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Abstract: The growth process of a Chlamydomonas reinhardtii cell population is modelled
with experimental data obtained in a batch reactor. To describe the growth process of this
culture, the Droop model, extended by cell population balance model, is considered. On the basis
of available measurements and the mathematical model, an optimization problem is defined in
order to determine the kinetic parameter values for the growth functions of the Droop model
and the cell division parameters of the cell population balance model.
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1. INTRODUCTION

Microalgae are a group of prokaryotic and eukaryotic pho-
tosynthetic microorganisms that grow rapidly due to their
simple structure. After nitrogen starvation, the biomass
can reach a very high lipid content (more than 60% of dry
weight under certain stress conditions [Metting (1996)]).
These possibilities have led some authors to consider mi-
croalgae to be employed to produce biofuels in an econom-
ically effective and environmentally sustainable manner,
as one of the main biofuel sources for the future [Chisti
(2007), Concas et al. (2014)]. Additionally, autotrophic
microalgae and cyanobacteria use photons as energy source
to fix carbon dioxide (C'O3), they could be used to con-
sume inorganic nitrogen and phosphorus in urban or in-
dustrial efluents or to generate useful chemicals. Indeed,
some green algae, e.g. Chlamydomonas reinhardtit, have
shown the ability to produce significant amounts of hy-
drogen gas during sulfur deprivation, [Hemschemeier et al.
(2008)]. For these reasons the production of these biofuels
can be coupled with flue gas CO, mitigation, wastewater
treatment, and the production of high-value chemicals.

A model able to describe the cell growth phenomenon
can be a key tool to optimize the operating conditions
for bioreactors and improve control system performance
[Becker (1994)]. In the literature, there are numerous
models that describe microalgae growth as a function
of the environmental variables, such as nutrients and
light [Flynn (2001)]. In the current work, one of the
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earliest models is considered, the Droop model [Droop
(1973)]. This model describes the ability of microalgae to
store nutrients by an intracellular quota and distinguishes
between substrate uptake and biomass growth.

The cellular biomass consists of a population of individual
cells. Each cell goes through the so-called cell cycle, includ-
ing growth and division: after a certain point, it divides
and splits its cellular mass into two daughter cells, each
of which undertakes its own cell cycle. For this reason,
at any point in time, the cells of the population exist at
different stages of the cell cycle and they contain different
quantities of proteins, lipids, DNA and other cell proper-
ties. Consequently, since properties are really distributed
among the cells of the population, a cell population is a
heterogeneous system. This directly motivates to enhance
process models by considering the cell distribution.

The mathematical models for describing the distributed
nature of cell growth processes are the so-called cell pop-
ulation balance models, which have been presented in
the literature [Fredrickson et al. (1967), Tsuchiya et al.
(1966)]. These models naturally allow the integration of
information about cell division and partitioning of cellular
material. Furthermore, contrary to unsegregated models,
which can predict only average population properties,
cell population balance models are able to predict cell
properties over the entire distribution. However, since
such models typically consist of first-order, partial integro-
differential equations coupled with nonlinear ordinary dif-
ferential equations, their solution poses a serious challenge
because they are characterized by considerable mathemat-
ical complexity.
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In this work, the Droop model has been extended by
the population model to analyze the growth and the cell
distribution phenomena in a Chlamydomonas reinhardtii
culture with the aim of identifying the parameter values
that characterize the functions within the model.

The paper is structured as follows. In Section 2 the model
used to describe the growth process and the discretiza-
tion method for the numerical analysis are presented.
In Section 3 the optimization problem is expressed and
described. In Section 4 the operating conditions and the
experimental features are reported. In Section 5 the exper-
imental results are shown and comparisons between the
measurement data and the model predictions are made.

