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This study presents an analytic method for the estimation of safe basins in
the plane of the initial conditions of the escape of a classical particle from an
asymmetrically truncated quadratic potential well. For this purpose, an analytic
method to estimate the global optimum of the sum of two harmonic functions
is proposed. This approach is based on the mapping of the arguments of the two
harmonic terms to the surface of the unit torus, where a surrogate optimization
problem obtained by the Taylor expansion of the original objective function is
solved. Applying the proposed method to the aforementioned escape problem
helps predict safe basins for any value of the excitation frequency provided that
the exciting force is not too strong, generating essentially non-linear effects on
potential boundaries. Specifically, interesting effects with regard to the shape of
safe basins occur when the natural frequency of the potential well and frequency
of excitation represent the ratio of two small integers.

1 INTRODUCTION

Escape from a potential well is a well-known topic in the theory of non-linear dynamic systems [1–5]. The escape-related
phenomena range from chemical reactions [6, 7] through the physics of Josephson junctions [8] andMEMS devices [9–14]
to celestialmechanics and gravitational collapse. Escape plays a role in energy harvesting [15] and is related to the transient
resonance dynamics of oscillatory systems [16, 17] and specific phenomena, for example, the capsizing of ships [4, 18].
Several studies have been conducted in the last 80 years in the field of escape; however, there are many unresolved issues
that require investigation [19].
Various aspects of escape can be investigated. The problem of the sharp minimum of the critical excitation amplitude

depicted by excitation frequency in the vicinity of the main resonance using unlimited potential with the main aspect
based on homogeneous initial conditions (ICs) is addressed in [20]. The effect of two strongly coupled particles on the
escape behavior in a truncated quadratic potential focusing on the vicinity of themain resonance is investigated in ref. [21].
The determination of the hyper-volume (in 2D: area) of safe basins (SBs), that is, a set of non-escaping ICs under certain
excitation and the investigation of various integrity measures, introduced to describe the technically relevant size of the
non-escaping set, received considerable attention [2, 22–24]. The investigated potential wells were non-quadratic; there-
fore, accurate analytic results cannot be provided to describe SB boundaries. Approximations using Melnikov’s method
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[2] or adiabatic invariants and action-angle variables [25] provide analytic formulas in the vicinity of the main resonance
for small excitation values; however, estimates become inaccurate if they are far from 1 ∶ 1 resonance.
In this study, the SBs of the escape of a single particle from an asymmetrically truncated quadratic potential well under

harmonic excitation are investigated. The selected potential is probably the simplest one, as the motion of the particle
inside the well can be given in an analytically closed form, not only for small excitation around the main resonance
but also in general. In ref.[26], the symmetrical case with the incommensurable excitation frequency/natural frequency
ratio was considered, leaving the case of a commensurable frequency ratio as an open question. However, if the ratio
of the excitation’s frequency and the natural frequency of the potential well is a small rational number, that is, 𝑁 ∶ 𝑀,
interesting effects occur, leading to the enlargement of the SB compared to the case when the frequency ratio is slightly
disturbed. In certain cases, there is a substantial difference in the existence of SBs: a SB exists if the ratio of the excitation
frequency to the natural frequency is 1 ∶ 𝑀; however, owing to the effect of the slightest disturbance on this ratio, the
SB disappears. This result indicates that SBs may possess structurally unstable and stable parts. Numerical simulations
do not always reveal this fact; owing to additional disturbance in the frequency ratio, the escape time in the structurally
unstable part of the SBmight extend; thus, the simulationmight stop before the particle escapes. This concernwith regard
to the robustness of the SB is even worse in the aforementioned case of 1 ∶ 𝑀 excitation; then, the whole area of the SB
might be structurally unstable.
For the quantitative prediction of the aforementioned basins, Section 2 introduces an accuratemethod for the estimation

of the global optima of the sum of two harmonics. In Section 3, the estimation is applied to the specific case of escape from
an asymmetrically truncated quadratic potential well with harmonic excitation, where the two harmonic terms of the
function to be estimated result from the homogeneous and particular solutions of the underlying differential equation,
describing the motion of the particle inside the potential well. Section 4 compares the analytical results to that of numeric
simulations, thereby demonstrating the accuracy of the proposed method by comparing the global integrity measures
derived either way. Section 5 provides suggestions on further studies and concludes the current study.

2 GLOBAL OPTIMUMOF THE SUMOF TWOHARMONICS

Before starting to investigate the problem with regard to the SBs of escape, let us investigate a mathematical optimization
problem. The results will be necessary in this study, as the motion of a harmonic oscillator excited with a sinusoidal force
is the sum of two harmonics with different frequencies. We are looking for the

sup
𝑡
𝑓(𝑡) = sup

𝑡
𝐴 cos(Ω̃𝐴𝑡 + 𝛼̃𝐴) + 𝐵 cos(Ω̃𝐵𝑡 + 𝛼̃𝐵) (1)

for 𝐴, 𝐵, Ω̃𝐴, Ω̃𝐵 ∈ ℝ+ and 𝛼̃𝐴, 𝛼̃𝐵 ∈ [0, 2𝜋) with “sup” standing for supremum. With the coordinate transformation

𝑡 ∶= Ω̃𝐴𝑡 + 𝛼̃𝐴 (2)

and

Ω𝐵 ∶=
Ω̃𝐵

Ω̃𝐴
, (3)

𝛼𝐵 ∶= −
Ω̃𝐵𝛼̃𝐴

Ω̃𝐴
+ 𝛼̃𝐵, (4)

the problem can be rewritten as

𝑓sup ∶= sup
𝑡
𝑓(𝑡) = sup

𝑡
(𝐴 cos 𝑡 + 𝐵 cos(Ω𝐵𝑡 + 𝛼𝐵)). (5)

If the frequencies Ω̃𝐴 and Ω̃𝐵 are commensurable, that is, Ω𝐵 is rational, function 𝑓(𝑡) is periodic, and being a bounded
function, its supremum is taken at some value of 𝑡, hence, it has a global maximum, indeed. In case Ω𝐵 is irrational,
function 𝑓(𝑡) is only almost periodic and does not have a well defined global maximum. Instead, it passes arbitrarily close
to its supremum given by 𝐴 + 𝐵 for some values of 𝑡.
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Theorem 1. In case ofΩ𝐵 ∈ ℝ∖ℚ (i.e., an irrational number), the supremum of Equation (5) is

𝑓sup,Irr ∶= 𝐴 + 𝐵. (6)

In case ofΩ𝐵 ∈ ℚ, we have thatΩ𝐵 = 𝑁∕𝑀 with some𝑁,𝑀 ∈ ℕ. Then, 𝑓max can be estimated by

