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Abstract

Advanced driver assistance systems are an important selling point for vehicles, but
they require high development effort. For longitudinal control, a common founda-
tion for driver assistance systems, tuning requires time and effort to balance accu-
racy and passenger comfort. Reinforcement learning is a promising approach for
automating this, but until now has mostly been applied to simulated examples that
provided ideal conditions and nearly infinite training time.

Among the major challenges for applying reinforcement learning to longitudinal
control in a real vehicle, there are partially observed dynamics and tracking control.
In order to be applicable in real-world applications, the learning process for the
optimal controller needs to converge within minutes. On top of that, the target
speed can change arbitrarily in this use case, which is challenging to solve with
reinforcement learning.

This work proposes two computationally lightweight reinforcement learning algo-
rithms that address these issues. First, a model-free algorithm is introduced. It is
based on the actor-critic architecture that employs a special structure in the state-
action value function approximator to handle the partially observed system. In ad-
dition, it is proposed to learn a feedforward speed tracking controller that uses a
projection and training data manipulation.

A second proposal within this work is a model-based algorithm that is based on
policy search. It is accompanied with an automated inversion-based feedforward
controller design method.

The proposed algorithms are compared across a series of scenarios in a real vehicle
and learning on-line, i.e. while driving closed-loop. While the algorithms react
slightly different to choices of exploration noise, both learn robustly and quickly,
are able to adapt to different points of operation, e.g. speeds and gears even when
faced with disturbances during training. To the author’s knowledge, this is the
first application of reinforcement learning that successfully learns on-line in a real
vehicle.





Zusammenfassung

Fahrerassistenzsysteme (Advanced Driver Assistance Systems) sind ein wichtiges
Verkaufsargument für PKWs, fordern jedoch hohe Entwicklungskosten. Insbeson-
dere die Parametrierung für Längsregelung, die einen wichtigen Baustein für Fah-
rerassistenzsysteme darstellt, benötigt viel Zeit und Geld, um die richtige Balance
zwischen Insassenkomfort und Regelgüte zu treffen. Reinforcement Learning scheint
ein vielversprechender Ansatz zu sein, um dies zu automatisieren. Diese Klasse von
Algorithmen wurde bislang allerdings vorwiegend auf simulierte Aufgaben ange-
wendet, die unter idealen Bedingungen stattfinden und nahezu unbegrenzte Trai-
ningszeit ermöglichen.

Unter den größten Herausforderungen für die Anwendung von Reinforcement Lear-
ning in einem realen Fahrzeug sind Trajektorienfolgeregelung und unvollständige
Zustandsinformationen aufgrund von nur teilweise beobachteter Dynamik. Darüber
hinaus muss ein Algorithmus, der in realen Systemen angewandt wird, innerhalb
von Minuten zu einem Ergebnis kommen. Außerdem kann das Regelziel sich wäh-
rend der Laufzeit beliebig ändern, was eine zusätzliche Schwierigkeit für Reinforce-
ment Learning Methoden darstellt.

Diese Arbeit stellt zwei Algorithmen vor, die wenig Rechenleistung benötigen und
diese Hürden überwinden. Einerseits wird ein modellfreier Reinforcement Learning
Ansatz vorgeschlagen, der auf der Actor-Critic-Architektur basiert und eine spezielle
Struktur in der Zustandsaktionswertfunktion verwendet, um mit teilweise beobach-
teten Systemen eingesetzt werden zu können. Um eine Vorsteuerung zu lernen, wird
ein Regler vorgeschlagen, der sich auf eine Projektion und Trainingsdatenmanipula-
tion stützt.

Andererseits wird ein modellbasierter Algorithmus vorgeschlagen, der auf Policy
Search basiert. Diesem wird eine automatisierte Entwurfsmethode für eine inversi-
onsbasierte Vorsteuerung zur Seite gestellt.

Die vorgeschlagenen Algorithmen werden in einer Reihe von Szenarien verglichen,
in denen sie online, d.h. während der Fahrt und bei geschlossenem Regelkreis, in
einem realen Fahrzeug lernen. Obwohl die Algorithmen etwas unterschiedlich auf
verschiedene Randbedingungen reagieren, lernen beide robust und zügig und sind
in der Lage, sich an verschiedene Betriebspunkte, wie zum Beispiel Geschwindigkei-
ten und Gänge, anzupassen, auch wenn Störungen während des Trainings einwir-
ken. Nach bestem Wissen des Autors ist dies die erste erfolgreiche Anwendung eines
Reinforcement Learning Algorithmus, der online in einem realen Fahrzeug lernt.
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1 Introduction

1.1 Motivation

Do you still remember your first driving lesson? Back then, even basic tasks like
keeping a constant speed seemed complicated. Around 2016, experts predicted
that adolescents would soon be spared even from these challenges. They expected
driver’s licences to become obsolete within a few years since autonomous vehicles
on public roads would become mainstream. While this excitement has cooled off
considerably [135] and fully autonomous driving has entered the "trough of dis-
illusionment" [45], advanced driver assistance systems are steadily entering mass
markets. On the one hand this is due to regulatory demands [163], on the other
hand many new car buyers choose these systems as an option, especially in rapidly
growing markets such as China [116]. Forecasts assume that 85% of cars built in 2025
will be equipped with advanced driver assistance systems [134]. This trend aims not
only to increase driving comfort, but also to enhance safety [37].

In the long run, these developments aim at gradually making human supervision
superfluous [3], even though this goal is still more than a decade away according to
experts [135].

Advanced driver assistance systems – be it a simple one like advanced cruise control
or more advanced ones – generally consist of a chain of effects that covers [160, Fig.
7.1]:

1. Sensing, i.e. measuring states of the environment. This for example involves
taking Lidar (light detection and ranging) or GPS measurements,

2. Perception, i.e. fusing sensor data into a unified environment model, e.g. a
local map of lanes and other vehicles,

3. Decision Making/Planning, e.g. assessing the situation, planning a path,

4. Actuation/Control, e.g. ensuring that the car follows the curvature of a planned
path or accelerates to a desired speed.

These components become increasingly complex the more advanced a driver assis-
tance system becomes. While early assistance systems limited themselves to speed
control in free-flowing traffic, expanding the state of the art today requires opera-
tion in dense, multi-modal traffic and possibly less structured environments [163, p.
1576] without relying on a driver for supervision [44]. This requires highly accurate
sensing, perception, planning and control, which stifled the optimism soon after car
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makers embarked on development efforts toward fully autonomous vehicles. In fact,
experts assume that 45% of automotive software development cost will be spent on
efforts towards this goal by 2030 [3]. However, recent studies concluded that cus-
tomers are not willing to pay high premiums for assistance systems [116, 117], an
effect that has been aggravated by the COVID-19 pandemic suffocating the world
economy from 2020 on [116].

For cost-effective software development, modularity and code re-use are key. While
this works for some of the more abstract components such as planning, these meth-
ods are not applicable to control. Control design entails devising a controller struc-
ture, which can generally be transfered between systems or vehicle models, and also
tuning the controller. The tuned parameters are usually specific to a system, and
must therefore be adapted if a new vehicle model is designed, a vehicle configura-
tion added and sometimes even during development if low-level controllers change
their dynamics or vehicle parameters change.

The parameters are usually optimized manually to maximize a (subjective) rating
scale [64, 65, 33, 75] combining a perception of accuracy, comfort and safety. Optimiz-
ing parameters in test vehicles manually is a time-consuming (and boring) process
for engineers, which, if avoided, could help reduce development cost for modern
driver assistance systems.

Controllers that tune their parameters according to the environment are known as
adaptive controllers, see [88] for an overview. In this context, we are looking for
adaptive control that optimizes a performance criterion, a task that has been re-
searched in the name of reinforcement learning (RL). RL is a technique that learns
optimal controllers through trial and error. Despite impressive displays of its poten-
tial in simulated tasks, it has not yet been widely applied to real systems, since it
is known to not be sample efficient, struggles with partially observed noisy systems
and is typically computationally heavy [79, 32].

This work adresses a part of this problem by enabling RL for speed tracking control.
For this, it extends the capabilities of RL to enable online learning in a real vehicle,
i.e. the gain is adjusted while the controller is following a varying speed using RL.
Algorithms following two different paradigms in RL are presented: model based
(MB) and model free (MF), that contrary to previous algorithms run online on limited
hardware, are robust towards disturbances and delays in the real vehicle and are able
to track arbitrarily time-varying setpoints. In addition to the feedback controller, two
methods to incorporate a feedforward controller1 are presented. In experiments on
a real vehicle these RL algorithms are the first to ever successfully, automatically
and repeatably tune controllers on a real vehicle within a few minutes, proving the
fitness of the proposed solutions for day-to-day engineering practice. The results

1 In combination, feedback and feedforward controller are known as 2-degree-of-freedom controller,
as feedforwards dynamics can be designed independently of feedback dynamics, i.e. responses to
setpoint changes and disturbances can be influenced separately.
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show that learning is robust and simultaneously adapts to changing conditions such
as different speeds or disturbance levels.