2. MODEL FORMULATION
2.1 Droop Model

In order to describe the cell growth process, the biolog-
ical mass model employed by M.R. Droop is considered
[Droop (1973)]. This model is able to analyse the growth
phenomenon of algae cells with nutrient limitation. The
idea introduced by Droop is to consider, separately, the
external substrate concentration S and the internal sub-
strate S;., i.e. the concentration of substrate absorbed by
the algae cells [Lemesle and Mailleret (2008)]. Considering
b as the biomass concentration the cell quota ¢ is defined

as S
= Zic 1
¢= (1)

According to the Droop model, the growth process is ruled
by two kinetic phenomena: the external substrate uptake
and the biological conversion of the internal substrate
into biomass. Cell quota time derivative can be calculated
considering that the uptake rate for S is equal to the
generation rate for S;., due to mass conservation. With
this consideration, deriving (1), the relation between ¢
and the system’s state variables can be computed [Packer
(2014)]. Let p(S) and p(q) be the specific functions that
describe the substrate uptake rate and the biomass growth
rate (per biomass unit), respectively. Considering perfect
mixing within the batch reactor, the Droop model equa-
tions are defined as

"/.

b= pla)b— ;b (2.1)
S =—p(S)b— %S (2.2)
¢ = p(S) — nla)q (2.3)
V=h (2.4)
b(0) =by S(0)= Sy, ¢q0)=qo, V(0)=Vy (2.5)

where V' is the reactor volume. Note that (2) is ob-
tained by a mass balance performed across a variable
control volume, whose change in time is modeled by a
function h : Ry — R.

2.2 Population Model
The Droop model belongs to a class of biological models

useful to describe the cellular growth process considering
the biomass inside the system. Therefore, this model is

not able to analyse a crucial aspect of biological system:
due to the division process, cell properties (e.g. cellular
mass) are distributed among the cell population and, for
this reason, at any moment, the system is characterized
by a cell distribution over the mass domain [Mantzaris
et al. (2001)]. In order to develop a mathematical model
able to describe this phenomenon, the class of population
models proposed in [Mantzaris and Daoutidis (2004)]
is considered. This analysis introduces a new physical
quantity, n(m,t), that represents the cell mass distribution
and n(m,t)dm is the number of cells with mass € [m, m+
dm)], at time ¢, per unit volume.

These models are composed of a system of partial integro-
differential equations which describes the biological phe-
nomenon of cell growth and the temporal dynamics of the
cell distribution

On(m,t) = — Op[rg(m, g)n(m,t)]

—T'(m,S,q)n(m,t) — %n(m,t)

+2 [ T S.antn 0P.mdy  (3.1)
) 1 1%

S = —/0 ru(m, S)n(m,t)dm — VS (3.2)

- fol(ru(m, S) — qrg(m, q))n(m,t)dm 33
! fol mn(m,t)dm 3.3)
n(l,t) =0 Vit>0 (3.4)
n(m,0) = no(m) m € [0,1] (3.5)
5(0) = So, q(0) = qo. (3.6)

The cell distribution balance equation (3.1) consists of five
terms. The left-hand side is represented by the accumu-
lation term that accounts for the time dynamics of the
cell distribution. The right-hand side is composed of the
growth term (the first one), that describes the variation of
the cell mass during the growth process, the division term
(the second one), that describes the loss of cells of mass m
due to their division into cells of smaller mass and the birth
term (the last one) that is due to the production of cells of
mass m from the division of greater mass cells [Fredrickson
et al. (1967)]. In addition, the differential equation (3.1)
accounts for the variation of volume in time through the
third term on the right-hand side.

In (3), t is the time, m is the dimensionless mass €
[0,1], n(m,t) is the cell distribution density function,
I'(m,S,q) is the cell division rate, and r, and r, are
the growth rate and uptake rate functions, for the single
cell. The probability division function P(n,m) accounts
for stochastic effects during division: P(n, m)dm is the
probability that a cell of mass 7 is divided in a cell of
mass m. The function that describes the time dynamics of
the volume is identical to the corresponding equation of
the Droop model (2.4).

