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Abstract
There are a number of (co-)homology theories on coarse spaces. Controlled operator
K -theory is by far the most popular one of them. Our approach is geometric. We
study when does the Roe-algebra of a space restrict to a subspace. Then we show the
Roe-algebra is a cosheaf on the coarse topology. A result is a Mayer–Vietoris exact
sequence in the presence of a coarse cover. We compute examples as an application.
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1 Introduction

The K-theory of the Roe-algebra is one of the most popular homological invariants
on coarse metric spaces. Meanwhile a new cohomological invariant on coarse spaces
recently appeared in [3] which studies sheaf cohomology on coarse spaces.

In this paper,we study the K-theory of the Roe-algebra of a proper metric space
X which is introduced in [4, Chapter 6.3]. Note that this theory does not appear as a
derived functor as far as we know.

In [5] is studied a coarse excisive property on coarse spaces which we recall now.
If Y ⊆ X is a closed subspace then C∗(Y , X) denotes the ideal in C∗(X) which is the
norm closure of operators with support near Y . Let A, B ⊆ X be two closed subsets
of a proper metric space which are ω-excisive. Then
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K1(C
∗(A ∩ B, X)) K1(C

∗(A, X)) ⊕ K1(C
∗(B, X)) K1(C

∗(X))

K0(C
∗(X)) K0(C

∗(A, X)) ⊕ K0(C
∗(B, X)) K0(C

∗(A ∩ B, X))

is a six-term Mayer–Vietoris exact sequence by [5, Sect. 5].
Note our approach can be compared with [8] where it was shown that a quotient

D(X)/C∗(X) is a sheaf on the underlying topological space of X .
The paper [3] introduced a Grothendieck topology Xct associated to a coarse space

X . The underlying category of Xct is the poset of subsets of X and the coverings are
finite collections of subsets called coarse covers.

Theorem 13 shows if X is a proper metric space then the association

U �→ C∗(Ū )/K(HU ),

for every subset U ⊆ X with restriction maps is a cosheaf on Xct.
Note that in a general setting cosheaveswith values in the category of abelian groups

Ab do not give rise to a derived functor. In [1] is explained that the dual version of
sheafification, cosheafification, does not work in general. Moreover, the category of
C∗-algebras CStar is not abelian.

Our result gives rise to new computational tools one of which is a new Mayer–
Vietoris six-term exact sequence which is Corollary 14: If U1,U2 ⊆ X are subsets of
a proper metric space that coarsely cover a subspace U ⊆ X then

K1(Ĉ∗(U1 ∩U2)) K1(Ĉ∗(U1)) ⊕ K1(Ĉ∗(U2)) K1(Ĉ∗(U ))

K0(Ĉ∗(U )) K0(Ĉ∗(U1)) ⊕ K0(Ĉ∗(U2)) K0(Ĉ∗(U1 ∩U2))

is exact. Here Ĉ∗(Y ) = C∗(Ȳ )/K(HY ) for Y ⊆ X a subset.
The outline of this paper is as follows: The Chapter 2 discusses cosheaves on coarse

spaces. The main part of the study is in Chapters 3 and 4 computes examples.

2 Cosheaves

If X is a metric space, a subset E ⊆ X × X is called an entourage if

sup
(x,y)∈E

d(x, y) < ∞.

A subset B is bounded if supx,y∈Bd(x, y) < ∞. A map ϕ : X → Y between metric
spaces is called coarse if ϕ×ϕ maps entourages to entourages and ϕ−1 maps bounded
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sets to bounded sets. Two maps φ,ψ : X → Y between metric spaces are close if
φ × ψ maps the diagonal to an entourage. The coarse category consists of metric
spaces as objects and coarse maps modulo close as morphisms.

We recall [3, Definition 45]:

Definition 1 (coarse cover) If X is a metric space and U ⊆ X a subset then a finite
family of subsets U1, . . . ,Un ⊆ U is said to coarsely cover U if for every entourage
E ⊆ X2 there is a bounded set B ⊆ X such that

U 2 ∩
(⋃

i

U 2
i

)c

∩ E ⊆ B2.