The rest of this chapter introduces the problem of speed tracking control in more
detail, placing it in the context of other works and stating our contribution, see
Fig. 1.1 for an overview. Chapter 2 introduces groundwork and notation for parame-
ter optimization and RL for continuous control, upon which we build our proposed
algorithms in chapter 3. Experimental validation in a range of experiments in a real
car is given in chapter 4 and discussed in Chapter 5.

1.2 Problem Description

In this section we introduce the technical environment of our controller, define the
learning objective, the desired controller structure and introduce the constraints of
our problem.

1.2.1 Plant

Traditionally, control for road vehicles is divided into longitudinal and lateral control
[160, p. 44]. In this work, we focus on the former. This section provides the context
to the controller to be designed by giving an overview of the plant structure and
controller interface, see Fig. 1.2 for a schematic overview. Additionally, a simplified
model of the plant dynamics is derived that is later used to give an intuition of the
effect of hyperparameters, i.e. parameters that influence the learning behavior and
result, and illustrate some of the algorithm design choices.

This work designs a speed tracking controller that aims to follow a target speed
ŷ based on measurements of the current speed y by demanding an acceleration u
from a low-level controller. Trajectory planning is outside the scope of this work, see
e.g. [123, 53] for state of the art approaches2. We assume a trajectory that can be
previewed over a limited horizon but is otherwise arbitrary. The low-level controller
tries to achieve steady-state accuracy of acceleration and thus compensate for steady-
state resistances like road grade or aerodynamic drag using an integrator. It allocates
controls to the actuator subsystems in longitudinal dynamics, i.e. the braking sys-
tem and powertrain and makes use of drag torque of the engine. Commands to the
powertrain are filtered depending on vehicle speed to prevent excessive wear on the
variable valve timing assembly while allowing precise parking maneuvers. The two
actuator systems differ in their lag time and dynamic response: the brake system
reacts more promptly to torque demands than the powertrain. Both are affected

2 We limit ourselves to speed tracking control to limit the complexity of the learning problem, albeit
traditional control approaches often also include position, acceleration, and sometimes even additional
derivatives of acceleration in their planning and control.
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Problem Definition

Plant Controller Definition
of Optimality

Constraints

Learning Controllers for Longitudinal Control in the Literature

Classic Designs Model-Free RL Model-Based RL

Summary

Σ
Figure 1.1: Overview of the remaining introduction chapter: first, Section 1.2 provides a more detailed

description of the problem. It begins with an introduction of the plant, i.e. longitudinal vehicle
dynamics with its respective interface. The controller structure closing the loop with the plant
is presented next. It includes the parameters that we set out to automatically learn in this work.
Here, learning entails optimizing the controller parameter set, therefore this work covers the
definition of optimality in the following part. The problem definition section is completed
by constraints on the learning and controlling task this work strives to solve. With the task
defined potential approaches are surveyed in Section 1.3. The section starts with classic (non-
learning) controller design methods. Next, it glances over model-free RL methods, which will
be discussed in more depth later, and gives an intuition on the relation to model-based RL.
Finally, the introductory chapter concludes with a summary and sketches the research gap this
work aims to close. At the end of Chapter 2 the description of the research gap is revisited
once necessary concepts and notation are introduced.
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Learning
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Control

Braking
System

Powertrain

Resistances,
Inertia

+
∫
dt

Speed
Measurement

𝑦

𝑦
𝑢 Vehicle Dynamics

Figure 1.2: Overview of the plant structure. The goal of this work is to design the learning controller
(marked in green) that is fed a measurement of the speed y and a target speed ŷ, possibly
with a preview. It outputs a commanded acceleration u that serves as an input to the low-level
controller. The low-level controller tries to provide steady-state accuracy on acceleration level
and allocates controls to the actuators. Longitudinal dynamics consists of resistances, inertia,
hydraulic braking system, a powertrain containing a combustion engine, a hydraulic torque
converter with lock-up clutch and an automatic transmission. Resistances include internal
resistances, rolling resistance, aerodynamic drag and road grade. The sum of these elements
forms the acceleration that is then integrated to vehicle speed. Speed is measured by wheel
speed sensors and an evaluation logic.
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by communication delays and are controlled in a purely feedforward fashion. Dis-
turbances like road grade and driving resistances, consisting of aerodynamic drag,
rolling resistance and internal resistances as well as inertia affect vehicle acceleration
additionally. Vehicle acceleration is integrated to vehicle speed, that is measured us-
ing wheel speed sensors and an evaluation logic: Wheel speed sensors are sensors
that measure rotation increments of a wheel and are inherently discretized (see e.g.
[163, p. 288]). An evaluation logic detects slipping wheels and chooses the most ap-
propriate evaluation method for the operation conditions and returns a quantized,
slightly delayed speed signal.

While this work does not assume a valid model of the plant exists, most building
blocks would require a complex model with unobserved internal states and possibly
unknown parameters:

1. The low-level controller would be available, but its internal states (e.g. integra-
tors, estimators) are not fed back to the controller to be developed. In addition
it has situational and nonlinear behavior.

2. The dynamics of the braking system depend on disk temperature, wear and
surface deposits (e.g. rust, water) – and of course traction and the respective
control systems, e.g. anti-lock. None of these factors is measured directly, and
no feedback is given to the learning controller.

3. The powertrain in itself is highly complex, its internal states like manifold pres-
sure, temperatures, engine speed or gear are not available to the learning con-
troller.

4. While some resistances are canceled out in the steady state, short disturbances
resulting from bumps, short ramps, wind gusts or tight cornering affect lon-
gitudinal dynamics. Inertia may change as an effect of vehicle load or gear
change. These effects are not directly reported to the controller.

The problem at hand therefore features a combination of unknown states and pa-
rameters for a complex dynamic system, which prevents the use of model-based
observers. Learning controllers as investigated in this work could circumvent this
issue.

Since the real plant poses challenges beyond a simulated environment, we will not
limit ourselves to learning in simulation. Nontheless, we provide a simplified linear
model in the box below, which we will use to illustrate some characteristics of the
proposed algorithms.
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Linear Model for Plant Dynamics

The following presents a simplified model that disregards nonlinear effects,
e.g. due to torque magnification at low speeds or asymmetry between brak-
ing system and powertrain. It serves as an example for development of the
proposed approaches.
For this, the low-level controller is assumed to be ideal and able to compensate
resistances. The remaining longitudinal dynamics consisting of actuator dy-
namics and inertia are modeled using an ideally dampened system of second
order with time constant Tacc = 0.1. A similar structure is chosen in [2, 123].
The acceleration is integrated to vehicle speed, leading to a (continuous-time)
third order system

˙̆x =

0 1 0
0 0 1
0 − 1

T2
acc

− 2
Tacc

 x̆ +

 0
0
1

T2
acc

 u (1.1)

with delay
x(T) = x̆(T − 80 ms). (1.2)

T is the continuous time coordinate. The system is discretizeda to a step size
∆t = 20 ms. The measurement of speed is corrupted by noise ξ from a normal
distribution with standard deviationb νy = 0.01. This yields a discrete-time
system of order 7. With index t as the discrete time step we write

xt+1 = A xt + B ut,

yt = C xt + ξy with

A =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0.02 0.0002
0 0 0 0 0 0.9825 0.0164
0 0 0 0 0 −1.6375 0.6550


, B =



0
0
0
0

0.0001
0.0175
1.6375


,

C =
[
1 0 0 0 0 0 0

]
.

(1.3)

In the examples given in the course of this thesis the matrices A, B and C are
considered unknown in size and value. This model is used for experimental
pre-studies in Chapter 3 and in Appendix A.3.

a The discrete time state x has a different order than its continuous time counterpart for ease
of notation.

b The influence of the noise amplitude is investigated in Appendix A.3.5.
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The next section closes the loop between commanded acceleration and measured
speed by introducing the controller.

1.2.2 Controller Structure

This work aims to automatically adapt the parameters of an existing output feedback
controller3, that is introduced in this section. Its foundations were laid by Adiprasito
[2, Sec. 4.3] and significantly reworked by Rathgeber [123, Sec. 5.3.2]4. The con-
troller concept comprises elaborate feedforward and measures to counter stationary
disturbances as well as position control in both longitudinal and lateral direction.
In this work, we make use of the existing low-level controller to counter stationary
acceleration disturbances, but otherwise limit our scope to speed control.

