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A B S T R A C T   

A concise approach is proposed to determine a reduced order control design oriented dynamical model of a 
multi-stage hot sheet metal forming process starting from a high-dimensional coupled thermo-mechanical model. 
The obtained reduced order nonlinear parametric model serves as basis for the design of an Extended Kalman 
filter to estimate the spatial-temporal temperature distribution in the sheet metal blank during the forming 
process based on sparse local temperature measurements. To address modeling and approximation errors and to 
capture physical effects neglected during the approximation such as phase transformation from austenite to 
martensite a disturbance model is integrated into the Kalman filter to achieve joint state and disturbance esti
mation. The extension to spatial-temporal property estimation is introduced. The approach is evaluated for a 
hole-flanging process using a thermo-mechanical simulation model evaluated using LS-DYNA. Here, the number 
of states is reduced from approximately 17 000 to 30 while preserving the relevant dynamics and the compu
tational time is 1000 times shorter. The performance of the combined temperature and disturbance estimation is 
validated in different simulation scenarios with three spatially fixed temperature measurements.   

1. Introduction 

Multi-stage hot sheet metal forming enables the production of 
complex formed press-hardened components at high stroke rates 
(Belanger et al., 2017). The sheet metal blank is first heated in a furnace, 
then optionally pre-cooled to the desired initial forming temperature 
and finally formed and quenched in a sequence of tools in a transfer die 
(Belanger, 2016). Several different forming operations are carried out on 
a component before the temperature falls below a critical temperature, 
e.g., the martensite start temperature. Löbbe et al. (2016) presented a 
process design for a progressive die in which the sheet metal coil is 
pre-punched, then rapidly austenitized by means of induction heating 
and formed and quenched in several consecutive stages. A modification 
of this process chain is the implementation of hot stamping operations in 
progressive die plate forging of tailored high strength gear parts by 
partial resistance heating (Mori et al., 2017). 

These production methods have been limited to special applications 
due to the partially unknown and difficult to predict interplay of 
thermal and mechanical influences throughout the process chain. For 
example, the deformation history during hot forming is affected by the 
microstructure development and also influences the microstructure 

development itself (Nikravesh et al., 2012). A forming and heat treat
ment depending shift of the transformation point from austenite to 
martensite causes a change in the process chain temperature history, 
which affects the forming process through a change in the temperature- 
and microstructure-dependent flow stress (Venturato et al., 2017). 
Besides the thermal-mechanical interactions, there are difficult to 
assess service life depended process influences due to batch fluctuations 
and the varying tool condition (Gracia-Escosa et al., 2017). The given 
complexity and the lack of suitable prediction models complicate 
setting and maintaining desired product properties such as geometry 
and hardness. 

In metal forming processes, models are usually obtained using the 
finite element method (FEM) within the design step. The resulting 
models are accurate but not real-time capable due to high dimensions 
and nonlinearities of the system. Hence a major challenge for estimator 
design is to develop models of reduced complexity and dimension that 
are still sufficiently accurate. This can be achieved by model order 
reduction techniques that enable us to reduce model dimension while 
preserving the relevant system dynamics (see, e.g., the treatise in 
Antoulas (2005)). Parametric model order reduction techniques provide 
a suitable approximation of the full-order dynamical system over a range 
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of parameters (see, e.g., the review in Benner et al. (2015)). This 
approach has been successfully applied to a broad range of applications 
including structural dynamics, aeroelastic models as well as electro
chemical and electro-thermal applications. While different approaches 
can be applied to compute the reduced-order models (ROMs) subse
quently projection-based model order reduction is considered using 
proper orthogonal decomposition (POD), which can be applied to linear 
as well as nonlinear models. Basis vectors used for projection in POD are 
typically computed using the method of snapshots (Sirovich, 1987). 
Benner et al. (2015) provide a rather comprehensive survey on its 
development, variants and selected applications. In the context of sheet 
metal forming the application of model order reduction techniques and 
in particular POD can be found, e.g., in Bolzon and Buljak (2011); 
Radermacher and Reese (2014) for a (quasi-static) elastoplastic me
chanical problems. Böhm and Meurer (2017) compare several linear 
model reduction techniques for the temperature control of deep drawing 
tools and develop a trajectory planning and feedforward control strategy 
based on the obtained ROM. 

To enable robust and versatile production, a closed loop control has 
to be employed (Allwood et al., 2016), where product properties as well 
as decisive process variables are measured in situ during the multi-stage 
forming and heat treatment process. The measurements are fed back to a 
controller and set by adjusting the process parameters using real-time 
capable models. Possible actuation parameters include the kinematics 
of the tool and the austenitization parameters. The influence of process 
parameters on product quality in a press hardening application is 
considered in Landgrebe et al. (2015). Related results are provided in 
Wang et al. (2017) by taking into account the control of dwell pressure 
or dwell time, respectively. In both cases the preliminary heating is not 
considered as control variable. Models for controlling springback (Löbbe 
et al., 2015), microstructure (Löbbe et al., 2016) and strength (Löbbe 
et al., 2018) in heat-assisted bending of sheet material in a progressive 
die are available. However, it is not yet possible to implement multi
variable control of geometric and mechanical or microstructural prop
erties in multi-stage hot sheet metal forming. Knowledge of the 
temporally and spatially varying temperature distribution of the sheet is 
substantial for controlling the given process chain. In particular the 
temperature evolution is decisive for the development of the micro
structure and the deformation behaviour of the material. In order to 
reconstruct the spatial-temporal temperature distribution from sparsely 
available measurement data such as pyrometers, model-based state 
estimation methods are inevitable. Speicher et al. (2014) designed an 
extended Kalman filter (EKF) for the plate rolling process and Zheng and 
Li (2011) for the strip rolling, respectively. Force measurements are used 
in Havinga and Mandal (2017) to estimate product properties by 
exploiting an interpolation process model obtained from a finite element 
model. Herein the structured uncertainties are addressed using a bias 
model. Taking into account tools from robust nonlinear control the 
design of a robust observer in view of additive parametric uncertainties 
is studied in Benosman et al. (2021) based on ROMs for the discretized 
2D Boussinesq equations to estimate air flow and temperature distri
butions for heating, ventilation, and air conditioning management. 