𝑓max,Rat ∶= 𝐴

⎛⎜⎜⎝1 − 2𝜋2
(

𝐵Ω𝐵

𝐴 + 𝐵Ω2
𝐵

)2|𝑦0|2⎞⎟⎟⎠ + 𝐵
⎛⎜⎜⎝1 − 2𝜋2

(
𝐴

𝐴 + 𝐵Ω2
𝐵

)2|𝑦0|2⎞⎟⎟⎠, (7)

with

Δ𝐸 =
gcd(𝑀,𝑁)

𝑀
, (8)

𝑦𝑁 =
𝛼𝐵
2𝜋

+

⌊
−

𝛼𝐵
2𝜋Δ𝐸

⌋
Δ𝐸, (9)

|𝑦0| = min{|𝑦𝑁|, |𝑦𝑃|} = min{−𝑦𝑁, Δ𝐸 + 𝑦𝑁} = −
||||𝑦𝑁 + Δ𝐸

2

|||| + Δ𝐸

2
, (10)

where “gcd(𝑀,𝑁)” stands for greatest common divisor of 𝑀 and 𝑁 and {𝑥} = 𝑥 − ⌊𝑥⌋ denotes the fractional part with ⌊⋅⌋
denoting the floor function. The relative error of 𝑓max,Rat is of fourth order respective to 𝛼𝐵 when compared to the exact solution
of (5) (cf. Figure 7).

Proof. Considering that cos 𝑡 and cosΩ𝐵𝑡 + 𝛼𝐵 have large values, when their arguments are close to 2𝜋𝑘 and 2𝜋𝑙 with any
𝑘, 𝑙 ∈ ℤ, it is sufficient to examine how close the line

𝑙(𝑥) = Ω𝐵𝑥 +
𝛼𝐵
2𝜋

(11)

gets to an integer-valued grid point, (𝑘, 𝑙), on the plane. As all the integer-valued coordinate points are important, the line
can be mapped to the surface of the unit torus by mapping [26]

𝑇 =

{
ℝ × ℝ → 𝑆1 × 𝑆1

(𝑥, 𝑦) → ({𝑥}, {𝑦}),
(12)

thus, reducing the number of integer-valued coordinates to one, that is, the origin. The line (11) gets wound up on the
surface of the torus and fills the surface densely in the case of irrational Ω𝐵, passing arbitrarily close to the origin and
resulting in 𝑓sup = 𝐴 + 𝐵.
The situation becomes different if 𝑓(𝑡) becomes periodic owing to Ω𝐵 ∈ ℚ. In this case, the mapped line 𝑇(𝑥, 𝑙(𝑥))

repeats itself in each period, leaving empty spaces on the surface of the torus. When the surface of the torus is cut along
𝑥 = 0 and 𝑦 = 0 and flattened out to represent it in the plane, 𝑇(𝑥, 𝑙(𝑥)) exhibits a family of parallel lines (cf. Figure 1).
The equations of the whole family of lines can be defined as

𝐶𝑘𝑥 + 𝐶𝑙𝑦 = 𝐶0 + 𝐸𝐿, (13)

where 𝐶0 denotes a specific constant and 𝐸𝐿 can take several values, indexed by 𝐿 ∈ ℤ, which identifies the line. As
𝑙(𝑥) = Ω𝐵𝑥 +

𝛼𝐵

2𝜋
is one of the aforementioned parallel lines, we consider 𝐸𝐿 to take the value of 0 for this line, and thus,

a link between the constants 𝐶𝑘, 𝐶𝑙, and 𝐶0 can be defined as

𝐶0 = −
𝛼𝐵

2𝜋Ω𝐵
𝐶𝑘, (14)

𝐶𝑙 = −
𝐶𝑘
Ω𝐵

. (15)
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𝐶𝑘 can be selected freely. By setting 𝐶𝑘 = Ω𝐵, we obtain

𝐶0 = −
𝛼𝐵
2𝜋
, (16)

𝐶𝑙 = −1 (17)

and Equation (13) becomes

Ω𝐵𝑥 − 𝑙(𝑥) = −
𝛼𝐵
2𝜋

+ 𝐸𝐿. (18)

Applying 𝑇 to (𝑥, 𝑙(𝑥)), we obtain

Ω𝐵{𝑥} − {𝑙(𝑥)} = −
𝛼𝐵
2𝜋

+ 𝐸𝐿, (19)

Ω𝐵{𝑥} −
{
Ω𝐵𝑥 +

𝛼𝐵
2𝜋

}
= −

𝛼𝐵
2𝜋

+ 𝐸𝐿, (20)

Ω𝐵(𝑥 − ⌊𝑥⌋) − (
Ω𝐵𝑥 +

𝛼𝐵
2𝜋

−
⌊
Ω𝐵𝑥 +

𝛼𝐵
2𝜋

⌋)
= −

𝛼𝐵
2𝜋

+ 𝐸𝐿, (21)

−Ω𝐵⌊𝑥⌋ + ⌊
Ω𝐵𝑥 +

𝛼𝐵
2𝜋

⌋
= 𝐸𝐿. (22)

Considering that Ω𝐵 = 𝑁∕𝑀, we obtain

−𝑁⌊𝑥⌋ +𝑀⌊Ω𝐵𝑥 + 𝛼𝐵

2𝜋
⌋

𝑀
= 𝐸𝐿. (23)

As ⌊𝑥⌋ and ⌊Ω𝐵𝑥 + 𝛼𝐵

2𝜋
⌋ are integer values, the smallest difference between two different values of the expression given in

Equation (23) is

Δ𝐸 =
gcd(𝑀,𝑁)

𝑀
. (24)

Thus, the parallel lines are defined by

𝑦(𝑥, 𝐿) = Ω𝐵𝑥 +
𝛼𝐵
2𝜋

+ 𝐿Δ𝐸, with 𝐿 ∈ ℤ. (25)

Hence, (5) can be reformulated as

𝑃𝑂 ∶ max
𝑥,𝑦,𝐿

𝑔𝑂(𝑥, 𝑦) = 𝐴 cos 2𝜋𝑥 + 𝐵 cos 2𝜋𝑦 (26)

s.t. 𝑦 = Ω𝐵𝑥 +
𝛼𝐵
2𝜋

+ 𝐿Δ𝐸, with 𝑥, 𝑦 ∈ [0, 1), 𝐿 ∈ ℤ. (27)

Figure 1a shows the equivalent representation of (5).
In the current form, the reformulated problem, that is, 𝑃𝑂 is still impossible to solve in an analytically closed form, just

as the original problemwas. Therefore, instead of determining the exact solution, we settle for an estimation by expanding
𝑔𝑂(𝑥, 𝑦) into a Taylor series in the vicinity of the origin up to the third order, which leads to

𝑃𝑇 ∶ max
𝑥,𝑦,𝐿

𝑔𝑇(𝑥, 𝑦) = 𝐴(1 − 2𝜋2𝑥2) + 𝐵(1 − 2𝜋2𝑦2) (28)

s.t. 𝑦 = Ω𝐵𝑥 +
𝛼𝐵
2𝜋

+ 𝐿Δ𝐸, with 𝑥, 𝑦 ∈ [0, 1), 𝐿 ∈ ℤ. (29)

Once 𝐿𝑂 is determined, which determines the position of the line passing closest to the origin, condition (29) can be
applied to objective (28) to simplify the problem to obtain

d𝑔𝑇(𝑥, 𝑦(𝑥, 𝐿𝑂))
d𝑥

||||𝑥̃ !
= 0. (30)
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F IGURE 1 Periodic line on the surface of the unit torus. For visualization purposes, the torus has been cut and flattened out on the
plane. 𝑇(𝑥, 𝑙(𝑥)) defines a family of lines in the form of 𝑦 = Ω𝐵𝑥 +

𝛼𝐵

2𝜋
+ 𝐿Δ𝐸.

