, of which p are integer
valued.

Due to the integer variables, mixed-integer programs are well suited to model
combinatorial decisions in optimization tasks. Unfortunately, optimization
problems with integer variables are never convex due to the nonconvexity of
the set of integers. As stated in the previous section, a global optimum can, in
general, not be guaranteed for nonconvex problems, and solvers are limited to
yield local solutions.

MIQPs pose an exception to this. Despite their nonconvexity, methods exist
that guarantee globally optimal solutions if Q is a positive semi-definite matrix
[Kal13, p.256].

While a detailed review of different solution techniques is well beyond the scope
of this section, it is important to understand the core principles of mixed-integer
programming (MIP) solution methods in order to understand how the integer
variables affect the computational complexity.

Thus, the basics of the branch-and-bound method [Kar06, p.48], which is at
the core of most MIP solution algorithms, is presented.

For a better illustration, the following MIQP is considered:

min (x1 − 1.5)2 + (x2 − 1.5)2 (3.9a)
s.t . x1 − x2 + 0.5 ≤ 0 (3.9b)

x1, x2 ∈ Z
2 (3.9c)

Solution methods for MIQPs or MIPs, in general, are based on a relaxation of
the mixed-integer problem. Therefore, the integer restriction is removed, and
several subproblems in continuous space are solved. In our example, the MIQP
is relaxed to multiple QPs, see Fig. 3.1.

The feasible set of the first QP relaxation, denoted by QP1, is depicted in
Fig. 3.2a. If the solution to QP1 satisfies the integer condition, the optimal
solution is found. If this is not the case, the problem is split at an integer
variable into two subproblems. This split, also called branching, is done by
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3 Fundamentals of Optimization-Based Motion Planning

QP3

x∗ = (2.0, 2.5)
f (x∗) = 1.25

QP2

x∗ = (1.0, 1.5)
f (x∗) = 0.25

QP1

x∗ = (1.25, 1.75)
f (x∗) = 0.125

QP5

x∗ = (1.0, 2.0)
f (x∗) = 0.5

QP4

x∗ = (0.5, 1.0)
f (x∗) = 1.25

x1 ≤ 1 x1 ≥ 2

x2 ≤ 1 x2 ≥ 2

Figure 3.1: Tree structure of QPs solved in a branch and bound algorithm. Even though QP3 and
QP4 could be branched further, since their objective value is higher than the one of
QP5, no further branching is needed, and the optimal solution is found.

introducing constraints that push a fractional valued variable to the adjacent
integer value.

For QP1, the optimal solution is x∗ = (1.25, 1.75) which does not meet the
integer condition. Thus, the problem is split into two new subproblems, QP2
with x1 ≤ 1 and QP3 with x1 ≥ 2. The feasible sets after branching on x1 are
depicted in Fig. 3.2b. Note that also a split regarding x2 would be possible.

To find the optimal solution, the new subproblems are solved again, and a tree-
like structure, see Fig. 3.1, is created where each node represents a subproblem.
A node that has not been branched on is called active. Active nodes are explored
further since they could contain a better solution than the currently best one.
Each active node is branched until one of the following stop criteria applies
[ST08]:

• The QP subproblem is infeasible.

• The solution of the relaxed QP is worse than the currently best solution
that satisfies the integer conditions.
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0 1 2 x1

1

2

x2
QP1

(a) relaxed

0 1 2 x1

1

2

x2
QP2 QP3

(b) split into x1 ≤ 1,x1 ≥ 2

0 1 2 x1

1

2

x2

x∗

QP5

QP4

(c) split into x2 ≤ 1,x2 ≥ 2

Figure 3.2: In the branch-and-bound algorithm, mixed-integer problems are relaxed and branched
into several continuous subproblems until no further split is possible or necessary.
The feasible sets of the different subproblems are illustrated in blue. The individual
solutions are marked with a star.

• If the integer condition is satisfied, it is compared to the currently best
solution. In case it is better, it becomes the new current best, if not, the
node is closed.

An optimal solution is found if there are no active nodes left thus, no further
split is possible or necessary. Fig. 3.2c shows the final feasible sets, including
the optimal solution for example 3.9.

An important property to consider when modeling MIPs is that, in general, the
complexity grows exponentially with the number of integer variables. Even
though this results in an adverse theoretic run-time, the performance in practice
is good if a sophisticated solver like GUROBI [Gur22] is used [ES18b].

3.1.2 Bilevel Optimization

Bilevel optimization problems are mathematical programs where an optimiza-
tion problem is nested inside another one as a constraint. The outer optimization
task is commonly referred to as the leader’s or upper-level problem, whereas
the inner optimization task is the follower’s or the lower-level problem. Bilevel
problems have a hierarchical structure and are therefore not symmetric, mean-
ing that the leader makes its decision x first, and the follower will choose its
strategy y as the best response given the leader’s decision. Both the leader
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3 Fundamentals of Optimization-Based Motion Planning

and the follower seek to optimize their own outcomes. In game theory, this
type of problem is usually referred to as a Stackelberg game, as introduced in
Section 2.5. Bilevel optimization is at the core of the method developed in
Chapter 5.

Fig. 3.3 illustrates the general structure of a bilevel optimization problem. It
is shown that given an upper-level decision vector x, there is a parametric
lower-level optimization problem. This lower-level optimization problem refects
the optimal response of the follower given the leader’s decision.
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Figure 3.3: Structure of a bilevel optimization problem.

The lower-level optimization is parametrized by the decision vector of the leader
x and is given as:

min
y

fl(x, y) (3.10a)

s.t . gl(x, y) ≤ 0 (3.10b)
hl(x, y) = 0 (3.10c)
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Here, fl(x, y) is the follower’s objective function, gl(x, y) and hl(x, y) are the
corresponding inequality and equality constraints.

The set of optimal solutions for Eq. (3.10a) can equivalently be stated as the
best response mapping:

Ψ(x) = argmin
y
{ fl(x, y) : gl(x, y) ≤ 0, hl(x, y) = 0} (3.11)

The leader optimizes its objective function taking the best response of the
follower into account by considering 3.11 as a constraint. This way, only
optimal solutions for the follower are part of the feasible set for the leader. The
optimization of the leader can then be stated as:

min
x,y

fu(x, y) (3.12a)

s.t . gu(x, y) ≤ 0 (3.12b)
hu(x, y) = 0 (3.12c)
y ∈ Ψ(x) (3.12d)

Here, fu is the upper-level objective function, and gu and hu are the upper-level
constraints. Note that y is considered a decision variable of the upper-level
problem, but it is actually controlled by the follower through the best response
mapping Ψ(x).

In general,Ψ(x) can have multiple optimal solutions, which causes an ambiguity
in the upper-level optimization since it is unclear to the leader which action
the follower will utilize. To avoid this ambiguity, it is common to assume a
certain position of the follower. In an optimistic position, the leader expects the
follower to choose the solution from Ψ(x), which leads to the best outcome for
the leader. For the pessimistic case, the leader assumes that the follower will
choose the action that leads to the worst outcome for the leader, which is more
difficult to solve.

To solve bi-level optimization problems, they need to be transformed into a
single-level representation. Various methods exist to achieve this. Here only
the KKT reformulation used in this work, will be presented. The interested
reader is referred to [CMS05; SMD18; DZ20] for a more comprehensive inside
to the topic.
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3 Fundamentals of Optimization-Based Motion Planning

KKT-Reformulation For the following single-level reformulation, we assume
that 3.10a is convex and the Karush-Kuhn-Tucker (KKT) conditions are neces-
sary and sufficient for a global optimum. If we further assume that there is a
unique solution, the best response mapping Ψ(x) reduces to a singleton, and
the lower-level problem can be replaced by its KKT conditions. This leads to
the following NLP formulation of the bi-level problem:

min
x,y

fu(x, y) (3.13a)

s.t . gu(x, y) ≤ 0 (3.13b)
hu(x, y) = 0 (3.13c)
∇yL(x, y, λ, µ) = 0 (3.13d)
gl(x, y) ≤ 0 (3.13e)
hl(x, y) = 0 (3.13f)
µ ≥ 0 (3.13g)
µ⊥gl(x, y) (3.13h)

with
L(x, y, λ, µ) = fl(x, y) + λThl(x, y) + µTgl(x, y)

Here, L(x, y, λ, µ) is the Lagrangian, λ and µ are the dual variables associated
with the equality and inequality constraints, respectively. The obtained NLP
is also known as a mathematical program with complementarity constraints
(MPCC).

Note that, although the lower level problem is convex, the reformulated NLP
Eq. (3.13a) is intrinsically nonconvex due to the complementary constraints
Eq. (3.13h) and generally difficult to solve.
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3.1.3 Mathematical Program with Complementarity
Constraints (MPCC)

A general MPCC [FP97] can be stated as:

min
x∈Rn

f (x) (3.14a)

s.t . h(x) = 0 (3.14b)
g(x) ≤ 0 (3.14c)
0 ≤ Q(x)⊥ P(x) ≥ 0 (3.14d)

The objective function f (x) : Rn → R, the equality h(x) : Rn → Rnh , and
inequality constraints g(x) : Rn → Rng are assumed to be sufficiently smooth.

Eq. (3.14d) are the complementarity constraints enforcing nonnegativity and
orthogonality of Q(x) and P(x). The notation used in 3.14d is short for:

0 ≤ Q(x)⊥ P(x) ≥ 0⇔ 0 ≤ Q(x), 0 ≤ P(x), Q(x)T P(x) = 0 (3.15)

Due to the complementarity constraints (3.14d), MPCCs are nonsmooth and
nonconvex.

Because of the nonsmoothness and nonconvexity of the feasible set, MPCCs are
particularly challenging to solve. Additionally, at every feasible point, ordinary
constraint qualifiers like the LICQ or the Mangasarian-Fromovitz constraint
qualification are violated [CKA95]. The failure to meet the constraint qualifiers
makes it difficult to numerically solve problems like Eq. (3.14) directly, and
nonlinear optimization solvers are likely to fail to find local optima without
explicitly addressing the complementarity constraints.

Several strategies exist to solve MPCCs, the concepts most relevant to this
work rely on a transformation of the complementarity constraints and will be
introduced briefly. For an in-depth review, the reader is referred to [KLM20].
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3 Fundamentals of Optimization-Based Motion Planning

In order to better discuss the presented solution strategies, we consider the
example 3.16 form [SS00]:

min
x∈R2

(x1 − 1)2 + (x2 − 1)2 (3.16a)

s.t . 0 ≤ x1⊥ x2 ≥ 0 (3.16b)

A plot of Eq. (3.16) is illustrated in Section 3.1.3. The feasible set is indicated
by the L-shaped solid black line. As can be seen, it is nonsmooth and nonconvex
due to the kink at x1 = x2 = 0. The example contains two local minimizers at
(0, 1) and (1, 0) and a local maximizer at the origin (0, 0).

x1

x
2

0
0 1 2

1

2

Figure 3.4: Contour lines of Eq. (3.16). The L-shaped solid black line indicates the feasible set.
For this example, two local minimizers at (0, 1) and (1, 0) and a local maximizer at
(0, 0) exist.

The complementarity constraint 3.16b implies that either x1 or x2, must be 0
(or both). Hence, complementarity constraints can also be seen as a way how
to model a combinatorial nature of the two variables.
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Smoothing methods

A popular approach to solve MPCCs is to approximate the nonsmooth com-
plementarity conditions 3.16b by smooth equality constraints [FJQ99; BS07;
NAD20] as:

0 ≤ x1, 0 ≤ x2, x1x2 = ε (3.17)

With ε > 0, the constraints become smooth in x1 and x2.

Another widely used function to smooth the complimentarity constraint is the
perturbed Fischer-Burmeister function [Kan96] which works particularly well
for SQP methods [FLP98].

Relaxation method

Similar to smoothing methods, the core idea of relaxation methods [Sch01;
RW04; HKS13] is to approximate the complementarity constraints. In con-
trast to smoothing methods, the complementarity constraints are replaced by
inequality instead of equality constraints as:

0 ≤ x1, 0 ≤ x2, x1x2 ≤ ε (3.18)

With ε > 0, the feasible set is enlarged, or relaxed, hence the name relaxation
methods. The smaller ε is chosen, the closer a feasible point (x1, x2) is to
achieving complementarity.

An advantage of the relaxation method over the smoothing method is that the
original minimizers are still contained in the feasible set.

Penalty methods

For penalty methods [RW04; LLN06; Ani05; Hal+22], the complementarity
constraints are removed from the set of constraints, and their violation is
penalized in the objective function via a penalty term.
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The transformed NLP then reads:

min
x∈R2

(x1 − 1)2 + (x2 − 1)2 + ρkΦ(x1, x2) (3.19a)

s.t . x1 ≥ 0 (3.19b)
x2 ≥ 0 (3.19c)

with e.g., Φ(x1, x2) = x1x2.

The penalty method generates a sequence of x∗1, x
∗
2, x
∗
3, ... by solving Eq. (3.19)

with increasing penalty weights ρ1 < ρ2 < ρ3 < . . . .

Since the feasible set does not change between iterations, the solution of iteration
k can be used as an initial guess for k + 1 to warms start the NLP solver.

A drawback of these methods is that due to the, in general, nonconvexity of Φ
the solver can get stuck in a local minimum, and increasing the penalty term ρk
will not necessarily lead to less violation of the complementarity constraint. For
more details on the convergence properties, the reader is referred to [HR04].

The presented strategies focus on reformulating the original MPCC into an
approximately equivalent, regularized NLP where the constraint qualifiers are
satisfied again. The reformulated problem can then be solved using common
NLP solvers. In Fig. 3.5, it is illustrated how the different methods affect the
objective function and feasible set of example 3.16.
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ε ↓

x1

x
2

(a) Feasible set for the smoothing method.

x1
x

2

ε ↓

(b) Feasible set for the relaxation method.

x
2

x1

(c) Contour lines of the objective function
for a penalty weight of ρ = 1.9.

x1

x
2

(d) Contour lines of the objective function
for a penalty weight of ρ = 3.0.