In this work, a concise approach is presented that enables us to 
systematically determine a ROM suitable for estimator design based on 
the thermo-mechanical high dimensional finite element model for a 
multi-stage hot forming process. The proposed approach is based on the 
assumption of a one-sided decoupling between the thermal and the 
mechanical subsystems. This results in a parametric nonlinear thermal 
model that is utilized for model order reduction using POD. The ob
tained ROM is exploited for the design of an EKF to obtain a real-time 
estimation of the spatial-temporal temperature distribution of the 
sheet metal blank during the forming process based on only a few 
selected local temperature measurements. This furthermore enables us 
to deduce temperature-dependent spatial-temporal material properties, 
e.g., hardness, by taking into account suitable constitutive relationships. 
To simplify numerical evaluation of the EKF a model simplification 

involving a so-called supporting or reference trajectory is proposed to 
obtain a linear time-varying model as a special form of a parametric 
model. To account for modeling errors, e.g., thermal effects of the phase 
transition, and reduction errors the setup is amended by a disturbance 
estimation that enables us to improve the estimator performance. The 
developments are validated in numerical simulations for a hole-flanging 
process. 

The paper is structured as follows. Section 2 provides the problem 
formulation and the classical design-oriented simulation model for the 
coupled thermo-plastic forming process. In Section 3 a parametric ROM 
is deduced, which is the starting point for the EKF design in Section 4. 
Herein, trajectory-oriented linearization to obtain a linear time-varying 
model is considered and a disturbance estimation is integrated into the 
EKF. The methods are evaluated in Section 5 for hole-flanging process. 
Section 6 concludes this paper. 

2. Problem formulation 

In the following, the multi-stage hot forming process is introduced 
and the necessity for an estimator to reconstruct online the spatial- 
temporal temperature distribution is motivated. The section concludes 
with a description of the fully coupled LS-DYNA simulation which is 
used as starting point for the model order reduction. 

2.1. Multi-stage forming process 

The multi-stage hot sheet metal forming demonstrator process 
illustrated in Fig. 1 for a progressive die is considered subsequently as 
introduced in Löbbe et al. (2015). After pre-punching the coil, the sheet 
metal blank is homogeneously heated to the austenitizing temperature 
xγ by a combination of inductive and conductive heating (A). In stages 
(B) to (D) a sequence of hole-flanging (B), combined deep drawing and 
stretch drawing (C) as well as die bending (D) is carried out. At the same 
time, quenching takes place through tool contact. 

Fig. 1 in addition shows the process inputs and the integration of the 
subsequently determined temperature estimator to be used for both 
process monitoring and model-based property oriented feedback con
trol. The process input variables that may be eventually used to control 
the forming process read 

u = [ xγ vps th ]
T
. (1) 

Herein, xγ is the average austenitizing temperature, which is adjusted 
by an underlying control loop, vps is the punch speed, and th is the 
holding time at the bottom dead point. Obviously, vps and th refer to the 
kinematics of the ram and hence influence directly the forming steps. 

In stages (A) to (D) of the real process temperature measurements 
yx(t) are recorded at certain time instances by thermal imaging cameras 
or pyrometers. Before the individual components are separated from the 
strip boundary, the geometry and selected product properties yp(t) such 
as the microstructure are determined using a laser scanner and a 3 MA- 
system, respectively, in stage (E). 

For the design of the temperature estimation the local temperature 
measurements yx(t) from stages (A) to (D) serve as output injections into 
the estimator equations to reconstruct the spatial-temporal temperature 
distribution x̂(z, t) on the sheet metal blank. Based on this estimate we 
aim to assess and to evaluate the spatial-temporal distribution of key 
product properties ŷp(t) such as hardness, yield stress or geometry that 
dependent on the temperature and deformation history with the prop
erty estimator. This paper focuses on the design and evaluation of the 
spatial-temporal robust temperature distribution and outlines the 
property estimation. The latter is to be combined with the property 
characterization considered in Martschin et al. (2021) towards the 
development of model-based property control in subsequent work. 
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2.2. Fully coupled simulation 
For the numerical simulation of the sheet metal blank temperature 

distribution during the multi-stage process, the forming steps, the heat- 
exchange between sheet, tool as well as the environment and the 
thermo-mechanical interplay are modeled in accordance with Hoch
holdinger et al. (2011). Hereby the FE code LS-DYNA (solver: R11.1.0) is 
used. Tools are modeled with rigid and the blank with elasto-viscoplastic 
12 node thermal thick shells. Characteristic values for convection and 
radiation are chosen based on Shapiro (2009). Martensitic stainless steel 
X46Cr13is used in the simulation. Compared to conventional press 
hardening steels, e.g., 22MnB5, the low martensite start temperature of 
approximately 443 K (Dieck et al., 2017) allows a longer period of time 
for the multi-stage forming. The material behaviour of X46Cr13during 
hot forming is modeled by a simplified adaptation of the material model 
Mat 248 presented by Hippchen et al. (2016). Temperature and strain 
rate-dependent flow curves and Young’s modulus, thermal conductivity, 
heat capacity, density, and thermal expansion parameters are based on 
Spittel and Spittel (2009). Only a phase transformation from austenite to 
martensite is considered, since higher cooling rates are achieved in the 
progressive die than in air (air-hardening steel). The austenitizing of the 
sheet by combined inductive and conductive heating is not simulated. 
Prior to the transfer into the first forming stage, a fully austenitized sheet 
with a defined temperature distribution is assumed. 

3. Reduced order modelling 

The complexity of the LS-DYNA model is generally high and not 
suitable for online estimation purposes. Therefore, the estimation model 
is simplified in the following steps. At first, the thermal solution is 
separated from the mechanical solution assuming a one-sided decou
pling. Secondly, ordinary differential equations are derived from the 
partial differential equation governing heat conduction using the finite 
element method so that a parameter- and state-dependent system is 
obtained. Third, a ROM is determined using POD. 

