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Abstract

Fused deposition modelling (FDM), one of the most commonly used additive manufacturing techniques in the industry,
involves layer-by-layer deposition of melted material to create a 3D structure. The staircase and beading effect caused by the
printing process and temperature variation cause delamination and poor surface finish in FDM-printed parts. This hinders
the use of these specimens in various applications, which are then usually resolved using pre-processing and post-processing
techniques. Higher surface finish in pre-processing is achieved by increasing the resolution, changing layer thickness and
optimizing build orientation. However, this increases the processing time considerably. On the other hand, post-processing
techniques involve different processes such as mechanical, chemical, thermal and hybrid methods but can affect the mechani-
cal and structural properties of the printed components. This review paper analyses three different aspects in the area of
improving the surface finish of FDM-printed parts. First, this article reviews the state-of-the-art attempts made to improve
the surface finish of FDM-printed parts concentrated mainly on different vapour polishing techniques and their respective
merits and demerits. Second, it focuses on the changes in mechanical properties before and after polishing. Finally, the paper
explores the development in the 3D printing of thermosets and composite materials and their post-processing processes and
process parameters.
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1 Introduction

FDM—fused deposition modelling amidst the much often
utilised in rapid prototyping (RP) technologies because of
its cheap maintenance costs and ability to build complex
components quickly. The FDM technique may make use of
a wide range of materials [1]. Several different materials
can be used for printing through the FDM process, this
paper will be mainly concentrating on thermoplastics like
Acrylonitrile butadiene styrene (ABS) and Polylactic Acid
(PLA), and high-temperature thermoplastics like ULTEM
(polyetherimide) 9085 resin. Nevertheless, temperature
fluctuations during manufacturing lead to delamination
and an increased amount of roughness on the fabricated
object [2—8]. The stair-step effect has a negative effect
on the surface finish of FDM prototypes with curved or
inclined surfaces. An undesirable and unsatisfactory result
of smoothening is that the end product is of lower qual-
ity. Poor roughness of the printed component prevents it
from being used in some places that need good surface
integrity. As a result, post-processing of the printed item
is necessary to enhance its surface polish, which in turn
has an impact on its mechanical qualities. It is critical
to guarantee that the completed printed component could
withstand certain deflection or stress under a given range
of circumstances and that the Rapid Prototyping(RP) does
not malfunction when it is used for a long length of time
[9-13]. The printed part's mechanical qualities may be

improved using a variety of post-processing techniques.
As a result, the mechanical characteristics of the original
component and those of the part after post-processing may
be distinguished.

Aesthetic appeal, dimensional precision, and surface
roughness [14] are critical for all applications. The aesthetics
and surface functioning of the AM component are compro-
mised because of the roughness of the surface. The resolu-
tion and precision of an AM printed object are impacted by
a number of process variables, including the contour angle,
raster and raster angle, orientation angle, layer thickness, and
air gap, among others [15]. The stair-casing/stair-stepping
result of layer production causes the AM part’s surface to
be rough [16, 17]. This effect is mostly caused by how one
slice adheres to another, resulting in an expected roughness
on the final surface of an FDM part [18].

The quality of mechanical items usually refers to the
product's surface finish. As the fracture is less likely to
begin if the product’s surface is smooth. If the product's
surface is rough, fractures begin to form and cause struc-
tural damage. The surface finish affects the product’s cor-
rosion resistance [19]. FDM printing on a fully flat surface
is a demanding and hard undertaking, as the surface of the
component cannot be entirely smoothed out in the current
precision of the FDM printing method alone [20]. Numer-
ous researchers have attempted to implement it at pre-pro-
cessing by varying tiers of parameters and with different
slicing approaches, but have been unsuccessful. Pre- and
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(a) lllustration of Staircase Effect on an Inclined Surface
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Fig.2 Causes of surface roughness in FDM-printed parts. A Shows staircase effect, B shows beading effect
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post-processing [21] are two techniques to improve the
finish of the surface (Figs. 1, 2, 3, 4).

1.1 Surface finish improvement
through pre-processing techniques
for FDM-printed specimens

Optimising raster angle, layer thickness, build orientation,
air gap, contour angle, etc., which are process variables of
FDM, may enhance the surface finish of the FDM-printed
part or component [23]. In-process approaches and adap-
tive slicing are the two subcategories of pre-processing
methods, and each of these subcategories is further sub-
divided into six and two subcategories.

e When a 3D CAD file is converted to a G-code file for
FDM processing, the In-process approach includes the
optimum configuration of process variables such as
model temperature, layer thickness, raster and contour
width, build orientation, raster angle and air gap.

e To achieve an optimal balance between building time
and surface finishing, the adaptive slicing method [23]
was developed. Cutting time is reduced using algo-
rithm-based cutting tools with varied tool paths that are
depending on surface roughness and form [24].