Figure 3.5: Illustrated is how the presented strategies change the feasible set for the smoothing a)
and the relaxation method b), as well as how the objective function changes in case
of the penalty reformulation for different ρ. a) The smaller ε is chosen, the closer the
smoothed constraint approximates the original complementarity constraint. The same
holds for the relaxation method shown in b). With increased ρ, the nonconvexity of the
reformulated objective function becomes visible, see c) and d).
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3.2 Optimal Control

Optimization-based motion planning methods build upon optimal control
problems (OCPs). An introduction into OCPs is provided in this section.

Let us consider the following dynamic system

Ûx = f (x(t), u(t)) (3.20)

where x(t) ∈ Rn is the state, and u(t) ∈ Rm is the control vector.

The goal is to determine a control trajectory u(t) that brings the system from
an initial state x(t = 0) = x0 to a desired final state x(te). While there are
many, possibly infinitely many, control trajectories that can achieve that, the
subject of optimal control is finding u∗ among the many feasible trajectories
that minimizes a cost functional J.

In general, an OCP can be stated as:

min
u(t)

J(u(t)) = min
u(t)

V(x(te)) +
∫ te

t0

l(x(t), u(t), t) dt (3.21a)

s.t.:
Ûx = f (x(t), u(t)) x(t0) = x0 (3.21b)
h(x(te), te) = 0 (3.21c)
g(x(t), u(t), t) ≤ 0 (3.21d)

The cost functional J consists of the terminal costs for the final state V(x(te))
and the running costs l(x(t), u(t), t). The equality constraints 3.21b enforce the
system dynamic 3.20 and describe how the system evolves in time for a certain
choice of u(t). Further, 3.21c describes the constraints on the final state. Note
that this also includes the special cases of a free end state and a free end time.
General inequality constraints, as well as bound constraints on inputs and states,
are formulated in Eq. (3.21d).

Generally, there are three approaches to solve the continuous optimal control
problem stated in Eq. (3.21), see also the upper row of Fig. 3.6. We here follow
the outline stated in [Die+06].
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Figure 3.6: Different methods to solve the continuous optimal control problem.

State Space methods State space methods build upon the principle of
optimality, stating that each subsection of the optimal trajectory also needs to
be optimal. While this is the basis of dynamic programming in discrete time,
this formulation leads to the so-called Hamilton-Jacobi-Bellman equation in
continuous time. Methods to numerically solve this state space equation exist,
but they heavily suffer from the curse of dimensionality and are therefore only
applicable for small state spaces.

Indirect methods These methods use necessary conditions for optimality of
the infinite-dimensional problem to formulate a boundary value problem, which
is then solved numerically in a subsequent step. Since optimality conditions
are obtained in a continuous form, and the problem is then discretized, indirect
methods are often referred to as first optimize then discretize. Well-known
formulations of indirect methods are the Euler-Lagrange differential equations
and the Pontryagin Maximum Principle. Although indirect methods typically
provide highly accurate solutions, a significant downside is that the underlying
differential equations are often hard to solve and therefore hardly applicable for
complex applications.
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Direct methods Direct methods are often referred to as first discretize, then
optimize since they transform the continuous time problem into a discrete time
problem, which is then optimized. This transformation is achieved by finitely
parameterizing the infinite-dimensional control trajectory such that the original
problem is approximated by a NLP. The obtained NLP can then be solved
efficiently by structure exploiting solvers. Roughly speaking, instead of solving
an infinite-dimensional problem in function space, a finite-dimensional vector
space problem is solved.

A major advantage of direct methods is that all sorts of constraints can be
easily considered. This makes discrete methods by far the most widely used for
real-world applications.

While all direct methods are based on a finite-dimensional parametrization
of the input trajectory in some form, they differ in how the state trajectory is
considered.

Two major classes of direct methods are sequential and simultaneous methods.
For both methods, the continuous time interval t ∈ [t0, te] is first discretized into
N steps. Further, the input function u(t) is parameterized on the N subintervals
[tk, tk+1) by a finite-dimensional vector, typically polynomials or piecewise
constant functions in the simplest case.

For sequential methods, the state variables are obtained by numerical integration
of the input variables. This integration is not necessarily part of the OCP
formulation. Thus, no explicit state variables are contained in the NLP.
Sequential approaches lead to relatively small NLPs with densely populated
derivative matrices.

Simultaneous methods also discretize the state trajectory x(t) and introduce a
finite-dimensional state vector into the NLP. Opos to sequential methods, the
numerical integration is part of the NLP, and equality constraints enforce the
vehicle dynamics. Simultaneous approaches lead to larger NLPs with sparsely
populated derivative matrices. Even though the NLPs are larger, due to structure
exploding solvers, simultaneous methods often outperform sequential methods
in terms of computational time.

Due to their advantages, direct simultaneous methods are used in this work. We
further parametrize the control trajectory by a piecewise constant function to
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transform the OCPs in chapter 4 and 5. With the planning horizon discretized
into N steps, we approximate OCPs like 3.21 with the following NLP:

min
u0:N−1, x1:N

J(u0:N−1, x1:N ) = min
u0:N−1, x1:N

V(xN ) +

N−1∑
k=0

l(xk, uk) (3.22a)

s. t.: (3.22b)
xk+1 = f (xk, uk) (3.22c)
x0 = x̂ (3.22d)
g(xk, uk) ≤ 0 (3.22e)

Here, x̂ denotes the initial state of the system.

3.3 Model Predictive Control

The solution of the OCP described in Section 3.2 is a control trajectory u(t).
Directly applying this precomputed sequence of controls to the real system is
called open-loop control. Doing so will likely yield unsatisfying results since,
typically, the model used during optimization and the real system does not
entirely coincide. Also, deviations from the desired state trajectory, e.g., due
to unforeseen external disturbances during the execution, are not considered.
Simply applying open-loop control, the system’s final state will most likely be
different from the intended one.

Consider, for example, the steering control of a car. Let us assume a straight
road, and the goal is to keep following the road. Starting with the vehicle
placed in the middle of the lane, the solution of the OCP would yield constant 0
steering. Appling these steering actions for a longer time will most likely cause
the car to leave the road. This is due to the fact that no feedback is involved
from the initial state onwards. Model errors and disturbances, e.g., uneven road
or side winds, are not considered.

In contrast to open-loop control where the control, trajectory u(t) only depends
on time, in closed-loop control or feedback control, the control trajectory also
considers the state. Deviations of the state trajectory due to model errors
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or external disturbances can then be accounted for, and the performance is
improved considerably.

Ideally, we would like to compute the optimal control feedback as a function of
all possible states, which can be described by:

u = K(x(t), t) (3.23)

Except for special cases, computing the optimal input as a feedback is unfortu-
nately very hard or even not possible. Thanks to powerful numerical methods,
we can approximate a closed-loop control by repeatedly solving the OCP as
an open-loop problem, starting from the current state. The control action is
then used to actuate the system until the next OCP solution is available. This
approximation technique is known as MPC.

Standard MPC implementations consist of the following four steps, also visual-
ized in Fig. 3.7

1. Observe the current state x0

2. Predict and optimize the system’s state on a limited horizon with a length
N , starting at x0.

3. Apply the first control action u0 of the open-loop solution to the real
system.

4. Move the horizon forward by one step and repeat the process.

Due to the moving horizon character, MPC is also known as receding horizon
control.

Compared to other control strategies, MPC approaches are computationally
demanding. To allow for fast computation, often simplified models of the
system are used, and only a reduced prediction horizon is considered. However,
care must be taken when a limited time horizon is used. If the length is chosen
too short, the MPC might suffer from stability issues.

The presented introduction only scratches the surface of the broad research field
of MPC. The interested reader is referred to [MGK07; RMD20] for a deeper
inside to the topic.
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Figure 3.7: Core mechanism of MPC. First, the OCP is solved for a limited time horizon N starting
from the current state. Then, only the first element of the solution vector u∗ is applied
to the system before the horizon is moved one step forward and the process is repeated.
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4 Cooperative Interaction-Aware
Motion Planning using
Multi-Agent Trajectory Planning

This chapter presents a cooperative interaction-aware motion planner based on
a multi-agent formulation. The approach aims to resolve the overly conservative
behavior of pipeline approaches by planning formultiple vehicles simultaneously
and thereby coupling prediction and planning. This structure enables the ego
vehicle to anticipate how other drivers might react to its planed actions.

The central element of the presented planner is a novel multi-agent trajectory
planning formulation, presented in Section 4.1. The major contribution of this
formulation is its ability to overcome the typical limitations of optimization-
based methods, namely the combinatorial problem which originates from the
non-convexity of motion planning, as presented in Section 2.4. This is achieved
by formulating the planning task as a mixed-integer quadratic programming
(MIQP) in which a flat output of the vehicle is represented by continuous
variables and the maneuver variants are represented by discrete variables via
collision avoidance constraints. The resulting method guarantees a global
optimum, without the restriction of a discretized search space. The approach
is also particularly well suited for the insertion of logical constraints, such as
those imposed by traffic regulations.

In Section 4.2, a framework based on themulti-agent trajectory planning formula-
tion is presented, that enables an automated vehicle to generate interaction-aware
trajectories, and therefore driving in dense traffic, see Fig. 4.1.

To cope with the uncertain behavior of human drivers different intention models
are defined. These intentions are modeled in a generic way, which makes them
independent of the traffic scenario or map layout. The concept is evaluated in a
simulation environment, demonstrating its ability to plan interactive maneuvers
and its ability to cope with uncertain human driving behavior.
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Figure 4.1: Merge scenario in dense traffic. Due to the narrow gaps a planner following a pipeline
architecture would not allow for a successfully merge and the ego vehicle (blue) would
stop at the end of the lane. Treating prediction and planning jointly enables the ego
vehicle to consider interactions, and allows to anticipate that other drivers might open a
gap.

4.1 Cooperative Multiple Vehicle Trajectory
Planning with MIQP

In this section, a novel cooperative multiple vehicle trajectory planner based
on [BL18] is presented. The problem is formulated as a MIQP which yields
globally optimal trajectories for a group of automated vehiclesV = V1, . . . ,Vnv .
Cooperative behavior among the vehicles is introduced by optimizing a joint
objective function.

The key element of this planner is the formulation of the collision avoidance
constraints via binary variables. This formulation allows to overcome the
limitations optimization-based methods typically have, and the solution is not
bound to the homotopy of its initialization.
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4.1 Cooperative Multiple Vehicle Trajectory Planning with MIQP

The trajectory planning for the group of vehiclesV = V1, . . . ,Vnv is performed
in a MPC fashion. Let xn be the state and un be the input of vehicle Vn ∈ V,
the underlying OCP can be stated as:

min
u1:nv

0:N−1,x
1:nv
1:N

Jtotal = min
u1:nv

0:N−1,x
1:nv
1:N

nv∑
n=1

wn

(
Jn
ref(x

1:nv

1:N ) + Jn
u (un

0:N−1)

)
(4.1a)

s.t. :
∀n ∈ {1, . . . , nv}
xnk+1 = f(xnk, u

n
k ) k = 0, . . . , N − 1 (4.1b)

xn0 = x̂n (4.1c)
gdyn ≤ gdyn(xnk ) ≤ gdyn k = 1, . . . , N (4.1d)

gcol(xnk, x
m
k ) ≤ 0 ∀m ∈ {n + 1, . . . , nv}k = 1, . . . , N (4.1e)

gobs(xnk ) ≤ 0 k = 1, . . . , N (4.1f)
x ≤ xnk ≤ x k = 1, . . . , N (4.1g)
u ≤ un

k ≤ u k = 0, . . . , N − 1 (4.1h)

Here, we utilize a direct simultaneous method to transform the general continu-
ous OCP of motion planning, see also Section 3.2. Therefore, the optimization
horizon T is discretized into N steps, assuming a piecewise constant input.

The OCP objective function Jtotal is a linear combination of the vehicle’s
individual costs and contains penalties for any control efforts Jn

u as well as costs
for deviations from a reference state Jn

ref. Further details about the formulations
and the definition of a suitable reference state are given in Section 4.1.3.

The equality constraints in Eq. (4.1b) are imposed by the vehicle dynamics.
The underlying vehicle model is described in Section 4.1.1. Further, Eq. (4.1c)
initializes the system at the current state. The inequality constraints gdyn are
introduced to ensure that the generated trajectories are dynamically feasible.

The inequality constraints in Eq. (4.1e) and Eq. (4.1f) are used for collision
avoidance among the controlled vehicles gcol as well as for collision avoidance
with obstacles gobs, respectively. To account for physical limitations of the real
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x

y

s

d

Figure 4.2: Curvy road with the center of the lane as a reference. In the middle, the path is
represented in Cartesian coordinates. On the right, the same path is given in road-
aligned Frenet coordiantes.

system, additional bound constraints on the states, Eq. (4.1g), and the inputs,
Eq. (4.1h), are considered.

Note that except for the collision constraints gcol, which couple the controlled
vehicles, all costs, and constraints can be formulated for each vehicle individu-
ally.

The approach is intended for a group of connected, automated vehicles in
general on-road scenarios. Moreover, ordinary driving scenarios are the focus,
where the vehicles are not operated close to their dynamic limits.

The road within a planning horizon T is assumed to be sufficiently straight, so
forces and dynamic effects due to the road curvature can be neglected. The
coordinates of a vehicle can then be described in a road-aligned Frenet frame
[Wer+10], where s denotes the longitudinal and d the lateral direction. Fig. 4.2
illustrates the transformation into a road-aligned frame.

In the following, the individual components of the cooperative multi-agent
trajectory planning problem are explained in detail. Further, the assumptions
which are necessary to obtain a MIQP are stated.
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4.1 Cooperative Multiple Vehicle Trajectory Planning with MIQP

4.1.1 Vehicle Model

An important design choice of optimization-based methods is the vehicle model.
The vehicle model should capture the essential characteristics of the real system
without modeling unnecessary complexity. Since this approach is intended for
ordinary on-road scenarios, rather than emergency situations where the vehicle
is operated close to its dynamic limits, a simple point mass model is chosen,
see Section 2.6.1.

In contrast to similar works [Sch+01; ES17], where first and second-order
point-mass models were used, we follow the approach of [Qia+16] and choose
a third order model. This formulation ensures a continuous acceleration profile
and, as a result, a continuous yaw rate of the generated trajectory, which a
low-level controller can track smoothly.