The controller to be learned is divided in feedforward and feedback5:

ut = uff,t + ufb,t. (1.4)

To account for interpretability, both are chosen to be structures with tunable param-
eters that are well known in classic control theory. This work presents two options
for the structure of the learning feedforward:

• an automated inversion-based feedforward design, represented in the form of
a discrete-time linear system (see Section 3.2),

• or a learning optimal feedforward controller in the form of a finite impulse
response filter for coefficients of the trajectory (see Section 3.1.2).

The feedback controller is designed as an output feedback controller as in [2]:

ufb,t = θc(ŷt − yt), (1.5)

with (to-be-learned) controller gain θc. We assume that plant is stabilizable (see
e.g. [85]) using output control. The optimal output feedback controller depends
on the initial state (distribution) of the plant [90]. This is shown using the example
system (1.3) in the appendix A.5.

Next, we turn our attention to the goal we want to achieve by tuning the parameter
θc.

3 This choice enables us to compare the learned result with an expert’s tuning in Chapter 4. Future work
may entail searching for more advanced learning structures that e.g. integrate more of the low-level
controllers.

4 In production vehicles, the controller schedules different gains according to vehicle speed.
5 During learning, we add exploration noise as a third component.
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1.2.3 Definition of Optimality

In this section the optimization criterion for the learning controller is introduced.
After a brief overview of the key optimization aspects, the criterion is presented in
an RL compatible form alongside with configuration possibilities.

The presented criterion applies specifically to the feedback part of the controller. The
feedforward part of the controller does not have to be optimal, since optimization has
already been accounted for in the planning of the trajectory. The sole criterion for the
feedforward component is therefore accuracy. The following applies to the feedback
component.

Most important to tracking a planned trajectory is accuracy, but this needs to be bal-
anced with comfort in most scenarios6. Traditionally, this parameter tuning goal is
encoded in a subjective rating scale. It aims to capture an experienced passenger’s
perception of comfort and safety [64, 33, 65, 75]. These two aspects are linked ac-
cording to [38]. Controllers for driver assistance systems are therefore tuned to be
frugal in their outputs, since brisk actions are not only perceived as uncomfortable
but may seem erratic and suggest lacking safety of the system. Commonly, the mag-
nitude of acceleration is deemed to have predominant influence on ride comfort in
the literature, i.e. to maximize comfort, acceleration should stay close to 0 [14, p. 87].
The controller therefore needs to balance accuracy with acceleration magnitude.

For the feedback controller, the problem can be described along the lines of classic
(discrete-time) optimal control. The goal is to maximize a discounted infinite sum of
rewards

Ey,ŷ (Vρ(y, ŷ)) = Ey,ŷ

(
E

(
∞

∑
i=t

γi−tR(yi, ŷi, ρ(ŷi, yi))

∣∣∣∣y0 = y, ŷ0 = ŷ

))
(1.6)

with discount factor 0 ≤ γ ≤ 1 and ρ denoting the control law to be learned. The
operator E(·) is the expectation operator, the vertical bar imposes conditions on the
expression the expectation is drawn from. V is the state value, which is formed
by the sum of rewards incurred by following the policy/control law ρ from state y
and target ŷ onward, see Section 2.2.1 for a more detailed introduction. The reward
function is

R(yt, ŷt, ut) = −Cy(ŷt − yt)
2 − Cuu2

t . (1.7)

Cy and Cu are positive coefficients, the first weighs deviation from the control tar-
get, i.e. it accounts for tracking accuracy. The second punishes the magnitude of
commanded acceleration. In the following, an aggressive controller is intended as a
controller that counters control errors fiercely through its output and thus accounting
less for any penalty on its output.

The optimization target can therefore be configured in the following way:
6 In most cases, it is the goal to keep passengers content, but for safety critical cases this principle must

be abandoned, e.g. avoiding a suddenly appearing obstacle.
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• The parameters Cy and Cu can be used to balance between tracking accuracy
and comfort. 7.

• The discount factor γ makes the algorithm value events in the near future over
those in the more distant future. The cost should be discounted as little as
possible8, i. e. γ should be close to 1, since from a passenger perspective the
time of occurence of an unpleasant event does not matter.

Alternative Reward Function Including Jerk

Commonly, the magnitude of acceleration is seen as the predominant contrib-
utor to the passenger’s perceived comfort. In some works, however, jerk, i.e.
the derivative of the acceleration, is suggested as an additional influence [14,
38]. While this work mostly relies on the reward function (1.7), an alternative
reward function including a measure of jerk is

RJ(yt, ŷt, ut, ut−1) = −Cy(ŷt − yt)
2 − Cuu2

t − C∆u(ut − ut−1)
2. (1.8)

It includes an additional term accounting for the commanded jerk weighted
by positive coefficient C∆u. Chapter 4 shows that the proposed approaches
are capable of learning with this reward formulation.

The state value (1.6) shall be maximized over the states that are encountered while
running the policy ρ with parameter θc:

θc = argmaxθc
Eŷ,y (Vπ(ŷ, y)) . (1.9)

However, the to-be-designed learning process must work with several limitations,
that are introduced in the next section.

1.2.4 Constraints

The approach to be designed needs to comply with several constraints to be applica-
ble in engineering practice:

1. Learning Time: The learning process must complete within minutes, otherwise
it does not bring any benefit to manual tuning and incurs high cost for vehicle
operation and supervision.

7 Extreme choices, e.g. Cy >> Cu can harm learning performance, see Appendix A.3.1.
8 A discounted reward may not always define a sensible design objective, but has beneficial influence

on value estimation and learning, see appendix A.3.1.
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2. Online Learning: The algorithm must be capable of learning online, i.e. while
the car is under control of the learning algorithm, to ensure that the learned
controller does not provoke a system response outside recorded or simulated
data. This additionally allows the supervising engineer to assess the controller
performance during the learning process.

3. Limited Knowledge: No accurate model of the plant is available, requiring the
learning algorithm to learn from experience.

4. Limited Hardware: Since network connection is not always available during
test drives, learning needs to be done using onboard hardware, i.e. with limited
computational power. A dSpace Autobox [30] containing a dSpace DS1007 PPC
Processor Board [29] is employed that hosts additional tasks not related to this
work. See Chapter 4 for more details.

5. Limited Measurements: Apart from the speed measurement signal y no infor-
mation on the longitudinal dynamics state is provided.

6. Limited Target Preview: The control target ŷ is known only over a finite hori-
zon and it cannot be accurately predicted, since it may change arbitrarily.

With our task sketched out and the given constraints in mind, we take a look at what
the state of the art has to offer in this context.

1.3 Learning Controllers for Longitudinal Control in
the Literature

Before describing the research gap in the next section this work is put in the context
of related literature. We begin with classic design methods for longitudinal control
that generally rely on a known model. Then we turn our attention to RL, a method
for learning optimal controllers from experience. First, MF approaches are surveyed,
then methods that learn a model and use it to update the controller.

1.3.1 Classic Designs for Longitudinal Control

Controllers that rely on a known model are the state of the art in production ready
vehicles. A variety of competing approaches exist:

• PID Controllers [10] are popular throughout many applications in control the-
ory because of their intuitive, yet powerful design. The output consists of a
sum of three terms: One is proportional (P) to the current control deviation,
one integrates (I) past control deviations, and another one tries to predict future
control deviations through the use of derivatives (D) of the control deviation.
By tuning the gain for each of these, their influence can be adjusted up to a
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point of deactivating parts of it, creating e.g. a PD controller by deactivating
the integrating compontent. This design has been adopted by [2, 23, 58, 122,
100, 132, 156]. A fractional order controller is obtained if not only the con-
trol deviation itself is integrated but also non-integer powers of it. This can
help overcome shortcomings like overshoot or resonance with traditional PI(D)
control and is therefore adopted by [66, 149].

• State regulators feed back multiple/all states of the plant. For vehicle appli-
cations controllers like this often vary their gains depending on the operating
point [109].

• A different method to design a controller is to iteratively add control loops,
treating the previously designed as part of the system. This design method
called cascaded control is popular since longitudinal control involves accelera-
tion, speed and distance traveled and therefore lends itself to such an approach.
It has been applied by [98, 123].

• Decoupling or linearizing controllers try to impose independent or desired
dynamics on specific states. Examples in longitudinal control are provided by
[97, 99].

• Fuzzy Control is an approach that encodes semantic information for a control
application. It tries to form a control law from intuitive verbalized knowledge
(e.g. ’brake when you get too close’) by blending multiple mappings from
certain state measurements (’less than 4 m is too close’) to actions (’braking
means decelerating with 3 m s−2’). Examples for longitudinal control can be
found in [28, 47, 100, 34]. The goal of a fuzzy design process is often to get
near a desired way to operate a system but not necessarily an optimal way.