Coarse covers determine a Grothendieck topology Xct associated to a metric space
X . If f : X → Y is a coarse map between metric spaces then there is a morphism of
Grothendieck topologies f −1 : Yct → Xct .

Definition 2 (precosheaf ) A precosheaf on Xct with values in a category C is a covari-
ant functor Cat(Xct ) → C .

Definition 3 (cosheaf ) LetC be a categorywith finite limits and colimits.Aprecosheaf
F on Xct with values in C is a cosheaf on Xct with values in C if for every coarse
cover {Ui → U }i there is a coequalizer diagram:

⊕
i j

F(Ui ∩Uj ) ⇒
⊕
i

F(Ui ) → F(U ). (1)

Here the two arrows on the left side relate to the following 2 diagrams:

⊕
i, j F(Ui ∩Uj )

⊕
i F(Ui )

F(Ui ∩Uj ) F(Ui )

and

⊕
i, j F(Ui ∩Uj )

⊕
i F(Uj )

F(Ui ∩Uj ) F(Uj )

where
⊕

denotes the coproduct over the index set.

Notation 4 If we write

• ∑
i ai ∈ ⊕

i F(Ui ) then ai is supposed to be in F(Ui )

• ∑
i j bi j ∈ ⊕

i j F(Ui ∩Uj ) then bi j is supposed to be in F(Ui ∪Uj )

123



  145 Page 4 of 11 E. Hartmann

Proposition 5 IfF is a precosheaf on Xct with values in a category C with finite limits
and colimits and for every coarse cover {Ui → U }i
(1) and every a ∈ F(U ) there is some

∑
i ai ∈ ⊕

i F(Ui ) such that
∑

i ai |U = a
(2) and for every

∑
i ai ∈ ⊕

i F(Ui ) such that
∑

i ai |U = 0 there is some
∑

i j bi j ∈⊕
i j F(Ui ∩Uj ) such that (

∑
j bi j − b ji )|Ui = ai for every i .

then F is a cosheaf.

Proof We have to prove that conditions (1) and (2) are equivalent to exactness of the
diagram 1. Call the right map β and the left map α. Then exactness at F(U ) means
the map α is surjective. That is condition (1).

Now im(β) ⊆ ker(α) always holds. If
∑

i ai ∈ ⊕
i F(Ui ) then

∑
i ai |U = 0 is

equivalent to
∑

ai ∈ ker α. If ker(α) ⊆ im(β) then there exists some
∑

i j bi j ∈⊕
i j F(Ui ∩Uj ) with

∑
i (

∑
j bi j −b ji )|Ui = β(

∑
i j bi j ) = ∑

i ai . This is condition
2). ��
Remark 6 Denote by CStar the category of C∗-algebras. According to [6], all finite
limits and finite colimits exist in CStar.

3 Roe–Calkin Algebra

This exposition uses notation from [4, Chapter 6] which is a standard reference for
K -theory of the Roe-algebra. We recall a few of the definitions:

Let X be a proper metric space. A presentation ρ : C0(X) → B(HX ) of C0(X) on
a separable Hilbert spaceHX is called an X -module if it is non-degenerate and ample.
The support of a vector v ∈ HX is the complement in X of the union of all open
subsets U ⊆ X such that ρ( f )v = 0 for all f ∈ C0(X). An operator T ∈ B(HX )

is called locally compact on X if ρ( f )T and Tρ( f ) are compact operators for all
f ∈ C0(X). The support of an operator T ∈ B(HX ,HY ) is the complement in Y × X
of the union of all open subsets U × V ⊆ Y × X such that ρ( f )Tρ(g) = 0 for
every f ∈ C0(U ) and g ∈ C0(V ). An operator T ∈ B(HX ) is said to be controlled if
supp(T ) is an entourage. The Roe algebra C∗(X) is the norm closure of the algebra
of locally compact, controlled operators on HX . If C0(X) is represented by an X -
module then the K -theory of the Roe-algebra is a functor on coarse proper metric
spaces. If ϕ : X → Y is a coarse map between metric spaces then a bounded operator
V : HX → HY covers ϕ if the two maps π1 and ϕ ◦ π2 from supp(V ) ⊆ Y × X are
close.