3.1. One-sided decoupling of mechanical and thermal solution 

To determine an explicit dynamical model of the process dynamics 
the fundamental assumption is imposed that the thermal solution can be 
separated from the mechanical solution. 

Assumption 1. Thermal and mechanical subsystem are coupled 
partially with the mechanical solution entering the thermal subsystem 
but not vice versa. 

This assumption simplifies the setting but introduces a modeling 
error that is evaluated in a simulation study in Section 5 for a hole- 
flanging process. Hence, only the spatial-temporal temperature distri
bution is determined (solved) online while the mechanical solution, that 
impacts the thermal simulation, is computed offline. The latter enters 
the thermal subsystem in terms of the parameter vector p(z, t, u), which 
depends on the process conditions and hence the process inputs (1) and 
is composed of the following components:  

• um(z, t, u), i.e., the deformation of the sheet metal blank with respect 
to the initial shape at location z;  

• lgap(z, t, u), i.e. the shortest distance between the sheet metal blank 
and the tools at location z;  

• pc(z, t, u), i.e., the contact pressure between the sheet metal blank 
and the tool at location z;  

• x∞(z, t, u), i.e., the contact temperature at location z. This is either 
the ambient temperature if lgap(z, t) is larger than a certain threshold 
or the tool temperature if it is smaller. 

If clear from the context we subsequently write p and avoid the in
dividual dependencies of the parameters. 

3.2. Continuum formulation 
Modelling of the temperature distribution x(z, t) on the deforming 

sheet metal blank, whose shape at time t > 0 is determined by the vol
ume Ω(t)⊂R3 with boundary surface Γ(t) starting from the undeformed 
shape Ω(0) = Ω0, Γ(0) = Γ0, leads to the heat equation with in general 
temperature dependent material properties 

ρc(x)∂tx = ∇⋅[κ(x)∇x] + Ẇ(x), (z, t) ∈ Ω(t) × R+
0 , (2a)  

x|t=0 = xγ , z ∈ Ω0 ∪ Γ0, (2b)  

κ(x)∇x⋅n = κ∞(x, p)[x∞ − x], (z, t) ∈ Γ(t) × R+
0 . (2c) 

The material density ρ is assumed constant while the specific heat c(x 
(z, t)) and the thermal conductivity κ(x(z, t)) depend on the temperature 
distribution. The parameter Ẇ(x(z, t)) refers to the induced heat and can 
represent, e.g., thermal effects of the phase transformation. The initial 
condition (2b) is given by the austenitizing temperature xγ(z) which is 
set by the inductive heating process. In the following we assume that 
xγ(z) = xγ, i.e., the austenitizing temperature is homogeneously 
distributed. The boundary conditions (2c) in the direction of the outer 
normal n(t) of the boundary surface Γ(t) are modeled by mixed 
boundary conditions. The values for the thermal transfer coefficient 
κ∞(x(z, t), p) and the contact temperature x∞(z, t, u) are determined in 
accordance to LS-DYNA (Livermore Software Technology Corporation, 
2007; Hochholdinger et al., 2011). The parameter vector p with the 
mechanical solution enters the formulation in two ways: (i) the time 
evolution of Ω(t) depends on Ω0, i.e., the undeformed state, and the 
deformation um(z, t, u), (ii) the other parameters in p influence (2c). 

Remark 1. (Material derivative). Let Dt refer to the material derivative. 
The system representation (2) is based on the assumption that 

Dtx(z, t) = ∂tx(z, t) + ∇⋅(v(z, t)x(z, t)) ≈ ∂tx(z, t)

with v(z, t) the velocity of the domain point at (z, t). In other words we 
consider the rate of change observed when moving with the particle to 
be approximately identical with the rate of change at a fixed point. 
However, the setup can be easily generalized by appropriately replacing 
the partial differentiation ∂tx(z, t) in (2a) by Dtx(z, t) and taking into 
account the continuity equation. 

Fig. 1. Schematics of estimator-based closed-loop property control in the progressive die.  
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Remark 2. (Lagrangian viewpoint). It seems reasonable to reconsider (2) 
from a Lagrangian viewpoint as the time evolution of any material point due 
to deformation is known a-priori by means of the separation introduced in 
Assumption 1. This, however, introduces issues when considering the tem
porary contact between tool and sheet during forming. Moreover, this requires 
that the Jacobian matrix between material and spatial coordinates is 
approximated online and in principle to add the differential equations 
determining the temporal dynamics of the material points. A comparison 
between the considered approach and a Lagrangian approach is not at the 
core of this paper and is omitted. 

3.3. Weak formulation 
The distributed parameter description (2) can be recast into a weak 

formulation using a test function w(⋅, t) ∈ H1(Ω(t)) for any fixed but 
arbitrary t ∈ R+

0 . Then multiplication of (2a) with the test function and 
integration over the domain Ω(t) provides 

ρ
∫

Ω(t)
wc(x)∂txdΩ =

∫

Ω(t)
w∇⋅[κ(x)∇x]dΩ +

∫

Ω(t)
wẆ(x)dΩ. (3) 

Utilizing integration by parts and incorporating the mixed boundary 
conditions lead to the weak formulation 

ρ
∫

Ω(t)
wc(x)∂txdΩ

=

∫

Γ(t)
wκ(x)∇x⋅ndΓ −

∫

Ω(t)
∇w⋅(κ(x)∇x)dΩ

+

∫

Ω(t)
wẆ(x)dΩ

=

∫

Γ(t)
wκ∞(x, p)[x∞ − x]dΓ −

∫

Ω(t)
∇w⋅(κ(x)∇x)dΩ

+

∫

Ω(t)
wẆ(x)dΩ.