• Neural Networks (see 2.1.2) have been used to encode complex nonlinear con-
trol laws [47, 34] at the cost of interpretability. Training methods often replicate
expert knowledge and rely on a simulated system.

• Sliding Mode control drives a system to a resting position along a pre-specified
trajectory by switching between two or more control regimes that are divided
by this trajectory. It is considered to be effective even when faced with uncer-
tainties of the plant and has been applied by [34, 36, 62].

• Model Predictive Control is a method to optimally control a system based
on dynamic programming. Starting at the current system state, a series of
controller inputs is found that optimizes a predefined criterion over a time
horizon in the simulation. Only the first control step is applied to the system,
then a new planning loop begins. This approach is followed in [150, 34].

• Robust Control design methods assume a model and a measure of the insecu-
rity of the model, often given as an interval. Robust control design compares
controllers using the respective worst case of parameters within the uncertainty
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margins of the plant and picks the controller that optimizes a given perfor-
mance metric. H-∞ control is an example of such a metric that is used in [34].
If insecurities are large, the controller returned may be overly cautious and
therefore exhibit low performance.

Given that traditional vehicle control is a mature field of research, this list likely does
not do justice to this field of research. For this problem definition, these approaches
are not applicable, since no accurate model of the plant is available.

Adaptive controllers [86, 88] provide an alternative to approach uncertainties in sys-
tem models9. In contrast to robust control the control law adapts to changing system
characteristics at runtime, e.g. to account for parameter variation. This may help
achieve superior performance. An important distinction within adaptive control is
the design (or performance) goal: some approaches define a target behavior, e.g.
using a reference model [96], while other approaches optimize a cost/reward func-
tional. The latter class is commonly referred to as RL10. For the application targeted
by this work an optimal behavior reference cannot be given a priori, since the idea
is to maximize passenger comfort and controller precision. The goal is therefore for-
mulated as a to-be-optimized functional, making RL methods the algorithm group
of choice.

We now turn our attention to MF RL control design methods.

1.3.2 Model-Free RL

Among adaptive controllers, the discipline of RL covers approaches that strive to
learn optimal controllers by trial and error.

As the name suggests, MF RL methods estimate a measure of their performance
directly from returns calculated from experience gained by interacting with the plant.
Based on this estimate, they improve their control policy. We give a brief overview
of applications that made this class of methods popular, then we turn our attention
to methods in control theory and applications to real-world systems. Finally, a few
examples of applications in the automotive context will be given.

MF RL was recently used for impressive displays of potential. Among the most
influential was AlphaZero [139], who clearly beat the earlier, but world-famous11 RL
algorithm AlphaGo [138] in the game of Go. A later iteration [137] was extended to
support other games like chess. In [20] an artificial player managed to consistently

9 Note that the ’adaptive’ in adaptive control has a more general meaning than in adaptive cruise
control: while the control law is adapted in the former, the latter switches the control target depending
on the traffic situation.

10 A popular index term in control literature is approximate dynamic programming, which adresses a
subgroup of RL approaches.

11 AlphaGo was the first algorithm to clearly defeat a human professional player.
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win against a round of professional Texas Hold’em Poker players. In the wake of
this success RL was applied to more complex video games like Quake III [71], Dota
2 [108] and StarCraft II [155], often at levels that compete with or exceed top-level
human players. Beyond games, MF RL has been applied to recommendation systems
at Facebook [46] and the Chinese bing News platform [169].

Due to its relation to control theory, applications as controllers have been proposed
early on: In [19] the authors apply MF RL to a linear quadratic regulator problem in
1993, later on [6] compared RL to a PI controller for a simulated heating coil. Several
benchmark problems have been proposed since [59].

Most of the applications for RL are in simulated or virtual domains. Applications in
real-world tasks are considered hard for RL [79, 32] due to factors like sample effi-
ciency, training time, delays, partially observed states, noise and others. Nonetheless,
there are a few notable examples of successful RL applications with physical systems.
Robotic grasping has been addressed in [9, 74, 51]. Four-legged robots have learned
to walk using MF RL in [54, 56]. To the author’s knowledge, no approach that learns
to control longitudinal dynamics of a real vehicle online has been presented. Lon-
gitudinal dynamics differs from hand-like manipulators and walking robots by its
comparably slow and asymmetric behavior and its integrator properties along with
very limited measurements and computational resources.

Applications in the vehicle domain are based on simulation or on recorded data, but
occurred early on: In [42] the authors propose an algorithm to adapt parameters for
active roll stabilization and [67] introduces a method for tuning a PID controller for
idling the engine using RL. A method for learning steering control from prerecorded
data has been proposed in [124]. After that, several applications of RL to vehicle
control have been presented, see [87] for a survey. All of the presented methods for
longitudinal dynamics control learn in simulation or on recorded data. An impres-
sive example is given by [40], where a policy combining planning and control is used
for navigating a parking lot after being trained in simulation over several hours.

1.3.3 Model-Based RL

MB RL at least partly replaces data from the plant of interest with a (learned) model
thereof. Potential benefits over MF RL can be sample efficiency or added safety. The
risk is that the learned model does not capture the system dynamics well and the
learned control policy may fail to achieve the goal.

MB RL has been pioneered by the Dyna architecture [144] and has since risen to
milestone examples like Google’s datacenter cooling application [89]. Very generic
algorithms like Dreamer [57] have proven that MB algorithms can bring benefits even
in partially observed, high-dimensional and very diverse environments.
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By learning a model and estimating its accuracy, ideas from robust control can be
incorporated to guarantee safety, which is especially beneficial when working with
real systems, e.g. as demonstrated using a quadrotor [15] or an inverted pendulum
[16]. In [27] the MB approach was used for fast learning of a control law for a unicycle
and cart-pole.

The survey [115] names several applications of MB RL to unmanned aerial, under-
water and ground vehicles, mostly focused on navigation. Applications of MB RL
to problems in vehicle control are rare. The authors of [165] propose a method to
tune a PID speed controller using evolutionary parameter search for the controller
in a simulated task. In [24], a policy search algorithm aided by simulated models of
different complexity learns to drift a radio-controlled model car.

1.4 Summary and Research Gap

This section briefly summarizes the problem statement and condensates it in the
form of three research questions that point at the contribution of this work.

Automated tuning of vehicle speed tracking controllers could save automotive con-
trol engineers time and effort. This work bases the controller on a given design to
ensure interpretability of the gains and aim to tune it in accordance with an optimal
control performance criterion balancing ride comfort and tracking accuracy over a
long horizon. The task is challenging due to multiple aspects: the plant is nonlinear
and its state only partially observed. The control target is known only over a limited
horizon and can develop arbitrarily. Beyond that, practical application brings several
limitations with it, such as limited computation power, time constraints, noise and
stochasticity.

While learning algorithms have given impressive displays of their potential, speed
tracking control for a real vehicle has not yet been solved, likely due to the asymmet-
ric and comparably slow, partially observed dynamics as well as arbitrarily evolving
control target. On the other hand, traditional algorithms require a model for their
design, which requires additional effort to validate and will have limited accuracy.
This work therefore sets out to make use of the potential of RL algorithms for speed
tracking control in real road vehicles.

To solve the challenge, the capabilities of RL need to be extended. This task is divided
in three main questions:

1. How can optimal speed tracking controllers be learned? For this, the capabili-
ties of RL have to be expanded to tracking control and online learning in a real
vehicle.

2. How do MB and MF methods compare in this task?
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3. How can a feedforward be learned in an RL framework?

First and foremost this work strives to successfully enable RL for tracking control and
online learning in a real vehicle, answering question 1. For this, it needs to enable
RL for tracking control and online learning in a real vehicle. Two RL algorithms, one
MF and one MB are proposed to address this question.

The MF algorithm is based on the actor-critic architecture with two modifications:
first, this work presents a reconstructing structure for the state-action value func-
tion along with the required state augmentation pattern (see Section 3.1.1). Then
a method to modify experienced state transitions for training is presented that re-
stores the Markov property for training with arbitrarily varying control targets (see
Section 3.1.2).

The proposed MB algorithm (see Section 3.2) is based on model learning and pol-
icy search. A decaying maximum norm is employed to dampen variance during
training.

Experiments show that both algorithms are capable of learning on constrained hard-
ware under different conditions in Chapter 4.

Both MF and MB methods contain sources for potential bias and variance that can
yield suboptimal results or amount to failure of the learning task in the worst case.
The question of sample efficiency is important when operating a real-world system
where experiment duration is an important factor. This work therefore compares the
two approaches to answer question 2. The experiments show that both learn fairly
quickly and succeed in most use cases, while the MB algorithm exhibits slightly
higher robustness towards the choice of exploration signal. This qualifies especially
the MB learning method for day-to-day engineering practice.