The intercept of the line below and above the origin is defined as

𝑦𝑁 =
𝛼𝐵
2𝜋

+ 𝐿𝑁Δ𝐸, (31)

𝑦𝑃 =
𝛼𝐵
2𝜋

+ (𝐿𝑁 + 1)Δ𝐸, (32)

with

𝐿𝑁 =

⌊
−

𝛼𝐵
2𝜋Δ𝐸

⌋
. (33)

Now, assume we know whether the upper or bottom line is closer to the origin, and write its equation as

𝑦 = Ω𝐵𝑥 + 𝑦0, (34)

where 𝑦0 is either 𝑦𝑁 or 𝑦𝑃. Then, by evaluating (30), we obtain

4𝜋2𝐴𝑥 + 4𝜋2𝐵𝑦
d𝑦
𝑑𝑥

||||𝑥̃ = 0, (35)

𝐴𝑥̃ + 𝐵(Ω𝐵𝑥̃ + 𝑦0)Ω𝐵 = 0, (36)

which yields

𝑥̃ = −
𝐵Ω𝐵𝑦0

𝐴 + 𝐵Ω2
𝐵

, (37)

𝑦̃ =
𝐴𝑦0

𝐴 + 𝐵Ω2
𝐵

. (38)

The values of 𝑥̃ and 𝑦̃ are applied again to the objective function 𝑔𝑇(𝑥, 𝑦), resulting in

𝑓max,T = 𝐴

⎛⎜⎜⎝1 − 2𝜋2
(

𝐵Ω𝐵𝑦0

𝐴 + 𝐵Ω2
𝐵

)2⎞⎟⎟⎠ + 𝐵
⎛⎜⎜⎝1 − 2𝜋2

(
𝐴𝑦0

𝐴 + 𝐵Ω2
𝐵

)2⎞⎟⎟⎠ (39)

= 𝐴

⎛⎜⎜⎝1 − 2𝜋2
(

𝐵Ω𝐵

𝐴 + 𝐵Ω2
𝐵

)2|𝑦0|2⎞⎟⎟⎠ + 𝐵
⎛⎜⎜⎝1 − 2𝜋2

(
𝐴

𝐴 + 𝐵Ω2
𝐵

)2|𝑦0|2⎞⎟⎟⎠, (40)
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6 of 19 GENDA et al.

where the last equality is caused by the symmetry of the square function. Thus, the missing value of |𝑦0| can be
determined by |𝑦0| = min{|𝑦𝑁|, |𝑦𝑃|}, (41)

= min{−𝑦𝑁, Δ𝐸 + 𝑦𝑁}, (42)

= −
||||𝑦𝑁 + Δ𝐸

2

|||| + Δ𝐸

2
. (43)

Thus, a closed formula for the approximation of the maximum of the function 𝑓(𝑡) has been obtained. As 𝑔𝑂(𝑥, 𝑦) was
expanded in the Taylor series up to the third order, the estimation error with respect to the exact solution is of fourth-order
accuracy respective to 𝛼𝐵. □

Corollary 1. The global minimum of 𝑓(𝑡) = 𝐴 cos 𝑡 + 𝐵 cos(Ω𝐵𝑡 + 𝛼𝐵) can be found by reformulating the problem as

min
𝑡
𝑓(𝑡) = −max

𝑡
(−𝑓(𝑡)) (44)

= −max
𝑡
(−𝐴 cos(𝑡) − 𝐵 cos(Ω𝐵𝑡 + 𝛼𝐵)), (45)

= −max
𝑡
(𝐴 cos(𝑡 + 𝜋) + 𝐵 cos(Ω𝐵𝑡 + 𝛼𝐵 + 𝜋)), (46)

= −max
𝑡
(𝐴 cos(𝑡) + 𝐵 cos(Ω𝐵𝑡 + 𝛼𝐵 + (1 − Ω𝐵)𝜋

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
=∶𝛼̃𝐵

)). (47)

Thus, the minimization problem is converted back to the previous maximization problem.

Corollary 2. The estimate 𝑓max ≈ 𝑓sup,Irr = 𝐴 + 𝐵 can be obtained using the aforementioned method if the Taylor series
expansion of 𝑔𝑂(𝑥, 𝑦) is stopped after obtaining the first-order term, leading to 𝑔𝑂(𝑥, 𝑦) ≈ 𝐴 + 𝐵. Hence, the relative error of
the estimate 𝑓sup,Irr with respect to the exact solution of the maximization problem (5) is of the second order respective to 𝛼𝐵
(c.f. Figure 7).

Remark 1. To obtain a more accurate result (𝜖rel = (𝛼6
𝐵
), cf. Figure 7), the solution (𝑥̃, 𝑦̃) can be substituted back into

𝑔𝑂(𝑥, 𝑦), instead of 𝑔𝑇(𝑥, 𝑦), yielding

𝑓max,T = 𝐴 cos

(
−2𝜋

𝐵Ω𝐵𝑦0

𝐴 + 𝐵Ω2
𝐵

)
+ 𝐵 cos

(
2𝜋

𝐴𝑦0

𝐴 + 𝐵Ω2
𝐵

)
(48)

= 𝐴 cos

(
2𝜋

𝐵Ω𝐵

𝐴 + 𝐵Ω2
𝐵

|𝑦0|) + 𝐵 cos

(
2𝜋

𝐴

𝐴 + 𝐵Ω2
𝐵

|𝑦0|), (49)

where the last equality is caused by the evenness of the cosine function.