1.2 Surface finish improvement
through post-processing methods
for FDM-printed parts

After printing the FDM component, a variety of post-pro-
cessing processes are utilised to enhance the surface qual-
ity. These post-processing procedures are further subdivided
into mechanical, chemical, thermal, and hybrid.

e The FDM part's surface profile is chopped mechanically,
or the peaks are pressed, to enhance the surface finish of
the components in the mechanical polishing procedure.
ABS polymers, unlike metals, provide a unique set of
challenges when it comes to the application of typical
metal finishing techniques. The abrasive action of this
mass finishing procedure eliminates superfluous material
from the pieces' corners and edges, resulting in a smooth
surface finish [25].

e Plastics can be better finished using a finishing approach
that relies only on chemical action to enhance the sur-
face. As a consequence, there may be no alteration in the
dimensions of the pieces when using this approach [26].

e Thermal finishing methods use the utilisation of thermal
energy to improve the surface finish and dimensional
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Fig.4 Vapour polishing tech-
niques. a Cold vapour polishing
phases; b immersion technique
of vapour polishing; ¢ hot
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accuracy of FDM components. A 68 per cent decrease
in the final surface roughness was achieved when laser-
based surface processing technologies were utilised on
thermoplastics [27]. Researchers also used a thermal-
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based technology called the “CNC Assisted Selective
Melting (SM) tool” [28] for obtaining better surface fin-
ish results for FDM components.
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e The development of an effective and flexible produc-
tion process necessitates the use of hybridization. This
approach makes use of two distinct instruments or
sources of power. Using conventional or CNC milling
machines, both exterior and interior surfaces may be
milled.

Performing an accurate and precise work-study is essen-
tial to enhance the mechanical characteristics of an FDM-
printed object to improve its performance. This paper, will
further discuss how acetone and Tetrahydrofuran (THF) hot
vapours affect FDM-printed ABS and PLA parts' mechani-
cal qualities, see how these vapour components compare to
the original printed parts and enhance the print's mechanical
properties [29-32]. Also, look into how chemical vapour
smoothening helps in enhancing the surface quality of FDM-
printed high-temperature thermoplastics like ULTEM 9085
resin parts.

2 Hot/chemical vapour deposition
of FDM-printed thermoplastics

To polish an FDM component, the most widely utilised
options are sanding or vapour smoothing [33, 34]. It may be
impossible to sand small or complicated geometries using
the sanding process. On the other hand, 3D printing’s com-
plicated forms might benefit from vapour smoothing. It is
possible to soften the outer layers of 3D-printed compo-
nents using a chemical reagents’ vapour to dissolve second-
ary bonds between the FDM manufactured polymer strands.
As a consequence, the surface polish of 3D-printed objects
might be enhanced as a result of this method. Fine surfaces
may be achieved using the vapour smoothing technique.
However, the mechanical characteristics of a 3D-printed
structure may be adversely afflicted by this procedure [35].
The material is vaporised in the vapour treatment process to
smooth off surface roughness. It is possible to treat chemi-
cals using the vapours produced when they are heated to a
precise temperature on hot plate equipment in this procedure
[82].

When Kuo and Mao [36] invented the acetone-vapour
polishing technology, they were looking for a way to smooth
ABS objects made using fused deposition modelling (FDM).
They claimed that their approach is adaptable enough to pre-
serve dimensional accuracy while also increasing polishing
efficiency. Immersion in lukewarm pure acetone, hot vapour
treatment and cold vapour treatment were all tested by Garg
[30] to improve the surface finish of FDM parts. They dem-
onstrated that one of the greatest methods to enhance surface
quality is chemical treatment using cold vapour. Using a
mathematical model, Chohan [37] proposed an explanation

for the average surface roughness of vapour-treated objects.
Vapour smoothing time is a significant impact on the aver-
age surface roughness, as reported by the researchers. This
method might be compromised if the external layer of ABS
components is dissolved by these polishing operations.