In order to achieve state of the art controller performance at following a trajectory,
feedforward control is necessary. Two different ways are proposed to respond to
question 3: one approach extends the proposed training data manipulation to a
framework that enables following arbitrary trajectories with a learned MF algorithm
in Section 3.1.2. As a comparison method a non-optimal inversion-based design for
the MB approach is proposed in Section 3.2.2. An experimental comparison shows
that the optimal design yields a slightly softer controller (see Chapter 4).

The next chapter introduces important concepts in the state of the art that lay the
groundwork for our proposed MB and MF algorithms. After introducing important
notation and concepts, it specifically describes how the challenges at hand affect
RL algorithms. At the end of the chapter these challenges are therefore revisited to
accurately describe the research gap in a technical way, which is the starting point for
the subsequent Chapter 3, in which the proposed enhancements on MB and MB RL
algorithms are laid out. These algorithms are then put to test in Chapter 4 in a series
of experiments in real vehicles. Chapter 5 rounds this work off with a conclusion.
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This chapter covers the essential concepts and notation upon which this work builds
its contribution in the next chapter. It begins with parameter fitting and optimiza-
tion. These are used for adapting function approximators in RL, which is introduced
afterwards: First, function approximation is applied to learn the state-action value
function using temporal difference learning. Then policy search methods are ex-
plained and how they can make use of state-action value functions using the (deter-
ministic) policy gradient. It is shown how learning a model can be incorporated in
RL, e.g. to enhance the data efficiency. Since RL relies on trial and error, the concept
of exploration is introduced. This chapter ends with a summary of the challenges
that are still open beyond the state of the art for the envisioned task in speed tracking
control.

2.1 Parameter Estimation

RL relies on fitting parameters of an approximator for the control policy, value func-
tions or models. An important part is therefore parameter optimization. In this
section we briefly introduce a general optimization problem, a few hints for popu-
lar optimizers12 are given in the appendix. The section ends with a generalization
of a function approximator with parameters, which is a form of an artificial neural
network. The following section is based on [48, Sections 4.3 and 8.5] except where
stated otherwise.

2.1.1 Parameter Optimization Problem

Here we have a brief look at an optimization problem with the respective parameter
vectors and the loss function. We point out some aspects that are special to the
problems encountered in this work such as stochasticity.

Optimization strives to find the value of a parameter that drives an expression to an
extreme value. Within this work we consider only a subset of optimization problems
that are constituted by the expression L called loss function or target function and a

12 In this work we use the term optimizer as a synonym to optimization algorithm.
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continuous parameter vector θ with no additional constraints. The goal is to find the
parameter vector θ∗ that minimizes the value of L:

θ∗ = arg min
θ

L(θ, {X}). (2.1)

This task is considered a supervised learning problem in artificial intelligence. The
operator {·} marks a set of elements of the same kind, e.g. state vectors. The loss
function L may have other inputs {X} in addition to the parameter vector θ and is
typically intended to approximate a (large or infinite) sum over a per-element loss
function l. An example problem could be the estimation of model parameters θ for
a dynamic model with continuous state vector included in X such that it reproduces
the behavior of a real system. The loss function could in this case be intended as the
squared approximation error l of the model output to the system output averaged
over the entire state space. Since computing such a value exactly is not feasible, ei-
ther because it is mathematically not tractable, empirically infeasible or prohibitive
performance-wise, this performance metric is approximated using a randomly sam-
pled finite set of datapoints {X}b. This finite set of samples is often referred to as
minibatch and is sampled out of an available batch of data, that is generally finite as
well. The number of samples per minibatch is called batchsize b. In the context of
this work, loss functions have the form

L(θ, {X}b) =
1
b

b

∑
i=1

l(θ, {X}(i)), (2.2)

where {X}(i) denotes the i-th element of the batch {X}. This approximation comes
at the cost of stochasticity, i.e. each call to the loss function yields a slightly differ-
ent result due to randomized sampling of the minibatch. Solution algorithms for
stochastic optimization therefore need to be tolerant towards this additional chal-
lenge. Some optimization problems even involve a non-stationary loss function. In
this case the optimization goal changes over time.

Optimization problems are generally solved by an iterative optimization algorithm,
e.g. by taking steps in the opposite direction of the gradient ∇L = dL/dθ, possibly
making use of the jacobian JL = 1/b[ dl(θ,{X}(1))/dθ ··· dl(θ,{X}(b))/dθ ]⊤. If these are not
available, in some cases they can be numerically approximated by finite differences.
Fig. 2.1 is a schematic for an iterative solution of a supervised learning problem
consisting of a loss function and an optimizer.

In the following, we will omit the data {X} when referring to the loss function in
most occasions and only explicitly include it if necessary. Instead, we will use the
notation ·|, e.g. L|θt to express that the loss function L has been evaluated using
parameters θt.

Algorithms designed to solve these optimization problems are briefly presented in
Appendix A.1.
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Figure 2.1: Schematic of a supervised learning problem. At each time step t a loss function computes value
Lt, gradient ∇Lt and jacobian JL,t from a set of parameters θt and a minibatch of additional
inputs {X}t. The optimizer iteratively returns new estimates of the parameter vector θt+1 from
the loss function outputs and the former parameter vector θt.

2.1.2 Neural Network Concept

Artificial neural networks are a powerful yet flexible concept that is employed for
function approximation (regression) in the context of this work [128]. We introduce
the general concept, the backpropagation mechanism for calculating derivatives and
a few common types of layers, i.e. building blocks of a neural network.

Despite more complex network patterns exist in the literature, we limit ourselves
to the following structure: An artificial neural network N : XN 7→ YN consists of
one or more functions f : X f 7→ Yf , each with a set of parameters w which is often
called weights in the literature. m layers are daisy-chained to one another to form
the network N:

N (XN) = fm ( fm−1 (. . . ( f1 (XN)))) . (2.3)

Each layer may consist of subfunctions that divide the inputs to the layer among
each other, allowing arbitrary serial13 and parallel combinations. The advantage of
building complex functions as a chain of subfunctions is that they lend themselves
to tasks that require abstraction while their gradient can be computed by iteratively
applying the chain rule:

dN
dXN

=
d fm

dXm

∣∣∣∣
Xm= fm−1(Xm−1)

d fm−1

dXm−1

∣∣∣∣
Xm−1= fm−2(Xm−2)

. . .
d f1

dX1

∣∣∣∣
X1=XN

. (2.4)

Similarly, as any parameter in the function can be treated as an input, gradients
with respect to parameters dN

dθi
with i = 1, . . . , m can be formulated. The back-

propagation algorithm provides a computationally efficient way for calculating this
gradient. The workflow for training a neural network N, i.e. optimizing its pa-
rameters θ =

[
w1 . . . wm−1 wm

]
to make it approximate a desired mapping

N̂ : XN̂ 7→ YN̂ requires a loss function, e.g. L({X}b) = 1/b ∑b
i=1 l({X}(i)) with

13 In addition to feedforward networks in the literature there are networks that base their output on
their previous outputs, known as recurrent layers, e.g. [35], which are useful to describe processes
over time. This, however, comes at the cost of a more complicated training procedure [61]. A neural
network containing one or more recurrent layers is called recurrent neural network (RNN).
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l(XL) = 1/2
(

N̂(XL)− N(XL)
)2. Then, training consists of repeatedly sampling a

batch {X}b, computing the value and gradient (and possibly the jacobian) of the loss
function and performing an optimizer step until the loss value falls below a chosen
threshold, see Fig. 2.1 for a schematic.

The data used for training should cover the area that the function approximator
should be trained for and for stochastic optimization to work best, the samples used
for training are assumed to be representative of the underlying distribution. There-
fore, it is often assumed that the data fed to the training process is indepentently and
identically distributed [128].

Different kinds of layers exist, e.g. convolutional or normalizing layers. The most
popular kinds consists of a nonlinear activation function a : Za 7→ Ya that is applied
to a biased and weighted sum of its inputs:

Yf = a
(

w
[

X f
1

])
. (2.5)

Popular activation functions a include arc tangent, rectified linear units and even a
purely linear, i.e. "pass-through" variant in some cases. Depending on the number
of parameters and the computational complexity of the layer, training can become
resource intensive for large networks.

Neural networks are being used as a framework for estimation of models, value
functions and control policies, all of which can be parts of RL algorithms presented
in the following.

2.2 RL for Continuous Control

This section aims to explain the actor-critic architecture, which is a popular setup for
RL algorithms in continuous domains. Actor-critic combines an element estimating
how good it is to choose a specific action in a specific state (a state-action value func-
tion) with an element that chooses said action depending on the state (a policy).

The following section is structured as follows:

• It starts with the definition of the RL problem. We explain the important con-
cepts of state(-action) values.