3 SBs OF ESCAPE FROMAN ASYMMETRICALLY TRUNCATED QUADRATIC
POTENTIALWELL UNDERHARMONIC EXCITATION

3.1 Problem setting

As we have derived a sufficiently accurate method for the estimation of the minimum andmaximum values of the sum of
two harmonics, we can proceed to apply the results to the problem of escape from an asymmetrically truncated quadratic
potential well under harmonic excitation. The equation of motion is defined as

𝑚𝑥̈ + 𝑚𝑉′(𝑥) = 𝐹 sin(Ω𝑥𝜏 + 𝛽), (50)

𝑥(0) = 𝑥̃0, (51)

𝑥̇(0) = 𝑢̃0, (52)
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GENDA et al. 7 of 19

F IGURE 2 Asymmetrically truncated quadratic potential 𝑉(𝑥)

with

𝑉(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−
Ω2
0

2
𝑟2
𝐵
+

Ω2
0

2
𝑥2 for 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢,

−𝑟2
𝐵
+ 𝑥2

𝑙

2
Ω2
0

for 𝑥 < 𝑥𝑙,

−𝑟2
𝐵
+ 𝑥2𝑢

2
Ω2
0

for 𝑥𝑢 < 𝑥,

(53)

where Ω𝑥 denotes the frequency, 𝛽 denotes the initial phase, and 𝐹 denotes the amplitude of excitation. Ω0 denotes the
natural frequency of the potential well and 𝑚 denotes the mass of the particle. The boundary of the potential on the left
from the origin is located at 𝑥𝑙 ∈ (−∞, 0) and from the right at 𝑥𝑢 ∈ (0,∞). We define

𝑟𝐵 ∶= min{−𝑥𝑙, 𝑥𝑢} (54)

as the distance between the deepest point of the potential to the closer boundary. Figure 2 shows the potential with its
characteristic quantities.
Considering the non-dimensional time 𝑡 ∶= Ω0𝜏, excitation amplitude 𝑓 ∶=

𝐹

𝑚
, and excitation frequency 𝜔 ∶= Ω𝑥

Ω0
, the

equation of motion can be reformulated as

𝑥̈ + 𝑉̃′(𝑥) = 𝑓 sin(𝜔𝑡 + 𝛽), (55)

𝑥(0) = 𝑥0 ∶= 𝑥̃0, (56)

𝑥̇(0) = 𝑢0 ∶=
𝑢̃0
Ω0

, (57)

with

𝑉̃(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−
𝑟2
𝐵

2
+

𝑥2

2
for 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢,

−𝑟2
𝐵
+ 𝑥2

𝑙

2
for 𝑥 < 𝑥𝑙,

−𝑟2
𝐵
+ 𝑥2𝑢

2
for 𝑥𝑢 < 𝑥.

(58)

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202200567 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [16/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 19 GENDA et al.

3.2 Escape definitions and analytical solution of the particle motion in the well

Possibly, the most intuitive definition one associates with escape from a potential, which has its minimum at 𝑥 = 0, is
that “if ∃𝑡0 such that |𝑥(𝑡)| > 𝑅𝐵 > 0, ∀𝑡 > 𝑡0, where 𝑅𝐵 is a suitably defined positive constant (e.g., 𝑅𝐵 ∶= max{−𝑥𝑙, 𝑥𝑢}),
the particle escapes from the well.” In other words, the particle escapes if after a certain time point it never returns to the
vicinity of the bottom of the potential well. This definition, however, does not facilitate numerical investigations, as the
solution has to be calculated for all times.
As an alternative, for numerical purposes, the following escape criterion can be considered: “If |𝑥(𝑡)| ≥ 𝑅𝐵 for any

𝑡 ≥ 0, the particle escapes.” Here, 𝑅𝐵 is selected such that it is greater than or equal to the furthest potential boundary.
This criterion means that for escape it is sufficient that the particle leaves the potential well once. (Actually, it means that
it can later return!) If there is no well-defined potential boundary (e.g., gravitational potential of a mass), a sufficiently
large value of 𝑅𝐵 often works well.
For analytical purposes, this definition might be complex, especially in the given case with 𝑉̃(𝑥), where the evaluation

of the piecewise-defined potential is not possible without case distinction. Thus, to overcome this difficulty, for analytical
purposes, the following escape criterion is used in the current paper: “if

(𝑥(𝑡) − 𝑥𝑙)(𝑥𝑢 − 𝑥(𝑡)) ≤ 0 (59)

for any 𝑡 ≥ 0, then the particle escapes.” We observe that for small excitation amplitudes, this criterion is accurate; how-
ever, for large values of 𝐹, the non-linearity of the potential field will result in appearing of fundamentally different escape
behaviors (see Figures 10 and 11).
Owing to the escape condition (59), the movement has to be calculated for 𝑥𝑙 < 𝑥 < 𝑥𝑢 values. Thus, the differential

equation becomes linear, and an explicit analytic solution for 𝜔 ≠ 1 (otherwise resonance and escape for any IC) can be
defined as

𝑥(𝑡) = 𝑅 sin(𝑡 + 𝛼) + 𝑃 sin(𝜔𝑡 + 𝛽), (60)

with

𝑃 =
𝑓

1 − 𝜔2
, (61)

𝑅 =

√
(𝑥0 − 𝑃 sin 𝛽)2 + (𝑢0 − 𝑃𝜔 cos 𝛽)

2
, (62)

𝛼 = atan2(𝑥0 − 𝑃 sin 𝛽, 𝑢0 − 𝑃𝜔 cos 𝛽). (63)

3.3 Estimation of the non-escaping set in the IC plane for quasi-periodic motions

The ratio of the excitation frequency and natural frequency of the potential well significantly affects the periodicity of
the motion. In ref. [27], the simpler case 𝜔 ∈ ℝ∖ℚ (when the motion is quasi-periodic) was investigated thoroughly. The
supremum of the absolute displacement 𝑟sup ∶= max𝑡 |𝑥(𝑡)| can be accurately estimated by

𝑟sup = 𝑅 + |𝑃|. (64)

The values of |𝑃| and 𝑅 from Equations (61) and (62) can be substituted into Equation (64), and by demanding 𝑟sup ≤ 𝑟𝐵
for the non-escaping scenario, we obtain

𝑟𝐵 ≥ 𝑅 + |𝑃|, (65)

𝑟𝐵 − |𝑃| ≥ 𝑅. (66)

Therefore, for |𝑃| > 𝑟𝐵, no set of points fulfilling the inequality exists, as 𝑅 is a non-negative number. Thus, based on this
estimation, for

𝑓 > 𝑟𝐵|1 − 𝜔2|, (67)
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GENDA et al. 9 of 19

F IGURE 3 SB location, 𝐷𝑃 on the 𝑥0 − 𝑢0 plane

the particle escapes from the well for any IC. However, if |𝑃| ≤ 𝑟𝐵, both sides can be squared in Equation (66), and we
obtain

𝐷𝑃 ∶ (𝑟𝐵 − |𝑃|)2 ≥ (𝑥0 − 𝑃 sin 𝛽)
2 + (𝑢0 − 𝑃𝜔 cos 𝛽)

2
. (68)

This inequality defines the closed circular disk centered at (𝑃 sin 𝛽, 𝑃𝜔 cos 𝛽) with radius 𝑅𝐷 = 𝑟𝐵 − |𝑃|.
The disk with the largest area is obtained for |𝑃| = 0, i.e., 𝐹 = 0, which implies no external excitation, i.e., the non-

escaping set due to initial conditions only. Then, it is a disk with radius 𝑟𝐵

𝐷0 ∶ 𝑟2
𝐵
≥ 𝑥2

0
+ 𝑢2

0
, (69)

at the origin, having a total area of

𝐴0 = 𝜋𝑟2
𝐵
. (70)