2.1 ABS

FDM technology makes use of a variety of construction
materials. The qualities, functionality, and robustness of a
printed object are directly tied to the material used in its con-
struction. Due to ABS’s low glass transition temperature, Tg,
and dimensional stability, it is commonly utilised in FDM
[43]. Styrene, acrylonitrile, and polybutadiene are polym-
erized together to form ABS. ABS is widely accepted to
have good impact resistance, hardness, chemical resistance,
thermal stability, and the capacity to execute functional test-
ing on sample components [44]. ABS’s high strength and
tolerable thermal shrinkage also make it a popular material
for FDM. These values allow for post-processing (machin-
ing, coating, or glueing) after printing with ABS [45]. Com-
ponent orientations, as opposed to bulk characteristics of
materials, have been proven by researchers to cause a 45 per
cent decrease in modulus and a 30—60 per cent decrease in
ultimate tensile strength for FDM parts or specimens [46].
Because of this, FDM-fabricated pure thermoplastics must
be modified to get better mechanical characteristics. For
example, reinforcing materials, nanofibers, and nanofillers
may be added using different preparation methods [47].

Materials are injected via indexing nozzles onto an FDM
platform using thermoplastics (polymers that become lig-
uid when heated and solidify when cold). The nozzles use
thermoplastic material to trace each layer’s cross-section
pattern, which hardens before the next layer is applied. You
will have to keep going until you have built the whole thing
[42]. Molten thermoplastic material is fed into the nozzle by
moving it via Z-axis movement while it travels in both the
X- and Y-direction. It is necessary to heat the thermoplastic
filament to a temperature slightly over its melting point for it
to solidify quickly after deposit and fuse with the preceding
layer. Component strength and surface polish are lower in
FDM than in injection moulding, making it a less desirable
process overall [41].

2.1.1 Surface polishing process of ABS using acetone

Acetone is utilised in the polishing process because it is
affordable, safe, and has a high diffusion coefficient [38].
The surface polish of pieces is improved after they have been
post-treated with dimethyl ketone vapour. In this experiment,
it was found that exposing the components to light causes
them to become soft and mushy, while the outer surface is
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dissolving because of their identical cohesive energy densi-
ties [39]. Thus, a more stable configuration for the polymer
chains may be achieved [40] by sliding past one another.

Researchers have tried a variety of pre-processing strate-
gies, including optimising process parameters such as layer
thickness, raster angle and orientation angle; nonetheless,
this intrinsic fault could not be eliminated. The nozzle diam-
eter and layer height may also be decreased to alleviate this
issue. To make things more complicated and take longer,
repetitions of the slicing process may be necessary [48,
49]. To fix this flaw, adaptive slicing uses a nozzle with a
changeable tip diameter and complicated algorithms, both
of which raise the overall equipment cost [10]. There have
been several studies employing sophisticated optimization
approaches to produce the best possible dimensional stabil-
ity and surface polish, but the complicated shapes of com-
ponents have made it difficult to meet the goals [50, 51]. It
is also possible to smooth out the printed pieces by sanding,
painting and mechanical finishing, as well as through vapour
smoothing. As a post-processing step for ABS components,
mechanical finishing has been widely used, resulting in
dimensional inaccuracies, edge and micro-cutting of minor
features [52].

Stratasys Inc., USA, developed a chemical vapour method
to reduce surface flaws in FDM components [53], which was
patented in 2012. Solvent vapours are used in the mecha-
nism, and they rapidly react with the ABS part’s top surface.
Localized swelling was described by Espalin [54] when the
vaporised solvent was applied to FDM pieces as a good fin-
ishing process. Galantucci [29] used chemical dipping in
an acetone bath (90% acetone and 10% water) for freeform
manufactured ABS products, which concluded to be eco-
nomical and rapid. Chemical absorption by ABS compo-
nents has led to a rise in average weight and a decrease in
volume, according to reports. It was found that the tensile
and flexural strengths of chemically finished ABS compo-
nents were lower than those of untreated parts [5].

Pendersen [86] discovered that extensive exposure to
vapours increased the surface quality and tensile strength
of FDM components while also rounding the corners and
causing part swelling. Stratasys Inc. USA [87] has devel-
oped a new technique of surface polishing that combines
media blasting and vapour finishing. Acrylonitrile vapours
are accelerated via a fan by researchers [7] in a piece of in-
house equipment for surface finishing. With a higher number
of fan revolutions, you get a better finish. ABS components
having a bigger surface area took more time to smooth down,
as was discovered. At low temperatures (below 20 °C), the
effects of wintry acetone vapour on FDM components’ sur-
faces were studied by Garg [30]. After 80 min of exposure,
the fine features of the surface, such as sharp edges and cor-
ners, were eroded, despite a substantial increase in surface
smoothness.