The motion of a vehicle is formulated separately in the longitudinal and the
lateral direction, denoted by �s and �d , respectively. The state xn(t) ∈ R6 and
input un(t) ∈ R2 of vehicle vn are given by:

xn(t) = [pns (t), vns (t), an
s (t), pnd(t), v

n
d(t), a

n
d(t)]

T (4.2)

un(t) = [ jns (t), jnd (t)]
T (4.3)

where p is the position, v the speed, a the acceleration, and j the jerk.

The system dynamics can be stated as:

Ûxn(t) =
(

A 03×3

03×3 A

)
xn(t) +

(
B 03×1

03×1 B

)
un(t) (4.4)

with

A = ©­«
0 1 0
0 0 1
0 0 0

ª®¬ B = ©­«
0
0
1

ª®¬
The equation describes the evolution of the system in continuous time and is
stated in the form of an ordinary differential equation Ûx = f (x(t), u(t)). To
consider the vehicle dynamics in the discrete optimal control problem Eq. (4.1),
a discrete transition model xk+1 = f (xk, uk) is necessary.

55



4 Cooperative Interaction-Aware Motion Planning using Multi-Agent Trajectory Planning

With piecewise constant inputs, a continuous linear system given by Ûx(t) =
Aconx(t) + Bconu(t) can be discretized by considering the analytical solution
over a fixed length discretization step T . The result is a linear state-space
equation of the form xk+1 = Adisxk + Bdisuk .

The matrices for the discrete system Adis, Bdis are obtained by:

Adis = eAconT (4.5)

Bdis = Bcon

∫ T

0
eAcont dt (4.6)

With τ as the discretization step, the discrete system dynamics are given by:

xnk+1 =

(
Ad 03×3

03×3 Ad

)
xnk +

(
Bd 03×1

03×1 Bd

)
un
k (4.7)

with

Ad =
©­«
1 τ 1

2τ
2

0 1 τ
0 0 1

ª®¬ Bd =
©­«

1
6τ

3

1
2τ

2

τ

ª®¬
To account for the dynamic limitations of the real system, the following bound
constraints on the velocity vn, the acceleration an, as well as the jerk jn are
introduced:

xnk ∈ [x
n
k, x

n
k ] (4.8)

un
k ∈ [u

n
k, u

n
k ] (4.9)

The minimum and maximum values are denoted by � and �, respectively.

So far, the longitudinal and lateral motion are treated separately, and the non-
holonomic characteristic of the real system is ignored. To avoid generating
dynamically infeasible trajectories, e.g., moving sideways without moving
forward, the additional constraints gdyn are introduced. These constraints
approximate the non-holonomic property by coupling the velocity components
via the heading Θ of the vehicle.
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4.1 Cooperative Multiple Vehicle Trajectory Planning with MIQP

Though Θ is not explicitly contained in the state, it can be reconstructed from
the velocities as Θ = arctan( vdvs ). The coupling of the longitudinal and lateral
dynamics can then be enforced by limiting the heading Θ ∈ [Θ,Θ] with:

vd ∈ [vs tan(Θ), vs tan(Θ)] (4.10)

4.1.2 Collision Avoidance Constraints

In the following, the mixed-integer based collision avoidance constraints are
introduced. Road-aligned rectangles approximate the shape of vehicles and
obstacles. Further, obstacles and road boundaries are sufficiently enlarged
so that the controlled vehicles can be represented by single points. More
complex polygonal shape approximations are possible; however, they come
with an increased computational burden and are therefore not considered in this
approach.

Collisions avoidance among controlled vehicles

Let us consider any pair of vehicles Vn and Vm ∈ V. Collisions can be avoided
by ensuring that both vehicles do not occupy the same geometric area at the
same time tk for all k = 1, . . . , N . This statement can be expressed as the
following set of logical constraints:

pns ≤ pms − ln,mmin (4.11a)
∨ pns ≥ pms + ln,mmin (4.11b)
∨ pnd ≤ pmd − w

n,m
min (4.11c)

∨ pnd ≥ pmd + w
n,m
min (4.11d)

Here, ln,mmin is the minimum longitudinal, and wn,m
min is the minimum lateral

distance necessary between the two vehicles. Additional safety margins can
be incorporated by simply increasing ln,mmin and wn,m

min . E.g., to cope with sensor
noise or to increase the perceived safety by bigger clearances.
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The set of logical OR constraints in Eq. (4.11a) can be reformulated into a
conjunction of linear inequality constraints by applying the so-called Big-M
method [WVG03].

A binary variable δ is introduced for each statement in Eq. (4.11a), indicating
whether this statement is satisfied δ = 1 or not δ = 0. The corresponding
linear inequality is obtained by adding or subtracting an application-specific
big positive constant Mbig depending on the value of δ. For each time step, four
binary variables are introduced. The collision avoidance constraints gcol can
then be written as:

pns,k ≤ pms,k − ln,mmin + (1 − δ
n,m
1,k )M

big (4.12a)

pns,k ≥ pms,k + ln,mmin − (1 − δ
n,m
2,k )M

big (4.12b)

pnd,k ≤ pmd,k − dn,m
min + (1 − δ

n,m
3,k )M

big (4.12c)

pnd,k ≥ pmd,k + dn,m
min − (1 − δ

n,m
4,k )M

big (4.12d)
4∑
i=1

δn,m
i,k
≥ 1 (4.12e)

The last constraint, Eq. (4.12e), ensures that at least one of the original OR
conditions is always satisfied. The collision avoidance constraints are illustrated
in Fig. 4.3.

To keep the formulation efficient and the computation time low, care must be
taken when choosing Mbig. The value should be chosen as small as possible
such that the number of subproblems of the branch-and-bound algorithm is
kept low, see Section 3.1.1. On the other hand, the value has to be big enough
to capture all solutions of interest.

Collisions avoidance with obstacles

The collision avoidance constraints between controlled vehicles and static or
dynamic obstacles, gobs, are treated the same way. Again, a vehicle and an
obstacle cannot occupy the same space simultaneously. The major difference is
that the state variables of the obstacles are not part of the optimization problem
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Figure 4.3: Collision avoidance constraints betweenV n andVm . The collision free regions are
indicated by the arrows and the corresponding values of the binary variables δi .

and are assumed to be given. For each obstacle-vehicle pair, again, four binary
variables δo,ni per time step k are introduced as:

pns,k ≤ pos,k − ln,mmin + (1 − δ
n,o
1,k )M

big (4.13a)

pns,k ≥ pos,k + ln,mmin − (1 − δ
n,o
2,k )M

big (4.13b)

pnd,k ≤ pod,k − w
n,m
min + (1 − δ

n,o
3,k )M

big (4.13c)

pnd,k ≥ pod,k + w
n,m
min − (1 − δ

n,o
4,k )M

big (4.13d)
4∑
i=1

δn,o
i,k
≥ 1. (4.13e)

Vehicles not considered in the multi-agent optimization problem are modeled
as moving obstacles. There motion (po

s,k
, po

d,k
) is assumed to be provided by a

separate prediction module.

4.1.3 Collective Cost Function

The objective of the multi-agent trajectory planning approach is to generate
comfortable and collision-free trajectories for an ensemble of vehicles. Besides
these requirements, the vehicles also need to make progress along their paths to
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be time-efficient. These objectives are formulated in the two cost terms Jn
u and

Jn
ref in Eq. (4.1), which are formulated for each vehicle Vn ∈ V individually.

Jn
u penalizes the jerk quadratically and is given by:

Jn
u (un) = unT Rnun = ‖un

k ‖
2
Rn (4.14)

Jn
ref penalizes any deviation from a reference state, also quadratically, and is
given by:

Jn
ref(x

n) = (xn − xnref)
TQn(xn − xnref) = ‖x

n − xnref‖
2
Qn (4.15)

Rn and Qn are positive and semi-positive definite weighting matrices used to
model different driving preferences. E.g., when compared to a comfortable
driver, a sporty driver might choose a lower penalty for accelerations.

The reference state xref can be individual for each vehicle and is given as:

xnref = [p
n
s,ref, v

n
s,ref, a

n
s,ref, pnd,ref, v

n
d,ref, a

n
d,ref]

T

= [0, vns,ref, 0, pnd,ref, 0, 0]
T

(4.16)

The desired velocity vn
s,ref is context-dependent, e.g., to the speed limit or a

desired maximal velocity. The driving lane is chosen via pn
d,ref, representing

the corresponding lane’s centerline. The absolute value of pn
s,ref is irrelevant

and can be set to zero.

The joint cost function is obtained by a linear combination of the vehicles’
individual costs and can be written as:

min
un

0:N−1,x
n
0:N∀n∈1,...,nv

nv∑
n=1

wn

(
N∑
k=1
‖xnk − xnk,ref‖

2
Qn +

N−1∑
k=0
‖un

k ‖
2
Rn

)
(4.17)

wn are used to weigh the individual vehicles’ costs relative to each other. This
way, traffic precedence or different levels of cooperativity can be modeled.

Unlike previous works [Sch+01], a quadratic cost function is chosen such that
deviations from the desired state increase more than linear. This should prevent
a solution where one vehicle has a high disadvantage while multiple others
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4.1 Cooperative Multiple Vehicle Trajectory Planning with MIQP

have small advantages. E.g., 101 vehicles save one second each while crossing
an intersection, but therefore one vehicle has to wait for 100 seconds, which
would be a valid solution for a linear cost function that naively minimizes the
overall travel time.

If the desired state xnref is independent or linearly dependent on other optimization
variables, the formulation yields a MIQP, see Section 3.1.1.

Please note that the OR conditions in Eq. (4.11a) could also be approximated
by nonlinear constraints and be solved with continuous NLP solvers. These
solvers, however, only find local optima, whereas the formulation with mixed
integers ensures the global optimum.

4.1.4 Evaluation

In this section, numerical experiments are provided to demonstrate the feasibility
and advantages of the novel multi-agent trajectory planning formulation. A
challenging overtaking scenario on a rural road with oncoming traffic, as shown
in Fig. 4.4, is selected to evaluate the performance. The method is compared to
priority-based and individual motion planning.

s

d

V 1 V 2
V 3

Figure 4.4: Overtaking scenario on a two-lane rural road. The blue vehicle has to perform an
overtaking maneuver to continue with a higher velocity. To continue with a higher
velocity the blue vehicle has to perform a overtaking maneuver. This is a challenging
task due to the oncoming red vehicle.

Scenario

The considered scenario involves three vehicles on a two-lane rural road. The
blue vehicle,V1, has a higher desired velocity and is approaching the slower
driving grey vehicle, V2. Due to the difference in the reference speeds, an
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4 Cooperative Interaction-Aware Motion Planning using Multi-Agent Trajectory Planning

overtaking maneuver would be favorable for V1. This, however, is not possible
without further ado due to the oncoming vehicle V3 on the opposite lane.

The time horizon of the simulation is set to T = 20s with a discretization step
size of τ = 0.5s. The vehicles initially drive with their desired velocity and
have a width of w = 2 m and a length of l = 5 m. Additional parameters are
listed in Table 4.1.

Ref. Velocities BoundsV 1,2,3 WeightsV 1,2,3

v1
s,ref = 25 m

s x = [0, 30 m
s , 3

m
s2 , 6 m, 2 m

s , 2
m
s2 ]

T diag(Q) = {0, 1, 2, 1, 2, 4}
v2
s,ref = 15 m

s x = [0, 0, −4 m
s2 , 1 m, −2 m

s , −2 m
s2 ]

T diag(R) = {4, 4}
v3
s,ref = 15 m

s u = [3 m
s3 , 2

m
s3 ]

T

u = [−6 m
s3 , −2 m

s3 ]
T

Θ = 0.4

Θ = −Θ

Table 4.1: Reference velocities, bounds, and weights used for the numerical experiment.

In the following, the results of the different planning methods are explained and
compared.

Individual Motion Planning

In the case of individual motion planning, the multi-agent problem reduces
to a set of decoupled trajectory planning problems, where each vehicle solely
minimizes an individual cost function, not considering the costs of others. Since
V2 and V3 are already driving with their desired velocity, they will continue
without any change.

V1 has two options, which can be described by the temporal sequence the
vehicles pass each other. It can either strongly accelerate to overtake V2 before
passing V3, which might not be possible due to a lack of engine power, or it has
to brake and overtake V2 after passing V3.

For the given initial configuration, V1 has to decelerate sharply and wait until
V3 has passed before overtaking V2. This deceleration and staying behind a
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4.1 Cooperative Multiple Vehicle Trajectory Planning with MIQP

slower vehicle causes significant costs for V1. The resulting trajectory is shown
in Fig. 4.6a in the discussion section.

Priority-Based Planning

Priority-based planning is a common approach for multi-agent motion planning.
Here, a priority list is calculated to decompose the multi-agent into a series of
consecutive single-agent trajectory planning problems. The vehicle with the
highest priority plans its motion first, not considering the plans of others. Then
the vehicle with the second-highest priority plans its motion, only considering
the plan of the first vehicle, and so. The concept is visualized in Fig. 4.5.

> >Priority order

....

Figure 4.5: Concept of priority-based planning. The blue vehicle has the highest priority and
therefore plans first, not considering other vehicles. The red vehicle plans second, only
considering the plans of the blue vehicle. This pattern continues until the last vehicle
has planned its motion.

While this decomposition decreases the computational complexity, it also limits
the solution space. Even with an optimal priority assigned, optimality can not
be guaranteed, and in some cases, the simplified problem becomes infeasible
even though a solution in the full configuration space exists [FB11].

The results of the priority-based method are obtained by calculating all possible
priority permutations and selecting the best one. This way, the results are
independent of a specific priority selection and represent the best achievable
outcome.

For the overtaking scenario, the two best priority assignments are either
V1 > V3 > V2 or V3 > V1 > V2. Since V2 has the lowest priority, it plans its
motion last, adapting to the plans of V1 and V3. For the considered scenario,
this means it would be beneficial for the overall costs if the slower driving grey

63



4 Cooperative Interaction-Aware Motion Planning using Multi-Agent Trajectory Planning

vehicle changes lanes, so the red car can continue to drive without slowing
down. The resulting trajectories are visualized in Fig. 4.6b.

Cooperative MIQP Formulation

For the simulation, the cooperative weights wn in Eq. (4.17) are set to one for
each vehicle Vn ∈ V. As a result, every vehicle’s costs are considered equally,
thus enabling the ensemble to reach the highest level of cooperative behavior
according to [Bur+17]. In contrast to existing methods, the proposed MIQP
approach exploits the entire configuration space and yields the best solution
across all homotopy classes. In the case of an overtaking scenario, this can be
an ad-hoc creation of a third lane, as shown in Fig. 4.6c.