There is a significant difference between𝜔 < 1 and𝜔 > 1. In the first case, for any admissible |𝑃|, the circular disk defined
by Equation (68) stays within 𝐷0; however, in the second case, a fraction or the total area of the disk 𝐷𝑃 can lie outside of
𝐷0. These two cases of the non-escaping set are shown in Figure 3.
In both cases, the total area of the SB, also referred to as global integrity measure (𝐺𝐼𝑀), is

𝐴𝑃 = 𝜋(𝑟𝐵 − |𝑃|)2. (71)

Although these observations with regard to the area of the SB might be trivial, they are considered to be important for
practical purposes, as the ICs of the particle cannot be controlledwith very high accuracy. It is important to have a reference
case to which the results can be compared while investigating the non-escaping sets of ICs from non-quadratic potentials.
Knowing the dependence of the global integrity measure on the parameters of the system and excitation, the benchmark
case of the truncated quadratic potential can characterize other potentials with regard to their erosion characteristics.

3.4 Estimation of the non-escaping set in the IC plane for𝑵 ∶ 𝑴 excitation

We have determined the mathematical relation between the parameters of our system and location and size of the SBs
in the plane of the ICs with regard to the irrational ratio of the excitation and natural frequencies of the potential well.
Hereafter, we focus on the case where this ratio is rational, i.e., 𝜔 = 𝑁

𝑀
.

Equation (60) defines 𝑥(𝑡; 𝑥0, 𝑢0, 𝑓, 𝜔, 𝛽) as a function of the time, depending on several parameters. Reinterpreting the
role of parameters and variables, we can define Equation (60) as 𝑥(𝑡, 𝑥0, 𝑢0; 𝑓, 𝜔, 𝛽), a function of three variables, the time
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10 of 19 GENDA et al.

and ICs of position and velocity. Finding

𝑥min(𝑥0, 𝑢0) ∶= min
𝑡≥0 𝑥(𝑡, 𝑥0, 𝑢0) (72)

and

𝑥max(𝑥0, 𝑢0) ∶= max
𝑡≥0 𝑥(𝑡, 𝑥0, 𝑢0) (73)

respectively, we obtain the maximum negative and positive displacements as a function of two variables for a given choice
of the remaining parameters. The escape condition (59) can be evaluated, and the SBs are defined by

𝑆𝐵 ∶ (𝑥𝑙 < 𝑥min(𝑥0, 𝑢0)) ∩ (𝑥max(𝑥0, 𝑢0) < 𝑥𝑢). (74)

To determine 𝑥max(𝑥0, 𝑢0) based on Theorem 1, the optimization problem

max
𝑡≥0 𝑥(𝑡) = max

𝑡≥0 (𝑅 sin(𝑡 + 𝛼) + 𝑃 sin(𝜔𝑡 + 𝛽)), (75)

can be rewritten in the standard form

max
𝑡≥0 𝑥(𝑡) = max

𝑡≥0 (𝑅 cos 𝑡 + 𝑃 cos(𝜔𝑡 + 𝛼𝐵,max)) (76)

with the transformation

𝑡 = 𝑡 + 𝛼 −
𝜋

2
. (77)

Then, the new phase shift is defined as

𝛼𝐵,max =
𝜋

2
(𝜔 − 1 + 2𝜎(−𝑃)) − 𝜔𝛼 + 𝛽 (78)

with the Heaviside function

𝜎(𝑥) =

{
1 𝑥 ≥ 0,

0 𝑥 < 0,
(79)

which has to be applied to consider the case 𝑃 < 0. We can find 𝑥min(𝑥0, 𝑢0) by applying Corollary 1 to Equation (60)

𝑥min(𝑥0, 𝑢0) = −max
𝑡≥0 (𝑅 sin(𝑡 + 𝛼 + 𝜋) + 𝑃 sin(𝜔𝑡 + 𝛽 + 𝜋)), (80)

and subsequently transforming it into the standard form, that is,

𝑥min(𝑥0, 𝑢0) = −max
𝑡≥0 (𝑅 cos 𝑡 + |𝑃| cos(𝜔𝑡 + 𝛼𝐵,min)), (81)

using

𝑡 = 𝑡 + 𝛼 +
𝜋

2
, (82)

𝛼𝐵,min =
𝜋

2
(1 − 𝜔 + 2𝜎(−𝑃)) − 𝜔𝛼 + 𝛽. (83)

Applying the results of Theorem 1, we obtain the estimate

𝑥̂max(𝑥0, 𝑢0) = 𝑅(1 − 2𝜋2𝑥̃2max) + |𝑃|(1 − 2𝜋2𝑦̃2max), (84)

𝑥̂min(𝑥0, 𝑢0) = −𝑅(1 − 2𝜋2𝑥̃2min) − |𝑃|(1 − 2𝜋2𝑦̃2min), (85)
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GENDA et al. 11 of 19

or even more accurately

𝑥̂max(𝑥0, 𝑢0) = 𝑅 cos(2𝜋𝑥̃max) + |𝑃| cos(2𝜋𝑦̃max), (86)

𝑥̂min(𝑥0, 𝑢0) = −𝑅 cos(2𝜋𝑥̃min) − |𝑃| cos(2𝜋𝑦̃min), (87)

with

𝑥̃max/ min =
𝜔|𝑃||𝑦0,max/ min|

𝑅 + 𝜔2|𝑃| , (88)

𝑦̃max/ min =
𝑅|𝑦0,max/ min|
𝑅 + 𝜔2|𝑃| , (89)

|𝑦0,max/ min| = −
||||𝑦𝑁,max/ min + Δ𝐸

2

|||| + Δ𝐸

2
, (90)

𝑦𝑁,max/ min =
𝛼𝐵,max/ min

2𝜋
+ 𝐿0,max/ minΔ𝐸, (91)

𝐿0,max/ min =
⌊
−
𝛼𝐵,max/ min
2𝜋Δ𝐸

⌋
, (92)

Δ𝐸 =
gcd(𝑀,𝑁)

𝑀
, (93)

where the indexing notation “max\min” has been introduced to simultaneously denote both cases for brevity. The differ-
ence in the functions 𝑥̂max(𝑥0, 𝑢0) and 𝑥̂min(𝑥0, 𝑢0) results from the distinct values of 𝛼𝐵,max and 𝛼𝐵,min. Without the loss
of generality, 𝑀 and 𝑁 can be chosen to be relative primes; thus, Δ𝐸 = 1

𝑀
, and Equations (90) to (92) can be simplified

as

|𝑦0,max(𝛼𝐵,max/ min)| = −
||||𝛼𝐵,max/ min2𝜋

−
1

𝑀

⌊
𝑀𝛼𝐵,max/ min

2𝜋

⌋
−

1

2𝑀

|||| + 1

2𝑀
. (94)