It is possible to express r, and r, through the specific
rate functions, p(S) and p(g), when these are referred to
the biomass unit by a linear dependency on the mass m

[Mantzaris and Daoutidis (2004)]
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= p(S)m (4)
rg(m, q) = p(q)m, (5)

as well as there is a direct proportionality between cell
division rate and growing cell rate function

L(m, S, q) =ry(m,q)y(m,S). (6)

In virtue of mass conservation, and, considering the hy-
pothesis that a mother cell splits into two daughter cells
[Fredrickson et al. (1967)], P(n, m) has the following prop-
erties

P(n,m)=0 Vn<m (7.1)
P(n,m) = P(n,n—m).

Due to (7.2), if the mass interval [0,n] is considered,
the probability division function must be symmetric with
respect to the mother half mass, /2. Thus, the function
chosen to model the probabilistic nature of the division
phenomenon must have its statistical mean and median
equal to the symmetrical point, 7/2. This can be modelled
by a probability density function of a particular Beta
probability distribution [Mantzaris and Daoutidis (2004)],
defined as

P(n,m) = %%m/mf’-lu —mPl @)

where the two parameters of Beta distribution are both
equal to the value p and B(p) represents the Euler Gamma
function [Anderson and Qiu (1997)].

The specific uptake rate p(S) and the specific growth rate
1(q) used are the functions that are typically considered
in the Droop model [Lemesle and Mailleret (2008)],

o pmazS

p(S) = K.+S (9.1)
pla) = AL =), 9:2)

where pp,q, and p are the maximum values of specific
uptake and growth rate, respectively. The half saturation
constant is denoted by K, and represents the external
substrate value such that p(S) is equal to pa./2 and qo
is the minimum allowed value for internal cell quota.

2.8 First Moment

Due to the definition of n, the cell distribution first
moment is equal to the biomass concentration, b

b:/o mn(m,t)dm. (10)

On the basis of (10) and considering (3.1), the time deriva-
tive of b can be expressed as [Mantzaris and Daoutidis
(2004), Schaum and Jerono (2019)]

bz/o mogn(m,t)dm =
1
= [ m@ulrgmn(m 1)) dm
—/O mD(m, S, ¢)n(m,t)dm+
—|—/0 Qm/m T'(n, S, q)n(n,t)P(n, m)dn dm

S
—%/0 mn(m, t)dm.

Due to mass conservation, it holds that the mass obtained
through cell birth must be equal to the mass lost by
cell division (3.1). Besides, considering (3.4) and using
integration by parts, it holds that

~la) [ mdlntm. Oymldm = (o) [l ymam.

In view of these considerations, using (10), it is possible to
demonstrate that the first moment of (3.1) is equal to (2.1).
This analytical feature is essential for the experimental
analysis because it allows the application of the population
model or the Droop model, depending on the specific
analysis that is being conducted. To analyse the biomass
growth process and to identify the kinetic parameters of
(4) and (5), the biomass and substrate measurements are
needed. Once the kinetic parameters are obtained, their
values can be used in the population model to identify the
cell division parameters of P(n,m) (8) and y(m,S) (6).

2.4 Discretization Methods

For implementation, the PDE equation (3.1) is discretized
in the mass domain. To perform the discretization, the
trapezoidal rule and the backwards finite differences are
used. Moreover, the mass domain is normalized on [0, 1].
Note that this domain can be changed by linear transfor-
mation [Mantzaris and Daoutidis (2004)]. The numerical
approximation of (3.1) is developed as

(rg(mi, g)n(mi, t)) — (rg(mi—1, g)n(mi-1,t))

1%
—T(my, S, q)n(m;,t) — Vn(mi,t)
Np—1
+ 2Am Z I'(m;, S, q)n(m;, t)P(m;, m;),
j=i+1

where n;(t) is the cell distribution with mass m; at time
t, N,, is the number of discretization points in the mass
domain that is discretized with a constant step size Am.
In the numerical development of the birth term (devised
through trapezoidal rule) the first and the last term of the
discrete integral are not included. They are equal to 0, due
to equations (7.1) and (3.4), respectively.