@ Springer

Chemical vapours (at higher concentrations) were shown
to have a severe influence on delicate parts, resulting in
material erosion and edge rounding. The effect of tempera-
ture and mild vapour on surface polish and weight growth
was thus studied in [88]. It is important to keep the weight
of ABS components as low as possible and part density as
high as possible when they are exposed to vapours.

2.2 PLA

Corn-derived Polylactic Acid (PLA) is among the thermo-
plastic polymers utilised in FDM. Applications, where flex-
ibility is not a big deal, include domestic goods, electrical
devices, toys, and so like [55]. To utilise PLA for skin-wear-
ing products, the material must be biodegradable. In the long
run, PLA’s eco-friendliness makes it an excellent material
[56]. When produced in an FDM machine at 190-220 °C,
PLA reaches a glass transition temperature of 60—65 °C. [57]

PLA is the most widely used biodegradable polymer in
the FDM process. Since this polymer has no carbon back-
bone, it has replaced fossil-based polymers in several appli-
cations. When compared to other petroleum-based polymers
like acrylonitrile butadiene styrene (ABS), PLA’s mechani-
cal properties such as hardness, processability, and ultimate
tensile strength are similar [58, 59]. This means that PLA
might be employed in many different situations [60, 61].

Poor surface finish or texture is a major drawback to using
FDM [62, 63]. While some surface roughness is inevitable
in FDM components, much research has been done since the
process’s introduction to enhance the surface smoothness.
Surface roughness may be controlled and reduced utilising
a variety of approaches [64]. In the research, strategies for
improving the surface quality of this material have been
gathered. Pre- and post-processing procedures must be con-
sidered for these reasons [65].

Chemical treatment is the quickest method of post-pro-
cessing [66, 67], followed by mechanical [68, 69], and ther-
mal [70, 71]. Acetone vapour smoothing may decrease the
surface roughness of ABS components by as much as 90%
in only 10 s [72], according to some studies. These trials,
however, have not yet been targeted on the improvement of
PLAs in most instances. As a consequence, their findings
have no direct bearing on this investigation [73].

As can be seen, the majority of the literature study is
devoted to ABS components. PLA has lately attracted a lot
of attention because of its mechanical qualities and the vari-
ety of surface finishing treatments that may be applied to it
[74-78]. Reference [79] in particular, used a NaOH solution
and dichloromethane vapours to achieve a reduction in sur-
face roughness using chemical surface finishing treatment.
Dichloromethane vapours were also employed in [80], where
a geometrical model was constructed to illustrate the devel-
opment of the surface topography throughout the chemical
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treatment. Post-processing processes involving immersion
in four inorganic solvents were also used for polylactic acid
components produced by FDM or Fused Filament Fabrica-
tion (FFF), with a roughness reduction of up to 97% when
using chloroform and an approximate 35% improvement
when using Ethyl acetate [§1]. Various solvents were uti-
lised to immerse and spray PLA-based FFF pieces during
post-processing (at 100 per cent concentration) [82]. Simi-
lar results were observed. Using ethyl acetate vapour, [83]
demonstrates the impacts of surface finishing technique on
a qualitative case study. There was another study that used
a similar technique on bevel gears to improve the surface
smoothness, but there was no way to numerically measure
the difference in roughness after the treatment was applied.

The treatment process variables and their impact on
roughness reduction are seldom examined in organised
experiments in the studies that deal with chemical vapour
processing on PLA 3D-printed objects.

An evaluation of the reduction in roughness attained by
chemical treatment using an ethyl acetate vapour treatment
was conducted by scientists in [84] to address this gap. Mini-
mal toxicity, simple availability, and cheapness were all fac-
tors in the decision to use this particular solvent. To show
the efficacy of the suggested treatment on PLA components
without ignoring the problems of toxicity and sustainability
of the method.

2.2.1 Surface smoothing of PLA using THF

Tetrahydrofuran, an organic compound having the chemi-
cal formula (CH,),O is a clear, water-soluble organic liquid
with a low viscosity. 40 is colourless. Its principal use is as
a precursor to polymers. It is an excellent solvent for their
experiment since it can dissolve a broad variety of chemical
substances, both nonpolar and polar [85].