For any point (𝑥0, 𝑢0) in 𝑆𝐵, it simultaneously holds that (𝑥0, 𝑢0) ∈ 𝑆𝐵𝑢 and (𝑥0, 𝑢0) ∈ 𝑆𝐵𝑙; thus, (𝑥0, 𝑢0) ∈ 𝑆𝐵𝑢 ∩ 𝑆𝐵𝑙
with 𝑆𝐵𝑢 ∶= {(𝑥0, 𝑢0) ∈ 𝑆𝐵𝑢|𝑥̂max(𝑥0, 𝑢0) < 𝑥𝑢} and 𝑆𝐵𝑙 ∶= {(𝑥0, 𝑢0) ∈ 𝑆𝐵𝑙|𝑥𝑙 < 𝑥̂min(𝑥0, 𝑢0)}. It is the intersection of
both sublevel sets. The analytical determination of the boundary of the intersection is very intricate (cf. Figure 4a and
4c); however, special cases appear (cf. Figure 4c and 4d) when the complexity is significantly reduced, that is, in the case
of a symmetric potential (−𝑥𝑙 = 𝑥𝑢) and in the case of 𝑆𝐵𝑙 ⊆ 𝑆𝐵𝑢 (or 𝑆𝐵𝑢 ⊆ 𝑆𝐵𝑙) for all the values of 𝑓 and 𝛽. If𝑁 +𝑀 is
an even number, we possess the latter case, as Equation (94) is periodic in 2𝜋

𝑀
, that is,

|𝑦0,max(𝑥)| = ||𝑦0,max(𝑥 + 2𝜋

𝑀

)||, (95)

and by calculating

𝛼𝐵,max − 𝛼𝐵,min = (𝜔 − 1)𝜋 =
𝑁 −𝑀

𝑀
𝜋 (96)

we determine the aforementioned periodicity; thus, 𝑥max(𝑥0, 𝑢0) ≡ 𝑥min(𝑥0, 𝑢0) for 𝑁 +𝑀 even. Hereafter, an analytical
estimate for the boundary of the SB is given for the aforementioned two cases.

3.4.1 |𝑥𝑙|≫ 𝑥𝑢 or 𝑁 +𝑀 even

If one of the potential boundaries lies much further from the center of the well as the other one, the particle will escape
towards the closer boundary; thus, in this case, the level set corresponding to the closer boundary is considered to
be important.
Without loss of generality, we can assume |𝑥𝑙|≫ 𝑥𝑢; thus, 𝑆𝐵𝑢 ⊆ 𝑆𝐵𝑙 (otherwise the same calculation is performedwith

𝑥̂min(𝑥0, 𝑢0)). The size of the SBs depends on three parameters only, that is, 𝑓,𝑀, and 𝑁, as it transpires that 𝛽 is only a
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12 of 19 GENDA et al.

F IGURE 4 Analytically obtained estimate for the SB with regard to escape in the plane of the ICs for different values of the excitation
frequency 𝜔 = 𝑁

𝑀
. The level sets of 𝑥max(𝑥0, 𝑢0) = 𝑥𝑢 and 𝑥min(𝑥0, 𝑢0) = 𝑥𝑙 are depicted with green and pink, respectively. The circular disk

defined by Equation (68) is shown in red. The intersection of the interiors of the level sets (𝑆𝐵𝑢 and 𝑆𝐵𝑙) defines the non-escaping region 𝑆𝐵
(in yellow).

rotation in the IC plane. To gain some understanding with regard to the shape of the SBs, we apply the escape condition
(59) to the less accurate but mathematically manageable estimate (84), resulting in

𝑥̂max(𝑥0, 𝑢0) = 𝑅 + |𝑃| − 2𝜋2𝑅|𝑃||𝑦0,max|2
𝑅 + 𝜔2|𝑃| !

= 𝑥𝑢. (97)

As only 𝑅 and |𝑦0,max| depend on 𝑥0 and 𝑦0 (cf. Equation (62) and (63)), we can determine a function in polar coordinates,
centered at (𝑃 sin 𝛽, 𝑃𝜔 cos 𝛽), which describe the distance of the boundary depending on the angle, 𝑅(𝜑). To obtain this
relation, |𝑦0,max| can be redefined as

𝑔(𝜑;𝑀,𝑁) ∶= |𝑦0,max(𝜑)| = −
||||𝑁𝑀 𝜑

2𝜋
−
1

𝑀

⌊
𝑁𝜑

2𝜋

⌋
−

1

2𝑀

|||| + 1

2𝑀
(98)

with

𝜑 ∶= −
𝛼𝐵,max
𝜔

= 𝛼 −
𝛽

𝜔
−

𝜋

2𝜔
(𝜔 − 1 + 2𝜎(−𝑃)), (99)
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GENDA et al. 13 of 19

F IGURE 5 Triangle wave function 𝑔(𝜑;𝑀,𝑁) for different values of𝑀 and 𝑁

being the 2𝜋 periodic angle coordinate. Equation (98) defines a triangle wave with period 2𝜋

𝑁
, amplitude 1

4𝑀
, and a positive

offset of 1

4𝑀
.

Equation (97) inserted into escape condition (59) can be rewritten as

𝑅2 +
(
(𝜔2 + 1 − 2𝜋2𝑔2(𝜑))|𝑃| − 𝑥𝑢)𝑅 + 𝜔2|𝑃|(|𝑃| − 𝑥𝑢) = 0 (100)

and solved for 𝑅 resulting in

𝑅(𝜑) =
𝑥𝑢 −

(
1 + 𝜔2 − 𝜋2𝑔2(𝜑)

)|𝑃|
2

±

√
4𝑔4(𝜑)𝜋4|𝑃|2 − 4𝜋2((𝜔2 + 1)|𝑃| − 𝑥𝑢)|𝑃|𝑔2(𝜑) + ((𝜔2 − 1)|𝑃| − 𝑥𝑢)2

2
, (101)

where for |𝑃| < 𝑥𝑢, one of the roots is positive and the other one is negative, thus uniquely determining the boundary of
the SB by the positive root (cf. green curve in Figure (6a)).
For 𝜑 = 𝑛

2𝜋
with 𝑛 = 0…𝑁 − 1, we have 𝑔(𝜑) = 0 and the solution becomes 𝑅 = 𝑥𝑢 − |𝑃|, implying that at this point,

the boundary of the SB defined in Equation (97) touches the circle defined in Equation (68) (cf. Figure 4).
For 𝜑 ≠ 𝑛