4.1.5 Discussion

Fig. 4.7 shows the vehicles’ individual costs and longitudinal velocity profiles
generated by the different approaches. When comparing them, the individual
motion planning yields the highest overall costs. On the other hand, the
priority-based approach yields slightly lower collective costs, mainly because
big deviations from the reference velocities of any vehicle can be mitigated, see
Fig. 4.7b.

The major drawback of priority-based methods is that the vehicles do not
cooperate, e.g., the vehicle with the highest priority does not adapt its behavior
to any other vehicle even if small own disadvantages would enable others to
improve their trajectories significantly.

By creating an ad-hoc third lane, the proposed cooperative MIQP approach
yields the best solution, see Fig. 4.7c. This way, all vehicles can stick to their
reference velocities, and strong acceleration or deceleration can be avoided.

By looking at the costs, one can see that for individual as well as priority-
based planning, all costs were carried out by a single vehicle. In the MIQP
formulation, the costs are distributed among all vehicles, which leads to a
significant reduction in the overall costs for the ensemble.
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(a) Individual Planning
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(c) Cooperative MIQP Planning
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Figure 4.6: Solution trajectories of the three different motion planning approaches for the overtaking
scenario considered.

4.1.6 Summary

This section presented a cooperative multi-agent trajectory planner for general
driving scenarios. The algorithm generates globally optimal trajectories for
a group of automated vehicles. This is achieved by formulating the collision
avoidance constraints among vehicles and other objects via a set of binary
constraints. In combinationwith the chosen cost function and vehiclemodel, this
leads to a mixed-integer quadratic program MIQP. The numerical experiments
show that this formulation outperforms existing approaches and is able to
significantly lower the costs of a group of fully automated vehicles.

A major advantage of the presented MIQP formulation is that the entire
configuration space can be considered directly and no separation of maneuver
selection and trajectory optimization is required, see Section 2.3. This joint
consideration enables finding cooperative trajectories that might not be found
when using an a priori defined sets of maneuvers. This further makes the
approach scenario independent since all possible maneuvers, or homotopies in
the mathematical term, are implicitly considered.
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(a) Individual Planning

(b) Priority-Based Planning

(c) Cooperative MIQP Planning

Figure 4.7: The longitudinal velocities and the individual vehicles’ costs produced by the different
planning methods are shown. By creating an ad-hoc third lane, the cooperative MIQP
planner generates a solution that enables every vehicle to stick to its desired speeds.
This allows the cooperative MIQP approach to significantly lower the overall costs and
clearly outperforms the other two methods, which results in a more comfortable and
more efficient behavior for the ensemble.
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The MIQP formulation for the multi-agent motion planning problem thus
represents a hybrid approach that combines the advantages of global and local
methods. On the one hand, the globally optimal solution across all homotopies
is guaranteed, and on the other hand, a smooth, locally continuous solution is
obtained.
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4 Cooperative Interaction-Aware Motion Planning using Multi-Agent Trajectory Planning

4.2 Interaction-Aware Motion Planning for Mixed
Traffic

In this section, a framework to generate interaction-aware driving behavior
based on [BSL20] is presented. Both, the prediction and planning, are solved
simultaneously, enabling the automated vehicle to consider the effect its planned
actions might have on surrounding vehicles. Further, the framework is able
to cope with the uncertainty due to different ways a human driver might react
during interactions. Challenging driving maneuvers, like a merge in dense
traffic, see Fig. 4.8, can be performed, which would not be possible with pipeline
approaches.

At the core of the presented framework is the multi-agent trajectory optimization
method introduced in Section 4.1. Rather than to control all traffic participants,
the method is used to generate interaction-aware predictions of surrounding
vehicles.

Numerical experiments are performed to demonstrate the feasibility of the
approach.

Figure 4.8: A lane change in dense traffic is a challenging driving scenario where considering
interactions is crucial. Motion planners following a pipeline architecture often fail to
generate satisfying solutions in such scenarios.

4.2.1 The Approach

Overview

The ability to consider the effect own actions might have on the behavior of
others is crucial for driving in high traffic scenarios. The presented approach
approximates this by generating interaction-aware predictions via solving multi-
agent problems. The underlying assumption is that every traffic participant
considers the costs of others to some extent in its planning.
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4.2 Interaction-Aware Motion Planning for Mixed Traffic

In general, human drivers react differently in interactive scenarios. To capture
this, we assume that the different ways a human might react are due to
different underlying intentions. These intentions are modeled by differently
parameterized multi-agent planning problems. The intention modeling is the
subject of Section 4.2.1.

The intention of a human can not be measured directly and has to be estimated
from observations of the driving behavior. The estimation is done by generating
sample trajectories for the individual intention classes, which are then compared
to the observations of the real system. By the comparison, conclusions about
the underlying intention can be drawn. Here, the sample trajectories should
represent a typical driving behavior for the different intention classes. The
intention estimation is the subject of Section 4.2.1.

Based on the obtained probability distribution over the intentions, the ego
vehicle’s behavior is planned. The details are described in section Section 4.2.1.
An overview of the algorithm is illustrated in Fig. 4.9.

Intention Modeling

To drive naturally and safely in the vicinity of humans, automated vehicles need
to predict the behavior of surrounding traffic participants, including the actions
they might take in response to the future behavior of the automated vehicle.
Due to the complex and individual nature of human driving, these predictions
are subject to uncertainties. E.g., in Fig. 4.8 a driver on the highway might
slow down or close the gap as a response to a merge attempt of the automated
vehicle.

A common way to deal with these behavior uncertainties is to estimate a
probability distribution over a set of a-priory defined maneuvers the human
could perform [Ben+15]. The maneuvers are generally defined by hand, and
enumerating them is difficult, even if interactions with the automated vehicle
are neglected. Further, this approach is highly scenario dependent and not
easily transferable to unseen situations.

Instead of describing the predictions in terms of a set of possible maneuvers,
we assume that an underlying intention of the human can describe the behavior.
These intentions, I = I1, I2, ...., I |I | , are modeled as differently parametrized
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I1

I2

World

I|I |

.

.

.

Multi-Agent Trajectory Planning

Intention Estimation

PI

Trajectory Planning

u∗

z

δ, a

δ, a

Figure 4.9: Overview of the algorithm to generate interaction-aware trajectories. Different intentions
model the different ways a human might react during an interaction. The active intention
can not be measured directly and must be estimated. Based on the estimation, the ego
trajectory is planned.

multi-agent planning problems, more specifically, by different relative weighings
of the vehicles’ costs in the joint cost function Eq. (4.17). E.g., a human with
a cooperative intention might weigh the costs of others equally to its own; a
non-cooperative human, however, is more likely to weigh its own costs higher
than the one of others. Fig. 4.10 illustrates the evolution of the scene for
different intentions.

Thanks to the global solution character of the MIQP formulation developed
in Section 4.1, all maneuvers are implicitly considered and hence do not have
to be defined beforehand. This makes the intention formulation based on a
parameterized multi-agent planning problem more general and independent of
the specific traffic scenario.
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4.2 Interaction-Aware Motion Planning for Mixed Traffic

I1 = cooperative I2 = non-cooperative

Figure 4.10: Depending on the intention of the human, different evolutions of the traffic scene are
possible. On the left is the prediction in case the human has a cooperative intention.
On the right, the case with a non-cooperative intention is illustrated.

Intention Estimation

Without knowing which intention model the human is following, the vehicle can
not plan its trajectory. Further, the intention of the human can not be observed
directly but has to be estimated from observations of the behavior. To utilize
Bayesian estimation, sample trajectories are generated, representing common
driving behavior for the individual intentions. A probability distribution over
the underlying intention is obtained by comparison with the observations.

In the developed approach, any driver is assumed to act according to exactly one
of the intention models I = I1, I2, . . . , I |I | at any given time. To account for the
fact that drivers continuously re-evaluate the current traffic scene, the intention
can change between planning intervals. This is modeled by the intention switch
probability µ. The human behavior is thus modeled as a stochastic process over
|I | models, exactly one of them being active at a time.

The currently active intention is estimated by an interacting multiple model
(IMM) Kalman filter (KF), where each intention model Ii is described by
a separate KF. The prediction of the subsequent state in the filter is deter-
mined by applying the control u generated by solving the intention-specific
multi-agent trajectory planning problem. The posterior mode probabilities
PI = [PI1, PI2, . . . , PI|I | ]T are calculated through Bayesian statistics given the
observation z = [x1, x2, . . . ], the last posterior and the switching probability µ.

The individual steps of an IMM-KF are illustrated in Fig. 4.11. The task is
to estimate the intention of the grey vehicle. For this scenario, two intention
models are considered; one results in a lane change in front, the other in a lane
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1. Prediction

2. Observation

3. Update

5. Fuse Estimates

4. Mode ProbabilityUpdate
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µ2
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Pfused
k
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Figure 4.11: Individual steps of an IMM-KF iteration. The goal is to estimate the intention of the
grey vehicle during a merge scenario. The two considered intention classes result
either in a merging in front of the white vehicle or behind.

change behind the white vehicle. In the first step, the states and covariances of
every intention model are predicted. In the observation step, the actual state of
the vehicle is measured. Next, each prediction is updated separately according
to the observation. In the fours step, the mode probabilities are calculated
based on a likelihood function. Based on the probabilities and covariance of the
individual filters, a fused state is obtained. The resulting state and covariance
are used to initialize the next filter cycle.

Trajectory Planning

Based on the estimated probability distribution over the intentions PIi , a
trajectory for the ego vehicle needs to be determined. A common strategy is
only to consider the currently most likely model and optimize the ego behavior
accordingly. This driving strategy, however, has its drawbacks. Besides a
possibly frequent change in the ego behavior, intentions that are currently
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4.2 Interaction-Aware Motion Planning for Mixed Traffic

less likely are completely ignored, which could lead to uncomfortable or even
dangerous situations.

In contrast, the developed method considers all intention models Ii according
to their current probabilities. This is achieved by combining the different
multi-agent planning problems in a joint objective. The combination ensures
that intentions with lower probabilities also affect the trajectory of the ego
vehicle. E.g., if the current probability for I1 is only slightly lower than the
probability of I2, a driving policy selecting only the most likely model could
lead to high overall costs in the future. In contrast, considering all models, the
trajectory is adjusted early, and the expected overall costs are decreased.

Instead of optimizing a single trajectory over the entire horizon, the trajectory
is allowed to split into several trajectories associated with the different intention
models after a shared time tshared, or kshared in discrete time, see Fig. 4.12. This
separation mitigates the interdependencies between different intention models
and optimizes for different evolutions of the traffic scene.

xshared

x I1
x I2

Figure 4.12: The trajectory for the ego vehicle is generated considering all possible intentions of the
human driver. The planned trajectory splits after the common states xshared to mitigate
the interdependencies between different intention models. In the shown scenario, the
green trajectory plans for the case that the human has a cooperative intention, whereas
the blue trajectory optimizes for the non-cooperative case.

The underlying cost function is a weighted sum of the intention specific costs
JIi multiplied by their current probability PIi and is given as:

J =
|I |∑
i=1

PIi JIi (xshared, x
Ii
kshared+1:N, ushared, uIi

kshared:N−1) (4.18)

Here, xshared are the shared states for k = 1, ..., kshared and ushared are the shared
inputs for k = 0, ..., kshared − 1.
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4 Cooperative Interaction-Aware Motion Planning using Multi-Agent Trajectory Planning

The presented planning formulation represents a novel method to combine
several, in general opposing, maneuver hypotheses. Thanks to the MIQP
formulation’s ability to find the optimal solution across all homotopies, the
decision which maneuvers to choose is made implicitly by the optimizer based
on the expected costs. Therefore, no hand-designed decision heuristics or other
decision logic are needed. A more in detail evaluation is presented the following
chapter.

4.2.2 Evaluation

The focus of the evaluation is on the ability to perform driving maneuvers that
require the consideration of interactions as well as the ability to cope with the
uncertainty due to the different ways a human might react during interactions.
To showcase this, a challenging merge in dense traffic is considered.

The framework presented is a general formulation to create interaction-aware
driving behavior and allows for different implementations. A suitable one,
which builds upon the methods and models of Section 4.1, is presented and
used to conduct numerical experiments.

Scenario

To better demonstrate and visualize the method, the merge scenario in Fig. 4.8
is reduced to three vehicles, V1, V2, V3, see Fig. 4.13. The essential interaction

V 2 V 3

V 1

Figure 4.13: Lane change scenario considered for the evaluation. The automated vehicle, shown in
blue, has to change lanes due to the ending of the right lane. The gap betweenV 2 and
V 3 is too tight to perform a lane change right away. A joint consideration of prediction
and planning is essential to anticipate that a gap might open up through interaction.

happens between the ego vehicle, V1, and the human driver in V2 on the target
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4.2 Interaction-Aware Motion Planning for Mixed Traffic

lane. The interaction with V3 is neglected since we assume that no interactions
happen with traffic participants who are far behind.

Multi-Agent Formulation

The multi-agent planning problem used to generate the intention-specific
interaction-aware predictions is presented. It builds upon the formulation
presented in Section 4.1.1. The evaluation-specific adaptations and the used
parameters are presented next.

State Space The automated vehicleV1 is modeled as a third order point mass,
with state x1 = [p1

s, v
1
s, a

1
s, p1

d
, v1

d
, a1

d
]T ∈ R6 and input u1 = [ j1

s , j1
d
]T ∈ R2 in

longitudinal, s, and lateral, d, Frenét-coordinates. Since we assume that V2

will keep its lateral position and not perform a lane change, its dynamics can be
simplified. The model can then be reduced to only consider the longitudinal
direction. This leads to the state x2 = [p2

s, v
2
s, a

2
s]
T ∈ R3, the input u2 = j2

s ∈ R,
and a constant lateral position p2

d
. Since no interaction with V3 is considered,

it is modeled as a moving obstacle in the multi-agent problem for which an
independent prediction is performed, see Eq. (4.13e).