THF (CH,),0, an organic chemical, is utilised as a coat-
ing material in [57]. It has a boiling point of 66 degrees Cel-
sius, is colourless, harmless, and miscible with water [89].
Methanol and acetonitrile have a lower elution strength than
THF [90]. THF is frequently utilised in polymer research to
dissolve polymers before gel permeation chromatography
may be used to determine their molecular mass [91]. THF
is utilised because of these physical and chemical qualities
when employing Vapour Smoothing procedures to cover
FDM manufactured PLA material.

The THF solution was vaporised using induction heating
in the experimental setup. In an open setting, a thermometer
is used to keep the temperature between 64 and 66 degrees
Fahrenheit. Prototypes are put on top of the steel container,
which is filled with Tetra Hydro Flouride (THF). THF vol-
ume and experimentation time are the variables to be ana-
lysed in the Vapour Smoothing (VS) procedure [57].

Vapour Smoothing process factors, such as the duration
and volume of the THF solution, were evaluated in this work
to determine the effect on the surface imperfections of PLA
objects manufactured utilising the FDM machine. There was
also information on the impact of these characteristics on
alternative construction orientations. Experiments and DOE
analysis led to the following findings in [57]:

e The surface roughness of FDM PLA components
changes with build orientation and reaches a maximum
of 32.31 m at 22.5° build orientation before VS process-
ing.

e At an orientation of 90°, 10 ml of THF volume, and a
Vapour Smoothening process period of 5 min, the surface
roughness is reduced by 78.13 per cent after VS process-
ing.

Following the amount of coating solution used, DOE
analysis indicated that construction orientation was
responsible for the greatest influence on surface polish.
The regression equation was then compared to experi-
mental data and found to agree.

3 3D-printed thermosetting plastic and it’s
smoothening

The most common and frequently used polymer material
for additive manufacturing are thermoplastics (Nylon, ABS,
PLA, PC, PVC etc.) This is mainly due to the fact that ther-
moplastic 3D printing is a highly optimized manufacturing
process. Thermoplastics are widely used in industrial and
medical applications. But these materials have some major
limitations like poor mechanical properties, weak interlayer
bonding and limited load capacity.

To overcome these limitations thermosetting plastics can
be used. Thermosets (thermosetting polymer) are a kind of
polymer that cures to create well-defined, irreversible chemi-
cal systems by crosslinking chemical components in all three
dimensions to produce polymers that are strong and rigid or
these can be added to other materials to boost their strength.
[92]. The cross-link network structure of thermosets dis-
tinguishes them from thermoplastics in terms of mechani-
cal strength, chemical resistance, dimensional stability and
capacity to withstand high temperatures [93]. Modification
of traditional 3D printing technique is required to ensure
complete utilization of these unique properties of thermo-
setting plastics.

Thermoset polymer in its initial stage is a viscous liquid
or a soft solid known as pre-polymer. This is heated above
its melting point and subsequently cooled. During the cur-
ing process small molecules are chemically bonded form-
ing intricately interconnected networks. As a result of these
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high-density cross-linkages irreversible polymer bonds are
formed [94]. Hence thermosets are ideal for the production
of large solid shapes and long-lasting components [94].

Thermosets are cost-effective, lightweight and easier to
produce than traditional materials. They are used in different
sectors, like engineering, medicine, aerospace, marine pro-
pulsion, energy, and robotics. They have become a crucial
part of contemporary life [94]. So combining the advantages
of 3D printing manufacturing with the material properties of
thermosets might result in significant innovation [95]. Incor-
porating new 3D printing methods with thermoset manu-
facturing offers the potential to increase productivity while
decreasing costs and maximising the use of raw materials.
Apart from this, 3D printing of thermoset components may
increase the mechanical properties and pot life which are
typically limited [96]. For example, with the latest develop-
ment in 3D printing inks such as dicyclopentadiene (DCPD-
based ink), the time taken to finish in-situ curing treatment
has reduced from hours or days to mere seconds [97]

However, there is yet no universal way for 3D printing
thermosets. Many thermosets do not hold their form until
they've been cross-linked. They can not be extruded or
moulded once they have been cross-linked. Consequently,
photocurable resins with high reactivities and low glass
transition temperatures are the mainstays of thermoset 3D
printing [98—100]. To make up for their lower curing rates,
these resins require costlier 3D printers than thermoplastics
and are much more complex. The resins used for this process
are costly and poisonous due to the cost of photo-initiator to
make up for their lower curing rates [101, 102].