Lemma 7 If X is a proper metric space and Y ⊆ X is a closed subspace then

• The subset I (Y ) = { f ∈ C0(X) : f |Y = 0} is an ideal of C0(X) and we have

C0(Y ) = C0(X)/I (Y )

• There exists a sub-Hilbert space HY ⊆ HX and a non-degenerate representation
ρY : C0(Y ) → B(HY ) that is a natural restriction of a non-degenerate represen-
tation ρX : C0(X) → B(HX ).

123



A Twisted Version of Controlled K -theory Page 5 of 11   145 

• The inclusion iY : HY → HX covers the inclusion i : Y → X.

Proof • This one follows by Gelfand duality.
• We define HI (Y ) = ρX (I (Y ))HX . Then

HX = HI (Y ) ⊕ H⊥
I (Y )

is the direct sum of reducing subspaces for ρX (C0(X)). We define

HY = H⊥
I (Y )

and a representation of C0(Y ) on HY by

ρY ([a]) = ρX (a)|HY

for every [a] ∈ C0(Y ). Note that ρX (·)|HY annihilates I (Y ) so this is well defined.
• Note that the support of iY is

supp(iY ) = 
Y

⊆ X × Y

��
Remark 8 Note that we can not conclude the following: If the representation ρX :
C0(X) → B(HX ) is ample and Y ⊆ X is a closed subspace then the induced repre-
sentation ρY : C0(Y ) → B(HY ) is ample. Thus if we want to restrict representations
to subspaces, we have to check the ample property each time.

Lemma 9 If X is a proper metric space,

• B ⊆ X is a compact subset and T ∈ C∗(X) is an operator with

supp T ⊆ B2

then T is a compact operator.
• The converse does not hold. If T ∈ C∗(X) is a compact operator then there does
not necessarily exist a bounded set B ⊆ X2 such that supp T ⊆ B2

• The C∗-algebra of compact operators K(HX ) is an ideal in C∗(X).

Proof • Suppose there is a non-degenerate representation ρ : C0(X) → B(HX ). For
every f ∈ C0(Bc), g ∈ C0(X) the equations ρ( f )Tρ(g) = 0 and ρ(g)Tρ( f ) =
0 hold. This implies T (I (B)) = 0 and im T ∩ I (B) = 0. Thus T : HB → HB is
the same map. Thus T ∈ C∗(B) already. Now T is locally compact, B is compact
thus T is a compact operator.

• Note the set of ghost operator as defined in [9, Definition 1.2] contains the compact
operators. The space X has property A if and only if every ghost operators is
compact by [9, Theorem 1.3]. Not all of them have bounded support. The paper
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[2] shows that there exists a metric spaceO with non-compact ghost projections in
B(L2(O)). This implies thatO does not coarsely embed into Hilbert space. More
precisely if X is the space Z, the Hilbert spaceHX := �2(X)⊗�2(N) the standard
ample X -module, D is a diagonal operator with coefficients in C0(X) and e is a
finite rank projection then T := D ⊗ e ∈ C∗(X ,HX ) is compact and has support
the full diagonal which cannot be contained in B × B with B bounded.

• This is already [7, Lemma 4.12]. For the convenience of the reader, we recall the
proof: Let K ⊆ X be a set and v ∈ HX be a vector with supp v ⊆ K . Then for
every f ∈ I (K ), we obtain ρ( f )v = 0. Now a vector in HI (K ) can be written as
ρ( f )w where f ∈ I (K ), w ∈ HX . Then

〈v, ρ( f )w〉 = 〈ρ( f ∗)v,w〉
= 0

Thus v ∈ HK . If on the other hand v′ ∈ HK is any vector then

0 = 〈ρ( f )w, v′〉
= 〈w, ρ( f ∗)v′〉

for every f ∈ I (K ), w ∈ HX . This implies ρ( f ∗)v′ = 0 for every f ∈ I (K ).
Thus supp v′ ⊆ K . Since X can be written as a union of bounded sets, X = ⋃

Bi
with Bi bounded for every i , the vectorswith compact support form an orthonormal
basis of HX .
A finite rank operator T with respect to this basis belongs to C∗(X): First of all,
T is locally compact since it is compact. We can write