• Then, we show how these state-action values can be learned using temporal
difference learning. We point out that state-action-values are sufficient to de-
sign a basic RL algorithm (Q-Learning).

• An explicit (additional) policy is advantageous in continuous domains. There-
fore, we explain how policy gradients can be used to improve a policy encoded
in a function approximator.
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• Many popular extensions to the actor-critic architecture have been presented.
Experience replay and target networks are shown, which help make the train-
ing process more robust and precise.

• Since RL is based on the trial-and-error principle, exploration is vital for the
learning success. We give an overview of ways to ensure exploration during
learning.

• At the end of the section we explain how a learning model can be ingrained to
the algorithm.

In the next section we round off with a summary of the deterministic actor-critic
algorithm for continuous control that serves as a basis for this work and highlight
the challenges we face when applying the algorithm to a real car. These challenges
are adressed with the proposed algorithms in Chapter 3.

2.2.1 The RL Problem and State(-Action)-Values

Here we define the RL problem, consisting of the plant, a reward function and the
RL agent, i.e. the learning controller. Special attention is paid to the aspects that set
the problem at hand apart from the classic RL problem. The goal is to maximize the
long term reward, which is defined through the accumulation of rewards to a state
value.

For this work, we assume a discrete equidistant time scale with step index t. Accord-
ing to [145, Section 3.1] the RL problem is divided in two parts (see Fig. 2.2):

• an environment, that accepts a control action ut and returns a state14 vector
st+1 along with an instantaneous reward rt+1 and

• the RL agent, i.e. an algorithm that strives to learn to map the state vector st to
an action ut from observed state-transition tuples15 of the form sk, uk, rk+1, sk+1
(and possibly uk+1).

The environment is modeled as a Markov decision process that performs two map-
pings: it maps the state vector st ∈ Rn and action16 ut ∈ R to the following state
st+1 according to an unknown dynamics G and to a reward rt+1 ∈ R according to
a reward function R [145, Section 3.1]. The environment therefore comprises the
plant, accounting for the dynamics and a reward function R used to compute the
reward signal r from s and u. The reward function encodes the task goal, e.g. bal-
ancing deviation from a trajectory with control effort. The Markov decision process

14 Since this section aims to introduce RL in general, we skip a detailed definition of the state vector s
for now. The definition used for this work is given in equation (3.2) and expanded to include a target
preview in (3.7).

15 The tuples to learn from may be observed at a time step k ̸= t, see Section 2.2.4.
16 The action space can have multiple dimensions, but we limit ourselves to scalar action spaces in this

work.
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Figure 2.2: Overview of the RL problem defintion. The plant (i.e. a transfer function G) is acted upon
by the action ut from the RL algorithm and returns a state vector st. The reward function R
computes the reward signal rt from action ut and state st. Together, plant and reward function
are considered a Markov decision problem with unknown dynamics, which is often referred
to as environment in the literature [145, Section 3.1]. In the literature, both components are
assumed to be unknown. This work considers the reward function to be known and will
therefore include it in the RL algorithm later. The RL algorithm that solves the RL problem
accepts a reward signal rt and the state vector st, from which it learns to optimally pick an
action ut.

is memory-less, i.e. the state vector s must be fully observed, but the process may be
stochastic [145, Section 3.1].

Within this work, this definition is altered slightly (also see Section 1.2 and Fig.
2.3):

• In real-world applications, the state vector may be only partially available (e.g.
due to delays or partial measurements). For clarity this work therefore differ-
entiates between the plant state x, the plant output y and the state vector s
that is provided to the RL algorithm. For the proposed approach s is defined
differently, but for now we assume s = x, the Markov assumption is fulfilled.

• Later on a control target is provided as part of the state vector s. It varies
according to a planned trajectory according to factors not available to the agent.
Therefore, it violates the Markov assumption.

• Additionally, since the reward function is often designed by the engineers de-
signing the controller, the reward function is assumed to be known. It is also
redefined later to not rely on the full state.

The goal for this work is to learn an optimal deterministic mapping ρθc : st 7→ ut
which is called policy or control law such that it maximizes rewards "in the long
run" [145, Section 3.3]. The policy ρθc is parameterized by a vector θc. In order to be
able to enhance the policy from experience, RL algorithms often resort to a random
component (exploration noise) added to their policy to explore a larger and more
diverse portion of the state-action space [145, Section 13.1]. The behavior policy π
used during training therefore may be stochastic despite the learned policy ρθc being
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Figure 2.3: Venn diagram for altered state definition: The plant state x, plant output y and the state vector
s presented to the RL algorithm have separate symbols within this work. In vast parts of the RL
literature, problems with the Markov property are treated that allow to treat these quantities as
equals: x = y = s. Within this section we introduce the basic algorithm with this assumption
in mind, but since we intend to apply the algorithm to a partially observed plant (x and y can
have different dimensions) later, we augment the plant output with additional data (y and s
can have different dimensions). These vectors will therefore be different.

deterministic.17 Throughout this work the behavior policy πθc is understood as the
result of adding a random component with expectation zero commonly referred to
as exploration noise to the learned/learning policy ρθc . See Section 2.2.5 for the kinds
of exploration noise used in this work.

The goal of learning an optimal policy can be formalized using the intermediate
notions trajectory τ, return U and state value V.

• A trajectory τ is a semi-infinite series of states s and control actions u starting
at time index t: τt = ⟨⟨st, ut⟩, ⟨st+1, ut+1⟩, ...⟩ [145, Section 3.1]. If the trajectory
results from applying actions that stem from policy πθc to the environment, we
mark it as τπ . For convenience, we define the operators s(τt, iτ) = st+iτ and
u(τt, iτ) = ut+iτ that accept a local index iτ as an offset to the trajectory index
and return the respective state and action.

• The return or utility Uπ(τ) = ∑∞
i=0 γiR(s(τπ , i), u(τπ , i)) of a trajectory is the

discounted reward accumulated along a trajectory following policy π [145, eq.
(3.11)]. Due to stochastic effects in the environment or policy two returns may
differ despite starting at the same state, i.e. Uπ(τk) ̸= Uπ(τm) may occur for
k ̸= m despite s(τk, 0) = s(τm, 0) [145, Section 3.3].

• The state value V̂π(s) is the expectation over the return Uπ for trajectories
starting from s and following policy π: V̂π(s) = E

(
Uπ(τπ

i )|s(τπ
i , 0) = s

)
[145,

eq. (3.12)]. In other words, the state value V̂π(s) is the expectation of the ac-
cumulated discounted rewards moving from a state s onwards when following

17 Learning is possible without a random component if the plant is sufficiently stochastic [136]. In that
case the behavior policy π can be equal to the learned policy ρθc .
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policy πθc . The Markov assumption ensures that a mapping from the state vec-
tor s to the expectation over the returns exists, i.e. the most accurate estimate
of the expected reward from following the policy can be formed using only the
state vector [145, Section 17.3].

The discount factor γ ∈ [0, 1] is part of the definition of the optimization goal, re-
ducing the impact of rewards in the distant future and resulting in a more impatient
behavior if chosen close to 0 or a far-sighted behavior if chosen close to 1. In our
application rewards are valued independently of when they are incurred, but it can
have beneficial impacts on learning if chosen to be lower than 1 (see Section 4.1).

The learning goal can be formulated as maximization of expected state value using
the policy parameter vector θc [145, eq. (3.13)]:

H = E
s~∫

(
V̂π(s)

)
(2.6)

θ∗c = arg max
θc

H (2.7)

The distribution we take the expectation over arises by applying the control law πθc

to the plant G, i.e. the expectation is taken over the distribution of experienced
states ∫ from applying the control law πθc that may differ18 to some extent from the
learned policy ρθc . The assumption that this distribution is stationary and exists is
equivalent to the assumption that the combination of MDP and controller is ergodic
or that the controller is stable within the experienced part of the state space19 [145,
Section 10.3].

The state-action value Q̂π(s, u) is a reformulation of the state value V̂π that is helpful
for deriving the controller optimization algorithm later. It is defined as the expecta-
tion of the accumulated discounted reward gained from taking (arbitrary) controller
action ut in state st and following policy πθc from the following state st+1 on [145,
Section 3.5]:

Q̂π(st, ut) = E (R(st, ut) + γUπ(τt+1)) . (2.8)

It can be shown that
V̂ρ(s) = Q̂ρ

θc
(s, ρ(s)) (2.9)

18 Since learning hinges on the presence of exploration noise, it has to be included in the optimization
goal. Usually, the actual goal is to optimize a deterministic policy ρθc . It is therefore necessary to find
a balance between proximity to ρθc and exploration in the behavior policy πθc .