This section of this paper is focussed on the

¢ most recent findings and development in the 3D printing
of thermosets and their composite inks,

e different 3D printing fusion deposition modelling (FDM)
techniques and methods for thermosets and their compos-
ites.

e And the post-processing process (smoothening tech-
niques) of the 3D-printed models.

3.1 Thermosetting plastics fused through FFF—
Fused Filament Fabrication (FDM—Fused
Deposition Modelling)

In FFF printing of thermosets, the 3D structure is built up
layer by layer and then thermally cured using heat. The
drawing of material is done through a nozzle known as an
extruder or liquefier. Traditional 3D printing methods such
as FFF can only work with thermoplastics because thermo-
sets have a higher melting point and an irreversible nature
[103]. Two methods are used to overcome this [104]: firstly,
the use of reversible thermoset composites and secondly the
3D printing of thermosetting composites with continuous
fibre reinforcements.

Reversible thermoset polymers are such thermoset poly-
mers that can be reprocessed and recycled [106]. It is done
by introducing reversible covalent cross-links in the poly-
mer networks. The malleability in these polymer networks is
enabled by activating the reversibility of crosslinking bonds
through the application of external stimuli, like heat or light
[106]. Thus, they can be reshaped from being in the form
of filament into the desired 3D object using an FDM 3D
printer. Table 1 represents various printing parameters of
reversible thermosetting polymers used in the literature.

By definition, a thermoset is a polymer that cures into
an irreversibly hardened state. The thermo-reversibility of
thermosets is achieved by the DA process (Diels—Alder reac-
tions) crosslinking thermosets in a unidirectional fashion
with reversible network topology freezing [111, 112] and
semimanual dynamic covalent networks [110] which allow
thermosets to be reshaped.

Furan and maleimide DA reactions (Diels—Alder reac-
tions) are among the most well-known examples of DA
reactions. These are added to DART [113] resins with iso-
tropic mechanical properties and have thermoset qualities
at usage temperatures based on reversible furan-maleimide
Diels—Alder (DA) linkages.

Continuous fibre-reinforced thermosetting composites
comprise epoxy resin as the thermosetting matrix and a fibre
bundle as reinforcement [114-116]. The 3D printer's printing
head receives the fibre package from the fibre source coil

Table 1 Print parameters
reversible thermoset polymers

Material

Print Parameters

Furan and Maleimide

Monomer molar ratio 2F: 2 M*3: 3F# 15:18:02
Cross-link density 5%
fmDA synthesize temperature 75 °C
Blending ratio of fmDA with PLA (weight ratio) 10:25
Printer Filabot
Printer nozzle size 3 mm
Melting temperature 160 °C
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and passes it through an epoxy resin pool. Once printing is
completed on the printing platform [105] curing occurs in a
high-temperature chamber.

Epoxy resins are some of the most extensively used ther-
mosetting polymers because of their vast availability, cheap
cost, and ease of processing. 3D-printed specimens from
Epoxy resins like IPOX ER 1010 with IPOX MH 3124 and
carbon fibre [109] and Epoxy E — 54(616)) with carbon fibre
bundle [105] are used in a range of operations like the devel-
opment of high-performance structural materials [107] and
recyclable materials [93], as well as fast-curing materials
[108].

4 Discussions
4.1 ABS
4.1.1 ABS cold vapour polishing

Some of the common trends exhibited by specimens that are
cold vapour polished are that they [41] showed a reduction in
surface imperfections and max height. The extent of reduc-
tion depended upon the time that is by increasing the time,
the surface roughness decreased. Although the cold vapour
polishing technique [35] may reduce the ABS component's
thermal stability and tensile strength, the material's ductility
is increased [41].

4.1.2 ABS acetone

According to [41], cold vapour polished ABS specimens
treated with acetone lost tensile strength as the time spent
in the chemical bath became longer. In the case of ductility,
the cold vapour-treated part had more ductility compared to
the non-treated part; the main reason for this is the softening
of ABS when it is treated with acetone.

In [41] the case of surface roughness of acetone cold
vapour polished part, both average surface roughness
and max height showed a decrease when reaction time is
increased. Acetone treated specimen has comparatively

% Decrease Storage Modulus VS Temperature

k] ] e
-20 0 20

2 B E
40 60 80

120

higher tensile strength compared to other chemicals like
dichloroethane [35].

Temperature-dependent mechanical properties of speci-
men cold treated with acetone like storage modulus showed
a decrease with an increase in temperature. Elastic modulus
of ABS part decreases with increase in temperature the but
the decrease of acetone treated abs part is more with a per-
centage decrease of 97.3% compared to the part which was
not treated with a decrease of just 54%.