3. IDENTIFICATION STRUCTURE

The first step in the identification problem is to ob-
tain the kinetic parameters of (9.1) and (9.2), namely
Pr = [pPmaz, Ks, i, qo]. Considering the state vector @ =
[b,S,q,V]T, the optimization problem is given by
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Ny
n}l)in Jk(y,,@,pk) = Z('g(tz) - y(tl))z
Y =1 1
b= f@,t) #(0)=do, >0
§=Ca
1000
0{010J

where C' takes into account the available measurements
b and S, f(x,t) is the right-hand side of the Droop
model (2), N; is the number of measurements over time,
& represents the model prediction, y is the measurement
vector, ¢ is the model prediction of measurements and
o is the initial states vector whose values are given
by the initial states measurements b(0), S(0) and V(0),
whereas ¢(0) is supposed equal to the parameter value go.
In the second step, the population balance model (3) is
considered to estimate the parameters that characterize
the division rate function I'(m, S, q) and the probability
density function P(n,m). Let p, be the parameter vector

and xg = [ni,..,nn,,S5 ¢ V]T the state vector, the
optimization problem is defined as follows
N
H;idn Ja(Yas Yas P Pa) = Z@d(tz‘) —yq(t)®
i=1 1
2q= fa(®a,t) 24(0) = Zao, t>0
Ya = Caa
10...0000
01...0000
Cy=
1 .0000
00...1000
Tq > 07 Dy > Oa

where Cy is a rectangular matrix with N,, rows that takes
into account the cell distribution measurement n(m,t) is
used, fq(&gq,t) is the right-hand side of population balance
model (3) and &4 is the initial states vector whose values
are given by the initial states measurements. Note that this
minimization problem is solved with respect to p,; because
p;, has been determined by minimizing Ji. To implement
numerical algorithms for the optimization problems, the
function fmincon in MATLAB is used and the SQP
method is chosen to investigate the parameters domain.

4. EXPERIMENTAL SETUP

The experimental data have been obtained through a lab-
scale reactor initially filled with a solution composed by
250 ml of demineralized water and media, and 5 ml of
microalgae cells. It was characterized by an air flow feed
of 0.05 I min~—!, useful to maintain perfect mixing and by
a light intensity (photon flux) of 40 umol s~ m=2

By taking samples at daily rate, the biomass and the
substrate concentration were measured. Through an op-
tical density measurement, the absorbance of the sample
was obtained and it was converted into concentration
using an empirical relation between b and OD. Consid-
ering Lambert-Beer’s equation, a linear relation between

OD and concentration can be supposed, if the latter is
low, which was ensured by samples dilution. Biomass dry
weight measurements have been performed by passing
defined volume through GF/C filters and the resulting OD
was measured.

From the same probe for the OD measurement, a sample
of solution was extracted and analyzed to estimate the
cell distribution. This measurement was realized by the
Casy cell counter and analyzer of Omni Life Science (OLS)
that determines how many cells of a specific size were
presented in a defined sample volume. Once obtained these
data, using the biomass concentration measurements, the
cell density has been estimated, i.e. the mass per unit
of cellular volume. With this information and considering
that n(m,t)dm is the cell number with m € [m,m + dm]
per unit volume, the cell distribution data was computed
by discretizing the integral of cell distribution over mass
domain by the trapezoidal rule. To evaluate h (2.4),
the solution volume was measured and the function that
described this variation was established, by a linear fitting.