19 In [145, Section 10.3], the authors admit only combinations of policies and plants that result in station-
ary distributions of states that are independent of the initial state. This cannot bijectively be mapped
to a stability definition in control theory, but concepts from control theory can be found that fit this
description. For example, neutrally stable [10, Section 5.3], time-invariant combinations of plant and
controller result in a temporally infinite, but repetitive trajectory in the state space. This guarantees
the state to be within a finite portion of the state space (independently of the starting point, as long
as it is within the set), thus assigning a finite and time-invariant probability density function to the
respective subspace. Conversely, an unstable combination of plant and controller does not allow to
confine the state to a finite area for an infinite amount of time, and thus prohibits the formulation of
a time-invariant probability density function.
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for deterministic policy ρθc or

V̂π(s) = E
πθc (s)

(
Q̂π(s, πθc(s))

)
(2.10)

for stochastic policy π. The difference of state-action value function Q̂π and state
value function V̂π is known as advantage function, as it encodes the difference in
value of actions compared to the policy’s choice depending on the state. In the next
subsection we introduce a popular method to learn the state-action value function
from experienced state transitions.

2.2.2 Temporal-Difference-Learning in Continuous State and
Action Spaces

This section presents a loss function for learning state values, which are used to
update the control law in the next section. We rely on [145] throughout this section.

In this section we try to train a function approximator to be an estimation of the state-
action value function, which will later help maximize the state value. As we intro-
duced in Section 2.1.2 training a function approximator Qρ(st, ut) requires target val-
ues, i.e. outputs Q̂ρ(st, ut) to given input tuples ⟨st, ut⟩. While these can be obtained
through straightforward Monte Carlo methods [145, Chapter 5], i.e. estimating state
values by averaging utility from experienced rewards, methods based on bootstrap-
ping [145, Chapter 6] have become more popular due to their superior performance.
Following the bootstrapping principle means to estimate the utility, state value or
state-action value using a combination of experienced rewards and the to-be-trained
function approximator, thus allowing learning from incomplete trajectories down to
even single state transitions. Bootstrapping is possible thanks to the recursive na-
ture of the utility (e.g. Uρ(τt) = ∑m

i=0 γiR(s(τt, i), u(τt, i)) + γm+1Uρ(τt+m+1)) and
the linearity of the expectation. State(-action) values therefore fulfill the (one-step20)
Bellman equation [145, Section 3.5]

Q̂ρ(st, ut) = Est+1,ut+1 ρ(st)

(
rt+1 + γQ̂ρ(st+1, ut+1)

)
. (2.11)

The expectation on the right hand side provides a convenient way to calculate a tar-
get value for a function approximator Qρ

θsav
(parameterized using a vector θsav) eval-

20 Multi-step formulations are possible by using more rewards from the experienced trajectory [145,
Section 7.1], i.e. rt+1, rt+2, . . . , rt+k−1 instead of only rt+1. The value Q̂ρ(st+k , ut+k) from the function
approximator is therefore used at a more distant time step (t + k instead of t + 1), which has less
influence if a discount factor γ < 1 is used. A possibly harmful bias of the function approximator
(e.g. due to insufficient approximation power or simply because of unlucky initialization values) on
the training target is therefore minimized. However, the experienced trajectory may be noisy and
therefore not ideally reflect the behavior intended by the policy to be evaluated. Using more steps in
this bootstrapping equation may therefore increase variance.
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uated at ⟨st, ut⟩ by recurring at its value21 resulting from the successor state-action
combination ⟨st+1, ut+1⟩. Depending on whether ut+1 and subsequent actions stem
from experience, i.e. the behavior policy π, or the learning policy ρ, the state-action
value function of the behavior policy π or the learning policy ρ is approximated
(disregarding differences in the distribution of experienced state transitions). The
former is considered on-policy learning and the latter off-policy [145, Section 5.4].
Off-policy learning is known to diverge if the learned policy significantly diverges
from the behavior policy used for gathering experience [145, Section 11.3]. This work
uses off-policy learning and tries to avoid this source of divergence by choosing π as
a stochastic variant of ρ.

To make this use of relationship (2.11) for a real implementation, the expectation is
estimated from single samples (i.e. the expectation is dropped). The approximation
error δTD resulting from an imperfect function approximator22 Qρ

θsav
in this equation

is known as temporal difference (TD) error [145, Section 6.1]:

δTD = rt+1 − Qρ
θsav

(st, ut) + γQρ
θsav

(st+1, ρ(st+1)) (2.12)

Training a function approximator to reduce a norm of the TD error using samples dis-
tributed throughout the area of interest in the state-action space can serve as a basis
for taking a local step towards an improved policy [145, Chapters 9-11]. Algorithms
proposed in this work minimize the squared per-element loss lTD(⟨st, ut, rt+1, st+1⟩) =
1/2δ2

TD through loss

LTD({⟨st, ut, rt+1, st+1⟩}bcrit) =
1

bcrit

bcrit

∑
i=1

lTD

(
{⟨st, ut, rt+1, st+1⟩}(i)

)
. (2.13)

bcrit is the batch size. This training resembles a supervised learning problem, except
that the training target may move between optimization steps, see Fig. 2.4.

The conceptually simplest way of updating the policy once a state-action value func-
tion is available is to make the policy choose the action that maximizes the Qρ value24

in each state s [145, Chapter 8]. For environments with discrete action (and state)
spaces that may even work with a table for value function approximation, e.g. by
a (hopefully simple) search, but since optimizing a (possibly large) neural network
can be too computationally expensive, this approach known as Q-Learning is limited
to the so-called tabular case. While efforts have been taken to allow the transfer of
21 Despite the dependence of Q̂ρ(st+1, ut+1) on the parameters of the function approximator, the value

is typically treated as a constant when it is included in a loss function, i.e. ignored when comput-
ing the gradient [91]. In this work, we adhere to this practice with a few exceptions (mostly pub-
lished in [119]), which we mark as ’double-sided gradient’ as opposed to ’single-sided gradient’ in
appendix A.4.

22 Approximation errors may be due to suboptimal parameters or structure.
23 The subsequent action ut is calculated using the policy ρ, hence the schematic in Fig. 2.4 is off-policy.
24 For this maximization to yield the optimal action, the state-action value function approximator Qρ has

to have a maximum in the location of the maximum of the actual state-action value function Q̂ρ, but
may be otherwise imperfect.
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Figure 2.4: Schematic of the off-policy temporal difference learning algorithm. TD learning can be imple-
mented as a conventional optimization problem consisting of optimizer, memory and a loss
function. However, it differs from the supervised learning problem in Fig. 2.1 in a way that
the approximation typically changes over time (e.g. because the policy ρ evolves.). The inputs
to the off-policy TD learning process are23the previous state st−1, the previous action ut−1
and the current state st. With the help of the reward function R and the policy ρ the TD loss
value, gradient and jacobian can be obtained. For brevity, we use the notation LTD|t, ∇LTD|t
and JLTD |t to note that the expressions LTD, ∇LTD and JLTD were evaluated using the inputs
of time step t, i.e. st−1, ut−1, rt, st and ut along with parameter vector θsav,t and the policy ρ
available at that time step. Along with the former iteration of the parameter vector θsav,t, these
are the input to the optimizer, which computes the next parameter vector iteration θsav,t+1. In
Section 2.2.3 we add target networks, an extension to TD learning that relies on separate copies
of the parameters for policy and state(-action) value function for bootstrapping.

this idea to arbitrary neural networks by defining a final layer whose optimum can
be trivially found [12], policy search and policy gradient methods have become far
more popular. These methods are presented in the next section.

2.2.3 Policy Search and Policy Gradient Methods

The ultimate goal to RL is making optimal decisions. The mapping from an environ-
ment state to an (optimal) decision is the (optimal) policy. It can be derived from the
(optimal) state-action value function as we hinted at the end of the last section, but
in continuous dimensions it is often more convenient to directly learn that mapping.
Algorithms following this paradigm constitute the class of policy search algorithms
[145, Chapter 13].

In the following we briefly outline a few ways to forego learning a state(-action)
value function by sampling the returns from experience or using a learned model.
Then, we turn our attention to policy gradients that improve the policy based on
information from an estimated value function. This yields the basic actor-critic algo-
rithm.

If the objective (2.7) can be sampled, e.g. by averaging over returns computed by ap-
plying a policy ρ with parameters θc to an available or learned model, then naive
approaches like genetic algorithms/hill climbing can be successful [145, Section
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Figure 2.5: Schematic of the deterministic policy gradient algorithm assuming a learned state-action value
function Q (Q-Function). The optimizer is provided with the state-action value Q(st, ut) and
the deterministic policy gradient (2.14), consisting of a product of the gradient of the state-
action value function with respect to the action and the parameter gradient of the policy.
These quantities are computed based on the current action ut and the current state st. The
optimizer returns an updated estimate of the policy parameters θc,t+1.