Acetone [117] chemical vapour polishing can improve
the surface finish without much deviation from the origi-
nal dimension. The average deviation in dimension was
0.016339 before to chemical vapour polishing of the ABS
component; after chemical vapour polishing, the average
deviation in dimension was 0.018389; this difference is
minimal since the percentage variation was only 11%.

The [1] maximum load acetone treated ABS part
depended on the treatment time. The maximum load was
applied to the specimen, which was treated for 45 min this
was followed by the specimen treated for 15 min. Both have
an average maximum load greater than the original part.
Next was the 30 min treated part and the least load was
applied to the specimen which was treated for 1 h. This trend
was also followed by the Tensile strength test.

For the average flexural test, the treated part's flexural
strength was lower than that of the original in [1]. The part
with the highest flexural strength was the specimen, which
was treated for 45 min, was followed by 30 min then 15 min
the lowest was the part, which was treated for 1 h. The best
treatment time proposed was therefore 45 min as it gave the
highest values in flexural and tensile strength. The specimen
at this time also withstands the maximum load (Fig. 5).

4.1.3 ABS dichloroethane

The ABS [41] specimen which was cold vapour treated
with dichloroethane had lower tensile strength compared to
acetone It should be also noted that at the same immersion
time the surface roughness and max height of dichloroethane
were less than that of acetone. This is due to the higher dis-
solution of the top ABS layer in dichloroethane and filling
the gap, which produced a higher mirror-like finish.
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Surface Angle Vs % decrease in surface
roughness

45 deg

0 deg

Fig.6 Graph showing surface angle vs % decrease in surface rough-
ness for PLA treated with Acetone

4.2 PLA
4.2.1 PLA with different chemicals

The [85]specimen made of PLA was treated by dipping into
various chemicals it was observed that maximum reduction
in surface roughness is obtained when PLA was treated with
dichloromethane this was closely followed by tetrahydro-
furan and then sodium hydroxide. The least reduction in sur-
face roughness was obtained in isopropyl alcohol, acetone
and ethyl acetate.

The [85] treatment of various chemicals by spraying also
yielded the same pattern of surface reduction. The other
important thing to note is that acetone and tetrahydrofuran
yielded better surface finish when it was polished by dip-
ping into the chemical while on the contrary other chemicals
yielded better surface finish when the chemical is sprayed

Fig.7 Graph showing per-
centage decrease of surface
roughness vs built orientation 100
of PLA treated with THF solu- 90
tion. Graph made according to 80

Table 2
able 70

60
50
40
30
20
10
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on the specimen. Hence [85] the chemical that gives the
most surface finish for PLA was found as dichloromethane
followed by Tetrahydrofuran.

4.2.2 PLA treated with ACETONE

Surface [118] roughness variation of different surface angles
of specimens treated with acetone hot vapour polishing at
a temperature of 70 °C and a cycle time of 30 s showed
that surface roughness reduction increased as surface angle
decreased that is surface finish of 0° is greater than 45°
which is greater than 90°. Transversal [118] roughness
decreased only in 0° while in the rest of the surface angles it
increased. In the case of skewness, there was a considerable
increase in this value after treatment and the increase from
the original value decreases as the surface angle increases
(Figs 6, 7).

4.2.3 PLA treated with tetrahydrofuran

Surface [57] roughness variation of the different built ori-
entation of specimen treated with different volumes of THF
hot vapour polishing, most of the percentage decrease in
surface roughness was found in the treatment of 10 ml THF.
In this case, a maximum of 90% decrease was observed from
the part with 90° built orientation. Minimum [57] percent-
age decrease of surface finish was observed in 0° orienta-
tion with a decrease of 78%. So 10 ml vapour treatment
followed a trend that with the increase in built orientation,
the percentage of decrease in surface roughness increases.
When [57] the part was treated with 15 ml of THF notable

Percentage decrease of surface roughness VS built orentaion

.. ':': --
22.5 45 67.5 90

# % decrease of surface roughness 10 ml
& % decrease of surface roughness 15 ml
8 % decrease of surface roughness 20 ml
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increase was only found in the built orientation of 90° with
82.7% and 0° with 53%. The least was shown by orientation
of 67.5° with only 4%. In the case of 20 ml THF only notable
improvement was seen in 0° orientation with a percentage
decrease in surface roughness of 40% the least percentage
decrease was shown by 45° with only 3% as it is shown in
Table 3 and Table 4.