(4)  

3.4. Full order system formulation using finite element approximation 

The weak formulation in (4) is discretized in space with the finite 
element method in order to obtain ordinary differential equations 
(Zienkiewicz et al., 2013). For this purpose the software tool Firedrake 
(Rathgeber et al., 2016; Balay et al., 1997, 2019; Dalcin et al., 2011; 
McRae et al., 2016; Amestoy et al., 2001, 2006) is used taking into ac
count the weak formulation (4). The resulting system can be written in 
matrix form 

M(q, p, t)q̇ = K(q,p, t)q + f(q,p, t), t > 0, q(0) = q0 ∈ ℝnq (5)  

with the in general sparse heat capacity and thermal conductivity 
matrices M(q,p, t), K(q,p, t) ∈ Rnq×nq , respectively. The inhomogeneity 
f(q, p, t) ∈ Rnq results from the mixed boundary conditions (2c) and the 
induced heat Ẇ(x(z, t)). The explicit time dependency of the system 
matrices and the inhomogeneity originates from the time-varying 
domain Ω(t) with boundary Γ(t). The state vector q(t) ∈ Rnq denotes 
the temperature at each node of the mesh. Local temperature mea
surements are summarized in the output vector yx(t) ∈ Rny governed by 

yx = C(t)q, t ≥ 0. (6) 

The output matrix C(t) ∈ Rny×ny is time-variant as the measured 
temperatures on the sheet metal blank and thus the mapping to the 
output vector change during the forming process as the sensors are 
usually attached to the tools so that different locations on the blank are 
observed during deformation. Moreover, sensors might be shadowed by 
the tools at some stages of the forming process. 

3.5. Model order reduction 

System (5) is composed of several thousand states and is hence not 
suitable for estimation and control purposes. Therefore, model order 

reduction is considered to systematically reduce the number of states 
while preserving the most important dynamics of the system in the 
ROM. The goal of many model order reduction techniques is to project 
the states of the original system q(t) onto a reduced order state space by 
means of 

q ≈ Φx, (7)  

where x(t) ∈ Rnr contains the reduced states and Φ ∈ Rnq×nr is the 
orthonormal projection matrix. 

A way to choose the basis vector of the projection matrix Φ is POD. 
The POD basis vectors or POD modes, respectively, are chosen empiri
cally using the method of snapshots (Sirovich, 1987). Let q(t; u) denote 
the solution to (5) at time t for given initial state q0 and process input u 
defined in (1). Note that u enters the system description by means of the 
parameter vector p(z, t, u) and covers also the average austenitizing 
temperature xγ that defines the initial state q0 according to (2b). With 
this the snapshot matrix 

X = [X1,X2,…,Xnu ], (8a)  

where
Xi = [q(t1;ui), q(t2;ui),…, q(tnt ;ui)],

(8b)  

is defined so that X ∈ Rnq×ns contains the ns = ntnu state solutions q(tj; 
ui), j ∈{1, …, nt}, i ∈{1, …, nu} of (5). The POD modes are constructed by 
using a singular value decomposition of the snapshot matrix 

X = UΣYT , (9)  

where U ∈ Rnq×ns and Y ∈ Rnq×ns are matrices composed of the left and 
right singular vectors of X and Σ ∈ Rns×ns is the diagonal matrix con
taining the singular values σ1 ≥ σ2 ≥ … ≥ σns > 0. The projection ma
trix Φ is composed of the nr column vectors Uj of U corresponding to the 
nr largest singular values, i.e., 

Φ = [U1 U2 ⋯ Unr ] (10) 

Since the snapshots matrix X is large, a truncated singular value 
decomposition is performed by making use of the python library scipy 
(Virtanen et al., 2020). The singular values can also give guidance to 
quantify the number of basis vectors that are required to obtain a suit
ably accurate reconstruction of the snapshots. For this, the threshold 

E =

∑nr
i=1σi

∑ns
i=1σi

< ϵ (11)  

is considered, where ϵ is a tolerance specified by the user and Eis often 
referred to as the energy of the snapshots captured by the POD modes. 
Utilizing the Galerkin-projection (Benner et al., 2015), the reduced 
system reads 

Mr(x, p, t)ẋ = Kr(x, p, t)x + fr(x, p, t), t > 0, x(0) = x0 ∈ ℝnr (12a)  

yx = Cr(t)x, t ≥ 0 (12b)  

with the transformed matrices 

Mr(x, p, t) = ΦT M(Φx,p, t)Φ, Kr(x, p, t) = ΦT K(Φx,p, t)Φ,

fr(x, p, t) = ΦT f(Φx,p, t), Cr(t) = C(t)Φ.

The states q(t) of the full system can be recovered from x(t) using (7). 
Note that the POD method is optimal in the sense that it minimizes the 
least square error of the snapshot reconstruction but not that it optimally 
reconstructs the full model (Rathinam and Petzold, 2003). It is therefore 
crucial to select snapshots that excite any relevant dynamics of the 
system. 

4. State, property and disturbance estimation 
During the process it is not possible to measure the entire tempera

ture distribution x(z, t) of the sheet metal blank at any time. Therefore, a 
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state estimation concept is designed that reconstructs online the spatial- 
temporal temperature distribution based on the measurements yx(t), the 
parameter vector p(z, t, u) depending on the solution of the mechanical 
subsystem and the process inputs u as well as the ROM (12). In addition, 
two modifications are introduced that reduce the computational 
complexity and enable us to estimate the thermal effect of the phase 
transformation, which is in general difficult to include into the model 
and to parametrize appropriately. 

Remark 3. In the following it is assumed that observability or 
detectability of the ROM is fulfilled. The proper verification of these 
system properties requires to study the obtained models in further detail 
and hence relies on the considered process and the available sensors and 
their placement. 