Lane ending The end of the right lane in Fig. 4.13 is enforced by the following
constraints:

p1
s,k ≤ send + (1 − δk)M

big
s (4.19)

p1
d,k ≥ dend − δkMbig

d
(4.20)

The binary variable δk, k = 1, . . . , N couples the two equations and enforces
that the automated vehicle is driving on the left lane, by excluding the right
lane from the solution space after send.

Safety distances The original MIQP formulation, presented in Section 4.1,
considers an ensemble of fully automated vehicles. This allows for coordinated
maneuvers and small safety distances. However, when driving in the vicinity of
humans, bigger safety distances are required.
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4 Cooperative Interaction-Aware Motion Planning using Multi-Agent Trajectory Planning

Instead of simply increasing the minimum distance values, ln,mmin and wn,m
min in

Eq. (4.12e), soft constraints are introduced, which cause additional costs if the
distance between two vehicles decreases below a certain threshold. To utilize
this, the collision avoidance constraints Eq. (4.12e) are modified by adding the
slack variables sn,m

i,k
≥ 0. The new set of constraints are given by:

pns,k − sn,m1,k ≤ pms,k − ln,mmin − ln,msoft + (1 − δ
n,m
1,k )M

big (4.21)

pns,k + sn,m2,k ≥ pms,k + ln,mmin + ln,msoft − (1 − δ
n,m
2,k )M

big (4.22)

pnd,k − sn,m3,k ≤ pmd,k − dn,m
min − dn,m

soft + (1 − δ
n,m
3,k )M

big (4.23)

pnd,k + sn,m4,k ≥ pmd,k + dn,m
min + dn,m

soft − (1 − δ
n,m
4,k )M

big (4.24)

(4.25)

The slack variable takes on values greater than zero if the respective constraint
is not fulfilled. The values ln,msoft and dn,m

soft define below which distance additional
costs appear. The conzept is visualized in Fig. 4.14.

Jn,m
soft

s

ln,mmin

vn vm

ln,msoft

σi

Figure 4.14: Penalty for approaching in s direction.

The penalty term considering the additional costs for each pair of vehicles is
given by:

Jn,m
soft =

N∑
k=1

4∑
i=1

σis
n,m
i,k

(4.26)
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4.2 Interaction-Aware Motion Planning for Mixed Traffic

The costs are added to the joint cost function, Eq. (4.17). For each of the four
vehicle sides, approaching is punished independently by the penalty factor
σi . This allows for, e.g., a stronger penalty in the lateral direction than the
longitudinal direction.

A big advantage of the introduced soft constraints is that the feasible set remains
unchanged, and all feasible solutions are preserved. This would not be the case
when simply increasing the minimum distances, and the problem might become
infeasible. Further, soft constraints have the additional benefit of increased
numerical robustness towards disturbances.

With the presented adaptations, the multi-agent optimal control problem (OCP)
can be stated as:

min
u{1,2}0:N−1,x

{1,2}
0:N ,s1,2

1:N

w1

(
N∑
k=1
‖x1

k − x1
k,ref‖Q1 +

N−1∑
k=0
‖u1

k‖R1

)
(4.27a)

+w2

(
N∑
k=1
‖x2

k − x2
k,ref‖Q2 +

N−1∑
k=0
‖u2

k‖R2

)
+ J1,2

soft(s
1,2
1:N )

s.t. :

x{1,2}k+1 = f(x{1,2}k , u{1,2}k ) k = 0, . . . , N − 1 (4.27b)

x{1,2}0 = x̂{1,2} (4.27c)

gdyn ≤ gdyn(x1
k) ≤ gdyn k = 1, . . . , N (4.27d)

gcol(x1
k, x

2
k, s

1,2
k ) ≤ 0 k = 1, . . . , N (4.27e)

gobs(x
{1,2}
k ) ≤ 0 k = 1, . . . , N (4.27f)

gend(x1
k) ≤ 0 k = 1, . . . , N (4.27g)

x ≤ x{1,2}k ≤ x k = 1, . . . , N (4.27h)

u ≤ u{1,2}k ≤ u k = 0, . . . , N − 1 (4.27i)

0 ≤ s1,2
k k = 1, . . . , N (4.27j)
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Here, s1,2
k = [s

1,2
1,k, s

1,2
2,k, s

1,2
3,k, s

1,2
4,k] are the slack variables introduced in Eq. (4.25),

and J1,2
soft(s

1,2
k ) denotes the penalty term introduced in Eq. (4.26).

Apart from the modified collision avoidance constraints gcol, the constraints
enforcing the lane ending gend, and the non-negativity constraint on the slack
variables, the constraints can be carried over from the formulation introduced
in the previous section, Section 4.1. Additional parameters for the optimization
are listed in Table 4.2.

T = 20 s, τ = 0.8 s
diag(Q1) = [0, 1, 2, 1, 2, 4]T , diag(R1) = [2, 2]T

diag(Q2) = [0, 1, 2]T , R2 = 2
x = [ f ree, 10 m

s , 3
m
s2 , 6 m, 2 m

s , 2
m
s2 ]

T , u = [3 m
s3 , 2

m
s3 ]

T

x = [0, 0, −4 m
s2 , 1 m, −2 m

s , −2 m
s2 ]

T , u = [−6 m
s3 , −2 m

s3 ]
T

l1,2soft = 10 m, d1,2
soft = 0.5 m

σ1 = σ2 = 20, σ3 = σ4 = 100

Table 4.2: Additional parameters used for the experiment.

Intention Models

Two different intentionsI = (I1, I2) are considered for the human driven vehicle.
I1 describes a cooperative intention where all vehicles’ costs are weighted
equally in the joint cost function Eq. (4.27a). I2 describes a non-cooperative
intention where the human driver weights its costs significantly higher, leading
to a more egoistic behavior.

The two intention-specific multi-agent problems are therefore modeled with a
weight ratio of w2/w1 = 1 for I1 and a ratio of w2/w1 = 100 for I2.

IMM-KF Parameters

Following [LLI12], an intention switching probability µ = 0.1 is used for the
IMM filter. The initial probability distribution is PI1 = 0.7 and PI2 = 0.3,
setting a slight bias towards assuming that most drivers will behave cooperatively.
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4.2 Interaction-Aware Motion Planning for Mixed Traffic

The measurements z = [s2, v2, s3, v3] consist of the position and the velocity of
V2 and V3.

Trajectory planning

The motion of the ego vehicle is generated by solving a linear combination of
both multi-agent formulations. The cost function can be stated as:

J = PI1

(
JV 1 + JV 2

)
+ PI2

(
JV 1 + 100JV 2

)
+ J1,2

soft (4.28)

where JV {1,2} are the individual vehicles’ costs, see Eq. (4.27a), and PI {1,2} are
the current probabilities of the intention models. For the experiments, tshared is
set to 4 τ.

Model of human drivers

To make conclusions about the transferability to real traffic, the Intelligent
Driver Model (IDM) [THH00] is used to simulate human behavior. The IDM
is a car-following model that generates a longitudinal acceleration command
which depends on the distance to the vehicle in front ∆s = sfront − s − l and the
velocity difference ∆v = v − vfront and can be stated as:

a =

(
1 −

(
v

vdes

)δ
−

(
s∗(v,∆v)
∆s

)2
)

(4.29)

with s∗(v,∆v) = s0 + vT +
v∆v

2
√

ab

The used parameters are stated in Table 4.3.

The intention-specific behavior is generated by the choice of the preceding
vehicle. If the human driver is non-cooperative, V3 is used as the front vehicle.
In case the human is cooperative, the automated vehicle is considered the front
vehicle, which leads to a yielding behavior.
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Parameter Discription Value

vdes desired velocity 5 m
s

s0 minimum distance 1.5 m
a maximum acceleration 1.0 m

s2

b comfortable braking deceleration 2.0 m
s2

T time headway 2.5 s
δ velocity exponent 4

Table 4.3: IDM parameters

Experiments

In the following, two experiments are presented. One where the human driver
has a non-cooperative intention, and one where it is willing to cooperate.
The planning of the automated vehicle is performed in a MPC fashion. As
mentioned, V2 is controlled with the IDM model. V3 is simulated with constant
velocity.

The vehicles are approximated by rectangles with length l = 5 m and width
w = 2 m. The initial and reference states used in the experiments are stated in
Table 4.4.

Initial state Reference State

V 1 x1
0 = [7.5 m, 5 m

s , 0
m
s2 , 1.75 m, 0 m

s , 0
m
s2 ]

T x1
ref = [free, 5

m
s , 0

m
s2 , 5.25 m, 0 m

s , 0
m
s2 ]

T

V 2 x2
0 = [0 m, 5 m

s , 0
m
s2 ]

T , p2
d
= 5.25 m x2

ref = [free, 5
m
s , 0

m
s2 ]

T , p2
d
= 5.25 m

V 3 x3
0 = [15 m, 5 m

s , 0
m
s2 ]

T , p3
d
= 5.25 m x3

ref = [free, 5
m
s , 0

m
s2 ]

T , p3
d
= 5.25 m

Table 4.4: Initial and reference states. As the table shows, all vehicles’ goal is to drive in the middle
of the upper lane.

Non-cooperative In the first experiment, the case that V2 has a non-
cooperative intention throughout the entire interaction is considered. Here, the
human driver will ignore the merge attempt of the automated vehicle. The
simulation results are shown in Fig. 4.15. As can be seen, the automated
vehicle approaches the gap initially, anticipating that a gap might open up.
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4.2 Interaction-Aware Motion Planning for Mixed Traffic

Over the evolution of the scene, the active intention is estimated correctly as
non-cooperative, making a merge in front not possible. As a result, V1 slows
down and performs the lane change behind V2.

81



4 Cooperative Interaction-Aware Motion Planning using Multi-Agent Trajectory Planning

P v
s

k k

d

s

P
I

1

P
I

2

Fi
gu

re
4.
15

:S
im

ul
at
io
n
re
su
lts

in
ca
se

th
e
hu

m
an

dr
iv
er

is
no

n-
co
op

er
at
iv
e.

Th
e
in
iti
al
sta

te
,t
he

en
d
sta

te
,a
nd

a
sta

te
in

be
tw
ee
n
ar
e
ad
de
d
fo
r

be
tte

ru
nd

er
st
an
di
ng

.A
ss

ee
n
in

th
e
m
id
dl
e
pl
ot
,t
he

in
te
nt
io
n
is
es
tim

at
ed

co
rr
ec
tly
.T

he
eg
o
ca
rs
lo
w
sd

ow
n
an
d
yi
el
ds
.

82



4.2 Interaction-Aware Motion Planning for Mixed Traffic

To give a better inside into the algorithm, the result of a single optimization is
shown in Fig. 4.16. After tshared, the trajectory splits representing the different
evolutions of the traffic scene depending on the intention Ii of the human driver
V2. In the case of a cooperative intention, the future evolution of the scene is
shown on the bottom left side. It is anticipated that the human will slow down
to allow for a merge in front. On the bottom right, the predicted evolution for
non-cooperative behavior is shown. In this future scenario, the ego vehicle has
to slow down to merge behind V2.

I1 I2

Figure 4.16: Result of a single MPC step during the execution of a lane change. In the beginning,
both intention models share the same states. After tshared, the trajectories deviate,
reflecting different future evolutions of the scene depending on the intention I i ofV 2.

Cooperative The result of the second experiment is shown in Fig. 4.17.
The automated vehicle starts with a bias towards cooperative behavior. After
observing the human behavior, the at first non-cooperative intention is estimated
correctly, and the ego vehicle slows down. At k = 7, V2 recognizes the merge
attempt, and the behavior becomes cooperative. The velocity plot shows that
V2 starts to slow down to enlarge the gap. The intention switch is detected,
and the automated vehicle anticipates that V2 will open the gap, enabling a
successful merge in front.
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4.2 Interaction-Aware Motion Planning for Mixed Traffic

Both scenarios show that the ego vehicle approaches the gap while continuously
updating the belief over the possible intentions. Further, the active intention is
estimated correctly in both scenarios, even though surrounding vehicles not
exactly follow the predicted sample trajectory associated with their intention.

4.2.3 Summary

In this section, a framework to generate interaction-aware driving behavior
for automated vehicles was presented. It builds upon the assumption that a
cooperative multi-agent problem can approximate interactions among traffic
participants.

Intention models based on differently parametrized multi-agent problems
were introduced to capture different ways a human might react. The MIQP
formulation presented in Section 4.1 makes the intention modeling scenario
independent, and no a-priory definition of maneuver classes is required.

The motion of the automated vehicle is based on the estimated probability
distribution over the intention models. Instead of solely optimizing for the
currently most likely model, the behavior is optimized for multiple evolutions of
the scene. This allows driving maneuver-neutral in case of an unclear intention.
The decision, e.g., to merge in front or behind, is implicitly postponed to a
later point in time. Further, the final maneuver decision emerges from the
optimization, and no hand-designed heuristic is required.

The experiments show that the ability to consider interactions enables the
automated vehicle to anticipate the reaction of surrounding traffic participants,
which allows for less conservative driving behavior. Combined with the
presented intention estimation, challenging driving maneuvers, like a merge in
dense traffic, can thus be performed, which would not be possible with pipeline
approaches.
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5 Interaction-Aware Motion
Planning as a Game

The previous chapter presented a model to plan interaction-aware behavior
based on a multi-agent system. This model relies on the assumption that all
traffic participants are cooperative and act towards a common objective. This
implies that humans are as interested in the automated vehicle (AV) reaching its
goal as they are in reaching their own. In real traffic, this might be problematic
since not all traffic participants follow this principle, e.g., egoistic drivers might
only optimize their own objective function. Further, due to the common cost
formulation, interactions are considered implicitly rather than as a direct link
between the AV’s actions and the human’s actions. For example, in a merging
scenario, a vehicle opening a gap does so to reduce the overall cost rather than
as a direct consequence of the merging vehicle approaching the gap.

In this chapter, we propose an algorithm based on a game-theoretic formulation
to consider interactions explicitly [Bur+22]. Thereby, the human driver (HD) is
assumed to only optimize its own objective function. We assume a turn-taking
structure in interactive scenarios, where the AV initiates an interaction and the
human reacts to the actions of the AV. This leads to a nested optimization
problem, where the HD’s optimization is an optimization inside the AV’s
optimization.