T : h �→
n∑

i=1

αi 〈h, vi 〉ui

here αi ≥ 0 and vi , ui are vectors with compact support supp vi ⊆ Bi , supp ui ⊆
Ai for 1 ≤ i ≤ n. Let v ∈ HX be a vector. If g ∈ I (Bi ) and f ∈ C0(X) are two
functions then

αi 〈ρ(g)v, vi 〉ρ( f )ui = αi 〈v, ρ(g∗)vi 〉ρ( f )ui
= 0

Now let g ∈ C0(X), f ∈ I (Ai ) be functions. Then αi 〈ρ(g)v, vi 〉ρ( f )ui = 0
since supp ui ⊆ Ai . Thus supp T ⊆ ⋃n

i=1 Ai × Bi is controlled.
Since the finite rank operators are dense in the compact operators K(HX ), we
obtain the inclusion K(HX ) ⊆ C∗(X). Since the composition with a compact
operator yields a compact operator,the subset K(HX ) is an ideal in C∗(X).

��
Definition 10 Let X be a proper metric space then

Ĉ∗(X) = C∗(X)/K(HX )
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where K(HX ) denotes the compact operators of B(HX ) is called the Roe–Calkin
algebra of X .

We want to assign a C∗-algebra to every subset U ⊆ X .

Remark 11 If U ⊆ X is a subset of a proper metric space then the inclusion U → Ū
is coarsely surjective which means that there is some R ≥ 0 such that every point of
Ū lies in an R-neighborhood of U . We define

Ĉ∗(U ) := Ĉ∗(Ū )

This way we can use Lemma 7 to restrict representations and elements of the Roe–
Calkin algebra to subspaces.

Lemma 12 If Y ⊆ X is a closed subspace and iY : HY → HX the inclusion operator
of Lemma 7 then

• the operator

Ad(iY ) : C∗(Y ) → C∗(X)

T �→ iY T i
∗
Y

is well defined and maps compact operators to compact operators.
• Then the induced operator on quotients

Âd(iY ) : Ĉ∗(Y ) → Ĉ∗(X)

is the dual version of a restriction map, which means U �→ Ĉ∗(U ) is a precosheaf
on X.

Proof • iY covers the inclusion the other statement follows since composition with
compact operators gives a compact operator.

• The assignment is a covariant functor.
��

Theorem 13 If X is a proper metric space, then the assignment

U �→ Ĉ∗(U )

for every subspace U ⊆ X is a cosheaf with values in CStar.

Proof Let U1, . . . ,Un ⊆ U be subsets that coarsely cover U ⊆ X and Vi : HUi →
HU and Vi j : HUi j → HUi the corresponding inclusion operators for i, j = 1, . . . , n.

Let T ∈ C∗(U ) be a locally compact controlled operator. We need to construct
Ti ∈ C∗(Ui ) such that

∑
i

Vi T1V
∗
i = T
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modulo compacts. Denote by E = supp(T ) the support of T in U . Define

Ti := V ∗
i T Vi −

i−1∑
j=1

Vi j V
∗
j i Tj Vji V

∗
i j

then the Ti are locally compact controlled operators, thus elements inC∗(Ui ). We now
show that T − ∑

i Vi Ti V
∗
i = 0 on U1 ×U1 ∪ · · · ∪Un ×Un which shows the result

since E ∩ (U 2
1 ×· · ·U 2

n )c is bounded. Let (x, y) ∈ (U 2
1 ×U 2

n )∩ supp T be a point and
choose k minimal with (x, y) ∈ Uk × Uk . Then Tk(x) = T (x) = y. We now show
(x, y) /∈ supp Ti for i �= k. For i = 1, . . . , k − 1, this is clear since k is minimal. We
now use induction on i = k + 1, . . . , n: If i = k + 1 then (x, y) ∈ supp(V ∗

k+1T Vk+1)

exactly when (x, y) ∈ supp(Vk+1,kV ∗
k,k+1TkVk,k+1V ∗

k+1,k). Thus (x, y) /∈ supp Tk+1.
If the statement holds for k + 1, . . . , i then (x, y) ∈ supp(V ∗