4.1. Extended Kalman filter for temperature and property estimation 
A widely used state and parameter estimation approach is the Kal

man filter (Anderson and Moore, 2012). In the linear case it provides the 
optimal state estimation by the minimizing the covariance of the esti
mation error, i.e., the difference between the estimated state and the 
system (model) state under the assumptions of offset-free white process 
and measurement noise w(t) and v(t) with the positive definite covari
ance matrices Q and R, respectively. Taking these terms into account 
(12) reads 

Mr(x,p, t)ẋ = Kr(x,p, t)x + fr(x, p, t) + w, t > 0, x(0) = x0 (13a)  

yx = Cr(t)x + v, t ≥ 0. (13b) 

In view of the implementation of the estimator in a process control 
unit the Kalman filter is subsequently based on the discrete time version 
of system (12a). Taking into account a suitable discretization scheme, e. 
g., the explicit Euler method, Heun’s method or an (explicit) Runge- 
Kutta scheme, formally the sampled data system 

xk = Fk− 1(xk− 1, pk− 1,wk− 1), k ≥ 1, x0 = x(0) (14a)  

yx,k = Cr,kxk + vk (14b)  

is obtained, where xk = x(tk), pk = p(tk), wk = w(tk), vk = v(tk), tk =
∑k

j=1Δtj, t0 = 0, and Δtk is the stepsize or sampling time, respectively, 
which is assumed to be distributed unevenly for reasons explained 
below. 

Remark 4. The number of discretization steps for the forming process 
is fixed to an integer nt. Hence each step describes a particular snapshot 
of the forming process determined from the LS-DYNA simulation. In 
other words, instead of performing a multitude of simulations for 
different punch speed vps and holding time th we address the resulting 
effects by adjusting the time step Δtk. If the forming speed is increased, 
then the step size Δtk is reduced. Accordingly, Δtk is increased when the 
holding time th is increased. By this, the resulting effect on the tem
perature evolution is reflected accordingly. 

Due to the nonlinear system description an EKF is considered, which 
is based on the local linearization of (14) with respect to the current state 
estimate. For this let Ak(xk) and Gk(xk) denote the Jacobian matrices of 
Fk(xk, pk, wk) with respect to xk and wk, respectively, i.e. 

Ak(xk) =
∂Fk(xk, pk,wk)

∂xk
|wk=0, Gk(xk) =

∂Fk(xk,pk,wk)

∂wk
|wk=0. (15) 

The linear Kalman filter design can be divided into two steps, namely 
the prediction and the update step (Anderson and Moore, 2012). This 
similarly extends to the EKF design by making use of the above 
mentioned local linearization (Gelb, 1974). In the prediction step the 
state estimate x̂−

k is updated based on the previous state estimate x̂k− 1 

and parameter vector pk− 1 using (14) and the covariance matrix P−
k is 

computed 

x̂ −

k = Fk− 1(x̂k− 1, pk− 1, 0) (16a)  

P−
k = Ak− 1(x̂k− 1)Pk− 1AT

k− 1(x̂k− 1) + Gk− 1(x̂k− 1)QGT
k− 1(x̂k− 1). (16b) 

In the update step the state estimation is updated based on the cur
rent measurements yx,k. At first the Kalman gain Lk is defined 

Lk = P−
k Cr,k

(
Cr,kP−

k CT
r,k + R

)− 1
, (16c)  

which is used to update state estimate and covariance matrix according 
to 

x̂k = x̂−

k + Lk
(
yx,k − Cr,k x̂−

k

)
(16d)  

Pk =
(
I − LkCr,k

)
P−

k . (16e) 

The state vector x̂k of the EKF is considered as the estimate of the 
state xk of the ROM defined in (14). By making use of (7) the estimate 

q̂k = Φx̂k (17)  

of the nodal temperature vector of the discrete time version of full order 
system (5) is obtained, which is utilized subsequently for the recon
struction of the temperature distribution in the sheet metal blank. 

4.2. Property estimation 

Microstructural properties such as hardness of the product essen
tially depend on the deformation and temperature history. Based on the 
previously introduced state estimation approach and assuming that the 
deformation history is determined by the LS-DYNA simulation at a suf
ficient level of accuracy, then properties may be formally represented in 
the form 

yp = h(x,p, t), (18)  

where yp(z, t) summarizes the spatial-temporal property distribution. 
The function h(x(z, t), p(z, t, u), t) may include also the temperature 
history, which can be represented as a convolution integral over the 
temperature distribution with an appropriate integral kernel. In view of 
the finite element approximation implying (5), the determination of the 
ROM (12), and the state estimation (16) the property equation (18) can 
be re-written in the discrete time form 

yp,k = Hk(q̂k,pk) (19)  

with yp,k referring the property distribution vector at the nodes of the 
mesh and q̂k the temperature estimation (17). 

4.3. Model simplification using supporting trajectories 

The parameter vector p(z, t, u) in (5) is obtained from the LS-DYNA 
simulation, which is performed offline. Since p(z, t, u) depends on the 
inputs (1) by means of u(t) full scenario coverage would require to 
numerically solve all possible combinations offline. To avoid this rather 
tedious procedure subsequently a so-called supporting trajectory 
labelled p(t) is defined, which is associated with the respective tem
perature trajectory q(t) to perform a linearization of the nonlinear sys
tem dynamics (5) or (12), see, e.g., Rewieński and White (2003). Hence 
under the assumption that ‖q(t) − q(t)‖2 is sufficiently small the model 
(5) is subsequently approximated by 

M(t)q̇ = K(t)q + f(t), t > 0, q(0) = q0 ∈ ℝnq (20a)  

yx = C(t)q, t ≥ 0 (20b)  

with M(t) = M(q(t),p(t),t), K(t) = K(q(t),p(t),t), and f(t) = f(q(t),p(t),
t), for the remainder of the paper also referred to as nominal model. Note 

D. Kloeser et al.                                                                                                                                                                                                                                 



Advances in Industrial and Manufacturing Engineering 3 (2021) 100055

6

that (20) does not correspond to a standard linearization using Taylor 
series expansion, which would imply a linearized model describing the 
deviation to the supporting trajectory, but rather refers to a model 
simplification. One particular advantage of this problem formulation is 
that the arising matrices, though dependent on the known variables 
(q(t), p(t)), can be pre-computed so that (20) can be considered as a 
linear time-varying system. To determine the corresponding ROM again 
POD can be applied as introduced in Section 3.5. This yields the ROM 

Mr(t)ẋ = Kr(t)x + fr(t), t > 0, x(0) = x0 ∈ ℝnr (21a)  

yx = Cr(t)x, t ≥ 0 (21b)  

with the matrices Mr(t) = ΦTM(t)Φ, Kr(t) = ΦTK(t)Φ, fr(t) = ΦTf(t), 
and Cr(t) = C(t)Φ for q(t) = Φx(t). The state and property estimation 
considered in Sections 4.1 and 4.2 can be identically evaluated using 
(21). To address the resulting errors from the model approximation as 
well as neglected physical effects such as phase transformation in the 
material a disturbance model is added and integrated into to the esti
mator design. 