The media components ' are shown in Table 1.
Table 1. Media components

COMPONENT mg 171
KNO3 252.775
NaH2POy4 - H20 310.5
NaoHPOy4 - 2H20 44.5
MgSOy4 - TH20 123.25
CaCly - 2H20 7.35
FeSOy4 - TH20 6.95
H3BO3 61.0
CuSOy4 - H2O 2.5
MnSOy4 - TH20 61.0
ZnS0Oy4 - 5H20 2.5
(NO4)6Mo7024 - 4H20 12.5

5. RESULTS

In Fig. 1 is shown the comparison between experimental
data of b and S and the Droop model prediction whose
parameters were obtained with the first optimization step.
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Fig. 1. Biomass and substrate concentration: comparison
between experimental data and model prediction.
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The Droop model (2) manages to approximate the experi-
mental data of b and .S except for the initial biomass values
where the model prediction is characterized by an offset
higher with respect to the other time instance.

Once the kinetic parameters of Droop model are obtained,
the cell division parameters can be identified.

The distribution function ~, associated to the cell divi-
sion, is usually based on the hypothesis that the division
distribution is dependent only on cell mass

(11)

Where @[, 1 is a Gaussian truncated distribution with a
support € [0, 1], a mean mg and a deviation o.

As shown in [Mantzaris and Daoutidis (2004)]. Using
(11), the cell distribution model prediction, 7i(m,t), is
characterized by the statistical mode that remains, at
any moment, on the same mass value. The reason of this
feature is that, for the whole process, the same proportion
between growth and division rate is kept. Considering (6),
if (11) is used, the ratio between the cell division rate and
the cell growth rate does not change with respect to the
time, it remains equal to y(m).

However, the data obtained with the experiments do not
show this trend. It is observed that the mode of the cell
distribution changes its mass coordinate with respect to
the time. As shown in Fig. 2, the maximum of n(m,t)
moves to higher values of mass and this has to be the
consequence of the fact that the division rate and the
growth rate do not keep the same ratio during the process.
Specifically, the division rate is getting lower with respect
to the time and this decrease leads to a shift in the
distribution towards bigger cells. For this reason, it was
needed to examine this behavior to understand its causes
and try to adapt the model. Experimental data with
m € [0,0.5] are considered to show more clearly the mode
shift.

x 10
8

n [cell/l)

t[h]

Fig. 2. Cell population distribution: experimental data.

The idea to describe this phenomenon is that the cell
division process depends on the external substrate con-

centration; while the metabolic uptake decreases its rate
because S is close to zero, also cell division can be inhibited
by nutrient stress. To consider this effect, the function
v has been adapted by adding a linear dependency on
S. In order to modulate this dependency, the amplitude
parameter o has been considered

q)m,a S
. $) = e (£)),
—Jo Pmoo) \@

The result of the model prediction can be seen in Fig. 3
and Fig. 4. In Fig. 3 it can be observed that the model
manages to follow the trend of cell distribution data and
it is able to describe the mode variation of the distribution.
In Fig. 4, the direct comparison between model prediction
and experimental data is shown.
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Fig. 3. Cell population distribution: model prediction.
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Fig. 4. Cell distribution: comparison between model pre-
diction and experimental data.

With the purpose of evaluating the model performances,
it is crucial to estimate the adjusted coefficient of determi-
nation R? [Neter et al. (1996)], and the relative error E.
These calculations are performed for every time sample
(tx) using (13) and (14)
2
() — Mo = DE (5~ 1)
Ny — kp

(13)
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_ fol In(m, ty) — n(m, tx)| dm

E
(t) fol n(m, tx)dm

(14)

)

where R? is the coefficient of determination, k, is the
number of explanatory variables (parameters to identify)
and N,, is the sample size, i.e. the discretization points
in the mass domain [Neter et al. (1996)]; 7i(m, ) is the
model prediction and n(m,ty) is the measurement. The
results related to this calculation are shown in Fig. 5 where

the relative error of the biomass concentration estimation
E is also presented (15).

b(tr) — b(tx)

B =5

(15)
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Fig. 5. Error analysis and statistical evaluation.