i+1T Vi+1) exactly when
(x, y) ∈ supp(Vi+1,kV ∗

k,i+1TkVk,i+1V ∗
i+1,k). Thus (x, y) /∈ supp Ti+1. This implies∑

i Ti |U = T , axiom 1).
Suppose Ti ∈ C∗(Ui ) are elements with

∑
i

Vi Ti V
∗
i = 0

modulo compacts. Denote by Vi jk : HUi∩Uj∩Uk → HUi∩Uj the covering isometry
operator associated to the inclusionUi∩Uj∩Uk → Ui∩Uj .Define for 1 ≤ i < j ≤ n:

Ti j := V ∗
i j Ti Vi j +

∑
k<i

Vi jkV
∗
ki j Tki Vki j V

∗
i jk −

∑
i<k< j

Vi jkV
∗
ik j TikVik j V

∗
i jk .

Using ViVi j = VjVji and combinatorical information,we can show

∑
j

(Ti j − Tji )|Ui =
∑
i< j

Ti j |Ui −
∑
j<i

Tji |Ui = Ti

modulo compacts. Thus axiom 2) of a cosheaf holds. ��

4 Computing Examples

Corollary 14 If U1,U2 coarsely cover a subset U of a proper metric space X then
there is a six-term Mayer–Vietoris exact sequence

K1(Ĉ∗(U1 ∩U2)) K1(Ĉ∗(U1)) ⊕ K1(Ĉ∗(U2)) K1(Ĉ∗(U ))

K0(Ĉ∗(U )) K0(Ĉ∗(U1)) ⊕ K0(Ĉ∗(U2)) K0(Ĉ∗(U1 ∩U2))
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Proof If A ⊆ X is a subset define C∗(A, X) to be the C∗-algebra generated by all
locally compact operators with finite propagation on HX whose support is contained
in E[A] × E[A] for some entourage E ⊆ X × X . It can be observed that C∗(A, X)

forms an ideal in C∗(X). The inclusion C∗(A) → C∗(A, X) induces an isomorphism
on the K -theory of the algebras obtained by modding outK(HX ). That is because we
have a commuting diagram with exact rows:

0 K(HX ) C∗(A) Ĉ∗(A) 0

0 K(HX ) C∗(A, X) C∗(A, X)/K(HX ) 0

where the left vertical arrow is an isomorphism, the middle vertical arrow induces
an isomorphism in K-theory by [4, Proposition 6.4.7]. By the five lemma, the right
vertical arrow induces an isomorphism in K -theory.

We define I1 := C∗(U1, X)/K(HX ), I2 := C∗(U2, X)/K(HX ) and I12 =
C∗(U1 ∩ U2, X)/K(HX ). They are the smallest ideals containing Ĉ∗(U1), Ĉ∗(U2)

and C∗(U1 ∩ U2), respectively. Now Theorem 13 and the first cosheaf axiom imply
Ĉ∗(U ) = Ĉ∗(U1) + Ĉ∗(U2) and the second cosheaf axiom implies Ĉ∗(U1) ∩
Ĉ∗(U2) = Ĉ∗(U1∩U2). This implies I1+ I2 = C∗(U , X)/K(HX ) and I1∩ I2 = I12.
With those properties and [4, Exercise 4.10.21], the six-term exact sequence in K -
theory is obtained. ��
Remark 15 Now for every proper metric space there is a short exact sequence

0 → K(HX ) → C∗(X) → Ĉ∗(X) → 0

which induces a 6-term sequence in K-theory:

K0(K(HX )) K0(C∗(X)) K0(Ĉ∗(X))

K1(Ĉ∗(X)) K1(C∗(X)) K1(K(HX ))

If X is flasque [10] then

Ki (Ĉ
∗(X)) =

{
0 i = 0

Z i = 1

Remark 16 Note that the result of Corollary 14 is applicable when computing con-
trolled K -theory if the property ample is preserved by restricting the representation
of U to the representations of U1,U2.