4.4. Disturbance estimation 

Unmodeled dynamical effects and approximation/simplification er
rors are subsequently subsumed in terms of an unknown disturbance 
vector d(t) so that (5) is amended according to 

M(q, p, t)q̇ = K(q,p, t)q + f(q,p, t) + B(q,p, t)d. (22) 

The disturbance d(t) ∈ Rnd can be considered as vector of power 
densities that act on the system and the disturbance matrix B(q, p, t) ∈
Rnq×nd quantifies, where and how this power is induced. In particular B 
(q, p, t)d(t) can be used to represent the heat induced by phase trans
formation, whose mathematical description might be difficult to 
formulate and to parametrize, using an external model determining d(t). 
The main issue in this setup is the proper determination of the distur
bance matrix, which will be illustrated in Section 5 for the example of a 
hole-flanging process by relying on physical intuition and numerical 
studies. 

As before a ROM can be determined for (22) using POD, where the 
snapshot matrix (8) may be extended by varying both u and the distur
bance vector d(t) to excite the relevant system dynamics when forming the 
(extended) submatrix Xi = [q(t1; d1,ui), q(t2; d2, ui),…, q(tnt ;dnt ,ui)]. 
Proceeding as before and taking into account the previously introduced 
approximation using a supporting trajectory the corresponding ROM can 
be represented as 

Mr(t)ẋ(t) = Kr(t)x(t) + fr(t) + Br(t)d, t > 0, x(0) = x0 ∈ ℝnr . (23) 

The unknown disturbances d(t) are estimated online using the 
concept of Meditch et al. (1973). For this, a quasi-static disturbance 
model is introduced in the form 0 = Add(t) to augment (23). The term 
quasi-static refers to the fact that the rate of change of the disturbance 
can be neglected compared to the rate of change of the system state. Of 
course other choice can be made depending on the process character
istics. The resulting extended system reads 
[

Mr(t) 0
0 I

][ ẋ
ḋ

]

=

[
Kr(t) Br(t)

0 Ad(t)

][ x
d

]

+

[
fr(t)

0

]

+ w(t),

t > 0,
[ x

d

]

(0) =
[ x0

d0

] (24a)  

yx = [Cr(t) 0 ]
[

x
d

]

+ v(t). (24b) 

The EKF design from Section 4.1 can then be applied to (24) with the 
process noise covariance matrix Q amended by the one Qd of the 
disturbance model. This results in a combined state, property and 

disturbance estimation based on the augmented ROM. Note that due to 
the injection of the measurement and the correction of the augmented 
state estimate x̂e(t) = [x̂T

(t), d̂(t)]T by the Kalman gain the disturbance 
estimate d̂(t) is adjusted despite the assumption of quasi-stationarity of 
the disturbance model. 

5. Simulation results 

While the derived methods are generally applicable to multi-stage 
forming processes they are subsequently evaluated in simulation 
studies for a hole-flanging process. This process is first described and 
analysed before the model and approximation errors are quantified. 
State estimation is validated for two scenarios. First, it is evaluated 
based on a simulation using the finite element code Firedrake with 
known disturbances. Secondly, the solution of the LS-DYNA simulation 
involving phase transformation is used to feed the state and disturbance 
estimation based on the derived ROM. 

5.1. Hole-flanging process 

The validation takes place for a hole-flanging process in simulation. 
An illustration is shown in Fig. 2. The forming process is separated in 
four phases: transfer (A), forming (B), holding (C), and demoulding (D). 
Three snapshots are taken before the forming process, during holding in 
the lower dead point and after the forming process at t = 5.2 s, t = 7.6 s 
and t = 12.1 s, respectively. The bottom graph shows the temperature 
evolution at different nodes having a certain distance l0 to the centre 
point of the sheet metal blank obtained from a full order coupled 
thermo-mechanical simulation using LS-DYNA. The regions having tool 
contact (l0 = 11 cm and l0 = 18 cm) cool down most, while regions 
which are outside the tool contact region (l0 = 22 cm and l0 = 30 cm) are 
less affected by the forming process. 

At the end of the holding phase, it can be seen that the point with a 
distance of 11 cm stops cooling down and holds the temperature for 
some time. This effect is caused by the phase transformation. 

The full order thermal model (5) is of dimension nq = 17 181. The 
input vector u(t) in this process contains the punch speed vps and the 
austenite temperature xγ. The simulation is composed of 510 dis
cretization steps nt and the step sizes Δtk are chosen according to Remark 
4. It is assumed that pointwise temperature measurements yx(t) fixed to 
certain positions in the world frame are available leading to the time- 
variant output matrix C(t) in (6). Shadowing of the sensors is not 
considered and measurement noise v(t) with a standard deviation of 10 
K is added to the signals to evaluate the performance of the state esti
mation. The supporting trajectory (p(t), q(t)) is obtained from the LS- 
DYNA simulation with xγ = 1273 K and vps = 80 mm s− 1. 

The disturbance model is physically motivated by the phase trans
formation from austenite to martensite. In the given process, it assumed 
that the transformation takes place simultaneously at all nodes that have 
tool contact, which is illustrated by the red area in Fig. 3. As a conse
quence in (22) the disturbance signal d(t) = d(t) is considered as scalar 
function with the disturbance matrix B(q, p, t) reducing to a vector. It is 
assumed that there is no phase transformation in the blue area during 
the simulation time. 