In Fig. 5 is shown that the prediction quality increases
with the time and this is due to the fact that the biomass
concentration relative error is getting lower. Indeed when
the model is not characterized by high performances (lower
R? and higher E), the relative biomass concentration error
(E}p) is high. This confirms the close dependency between
the first optimization step and the modeling of the cell
distribution, but this allows to conclude that an accurate
estimation of the kinetic parameters (p;) is needed to
evaluate a model for the description of the cell distribution

phenomenon.
The parameters obtained are shown in Table 2.

Table 2. Model parameters

Pmax [hil] K [g lil] I [hil] 40 [_}
0.0587 0.8 0.2786 0.3759
mo [-] o [-] algl™']  p[]
0.0943 0.1754 0.1057 30.0012

6. CONCLUSIONS

The growth process of Chlamydomonas reinhardtii, a
green microalga species, has been studied by performing
an identification analysis based on experimental data. This
phenomenon has been analyzed through the Droop model
extended by cell population model to consider that the cell

137

properties are distributed with respect to the mass. The
experimental features and the numerical approximations
are presented with the proposal of a certain distribution
function +, useful to describe the trend of measurements.
An optimization problem has been formulated in order
to identify the parameter values of the model. Through
an optimization algorithm implemented on MATLAB, the
parameter values have been determined and the prediction
performance is evaluated by using the normalized error
and the adjusted coefficient of determination R?.

REFERENCES

Anderson, G. and Qiu, S.L. (1997). A monotoneity
property of the gamma function. Proceedings of the
American Mathematical Society, 125(11), 3355-3362.

Becker, E.-W. (1994). Microalgae: biotechnology and mi-
crobiology, volume 10. Cambridge University Press.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol-
ogy advances, 25, 294-306.

Concas, A., Pisu, M., and Cao, G. (2014). Engineering
aspects related to the use of microalgae for biofuel
production and coo capture from flue gases. In Current
Environmental Issues and Challenges, 73-111. Springer.

Droop, M.R. (1973). Some thoughts on nutrient limitation
in algae. Journal of Phycology, 9(3), 264-272.

Flynn, K.J. (2001). A mechanistic model for describing
dynamic multi-nutrient, light, temperature interactions
in phytoplankton. Journal of Plankton Research, 23,
977-997.

Fredrickson, A.G., Ramkrishna, D., and Tsuchiya, H.M.
(1967). Statistics and dynamics of procaryotic cell
populations. Mathematical Biosciences, 1, 337-345.

Hemschemeier, A., Fouchard, S., and Cournac, L. (2008).
Hydrogen production by chlamydomonas reinhardtii: an
elaborate interplay of electron sources and sinks. Planta,
227, 397-407.

Lemesle, V. and Mailleret, L. (2008). A mechanistic
investigation of the algae growth “droop” model. Acta
biotheoretica, 56, 87.

Mantzaris, N., Daoutidis, P., and Srienc, F. (2001). Nu-
merical solution of multi-variable cell population bal-
ance models: 1. finite difference methods. Computers &
Chemical Engineering, 25, 1411-1440.

Mantzaris, N.V. and Daoutidis, P. (2004). Cell population
balance modeling and control in continuous bioreactors.
Journal of Process Control, 14, 7T75-784.

Metting, F. (1996). Biodiversity and application of mi-

croalgae. Journal of industrial microbiology, 17, 477—
489.

Neter, J., Kutner, M., Nachtsheim, C., and Wasserman,

W. (1996). Applied linear statistical methods 4th ed.
Richard D. Irwin.

Packer, A. (2014). Cell Quota Based Population Models

and their Applications.

Ph.D. thesis, Arizona State
University.

Schaum, A. and Jerono, P. (2019). Observability analysis

and observer design for a class of cell population balance
models. [FAC-PapersOnLine, 52, 189-194.

Tsuchiya, H., Fredrickson, A., and Aris, R. (1966). Dy-

namics of microbial cell populations. volume 6 of

Advances in Chemical Engineering, 125-206. Academic
Press.