The presented formulation yields a direct link between the AV’s actions and the
actions the human will take as a response. This enables the AV to be aware of
how its actions effect the human and furthermore, provides the AV with the
possibility to deliberately influence the state of the human. In addition, this
link can be used to leverage interactions to plan more efficient trajectories, e.g.,
anticipating that a human will open a gap when merging in dense traffic, which
in turn allows for a smoother merge.

The chapter begins with stating the game-theoretic problem formulation for
interaction in the considered AV-HD system. In Section 5.2, this game-
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theoretic formulation is approximated by a bi-level optimization problem.
Section 5.3 presents the single-level reformulation of the bi-level problem,
which is necessary to efficiently utilize derivative-based optimization methods.
In Section 5.4, the capabilities and the performance of the proposed algorithm are
evaluated in different driving scenarios. A proof-of-concept model predictive
control (MPC) implementation is proposed that delivers promising results and
real-time performance. It is demonstrated that using the presented algorithm,
an AV is able to plan interaction-aware trajectories to deliberately influence
the state of the human and further, is able to plan more efficient trajectories
by considering interactions. In addition, the runtime and the robustness of the
algorithm are evaluated. Finally, Section 5.5 discusses the major assumptions
and limitations of the proposed algorithm.

5.1 Problem Statement

This section develops a model based on a game-theoretic formulation that
directly captures interactions between a AV and a HD. Therefore, we model
the interaction between two agents as an asymmetric decision-making process,
where one agent, considered the leader, decides on its action first and a second
agent, the follower, then optimizes its response to the leader’s action. This
hierarchical structure is also referred to as a Stackelberg game. In the following,
we will use a notation similar to the one used in [Sad+16b].

We consider a system with one AV, representing the leader L, and one HD,
representing the follower F. The system’s state at time t is given by the leader’s
and follower’s state xL

t , xFt ∈ X, where X is the set that contains all possible
states. The leader’s and follower’s actions are described by their trajectories
ξL(t), ξF (t) : [0,T] → X. Further, each agent has its individual objective
function denoted by JL and JF .

The objective is minimized subject to the vehicle’s initial state ξ(0) = x0 and
the evolution of the state described by the trajectory, which is only allowed
to pass through the set of feasible states Xfeasible(t) ⊆ X. Xfeasible(t) encodes,
for instance, collision avoidance. Additionally, system dynamics and bound
constraints can be enforced by D(ξ(t), Ûξ(t), Üξ(t), . . . ) = 0. The set of all feasible
trajectories ξ(t) is denoted by Ξ.
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5.2 Bi-level Formulation

Due to the turn-taking assumption, the follower optimizes its own trajectory
as a response to the leader’s trajectory. To do so, the follower predicts the
leaders’s future motion ξ̃L and then plans by minimizing its objective function
JF considering these predictions. Therefore, the follower’s optimal trajectory
can be described as:

arg min
ξF ∈ΞF

JF (xL
0 , x

F
0 , ξ̃L, ξF ) (5.1)

For simplicity, we assume that for short time horizons, a human can predict
the trajectory of the AV sufficiently well, such that the prediction ξ̃L can be
assumed to be the actual trajectory ξL of the AV. Hence, the optimal trajectory
of the follower as a function of the leader’s actual trajectory ξL is given as:

ξ∗F (x
L
0 , x

F
0 , ξL) = arg min

ξF ∈ΞF

JF (xL
0 , x

F
0 , ξL, ξF ) (5.2)

Equation (5.2) gives the leader the ability to reason about how its actions will
influence the follower’s response and therefore, provides a way to indirectly
control the follower’s future trajectory.

With this link between the leader’s actions and the follower’s actions the optimal
trajectory for the AV can be stated as:

ξ∗L = arg min
ξL ∈ΞL

JL
(
xL

0 , x
F
0 , ξL, ξ

∗
F (x

L
0 , x

F
0 , ξL)

)
(5.3)

Equation (5.3) is the fundamental model which enables the planning of
interaction-aware behavior.

5.2 Bi-level Formulation

If the follower’s best response to the leader’s actions can be stated in closed form,
Eq. (5.3) can be solved as a standard optimal control problem (OCP). However,
this is, in general, not the case since ξ∗F is the outcome of an OCP itself, which
results in a nested optimization, also referred to as a bi-level optimization
problem, see Fig. 5.1. Further, solving the underlying Stackelberg game would
require planning until T , which is the end of an interaction. However, the end
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of an interaction is not trivial to determine and requires the consideration of a
varying time horizon.

In the following, we propose an approximate solution to Eq. (5.3) based on
MPC, where we solve the problem on a receding horizon with a fixed length T ,
execute the first action and then replan. We utilize multiple shooting methods
and discretize the time horizon t ∈ [0,T] into N = T/τ intervals, where τ
denotes the duration of the time steps. To improve readability, we subsume
the state and input sequences of the leader and follower as x := (x1, . . . , xN )

and u := (u0, . . . , uN−1). In the following, the resulting nonlinear programs
(NLPs) of the follower and leader are stated. The equality constraints h can
be used to represent constraints imposed by the system dynamics while the
inequality constraints g collect bound constraints, collision constraints, and
dynamic constraints.

5.2.1 NLP of the Follower

The follower’s NLP is parametrized by the leader’s states and inputs (xL, uL)

and can be formulated as:

arg min
xF ,uF

JF (xL, xF, uF ) (5.4a)

s.t. hF (xF, uF ) = 0, (5.4b)

gF (xL, xF, uF ) ≤ 0 (5.4c)
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Figure 5.1: Structure of a bi-level optimization problem. Here, the follower optimizes its objective
function as a response to the given actions of the leader.
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5.2.2 NLP of the Leader

The leader’s bi-level optimization problem can be stated as:

arg min
xL,xF ,uL,uF

JL(xL, xF, uL) (5.5a)

s.t. hL(xL, uL) = 0, (5.5b)

gL(xL, xF, uL) ≤ 0, (5.5c)

(xF, uF ) ∈ arg min
xF ,uF

{JF (xL, xF, uF ) : hF = 0, gF ≤ 0} (5.5d)

Formulating the follower’s optimization problem as a constraint, Eq. (5.5d),
ensures that only optimal solutions for the follower are considered feasible
solutions when optimizing the leader’s trajectory.

5.3 Single-Level Representation

To efficiently solve Eq. (5.5a), we first reformulate the bi-level optimization
problem into a regular, single-level problem. Therefore, we utilize the assump-
tion that the follower will act optimally with respect to its own cost function
Eq. (5.4). This allows to replace the inner optimization problem with its
necessary conditions for optimality.

If the follower’s problem is convex, the Karush Kuhn Tucker (KKT) conditions
are necessary and sufficient for optimality. However, due to the combinatorial
nature of driving it is, in general, non-convex, e.g., due to non-linear collision
avoidance constraints or a non-convex cost function. To obtain a locally optimal
solution, we convexify the follower’s problem around an initial guess, which at
the same time encodes the considered homotopy class. For the convexification,
the constraints are linearized, and the cost function is approximated by a second
order Tailer expansion.
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5.3 Single-Level Representation

Henceforth, the bi-level optimization problem Eq. (5.5) is reformulated as a
single-level problem by replacing the follower’s optimization problem Eq. (5.4)
with its KKT conditions, resulting in:

arg min
xL,xF ,uL,uF ,λ,µ

JL(xL, xF, uL) (5.6a)

s.t. hL(xL, xF, uL) = 0, (5.6b)

gL(xL, xF, uL) ≤ 0, (5.6c)

∇(xF ,uF )L(xL, xF, uF, λ, µ) = 0, (5.6d)

hFlin (x
L, xF, uF ) = 0, (5.6e)

gFlin (x
L, xF, uF ) ≤ 0, (5.6f)

µ ≥ 0, (5.6g)

µ⊥gFlin (x
L, xF, uF ) (5.6h)

with the Lagrangian

L(xL, xF, uF, λ, µ) = JFcon (x
L, xF, uF )

+λThFlin (x
L, xF, uF ) + µTgFlin (x

L, xF, uF )

Here, λ and µ are the KKTmultipliers and hFlin, gFlin and JFcon are the constraints
and objective after the convexification. For the reformulation, we assume
sufficient regularity of the follower’s NLP, differentiability of hF and gF , and
the cost function JF to be twice differentiable.

5.3.1 Solving the Complementarity Constraints

The leader’s NLP in Eq. (5.6) forms an instance of a mathematical program
with complementarity constraints. Due to the complementarity constraints
µ⊥gF , MPCCs are non-smooth and non-convex problems. They are particularly
challenging to solve because at every feasible point, ordinary constraint qualifiers
(CQ) such as LICQ or Mangasarian-Fromovitz CQ are violated [CKA95]. To

93



5 Interaction-Aware Motion Planning as a Game

solve the MPCC, we reformulate it using relaxation methods [HKS13]. Here,
the complementarity constraints Eq. (5.6h) are relaxed as follows:

− ε ≤ µTgF . (5.7)

With ε > 0 a regularized NLP is obtained, and CQ can be satisfied again.
Further, the smaller ε is chosen, the closer any feasible solution is to achieving
complementarity. However, if ε is chosen too small, the problem may be
numerically unstable and the solver will fail to find a feasible solution.

5.4 Evaluation

In the following, the proposed algorithm is evaluated in multiple interactive
scenarios. The algorithm’s efficacy is evaluation in two settings, each with
a different focus. As claimed at the beginning of this chapter, the proposed
algorithm provides the AV’s with a direct link between its actions and the
HD’s actions which allows the AV to be aware of how its actions affect the
HD. The first part of the evaluation, Section 5.4.3, will investigate this link by
demonstrating the AV’s ability to deliberately influence the HD’s state through
its driving behavior. Since in real driving applications, the goal of the AV is
to drive efficiently and comfortably rather than to influence the state of other
vehicles, the focus of the second part, Section 5.4.4, is to demonstrate how the
approach can be used to plan interaction-aware, cooperative driving behavior.

Apart from the efficacy, the algorithm’s robustness is empirically evaluated
using Monte Carlo simulations. This is followed by a runtime analysis and a
discussion highlighting the advantages and limitations of the algorithm.

The section starts by stating the OCP used for trajectory optimization. This
OCP contains the system dynamics, bound constraints, as well as an objective
function to encode desirable driving behavior. For the purpose of this evaluation,
we assume that a good approximation of a human cost function is provided,
which could be obtained, e.g., via inverse reinforcement learning.
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5.4.1 Trajectory Optimization for AVs

The OCP used for trajectory planning can be stated as:

arg min
x,u

Jbase = arg min
x,u

Jx + Ju + JÛu (5.8a)

s.t. :
xk+1 = f(xk, uk) k = 0, . . . , N − 1 (5.8b)
x0 = x̂ (5.8c)
gdyn ≤ gdyn(xk) ≤ gdyn k = 1, . . . , N (5.8d)

gcol(xFk , x
L
k ) ≤ 0 k = 1, . . . , N (5.8e)

gobs(xk) ≤ 0 k = 1, . . . , N (5.8f)
x ≤ xk ≤ x k = 1, . . . , N (5.8g)
u ≤ uk ≤ u k = 0, . . . , N − 1 (5.8h)

The objective function Jbase is used to generate a desirable driving behavior
and consists of the three components Jx, Ju, JÛu, penalizing deviations from a
desired state, any control effort, and any changes in control, respectively.

In contrast to Chapter 4, a more accurate vehicle model is used and the restriction
to a Frenet frame is released. Additional, gdyn limit the lateral acceleration to
ensure that the vehicle model stays valid. The inequality constraints Eq. (5.8e-
5.8h) are used for collision avoidance and to account for physical limitations of
the real system. The individual components of the OCP are described in the
following.

Vehicle Model

The kinematic single-track model was chosen to describe the dynamics of the
vehicles. The vehicle state at time k, xk = (xk, yk, ψk, vk), is described by the
lateral and longitudinal position (x, y) of the vehicle’s center of gravity, the
orientation ψ, and the absolute velocity v. Together with the input uk = (δk, ak)
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consisting of steering angle δ and acceleration a, the dynamics of a vehicle are
given by:

Ûxk =
©­­­«
Ûxk
Ûyk
Ûψk

Ûvk

ª®®®¬ =
©­­­«
vk cos(ψk + βk)
vk sin(ψk + βk)

vk
l tan(δk) cos(βk)

ak

ª®®®¬ (5.9)

Here, β is the slip angle which is given by β = arctan
(
lr
l tan(δ)

)
.

Further, l is the wheelbase, and lr is the distance between the center of gravity
and the rear axis. A discrete dynamics model xk+1 = f (xk, uk) is obtained
using a fourth-order Runge-Kutta method.

To ensure the validity of the kinematic single-track model [Pol+17], gdyn(xk)
Eq. (5.8d) are introduced to limit the lateral acceleration as follows:

|vk Ûψk | = |
v2
k

l
tan(δk) cos(βk)| ≤ alat,max = 4 m

s2
(5.10)

Additionally, realistic dynamics are enforced by bound constraints on the states
Eq. (5.8g) and inputs Eq. (5.8h). Further, to limit the jerk, the following
constraints on the acceleration change are introduced:

jmin ≤
ak − ak−1

τ
≤ jmax (5.11)

Here, jmin and jmax are the minimum and maximum allowed jerk values.

Collision Avoidance

The collision avoidance constraints between vehicles are formulated by approxi-
mating the shape of one vehicle by a finite number of circular primitives and the
second vehicle with a single ellipsoidal primitive, see Fig. 5.2. Representing
one vehicle by an ellipsoidal primitive significantly reduces the total number of
constraints compared to a formulation that solely relies on circular primitives
while still being easy to compute.
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Instead of regular ellipses, superellipses are used in this work. They provide a
more accurate approximation of the vehicle’s rectangular shape [Ne+17].

(a) (b)

Figure 5.2: Shape approximations by a) multiple circles and b) a superellipse of order n = 4.

Collision avoidance between a point p = [x, y]T and a superellipse defined by
the semi-major a, the semi-minor b, and order n ∈ N can be formulated as:

n

√( x
a

)n
+

( y
b

)n
≥ 1 (5.12)

Note that the position of the point p is given in the coordinate system of the
superellipse.

Collision avoidance between a circle with radius r and a superellipse can
similarly be formulated as a point mass constraint on the center point of the
circle pc = [xc, yc]T . This is achieved by modifying Eq. (5.12) to ensure that
pc is outside the Minkowski sum of the superellipse and a circle with radius r

2 ,
as illustrated in Fig. 5.3.