5.2. Model order reduction 

An important step in the POD reduction method is the choice of the 
snapshot matrix. For the given example it is a concatenation of several 
full order simulations obtained using Firedrake with excitation of the 
system in terms of the disturbance d(t) and varying process inputs u to 
the system. The austenitizing temperature xγ is varied between 1173 K 
and 1373 K while the punch speed vps is varied between 80 mm s− 1 and 
100 mm s− 1. The disturbance signal is modeled with 20 different step 
wise excitations within the forming, holding and demoulding phase with 
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an amplitude up to 2600 W m− 3 and a duration between 2 and 5 s. 
Overall this results in nu = 23 different full order simulation with each 
containing nt = 510 timesteps resulting in ns = 11730 samples. 

In Fig. 4, the energy E of the snapshots that is covered by the reduced 
system with nr modes as described in (11) is shown. In the given case nr 
= 30 modes cover over 99% of the energy of the snapshot matrix. 

This assumption is also confirmed in Fig. 5, where the root mean 
squared error (RMSE) between the full model and the reduced order 
model is shown for three simulations. The RMSE is thereby computed at 
each time step k as 

ek =

∫

Ωk

⃦
⃦
⃦Φxk − qk‖2dΩ

∫

Ωk
dΩ

, (25)  

where Φxk is the reconstructed sheet metal temperature based the 
reduced order states xk using (7). In the simulation with xγ = 1273 K and 
vps = 80 mm s− 1 the error converges to 0 K as nr is increased. This is due 
to the fact that this setting corresponds to the supporting trajectory (p(t),
q(t)) that is used for the model simplification in (21). From 9 s to 11 s a 
disturbance with a power density of 1000 W m− 3 is applied to the sys
tem. As this particular disturbance signal is not present in the snapshot 
matrix X, it leads to a certain error. In the surface plots in the right 
column of Fig. 5, which show the same subset as in Fig. 3, it can be seen 
that the error of the disturbance arises mainly around the area with tool 

contact. In the second and third row, the simplification error takes ef
fect. The RMSE with respect to a variation in vps is below 1 K in the 
transfer phase because the parameter trajectory is the same as in the 
nominal case. The RMSE rises to around 5 K in the forming phase, where 
the parameter and temperature trajectories deviate from the supporting 
trajectories. The surface plots illustrate that this error is dominant in the 
area of tool contact. The RMSE for a variation in xγ grows up to 20 K 
without the influence of disturbances. The surface plots illustrate that 
there is also an error outside the tool contact region which is mainly 
caused by the temperature dependent material properties in (2a). 

The computational time for the simulation of the hole-flanging 
process is reduced from 33 000 s in LS-DYNA to 405 s for the full 
order model (5) to 0.3 s for the ROM (23) with nr = 30 states using the 
introduced model simplification in terms of the supporting trajectory. 
This implies a reduction in computation time by a factor of 1000 from 
the full order model and confirms the real-time capabilities of the 
derived ROM. The simulation is conducted on a laptop with an Intel Core 
i5-8265U with 2.8 GHz. 

Fig. 2. Temperature snapshots during the forming process obtained from a full order coupled thermo-mechanical simulation using LS-DYNA (top). Temperature 
evolution at four different locations with different distances l0 to the centre of the sheet metal blank (bottom). The effect of the phase transformation from austenite to 
martensite can be seen at approximately 10 s. 

Fig. 3. Red colored areas illustrate the region of phase transformation at tool 
contact and hence the domain addressed primarily by the disturbance model. 

Fig. 4. Approximated cumulative energy (11) covered by the POD modes.  
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5.3. State and disturbance estimation with full order thermal plant model 

The state and disturbance estimation is first evaluated in combina
tion with the full order thermal model (5). A disturbance signal d(t) with 
a power density of 1000 W m− 3 between 9 s and 11 s is imposed to this 
model, which is unknown to the EKF and needs to be reconstructed 
utilizing the local temperature measurements. The austenitizing tem
perature xγ and punch speed vps are assigned as 1373 K and 80 mm s− 1, 
respectively. 

The EKF in Section 4.1 needs to be initialized with the covariance 
matrices of process and sensor noise. Subsequently, diagonal matrices 
are assumed with Q = 10Inr ,nr and R = 0.1Iny ,ny , where Ii,j is the i × j 
identity matrix. The initial state of the EKF is assigned as x̂0 = ΦTq0 and 

hence corresponds to the projection of the systems initial state. The 
initial value of the covariance matrix is chosen as P0 = 10Inr ,nr . The EKF 
is driven by the process input u(t) and ny = 3 temperature measurements 
summarized in the vector yx(t). Their location is indicated in Fig. 6, top 
right column by the crosses in the surface plots. The measurements are 
subsequently computed from the full order model (5). Note that sensor 
position is assumed spatially fixed so that the temperature of different 
nodes passing the measurement location due to the deformation is 
extracted by the matrix C(t). 

The obtained estimation results are summarized in Fig. 6. In the left 
column the temperature evolution for selected evaluation points on the 
sheet metal blank (corresponding to the numbers in the surface plots) 
are given. The first point (a) is located on a measurement point inside the 

Fig. 5. RMSE (25) for input variations in terms of austenitizing temperature xγ and punch speed vps for different dimensions nr ∈{10, 30, 50} of the ROM (left 
column) and corresponding surface plots for a fixed dimension nr = 30 to illustrate spatial distribution of the modeling error (right column). 

