KIT | KIT-Bibliothek | Impressum | Datenschutz

UAV-based reference data for the prediction of fractional cover of standing deadwood from Sentinel time series

Schiefer, Felix ORCID iD icon 1; Schmidtlein, Sebastian ORCID iD icon 1; Frick, Annett; Frey, Julian; Klinke, Randolf; Zielewska-Büttner, Katarzyna; Junttila, Samuli; Uhl, Andreas; Kattenborn, Teja
1 Institut für Geographie und Geoökologie (IFGG), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Increasing tree mortality due to climate change has been observed globally. Remote sensing is a suitable means for detecting tree mortality and has been proven effective for the assessment of abrupt and large-scale stand-replacing disturbances, such as those caused by windthrow, clear-cut harvesting, or wildfire. Non-stand replacing tree mortality events (e.g., due to drought) are more difficult to detect with satellite data – especially across regions and forest types. A common limitation for this is the availability of spatially explicit reference data. To address this issue, we propose an automated generation of reference data using uncrewed aerial vehicles (UAV) and deep learning-based pattern recognition. In this study, we used convolutional neural networks (CNN) to semantically segment crowns of standing dead trees from 176 UAV-based very high-resolution (<4 cm) RGB-orthomosaics that we acquired over six regions in Germany and Finland between 2017 and 2021. The local-level CNN-predictions were then extrapolated to landscape-level using Sentinel-1 (i.e., backscatter and interferometric coherence), Sentinel-2 time series, and long short term memory networks (LSTM) to predict the cover fraction of standing deadwood per Sentinel-pixel. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000156877
Veröffentlicht am 13.03.2023
Originalveröffentlichung
DOI: 10.1016/j.ophoto.2023.100034
Scopus
Zitationen: 16
Dimensions
Zitationen: 24
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Geographie und Geoökologie (IFGG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2023
Sprache Englisch
Identifikator ISSN: 2667-3932
KITopen-ID: 1000156877
Erschienen in ISPRS Open Journal of Photogrammetry and Remote Sensing
Verlag Elsevier
Band 8
Seiten Art.-Nr.: 100034
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 08.03.2023
Schlagwörter Reference data; Standing deadwood; Deep learning; Tree mortality; Upscaling
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page