If X is a Riemannian manifold then fixing a volume form ν the Hilbert spaceHX =
L2(X , ν)⊗�2 is an ample X -module with �2 the standard separable Hilbert space and
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ρX : C0(X) → B(HX ) trivial on the second factor. In Example 17, Example 18, we
will use this canonical representation onR,R2 and certain subspaces of them without
mentioning it. In those cases, the property ample is preserved by restricting R to R≥0,
the space R2 to V1, V2 and V1 ∩ V2 to U1,U2, respectively.

Example 17 (R) Now R is the coarse disjoint union of two copies of R≥0 which is a
flasque space. By Corollary 14, there is an isomorphism

Ki (Ĉ
∗(R)) =

{
0 i = 0

Z ⊕ Z i = 1

Applying Remark 15,we can compare

Ki (C
∗(R)) =

{
0 i = 0

Z i = 1
,

in [4, Theorem 6.4.10], if it matches our computation. And indeed it does.

Example 18 (R2) We coarsely cover R2 with V1 = R≥0 × R ∪ R × R≥0 and V2 =
R<0 ×R∪R×R<0. The space V1 ∩ V2 is coarsely covered byU1 = R≥0 ×R≥0 and
U2 = R<0 × R<0. The second cover and Corollary 14 gives

Ki (Ĉ
∗(V1 ∩ V2)) =

{
0 i = 0

Z ⊕ Z i = 1

Since V1, V2 are coarsely equivalent to flasque spaces, the first cover and Corollary 14
imply that K0(Ĉ∗(R2)) and K1(Ĉ∗(R2)) have the same (free abelian) rank. Translating
back using Remark 15, the groups

Ki (C
∗(R2)) =

{
Z i = 0

0 i = 1

of [4, Theorem 6.4.10] also fit in the exact sequence.
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2. Druţu, C., Nowak, P.W.: Kazhdan projections, random walks and ergodic theorems. J. Reine Angew.
Math. 754, 49–86 (2019). https://doi.org/10.1515/crelle-2017-0002

3. Hartmann, E.: Coarse cohomology with twisted coefficients. Math. Slovaca 70(6), 1413–1444 (2020).
https://doi.org/10.1515/ms-2017-0440

4. Higson, N., Roe, J.: Analytic K -homology. Oxford Mathematical Monographs. Oxford University
Press, Oxford (2000)

5. Higson, N., Roe, J., Yu, G.: A coarse Mayer–Vietoris principle. Math. Proc. Cambridge Philos. Soc.
114(1), 85–97 (1993). https://doi.org/10.1017/S0305004100071425

6. Pedersen, G.K.: Pullback and pushout constructions in C∗-algebra theory. J. Funct. Anal. 167(2),
243–344 (1999). https://doi.org/10.1006/jfan.1999.3456

7. Roe, J.: Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amst. Math.
Soc. 104(497), x+90 (1993). https://doi.org/10.1090/memo/0497

8. Roe, J., Siegel, P.: Sheaf theory and Paschke duality. J. K-Theory 12(2), 213–234 (2013). https://doi.
org/10.1017/is013006016jkt233

9. Roe, J., Willett, R.: Ghostbusting and property A. J. Funct. Anal. 266(3), 1674–1684 (2014). https://
doi.org/10.1016/j.jfa.2013.07.004

10. Willett, R.: Some ‘homological’ properties of the stable Higson corona. J. Noncommut. Geom. 7(1),
203–220 (2013). https://doi.org/10.4171/JNCG/114

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3623819
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3623819
https://doi.org/10.1515/crelle-2017-0002
https://doi.org/10.1515/ms-2017-0440
https://doi.org/10.1017/S0305004100071425
https://doi.org/10.1006/jfan.1999.3456
https://doi.org/10.1090/memo/0497
https://doi.org/10.1017/is013006016jkt233
https://doi.org/10.1017/is013006016jkt233
https://doi.org/10.1016/j.jfa.2013.07.004
https://doi.org/10.1016/j.jfa.2013.07.004
https://doi.org/10.4171/JNCG/114

	A Twisted Version of Controlled K-theory
	Abstract
	1 Introduction
	2 Cosheaves
	3 Roe–Calkin Algebra
	4 Computing Examples
	References