Fig. 6. State and disturbance estimation using the EKF based on the augmented ROM (24) with the full order thermal model (5) of Firedrake serving as plant model 
for austenitizing temperature xγ = 1373 K and punch speed vps = 80 mm s− 1. Left column: comparison of estimated and simulated temperature at evaluation points 
and the temperature of the nominal model (20); right column: location of measurement and evaluation points (top), RMSE (middle) and comparison between applied 
and estimated disturbance (bottom). 
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disturbance region. In this case, the estimated temperature follows the 
true temperature without a large deviation because the disturbance es
timate is chosen such that the error is minimized. In the bottom right 
plot, the estimated disturbance signal is compared with the applied 
disturbance signal. The estimate follows the true trajectory with a small 
delay because a constant disturbance in the model in (24) is assumed. 
The second point (b) is not placed on a measurement point so that the 
temperature evolution is reconstructed by the EKF. Due to modeling 
errors the temperature is not reconstructed as good as in (a). The third 
node (c) is also not placed on a measurement point. However, the 
reconstruction is better than (b), because it is not placed within the tool 
contact area so that the model is more accurate. Overall the state and 
disturbance estimation perform well with a RMSE below 20 K, in 
particular in view of the comparatively low number of measurement 
values. Moreover, the temperature of the nominal model (20) is shown 
to emphasize that the EKF follows the dynamics of the actual process. 

5.4. State and disturbance estimation with thermo-mechanical LS-DYNA 
plant model 

The state estimation is furthermore tested on the LS-DYNA simula
tion, where the thermal effects of the phase transformation are included 
by the internally used material model, so that the disturbance estimator 
is used to capture the respective effects. The austenitizing temperature 
xγ and the punch speed vps are assigned as 1373 K and 80 mm s− 1, 
respectively. The sensor configuration and the initialization of the EKF 
correspond to those of Section 5.3. 

In Fig. 7 state and disturbance estimation are evaluated compared to 
the fully coupled thermo-mechanical LS-DYNA simulation, which is 
used to generate the measurement signals. As before the estimation re
sults are more accurate for regions outside the tool contact area, sub
sequently represented by evaluation point (c), and at the measurement 
points, here evaluation point (a). In overall compared to the results of 
Section 5.3 the RMSE is slightly increased reaching a value of approxi
mately 25 K without and 15 K with disturbance estimation (cf. Fig. 7, 
right column, middle). The maximal RMSE rises when the phase trans
formation occurs, which is in the interval between 9 s and 11 s. The 
disturbance estimation (right column, bottom) herein reaches an 
approximate power density of 250 W m− 3. In addition, two additional 
peaks of ±250 W m− 3 emerge at the beginning of the holding phase. 

These are unrelated with the phase transformation and occur due to 
other modeling inaccuracies. 

6. Conclusion 

Model-based state and disturbance estimation is developed using 
reduced-order models for a multi-stage hot sheet metal forming process. 
For this, based on the assumption of a separation between the me
chanical solution and the thermal solution of the thermo-mechanical 
process, a nonlinear parametric model describing the spatial-temporal 
evolution of the temperature in the sheet metal blank during the form
ing process is derived taking into account a finite element approxima
tion of the heat equation on the time-varying deforming volume. To 
address the high model order proper orthogonal decomposition is uti
lized to determine a reduced-order model capturing the essential dy
namics of the thermal sub-process. Based on this system description an 
Extended Kalman filter is designed and augmented by a disturbance 
model to address modeling and approximation errors as well as 
neglected physical effects such as phase transformation. The computa
tional complexity is further reduced by considering a suitable supporting 
trajectory which enables us to approximately consider an linear time- 
varying system dynamics. The performance of the state and distur
bance estimation is evaluated in simulation studies for a hole-flanging 
process coupling the estimator with first the full order thermal model 
and secondly with a fully coupled thermo-mechanical simulation using 
LS-DYNA. The obtained results confirm the performance of the estima
tion approach and underline its ability to reconstruct the spatial- 
temporal temperature distribution in the sheet metal blank during the 
forming process in real-time based on only sparse local temperature 
measurements. 

Current research considers the extension to property estimation as is 
already outlined schematically in this paper. Here, both the deformation 
history and the estimated temperature distribution starting at its initial 
state will be utilized in conjunction with property-related characteristic 
diagrams or material models to determine spatial-temporal property 
distributions. Both, temperature and property estimation will further
more serve as fundamental ingredients for the model-based control of 
multi-stage hot sheet metal forming processes. 

Fig. 7. State and disturbance estimation using the EKF based on the augmented ROM (24) with the full coupled thermo-mechanical model of LS-DYNA serving as 
plant model for austenitizing temperature xγ = 1373 K and punch speed vps = 80 mm s− 1. Left column: comparison of estimated and simulated temperature at 
evaluation points and the temperature of the nominal model (20); right column: location of measurement and evaluation points (top), RMSE with and without 
disturbance estimation (middle) and estimated disturbance (bottom). 
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Rewieński, M., White, J., 2003. A trajectory piecewise-linear approach to model order 
reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE 
Trans. Comput. Aided Des. Integrated Circ. Syst. 22 (2), 155–170. 

Shapiro, A., 2009. Finite element modeling of hot stamping. Steel Res. Int. 80 (9), 
658–664. 

Sirovich, L., 1987. Turbulence and the dynamics of coherent structures. III. Dynamics 
and scaling. Q. Appl. Math. 45 (3), 583–590. 

Speicher, K., Steinboeck, A., Kugi, A., Wild, D., Kiefer, T., 2014. Analysis and design of an 
Extended Kalman Filter for the plate temperature in heavy plate rolling. J. Process 
Contr. 24 (9), 1371–1381. 

Spittel, M., Spittel, T., 2009. Steel symbol/number: X46Cr13/1.4034: datasheet from 
landolt-Börnstein - group VIII advanced materials and technologies ⋅ volume 2C1: 
”metal forming data of ferrous alloys - deformation behaviour” in SpringerMaterials. 
https://doi.org/10.1007/978-3-540-447. 

Venturato, G., Novella, M., Bruschi, S., Ghiotti, A., Shivpuri, R., jan 2017. Effects of phase 
transformation in hot stamping of 22MnB5 high strength steel. In: Procedia 
Engineering, vol. 183. Elsevier Ltd, pp. 316–321. 

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., 
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R., Jones, E., Kern, R., Larson, E., 
Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., 
Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A. 
H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A., 
Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., 
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