2𝜋
with 𝑛 = 0…𝑁 − 1, we have 𝑅(𝜑) > 𝑥𝑢 − |𝑃| implying that the circle is the inscribed circle of the SB. An

exception occurswhen𝑁 = 1. In this case an SB can exist even for𝑥𝑢 < |𝑃|. Thismeans that the amplitude of the particular
solution |𝑃| can be greater than 𝑥𝑢 without leading to escape for certain initial conditions. We denote the highest value of
𝑃 beyond which no SB exists by 𝑃crit. For 𝑥𝑢 < |𝑃| < 𝑃crit the circle defined in Equation (68) does not exist anymore and
the origin of the polar coordinate system (𝑥0, 𝑢0) = (𝑃 sin 𝛽, 𝑃𝜔 sin 𝛽) shifts outside the SB; thus, for some values of 𝜑 we
find 𝑅1,2(𝜑) < 0, which is physically meaningless; however, for the rest of 𝜑, two positive roots 𝑅1,2(𝜑) exist, thus defining
the SB (cf. blue curve in Figure (6a)).
It is possible to derive an upper estimate for 𝑃crit, considering that when SBs disappear, the expression under the square

root in Equation (101) just becomes zero. At this moment, the SB has shrunk to a point along the direction of the angle
𝜑 = 𝜋, where 𝑔(𝜑) takes its maximum resulting in 𝑔(𝜑) = 1

2𝑀
(Figure 5). Considering that𝑁 = 1 in the current situation,

we have 𝜔 = 1

𝑀
. Using these observations, the discriminant of Equation (100)

(
𝜔2 + 1 − 2𝜋2𝑔2(𝜑))|𝑃| − 𝑥𝑢)2 − 4(𝜔2|𝑃|2 − 𝑥𝑢|𝑃|𝜔2) !

= 0 (102)

vanishes for

𝑃crit =
2
(
2𝑀2 − 2

√
2𝜋 − 𝜋2 − 2

)
𝑀2

(2𝑀2 − 𝜋2 + 4𝑀 + 2)(2𝑀2 − 𝜋2 − 4𝑀 + 2)
𝑥𝑢. (103)

In Figure 8, the values of 𝑃crit
𝑥𝑢

are depicted for 𝑁 = 1 and𝑀 = 2…10.
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14 of 19 GENDA et al.

F IGURE 6 Boundary of the SBs in the plane of the ICs for 𝜔 = 𝑁

𝑀
=

1

2
, 𝛽 = 0, 𝑥𝑙 = −∞, and 𝑥𝑢 = 1 for different values of 𝑃 using the

estimates defined in Equations (84) and (86). For 𝑃 > 𝑥𝑢 (blue curve), an SB still exists. The dots represent the origin of the polar coordinates
(𝑃 sin 𝛽, 𝑃𝜔 cos 𝛽), in which the curve is defined by Equation (101). The estimates of the SBs on the left are greater owing to
𝑔𝑇(𝑥0, 𝑢𝑜) ≤ 𝑔𝑂(𝑥0, 𝑢𝑜).

For 𝑁 ≥ 2, the aforementioned augmentation of 𝑃crit > 𝑥𝑢 cannot take place, as it would indicate the existence of
the 𝑁 pieces of disjoint non-escaping basins (caused by the 𝑁-fold rotational symmetry) centered around the point
(𝑃 sin 𝛽, 𝑃𝜔 cos 𝛽); therefore, in these cases, the analytically predicted SB disappears if |𝑃| > 1.
To analytically estimate the area enclosed by the level set 𝑥max(𝑥0, 𝑢0) = 𝑥𝑢, the following integral has to be evaluated:

𝐴max = ∫
2𝜋

0

𝑅2(𝜑)

2
d𝜑, (104)

which, due to the 𝑁-fold rotational and mirror symmetry, can be reduced to

𝐴max = 𝑁 ∫
𝜋

𝑁

0

𝑅2(𝜑)d𝜑. (105)

Equation (105) results in elliptic integrals, which require lengthy calculation; however, to provide an estimate, the Taylor
expansion of 𝑅2(𝜑) can be used. Calculating it around 𝜑 = 0 up to the fifth order, we obtain

𝑅2(𝜑) = (𝑥𝑢 − |𝑃|)2 + (𝑥𝑢 − |𝑃|)2|𝑃|𝜔2|𝑃|(𝜔2 − 1) + 𝑥𝑢 𝜑2 + (𝑥𝑢 − |𝑃|)2|𝑃|2((3𝜔2 − 1)|𝑃| + 𝑥𝑢)𝜔4
4((𝜔2 − 1)|𝑃| + 𝑥𝑢)3 𝜑4 + (𝜑6). (106)

Performing integration and inserting 𝜔 = 𝑁

𝑀
, we obtain

𝐴max,T = (𝑥𝑢 − |𝑃|)2𝜋⎛⎜⎜⎜⎝1 +
𝜋2

3
(
𝑁2 +𝑀2

(
𝑥𝑢|𝑃| − 1

)) +

(
3𝑁2 +𝑀2

(
𝑥𝑢|𝑃| − 1

))
𝜋4

20
(
𝑁2 +𝑀2

(
𝑥𝑢|𝑃| − 1

))3
⎞⎟⎟⎟⎠. (107)

Considering that 𝑥𝑢 > |𝑃|, denominators would always be positive; thus, for large values of 𝑁 and 𝑀, the higher order
terms of the expansion decrease and the SB converges to the circular disk determined in Subsection 3.3.
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F IGURE 7 Logarithm of the relative error, 𝜖rel ∶=
|𝑓max−𝑓max|

𝑓max
of the maximum value estimation depicted over the logarithm of

𝛼𝐵 ∈ (0.01,
𝜋

6
) formax𝑡∈(0,4𝜋) cos(𝑡) + cos(

1

2
𝑡 + 𝛼𝐵). The one-parameter line perfectly coincides with the numerically obtained data.

F IGURE 8 Convergence of 𝑃crit
𝑥𝑢

to 1 with an increase in the number of𝑀 for 𝑁 = 1 held constant.

3.4.2 𝑥𝑢 = −𝑥𝑙 with 𝑁 +𝑀 odd

If the potential is symmetric and 𝑁 +𝑀 is an odd number, the SB possesses 2𝑁-fold rotational symmetry and mirror
symmetry; thus, its area can be calculated by

𝐴max = 2𝑁 ∫
𝜋

2𝑁

0

𝑅2(𝜑)d𝜑. (108)

Using the Taylor expansion of 𝑅2(𝜑) given in Equation (106), we obtain the value of

𝐴max,T = (𝑥𝑢 − |𝑃|)2𝜋⎛⎜⎜⎜⎝1 +
𝜋2

12
(
𝑁2 +𝑀2

(
𝑥𝑢|𝑃| − 1

)) +

(
3𝑁2 +𝑀2

(
𝑥𝑢|𝑃| − 1

))
𝜋4

320
(
𝑁2 +𝑀2

(
𝑥𝑢|𝑃| − 1

))3
⎞⎟⎟⎟⎠. (109)

Figure 9c shows an example for 𝑁 = 2 and𝑀 = 1.

4 COMPARISONWITH NUMERICAL RESULTS

In this section, the analytically obtained results are compared with numerical results for some choice of the parameters.
In Figure 7, the logarithm values of the relative errors of the maximum estimates given by Equations (6), (7), and (49)
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16 of 19 GENDA et al.