5 Conclusions and future directions

The 3D printing market share grew exponentially since
2014. In 2023, the market is anticipated to reach a value of
USD 22.1 billion. According to the market forecast, in 2024
and 2025, respectively, there will be a sharp increase to 29.1
and 34.6 billion USD. Lastly, in 2026, the market share is
predicted to reach 44.5 billion USD (Fig. 8).

Due to the expansion of 3D printing services, the popular-
ity of 3D printing first gained traction in 2007, and it peaked
in 2012-2013 as a result of the wide availability of 3D print-
ing equipment. Later, various industries including the auto-
motive and high-tech sectors began to adopt 3D printing
technology into their manufacturing flow. In the years 2016
to 2018, there was a decline in the trend's momentum, but
thanks to low-volume end-part production of 3D-printed
plastics products, the trend started to go up. By 2021 it had
regained its (popularity) momentum and became adopted for
some serious production applications [119].

The resolution required for 3d printed parts varies with
the area of its application. While most commercial applica-
tions recommend 100 micros as standard resolution, some
applications require higher or lower resolutions [120]. With
the advancement in additive manufacturing, FDM printers
now can print as low as 6 to 11 pm Ra but it takes a huge
amount of time to reach this level of surface finish [122].
Despite using different mechanical polishing techniques like
sanding and application of resin, poor dimensional accuracy
and the inability to use these processes in complex models
are major hindrances. Hence, post-processing specimens by
chemical vapour polishing is a superior technique that even
applies to complex geometries. Using this process, parts
can be printed with lower resolution and then polished with
chemical vapour polishing to enhance the production rate
and quality of the finished 3d printed parts.

During the polishing process, the top layer of a sample
reacts with the reagent when it is exposed to a chemical.
A chemical-polymer slurry is created when the chemical
releases the bonds in the polymers. The raised areas of the

rough surface are where this reaction primarily occurs, and

the slurry that results there flows into the nearby valleys

and fills them. Drying the specimen causes the chemical to

evaporate, leaving behind the polymer, which forms fresh

bonds with one another, greatly reducing surface roughness.
In conclusion, the findings found are:

e Time of exposure was found to be a critical factor in
all the chemical techniques and if not controlled it can
alter various properties (having a negative effect) like
tensile strength, storage modulus, and elastic modulus.
The shape and dimensions of the specimen may change if
it is exposed to chemicals for an extended period, either
by dipping or by applying too much.

e Among the chemical polishing techniques, hot vapour
polishing is the most effective process that takes lesser
time to polish when compared to other polishing tech-
niques for 3d printed parts.

e Reference [123] Hot Chemical Vapour Polishing of PLA treated
with (THF) tetra hydro furan increased surface finish by 94.20%
and increased surface finish by 98.65% for a hot vapour polished
ABS specimen treated with Acetone.

e  With the wear tests and flexural tests on Hot Vapour Pol-
ished specimens, it was discovered that polished speci-
mens had lower break loads but higher F-MAX (maxi-
mum frequency a part can run) than unpolished samples,
which caused wear to accelerate on the specimen's top
layer. A slight decrease in flexural properties is seen in
the flexural test due to the development of a rigid and
brittle top layer.

The research facilitated an understanding of how the CVS
polishing technique can be used to scaffold FDM additive
manufacturing to improve its scope in the future by

e Creating a hybrid processing workflow combining pre
and post-processing techniques ensures the best surface
finish.

¢ A new hybrid FDM 3d printer can be created which can
do both the printing and polishing operations of the spec-
imen simultaneously, reducing the overall process time.

In general, the vapour smoothening technique right now
is in its infancy and with proper research and optimisation,
Chemical Vapour Polishing has the potential to make FDM
printing more reliable, cost-effective and marketable to be
used in commercial applications and research and develop-
ment to new products.
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Table 4 Representation of
percentage decrease in surface
finish in various orientation

Fig.8 Graph showing Hype
cycle depicting the popularity
of 3D printing over time and 3D
Printing Market Forecast [119]

@ Springer

Orientation Angle % Decrease of surface % Decrease of surface % Decrease of

degrees roughness roughness surface rough-
10 ml 15 ml ness
20 ml
PLA in THF 0° 78.13211845 53.07517084 40.54669704
225° 81.46084803 12.13246673 11.29681213
45° 84.51672011 12.32249198 3.298213468
67.5° 85.99096191 4.260813428 4.583602324
90 ° 90.86294416 82.74111675 13.19796954
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