The Minkowsi sum is approximated by an enlarged superellipse to maintain an
efficient formulation. In the case of a superellipse of order n = 4, enlarging
the semi-major and semi-minor by the radius r is sufficient to overapproximate
the Minkowski sum, as can be seen in Fig. 5.3. Hence, the collision avoidance
constraint between a circle and a superellipse can be stated as:

n

√( xc
a + r

)n
+

( yc

b + r

)n
≥ 1 (5.13)
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The center point of the circle pc is, again, given in the coordinate frame of
the superellipse. Note that depending on the order, the superellipse has to be
enlarged further to fully contain the Minkowski sum [Bri+19].

r

r
2

Figure 5.3: Comparison of the Minkowski sum, shown in blue, and a superellipse with the semi-
major and semi-minor enlarged by r , shown in red. The original superellipse is shown
in grey.

Objective Function

We use the cost function in Eq. (5.14) to penalize any control effort, changes in
control, as well as deviations of the current state to a desired reference state or
trajectory xref = [xk,ref, yk,ref, ψk,ref, vk,ref]

T .

Jbase(x, u) = Jx + Ju + JÛu (5.14a)

=

N∑
k=1

©­­­«
xk − xk,ref
yk − yk,ref
ψk − ψk,ref
∆v

ª®®®¬
T

Q
©­­­«

xk − xk,ref
yk − yk,ref
ψk − ψk,ref
∆v

ª®®®¬ (5.14b)

+

N−1∑
k=0

uk
T Ruuk (5.14c)

+

N−1∑
k=1
(uk − uk−1)

T R Ûu(uk − uk−1) (5.14d)

+ (u0 − û)T R Ûu(u0 − û) (5.14e)
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With the velocity vector v = [v cos(ψ+ β), v sin(ψ+ β)]T and the road tangential
unit vector t, ∆v = v · t − vref measures the difference between the current
velocity along the road and the reference velocity vref. Further, û is the control
input from the previous step. Finally, Ru ,R Ûu and Q are weighting matrices used
to model the desired driving behavior.

5.4.2 Base Scenario

We evaluate our approach in multi-lane scenarios as shown in Fig. 5.4, where
the AV is depicted in blue and the HD is depicted in gray. For the purpose of
these experiments, the AV is considered the leader, and the HD is considered
the follower. In the following, we will use the terms leader and AV as well as
follower and HD interchangeably.

Both vehicles have a width of 2.0 m and a length of 4.0 m. Collision avoidance
is implemented using a superellipse of order n = 4 for the leader and two circles
for the follower. Further parameters are given in Table 5.1.

Straight road

Merge

Figure 5.4: Depending on the experiment, either a multi-lane or a merging scenario, where the
right lane ends, is considered.

The follower directly uses the cost function Eq. (5.14) for its trajectory planning
with the weights and vehicle characteristics given in Table 5.1. The leader’s
OCP is also based on the objective function Jbase but additionally considers
the KKT conditions of the follower’s OCP as constraints, as stated in Eq. (5.6).
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Parameter Value

N 30
T 6 s
Q diag(0, 1, 0, 100)
Ru diag(1, 1)
R Ûu diag(10000, 1000)
vmin, vmax 0 m

s , 30 m
s

δmax 30°
amin, amax −8 m

s2
, 3 m

s2
jmin, jmax −10 m

s3
, 6 m

s3
l 4 m
lr 2 m

Table 5.1: MPC parameters

Further, the leader’s objective function is augmented with additional cost terms
to set scenario-specific incentives.

If not stated otherwise, the initial and reference states listed in Table 5.2 are
used for the leader and follower.

Parameter Value

xL
0 [12.0 m, 3.0 m, 0◦, 10.0 m

s ]
T

xF0 [2.0 m, 5.0 m, 0◦, 10.0 m
s ]

T

xL
ref = xFref [0.0 m, 5.0 m, 0◦, 10.0 m

s ]
T

Table 5.2: Leader’s and follower’s initial and reference states.

5.4.3 Influence the Human’s State

The following two experiments investigate the leader’s ability to influence the
follower’s state. To provide the appropriate incentives, the leader’s objective
function is augmented with Jinfluence. The leader’s objective is, therefore, the
following weighted sum:

JL = wL Jbase + winfluenceJinfluence (5.15)

Henceforth, a ratio of winfluence
wL

= 107 is used.
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Slow down the Human

In this experiment, the leader’s goal is to slow down the follower to a certain
velocity. To incentivize this behavior, deviations of the follower’s velocity
along the road to a certain reference velocity vFref are penalized in the leader’s
objective function. Therefore, the scenario-specific Jinfluence is set to

Jinfluence =
N∑
k=1
(vFk · tk − v

F
ref)

2 (5.16)

with v = [v cos(ψ + β), v sin(ψ + β)]T and t as the road tangential unit vector.

The resutls for a desired velocity of vFref = 5.0 m
s are illustrated in Fig. 5.5. As

can be seen, the leader changes to the left lane to get in front of the follower.
Despite its interest in driving fast, the leader then starts to brake, forcing the
follower to slow down. To prevent the follower from overtaking, the leader
drives close to the center of the road. The corresponding velocity profiles are
presented in Fig. 5.6.

t = 0.0 s

vL = 10.0 m
s

vF = 10.0 m
s

t = 1.2 s

vL ≈ 4.4 m
s

vF ≈ 6.5 m
s

t = 6.0 s

vL ≈ 5.0 m
s

vF ≈ 5.0 m
s

Figure 5.5: The leader drives in front and starts braking to slow down the follower.
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Velocity

[s]
0.0

0.0 2.0 4.0 6.0 8.0

5.0

15.0

10.0

[ms ]

time

Figure 5.6: As can be seen, the leader is able to slow down the follower to the desired velocity of
vFref = 5.0 m

s .

Push the Human to the Adjacent Lane

In this experiment, the ability to also influence the follower in the lateral
direction is investigated. Therefore, a 3-lane road is considered, see Fig. 5.7.

The leader’s goal is to enforce a lane change of the human to the adjacent left
lane. This incentive is encoded by setting Jinfluence to penalize deviations of the
follower’s lateral position to a reference yFref as:

Jinfluence =
N∑
k=1
(yFk − yFref)

2 (5.17)

Fig. 5.7 shows the behavior for yFref = 8.5 m, which corresponds the center of
the adjacent lane. To push the follower to the left, the leader changes lanes and
slows down, almost comming to a full stop, see Fig. 5.8. The leader thereby
blocks the middle lane, which forces the follower to also slow down to avoid
a collision. To continue, the follower starts an overtaking maneuver. At the
same time, the leader accelerates again to stay next to the follower, blocking
him from changing back to his original lane.
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vF = 10.0 m
s

vL = 10.0 m
s

t = 0.0 s

t = 1.5 s
vF ≈ 4.1 m

s

vL ≈ 2.2 m
s

t = 6.0 s
vF ≈ 9.9 m

s

vL ≈ 9.8 m
s

Figure 5.7: The leader pushes the follower to the leftmost lane by blocking the middle lane.

time
[s]0.0

0.0 2.0 4.0 6.0 8.0

5.0

15.0

10.0

[ms ]
Velocity

Figure 5.8: The leader changes lanes and brakes harshly to enforce an overtaking maneuver of
the follower. As soon as the follower tries to overtake, the leader accelerates again,
blocking the follower from changing back to the middle lane.
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5.4.4 Interaction-Aware Trajectory Planning

In real traffic, the primary goal of the AV is to drive comfortably and efficiently
rather than to change the state of surrounding vehicles in a certain way.
Therefore, the generated behaivor when planning trajectories with the proposed
interaction-aware algorithm in different lane cahnge sceaniros is investigated
next. To better show the effect of the planned behavior, the desired velocity of
the follower is increased to vFref = 15.0 m

s . Throughout the scenarios, the leader
aims to perform a lane change to the left.

Efficient Planning

We start by formulating the leader’s objective in an egocentric way, similar to
how it is formulated for pipeline planners. Here, the leader solely considers
attributes of its own trajectory, formulated by only optimizing Jbase.

The resulting trajectories are shown in Fig. 5.9. As can be seen, the leader
plans a very efficient lane change whithout any acceleration. However, as a
response, the follower has to brake harshly to avoid a collision, see Fig. 5.10.
This aggresive cut in is a result of the leader knowing that the follower will
react, which the leader then exploits to optimize its own driving behavior.

This example shows that interactive behavior not only occurs when the leader is
incentivized to alter the state of the follower but also emerges out of efficiency.

Cooperative Interaction-Aware Planning

The proposed interaction-aware model gives the leader the ability to anticipate
the follower’s reaction. When naively using an egocentric objective function,
the leader exploits the follower’s response and generates an overly aggressive
behavior, as demonstrated in the previous example.

To mitigate this effect, the impact imposed on others must be considered in
the objective function of the leader. Therefore, a formulation based on a
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t = 0.0 s

vL = 10.0 m
s

vF = 15.0 m
s

t = 2.4 s

vL ≈ 10.0 m
s

vF ≈ 9.3 m
s

vL ≈ 10.0 m
s

vF ≈ 10.0 m
s

t = 6.0 s

Figure 5.9: When only considering its own costs, the leader performs an aggressive lane change.

Velocity

[s]0.0
0.0 2.0 4.0 6.0 8.0
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Figure 5.10: While the leader can perform a smooth lane change without accelerating, the follower
has to brake harshly to avoid a collision.

cooperative cost function that includes the leader’s and follwers’s cost in the
leader’s objective is considered in the following:

Jcooperative = αJF,base + (1 − α)JL,base (5.18)
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In this formulation, the variable α ∈ [0, 1] determines to which extent the
leader’s and the follower’s cost are considered. Therefore, α provides a way
to design different driving behaviors, ranging from overly aggressive to overly
conservative.

The impact the parameter α has on the generated behavior is investigated in
the following. Therefore, we consider a scenario including a mandatory lane
change for the leader, see Fig. 5.11. The different α-dependent acceleration and
velocity profiles for α = 0.0, α = 0.5 and α = 0.99 are illustrated in Fig. 5.12.

In detail, for α = 0.0, the leader does not accelerate, and all the discomfort has
to be carried out by the follower. This represents the aggressive, egocentric
behavior presented in the previous experiment. With a larger α, the leader
increases its acceleration until reaching the acceleartion limits. In the case of
α = 0.99, the leader mostly considers the follower’s cost and tries to intervene
with its optimal plan as little as possible. This value of α generates a very
conservative behavior similar to a predict-then-plan approach. With α = 0.5,
the leader’s and the follower’s cost are considered equaly, which leads to an
approximtly equal distribution of discomfort. Note however, that, besides
adjusting the acceleration during the lane change, the leader also adapts its
stationary velocity depending on α.

Courtesy Constraints

The cooperative cost formulation presented in the previous experiment has the
side effect that for α > 0.0, the leader permanently drives faster than its desired
velocity vLref. For some scenarios, e.g., overtaking a slow-moving truck on the
highway, a temporal increased velocity might be acceptable or even desirable
for traffic efficiency. However, in most situations, a vehicle in front does not
adapt its velocity to the desires of rear traffic.

An alternative to the cooperative cost formulation is introducing courtesy
constraints. With these constraints, the leader’s impact on others can be limited
without altering the leader’s objective function.
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vL = 10.0 m
s

vF = 15.0 m
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vF ≈ 9.1 m
st = 2.4 s

vL ≈ 13.0 m
s
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vF ≈ 14.7 m
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α = 0.99

α = 0.5

α = 0.0

Figure 5.11: Scenario where the leader has to perform a lane change to the left. Depending on the
value of α, different behaviors are generated, ranging from overly aggressive to overly
conservative.

In this experiment, we introduce a constraint such that the leader is allowed
to, at max, cause a deceleration of alimit to the follower. To enforce this, the
following constraints are added to the leader’s OCP:

gcourtesy,k = aF
k − alimit ≥ 0 (5.19)

Here, aF
k
is the acceleration of the follower.

The effect of the courtesy constraint with alimit = −2.0 on the considered
merging scenario is illustrated in Fig. 5.13. By introducing the constraint,
the leader accelerates during the lane change, which successfully limits the
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Figure 5.12: Depending on the value of α different acceleration and velocity profiles are obtained.
Thereby, the langerα is, themore discompfort the leader accepts. Further, with different
α the vehicles approach different stationary velocities which might significantly differ
from their desired velocities.
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induced deceleration to −2.0 m
s2 . The velocity profiles are shown in Fig. 5.13b.

Compared to the cooperative cost formulation, the leader returns to its desired
velocity of 10.0 m

s after the successful merge.
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Figure 5.13: Acceleration a) and velocity b) profiles when planning with the courtesy constraints.
Introduced these constraints into the leader’sOCPgenerates a behavior that successfully
limit the follower’s deceleration to alimit = −2.0. Futher, after the merge is complited,
the leader returns to its desired veloctiy.

Both, the cooperative cost and the courtesy constraint method have traffic
scenarios where they are particularly suited to generate a desirable driving
behavior. E.g., when overtaking a slower driving vehicle on the highway, the
cooperative cost formulation might be more suitable as it leads to a temporal
increase in velocity. In contrast, for a merging scenario or a permanent lane
change, the courteous constraint method might be the better choice since the
leader returns to its desired velocity after the merge is completed.

5.4.5 Robustness Analysis

We perform Monte Carlo simulations to evaluate the robustness of the bi-level
planner in different traffic scenarios. Randomness is introduced by perturbing
the initial state of the leader and follower. More specifically, we uniformly
sample the initial state perturbations from the intervals given in Table 5.3. For
the following experiments, we solve 100 OCPs. We consider the same traffic
situation and parameters as in the previous experiments. Further, we use the
parameters and initial states stated in Table 5.1 and Table 5.2 if not mentioned
otherwise.

109



5 Interaction-Aware Motion Planning as a Game

Parameter Value

x0 ±1.0 m
y0 ±0.25 m
φ0 ±5.0◦

v0 ±5.0%

Table 5.3: Perturbation of the leader’s and follower’s inital states.

We first consider a scenario where the leader’s focus is to alter the state of the
follower. Therefore, the leader’s objective is formulated to bring the follower to
a full stop. This is achieved using the cost function presented in Eq. (5.16) with
vFref = 0.0.