F IGURE 9 Global integrity measure (𝐺𝐼𝑀) depending on the amplitude of the excitation for different values of the excitation frequency
(deep blue dots). The red, yellow, and purple lines denote the analytic estimates based on Equation (107). The green diamonds and light blue
squares denote the numerical integration of the area of the sublevel set defined by 𝑥̂max(𝑥0,𝑢0) < 𝑥𝑢, where 𝑥̂max(𝑥0,𝑢0) is defined by Equations
(86) and (84), respectively. Figure 7d shows that the Taylor expansion of Equation (101) can provide an estimate for |𝑃| < 𝑥𝑢 only; however,
the semi-analytic method depicted with green diamonds still generates accurate results.

are plotted over the logarithm of the phase shift, that is, 𝛼𝐵 for

max
𝑡∈(0,4𝜋)

cos(𝑡) + cos

(
1

2
𝑡 + 𝛼𝐵

)
. (110)

In the defined interval of 𝛼𝐵 ∈ (0.01,
𝜋

6
), the relative error of estimates (6), (7), and (49) are quadratic, quartic, and of

sixth order, respectively.
Figure 8 shows the estimates for the critical, re-scaled forcing value |𝑃|

𝑥𝑢
if𝑁 = 1 and 𝑆𝐵𝑢 ⊆ 𝑆𝐵𝑙 (or vice versa) for differ-

ent values of𝑀. A comparison of Equation (107) to the direct numerical simulation and semi-analytic estimates, based on
the numerical integration of the sublevel sets defined by 𝑥̂max(𝑥0,𝑢0) < 𝑥𝑢, where 𝑥̂max(𝑥0,𝑢0) is given by Equation (86) and
Equation (84), respectively, is shown in Figure 9. For the smallest possible values of𝑀 and 𝑁, that is, 𝑁 = 1 and𝑀 = 2

or𝑁 = 2 and𝑀 = 1, the analytic estimates are not very accurate; however, for larger values of𝑁 and𝑀, the estimates of
the 𝐺𝐼𝑀 become more and more accurate. The direct simulation shows that SBs exist, even for |𝑃| > 𝑥𝑢; however, their
prediction is not possible with the aforementioned method, as the escape condition (59) is restrictive: the particle leaves
the potential in each period of excitation; however, owing to the large value of the excitation amplitude and essential non-
linearity at the potential boundary, it returns to the well. For increasing values of the excitation amplitude, non-linear
effects occur (cf. Figure 10 with quite smooth boundary and Figure 11 with fractal-like boundary and period tripling).
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F IGURE 10 Wedge-shaped SB for 𝑃crit < |𝑃| = 1.3 with 𝑁 = 2,𝑀 = 1, 𝑥l = −∞, and 𝑥𝑢 = 1. The direct integration was performed
during 50 periods of the excitation. For the selected IC from the interior of the SB, the particle leaves the potential well in every period of the
excitation; however, the exciting force is large enough to pull it back into the well; thus, an SB exists for supercritical forcing. The
non-escaping mechanism is only possible for excitation frequencies above the natural frequency of the well, that is, 𝜔 > 1. The prediction of
these basins cannot be performed using the analytical method of this study.

F IGURE 11 Fractal-like SB for 𝑃crit < |𝑃| = 1.6 with 𝑁 = 2,𝑀 = 1, 𝑥l = −∞, and 𝑥𝑢 = 1. The direct integration was done during 100
periods of the excitation. Depending on the selection of the IC, the time evolution of the particle displacement is periodic-like, or it undergoes
a periodic-tripling.

Figure 10 shows awedge-shaped SB for supercritical forcing value |𝑃|
𝑥𝑢
= 1.3 (𝑁 = 2,𝑀 = 1 and 𝑥𝑙 = −∞), which cannot

be predicted using the aforementioned model. However, the boundary of the SB is smooth and does not exhibit fractal-
like behavior.
Figure 11 shows a fractal-like non-escaping set with a large excitation amplitude |𝑃|

𝑥
= 1.6 (𝑁 = 2,𝑀 = 1 and 𝑥𝑙 = −∞).

The large amplitude excitation and strong non-linearity of the problemat the boundary result in fractal-like SB boundaries.

5 CONCLUSIONS AND SCOPE FOR FURTHER RESEARCH

SBs of the escape problem of a particle from an asymmetrically truncated quadratic potential well under harmonic excita-
tion can be investigated using a newmethod for the estimation of the global optima of the sum of two harmonic functions
with arbitrary amplitudes, frequencies and phase shifts proposed in this paper.
The usefulness of the method is revealed when the ratio of the excitation frequency and natural frequency of the poten-

tial is a rational number (𝑁
𝑀
). The size of the SB increases compared with the case when the excitation frequency is
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18 of 19 GENDA et al.

disturbed by an infinitesimal amount. The SB area can increase significantly. For some frequency ratio, no SB in the
perturbed system exists, whereas the system with the unperturbed frequency possesses an SB.
Thus, the SB can be divided into two parts, an essential part (a circular disk), where there is no change under small

perturbations of the frequency ratio, and an illusory part, where the frequency ratio disappears under the slightest dis-
turbance. However, the annihilation of the illusory part of the SB is a slow process. The smaller the perturbation of the
frequency is, the longer it takes. Hence, investigation on the time limited escape and corresponding SBs is an important
topic for the future research.
The analytic estimation of the size of the SB can be performed as well. The obtained formula provides a good under-

standing about the effects of the selection of𝑁 and𝑀. The area of the SB rapidly converges to the area of the essential SB
when 𝑁 or𝑀 increases.
As long as the excitation frequency is smaller than the natural frequency of the well, the prediction with regard to the

size of the non-escaping set of ICs is very accurate. However, in case of an excitation with frequency higher than the
linear eigenfrequency of the well, new non-escaping islands appear in the IC plane, as the excitation amplitude exceeds
the critical forcing value. For large forcing amplitudes, the emerging non-escaping set can exhibit fractal-like shapes, and
strong non-linear dynamic behaviors can be observed during the motion of the particle.
Several questions might arise with regard to the introduced estimation approach and its implications on escape dynam-

ics, for example, whether the estimationmethodmight be extended to the sum ofmore than two harmonic terms, or to the
sum of general periodic functions. If so, is there a way to investigate non-quadratic potentials using the proposed method?
This problem can be investigated by introducing a small non-linearity in the force field acting on the particle. There is

an open question: How these non-linearities would affect the regions of the non-escaping set, especially if the linearized
eigenfrequency of the bottom part of the potential well and the frequency of the excitation are rationally related?
We hope that we can attract readers’ attention to the fascinating problems of escape dynamics, which demonstrate the

complexity and wide variety of emerging problems in the simplest escape model, considering the truncated quadratic
potential under harmonic excitation.
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