Fig. 5.14 shows that the leader generates a trajectory that successfully slows
down the follower to a full stop for each sampled initial state.

(a) Trajectories of the leader and follower.

Velocity

[s]

0.0

0.0 2.0 4.0

5.0

15.0

10.0

[ms ]

time
(b) Velocities of the leader and follower.

Figure 5.14: Results of the Monte Carlo simulation for 100 randomly sampled initial states. The
leaders objective is to bring the follower to a full stop.

Next, a merging scenario where the leader plans its behavior applying the
courtesy constraint method is considered. The leader starts from the right lane
and performs a lane change to the left. The follower has an increased desired
velocity of vFref = 15.0 m

s . All other parameters are stated in Table 5.1. The
maximum allowed induced deceleration is alimit = −2.0.

The results of the Monte Carlo simulation are illustrated in Fig. 5.15. As shown
in Fig. 5.15a, the proposed algorithm reliability solves the merge problem.
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(a) Trajectories of the leader and follower.
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(b) Acceleration of the leader and follower.

Figure 5.15: Results of the Monte Carlo simulation for 100 randomly sampled initial states
considering a merging scenario including courtesy constraints. As can be seen, the
follower’s deceleration is reliably limited to alimit = −2.0.

Further, all obtained solutions satisfy the introduced courtesy constraints and
limit the impact imposed on the follower to −2.0 m

s2 , see Fig. 5.15b.

Even though the formulated bi-level optimization problem is highly nonlinear
and non-smooth, the empirical data suggests that the proposed algorithm is
able to robustly solve interactive traffic scenarios.

5.4.6 Runtime Experiments

The presented method for interaction-aware trajectory planning computes an
open-loop solution for the AV. More precisely, the control inputs are functions
of time and not of the state. To adapt to unforeseen changes in the environment,
the algorithm needs to run in an MPC fashion. For MPC, a sufficiently high
update rate is crucial. Therefore, we analyze the performance of the algorithm
with a proof of concept MPC implementation.

TheMPCwas implemented in Python. All necessary derivativeswere calculated
using the open-source software CasADi [And+19]. CasADi utilizes automatic
differentiation methods to accurately calculate the derivatives. Compared to,
finite difference methods, automatic differentiation is faster and more accurate.
Further, IPOPT [WB06] was used to solve the formulated NLPs. IPOPT is a
general-purpose solver for large-scale nonlinear problems. We cold started the
IPOPT solver with a feasible solution of the desired driving maneuver, which
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5 Interaction-Aware Motion Planning as a Game

we obtained by sequentially solving a single vehicle OCP, as in Eq. (5.8), first
for the leader and then for the follower. This initialization was only performed
for the very first iteration of the planner. All subsequent iterations were warm
started with the solution of the previous iteration. To get a better initial guess,
the previous solution was shifted by the duration between the planning iterations.

The timing results were obtained by considering a merging scenario, with
the two most relevant methods for the application to real traffic, namely, the
cooperative cost function method, with α = 0.5 and the courtesy constraints
method, with alimit = −2.0. We simulate each method for 9.0 s. A horizon
length of N = 30 steps is considered for the MPC. Further parameters were
taken over from Table 5.1. The runtime results are obtained by running the
MPC implementation 100 times on the merging scenario with both methods.
The mean computation time over the 100 simulation runs are shown in the
histogram in Fig. 5.16. Additionally, the mean and standard deviation of the
mean computation times are listed in Table 5.4. All timing results were obtained
on an Intel Core i7-8565U CPU with a clockrate of 1.80GHz.
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(a) Cooperative cost method
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(b) Courtesy constraint method

Figure 5.16: Mean computation times obtained by running the MPC implementation 100 times on
the merging scenario with the cooperative cost and the courtesy constraint method.

Even though the experiments were conducted with an MPC implementation
that leaves great potential for improvements, we could already demonstrate our
algorithm’s real-time capability with mean computation times of 96.82 ms and
83.85 ms, respectively. The presented results can be considered a conservative
estimate of the achievable performance. However, in the future, this could be
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Method µ σ

cooperative cost 96.82 ms 2.61 ms
courtesy constraints 83.85 ms 5.50 ms

Table 5.4: Mean and standard deviation of the mean computation times obtained by running the
MPC implementation 100 times.

greatly improved by utilizing tailored solvers and implementing the approach
in a high-performance programming language, e.g., C++.

5.5 Algorithm Discussion

A core assumption that we made to obtain the model for interaction-aware
planning, stated in Eq. (5.3), is that the human does not try to influence the
AV but rather reacts to its actions. According to [Sad+16b; Sad+18], this is a
valid assumption for a wide range of interactive scenarios. Further, compared
to a Nash equilibrium, it might even be the better model for how humans act in
interative situations since humans typically do not solve games in their everyday
lives when they are not playing chess [HZ02].

The formulated NLP, Eq. (5.6h), is a non-convex and non-smooth problem. As
such, one can not expect to find globally optimal solutions. However, we use
derivative-based optimization methods to find locally optimal solutions. These
methods require an initial guess, which at the same time sets the considered
homotopy, as the solutions of local methods typically are in the same homotopy
as the initial guess. In the context of automated driving, homotopies are often
thought of as maneuvers. Thus, we use the initial guess to encode the desired
driving maneuver. Via the experiments, we empirically observe that initializing
with a rough, but feasible initial guess of the desired maneuver is sufficient to
reliably solve the problem. To take multiple maneuvers into consideration, it
is advisable to combine the presented approach with a global method. E.g.,
a higher abstraction behavior planner based on an arbitration scheme as in
[OBL20] could be used to generate good initial guesses.

The focus of the experiments was to analyze the capabilities and the performance
of the proposed bi-level planner. As such, the algorithm was evaluated in a
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tailored simulation environment, where one important modeling assumption
was that the human driver is always attentive. However, in real traffic, this is not
the case, and human drivers are sometimes distracted and do not respond to the
actions of the AV. Therefore, the presented algorithm needs to be combined
with an intention estimation, e.g, as presented in Section 4.2, to cope with
unattentive drivers.

5.6 Summary

In this chapter, we presented an algorithm that is able to generate interaction-
aware trajectories for AVs. The interaction between a HD and an AV is modeled
as a Stackelberg game, where the human responds rationally to the AV’s actions
optimizing its own objective. This leads to a nested optimization problem
which we approximate by MPC based on a bi-level optimization formulation.
To solve this, we reformulated the problem into a single-level representation,
exploiting the assumption that the human will act optimally with respect to
its objective function. We solve the obtained NLP using derivative-based
optimization methods. The presented algorithm is able to solve the interaction-
aware trajectory planning problem in a continuous state and input space. Further,
general nonlinear state and input constraints can be considered, which allows
for an accurate dynamics model.

The algorithm enables the AV to anticipate how surrounding HDs will react to
its actions. This gives the AV the possibility to deliberately influence the state
of the human. Here, simply encoding the desired effect into the AV’s objective
function is enough to generate complex, interaction rich behavior to achieve the
desired result. No hand designed decision heuristic, e.g.,

Rule:

In order to slow down the follower one first needs to overtake the
follower to be infront and then needs to brake while at the same
time driving in the middle of the street to prevent the follower form
overtaking again

is needed but such a highly interactive behavior directly emerges out of the
optimization. This interactive behavior does not only occur if incentivized
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in the AV’s objective function, but also emerges to further optimize the AV’s
behavior.

However, care must be taken to avoid that the AV exploits interactions to further
optimize its own objective, and thereby generates an overly aggressive driving
behavior. To prevent such a overly aggressive behavior, the AV’s objective is
extended to also consider the costs of the HD. A parameter α was introduced,
which provides the ability to easily adjust the degree to which the impact on
others is considered. This enables generating driving behavior ranging from
overly conservative to overly aggressive.

As an alternative to modifying the AV’s objective function, we presented a
strategy to establish courtesy in the planning algorithm. Here, courtesy is
introduced via constraints which limit the impact the AV’s actions are allowed
to have on a HD. These constraints allow a motion planner to utilizes an
egocentric objective function, provided that a certain acceptable deceleration
imposed on other vehicles is not exceeded.

The experiments demonstrated the efficacy of our algorithm and suggest that
the algorithm can be used in challenging interactive driving scenarios. Further,
we could achieve real-time performance even with an unoptimized proof-of-
concept implementation. It is worth noting, that the presented algorithm is not
limited to the context of automated driving but can be applied to other fields of
robotics, where considering interaction among robots and humans is essential
for efficient operation.
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State-of-the-art planning algorithms often follow a pipeline structure, where
the future motion of surrounding objects is predicted first, and in a subsequent
step, the automated vehicle (AV) plans its motion, treating others as immutable
moving objects. These algorithms are incapable of capturing the interactive
nature of traffic, i.e., how the predictions of others might change due to the AV’s
actions, thereby reducing interactions to simple collision avoidance. While this
separation is a useful simplification in many situations, it can lead to suboptimal,
overly conservative driving behavior, especially in dense traffic.

In this thesis, two algorithms to plan interaction-aware trajectories for AVs
in mixed traffic were proposed. Hereby, we refer to mixed traffic as traffic
in which AVs and human-driven vehicles share the road. The aim of the
proposed algorithms is to enable AVs to drive more naturally among humans
by overcoming the overly conservative behavior generated by state-of-the-art
planning algorithms. The key inside into planning interaction-aware trajectories
is to get rid of the structural limitation of state-of-the-art planners and solve both,
the prediction of others and the planning of the AV’s motion simultaneously
as a joint problem formulation. We were able to show that challenging traffic
situations could be mastered with these approaches, which would not have been
possible with state-of-the-art planning approaches.

The first algorithm builds upon the assumption that interactions among traffic
participants can be approximated by cooperative multi-agent planning. The
underlying idea is that all traffic participants are on the same team, ensuring
that each agent is driving comfortably and reaching its goal while avoiding
collisions. The AV calculates coupled trajectories by optimizing a joint cost
function, assuming that the human driver will also approximately follow those
trajectories.

A central element of this algorithm is a novel multi-agent trajectory planning
formulation. Hereby, the trajectory planning problem for multiple agents is
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formulated as a mixed-integer quadratic program (MIQP) where continuous
variables represent the flat output of each vehicle, and the maneuver variants
are represented by discrete variables via collision avoidance constraints. The
proposed formulation is able to consider the entire configuration space and
globally optimal solutions can be guaranteed; thus, no separation of maneuver
selection and trajectory optimization is required. Thanks to this property a
major limitation of local methods, namely the combinatorial problem, which
originates from the non-convexity of motion planning, can be overcome without
the restriction of a discretized search space. The proposed formulation thus
represents a hybrid approach that combines the advantages of global and local
methods. Numerical experiments have shown that this formulation significantly
outperforms existing trajectory planning approaches for ensembles consisting
of multiple automated vehicles.

While the MIQP formulation for multi-agent planning poses a stand-alone
contribution, it needs to be extended to cope with uncertain driving behavior of
humans in mixed traffic. This was achieved by introducing multiple intention
models to capture how humans might react during interactions. A generic
formulation for these intention models was proposed, making them independent
of the traffic scenario or map layout. Based on an estimated probability
distribution over the intention models, the motion of the AV is generated.
Hereby, instead of optimizing for a single intention, e.g., the most likely one,
the algorithm is able to optimize the behavior for multiple different evolutions
of the scene. This enables the AV to drive maneuver-neutral until a situation
becomes more certain. Further, maneuver decisions directly emerge from
optimization and no hand-designed heuristics are necessary. In conclusion,
the proposed algorithm enables AVs to cope with uncertain human behavior
in highly interactive situations and thus enables AVs to drive more naturally
among humans in dense traffic.

The second algorithm is based on a reformulation of a bi-level optimization
problem that frames interaction among a human driver and a AV as a Stackelberg
game. This game-theoretic formulation assumes that the humanwill optimize its
behavior in response to the AV’s behavior, which leads to a nested optimization
problem. Compared to the first algorithm, this formulation considers interaction
as a direct link between the AV’s action and the action the human will take
in response. In contrast to previous works, the algorithm is able to consider
general nonlinear state and input constraints, which ensures dynamic feasibility

118



of the generated trajectories. Further, several ways were proposed how the
impact the AV’s actions have on surrounding vehicles can be considered. This
prevents the AV from exploiting interactions that would otherwise lead to overly
aggressive driving behavior. In literature, this overly aggressive behavior has
been identified as a problem of interaction-aware planning algorithms, which
we mitigate by introducing methods to promote cooperation and courtesy into
the planning.

The evaluation of the algorithm demonstrated its ability to deliberately influence
the state of the human via interactions. Further, it has been shown that
interactive behavior also emerges out of the AV’s desire for efficiency. Real-time
performance could be achieved with a proof-of-concept implementation, which
holds the potential for further runtime improvements. The conducted Monte
Carlo simulations additionally demonstrated the efficacy and the robustness
of the proposed algorithm and suggested that it can reliably solve challenging
interactive driving scenarios. It is worth noting that the proposed game-theoretic
formulation is not limited to automated driving but can be applied to other
robotic domains where considering interactions between robots and humans is
essential for efficient operation.

The game-theoretic algorithm for interaction-aware trajectory optimization
enables AVs to be aware of the impact their actions have on surrounding vehicles.
Further, it provides AVswith a model of how their actions link to actions humans
take as a response. This link lays the foundation for the development of future
algorithms that are able to purposefully exploit interactions to gain information
about states of human drivers which are not directly observable, e.g., their
willingness to cooperate or wether they are attentive or not. For example, in
a traffic situation, if it is unclear whether a human driver who needs to be
interacted with is paying attention or not, the automated vehicle could perform
targeted actions to provoke a response from the human. Based on the reaction,
conclusions can then be drawn about the hidden states of the human.

While for the purpose of this thesis a good estimate of the cost function of
a human was assumed to be given, learning such functions from naturalistic
driving datasets is a future direction to improve the results of the presented
algorithms. One possibility to obtain such functions is via inverse reinforcement
learning.
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The presented algorithms enable AVs to consider interactions in their planning
which allows more natural driving among humans. However, before these
algorithms can be deployed in real traffic they need to be combined with formal
methods which can guarantee safety in case humans behave unexpectedly. A
system architecture based on an arbitration structure, as proposed in [OBL20],
is particularly suited for this.
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