1.5],[165]. For a more goal-oriented optimization, a gradient from finite differences of
sampled rewards could be used. However, the sampled learning objective is usually
subject to high variance, which may result in slow learning. We follow this approach
in our MB RL algorithm (see Section 3.2).

Policy gradient methods instead do not require a model of the plant. They strive to
provide an accurate estimate of the gradient of the learning objective in (2.7).

This work relÃes on the deterministic policy gradient [136], which can be interpreted
as replacing V̂ρ with Q̂ρ according to (2.9) in the policy learning objective (2.7) and
then applying the chain rule to compute a derivative

dH
dθc

= E

(
dQ̂ρ

du

∣∣∣∣
s,u=ρ(s)

dρθc

dθc

∣∣∣∣
s

)
(2.14)

This gradient can be sampled from experienced states sk with k denoting time steps
during the agent’s learning phase. The combination of learning a state-action value
function with a (deterministic) policy gradient for policy updates yields an actor-
critic algorithm25 depicted in Fig. 2.5.

Provided the value function is approximated with high fidelity, actor-critic can learn
quickly due to its low-variance gradient estimates. Depending on the quality of
the function approximator, bias may be introduced [136, 145]. The next chapter

25 Methods that explicitly learn a policy are considered actor-only methods that e.g. directly optimize
the policy on the average reward. Methods that only implicitly learn a policy like Q-Learning are
referred to as critic-only. Actor-critic combines both elements.
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Figure 2.6: Schematic of an RL algorithm using an experience storage. For better overview the algo-
rithm is structured in three sections: evaluation contains the policy with exploration noise;
the data preparation layer accepts the current state and action, and feeds the experience tuple
⟨st−1, ut−1, st⟩ to the experience storage (reward omitted to avoid cluttering). From the experi-
ence storage the algorithm randomly picks experience tuples for the training part. Commonly,
a minibatch {⟨sk−1, uk−1, sk⟩} of more than one tuple is sampled at random from the experi-
ence storage, containing more diverse data compared to using only the latest experience tuple.
The training step combines TD learning (see Section 2.2.2 and Fig. 2.4) for a state-action value
function, which in turn is the basis for the deterministic policy gradient (see Section 2.2.3 and
Fig. 2.5). This work expands this architecture with elements to make it applicable to the par-
tially observed dynamics and enable learning for tracking control.

provides two common extensions that help with accurate state-action value function
learning.

2.2.4 Common Extensions: Experience Replay and Target Networks

Common extensions to the basic actor-critic algorithm are experience replay and
target networks. These were invented to make learning more robust and minimize
variance and bias in the learning process and were presented in [91].

Experience replay aims to provide the learning process of both state-action value
function and policy with meaningful minibatches of experience.

In physical systems, states that occur within rapid succession to one another are often
close value-wise. Using single samples sequentially to update the respective func-
tion approximators would therefore violate the assumption of independent samples
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in the training batch (see Section 2.1.2). Experience replay helps to break the tempo-
ral correlation by keeping a circular buffer of experienced state transitions to sample
batches from [92]. By making the buffer large, the individual samples in the training
batch are potentially temporally distant and therefore less similar. They may, how-
ever, have been collected using a policy that is outdated by the time they are included
in the training batch. It has therefore been suggested to use an off-policy algorithm
with experience replay. Another potential benefit of experience replay is that expe-
rience can be included in multiple training steps, thus increasing data efficiency. A
schematic overview is given by Fig. 2.6. Appendix A.3 gives an intuition of the effect
of batch size and experience storage size in a simulated example.

Target networks aim to eliminate another source of divergent learning: since the
state-action value function approximator is used to calculate the target value, the
target may vary considerably between two updates in the same state due to evolving
weights. Since this variance can cause the learning process to diverge, a target net-
work is used instead of the original state-action value function approximator. The
target network weights θ̃sav,t are updated using an exponential average of the param-
eters θsav,t in the state-action value function approximator:

θ̃sav,t = (1 − ηcrit)θ̃sav,t−1 + ηcritθsav,t. (2.15)

The parameter ηcrit ∈ (0, 1] can be chosen to favor smooth but slow progression of
the target network weights θ̃sav,t if chosen to be small or, if chosen close to 1, to allow
for close tracking of the parameters θsav,t in the actual state action value function.
While this extension may slow learning, it may increase stability as the authors of
[91] claim26. In Appendix A.3 we provide an intuition on the effect of target networks
on the learning process.

Outlook: Beyond Deterministic Actor-Critic

This work focuses on deterministic actor-critic algorithms, but literature offers
several popular alternatives. We only include them here for reference, since
most of these improvements were added to enhance learning from visual
representations using large networks.
In TD3 [43] the authors try to extend the deterministic policy gradient ap-
proach beyond DDPG [91] by decreasing the policy update frequency, apply-
ing the ideas from [153] in the form of clipped double Q-learning and other
measures.
In recent years, stochastic policies have gained more attention. One of the
central developments adding stability followed the idea of natural gradients
[73], a method to enhance learning speed, in the form of trust-region pol-

26 A target network has also been used to avoid overestimation of state-action values in Q-learning
variants [152]. Target networks for the policy are common, too [91].
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icy optimization (TRPO) [130], proximal policy optimization (PPO) [131] and
actor-critic using kronecker-factored trust region (ACKTR) [167]. Addition-
ally, ideas presented for deterministic policy gradients were incorporated, e.g.
experience replay [159] and soft actor-critic [55, 56].

2.2.5 Exploration

Even with off-policy TD-learning, the actor-critic algorithm relies on an exploration
policy π that to some extent resembles the current policy ρ, yet deviates from it to
estimate the advantage function27. Additionally, it needs to excite the system in a
way that creates a rich distribution of states to learn from, which can be challenging
when learning stable controllers. We introduce several options to add exploration
noise and give a few pointers to other options for exploration, e.g. safe exploration.

Depending on the perspective, exploration noise helps the learning process in differ-
ent ways:

• Within the RL literature, it is often considered as a means to explore the effect
of alternatives to the current policy’s choice and discover better options [145].

• Exploration noise serves as a signal for system identification, breaking the cor-
relation between disturbances and commanded action [69].

• With a wider variety of experienced states and actions, the learned state-action
value function and policy can be trained on more diverse batches (making indi-
vidual learning steps more meaningful, see Section 2.1.2) and potentially con-
tain valid information for a larger portion of the state-action space, enhancing
the stability of the learning process and the quality of the learned solution.

RL was first introduced for discrete (action-)spaces, and exploration therefore typi-
cally amounted to nothing more than picking a random action every once in a while
(ϵ-greedy) [145], possibly with schemes that reduce the random component with
learning progress (e.g. in Boltzmann Exploration [158] or the more optimal, yet more
complex Bayesian Exploration [143]), or assume very high returns for unvisited states
(optimistic) [145]. For systems with a continuous action space, exploration noise is
either inherent to a stochastic policy, defined as a distribution the action is sampled
from [145] or as a random number added to the output of a deterministic policy
[136]. Other choices include count-based exploration, i.e. preferring rarely visited
state-action combinations [148], or curiosity-driven, i.e. preferring actions where a

27 Similarity between the current policy ρ and the exploration policy π helps learning in configurations
where the agent is not able to extrapolate experience between states. This may be due to the system
behaving nonlinearly, but also due to the function approximators used in the agent. Yet, a slight
deviation helps the agent understand if abandoning the currently learned policy can be beneficial, i.e.
estimating the advantage.



32 2 Prerequisites

simultaneously trained model returns erroneous predictions [112] which can be seen
as concepts within intrinsic motivation, i.e. optimizing an additional, known reward
function that rewards exploration [13].

For real-world systems, purely random signals can be an inapt choice: on the one
hand they can cause high wear on actuators, on the other hand they may fail to excite
the system due to their emphasis on high frequencies. It has therefore become com-
mon to incorporate some temporal correlation between samples of the exploration
signal, e.g. sampling from an Ornstein-Uhlenbeck process [91]. This work follows
an idea from [161] and samples the random component for exploration at a lower
frequency than the evaluation frequency of the controller.

Within this work we consider three options of adding noise to the deterministic
policy:

• We add a random vector νθ sampled from a (possibly multidimensional) uni-
form distribution in the interval [−duniform; duniform] in a regular interval ∆tnoise
that may differ from the evaluation interval ∆t to the policy parameter vector
θc. This approach is known as parameter space noise in the literature [126, 154,
114].

• We add a random number νu sampled from a uniform distribution in the in-
terval [−duniform; duniform] in a regular interval ∆tnoise that may differ from the
evaluation interval ∆t to the policy output ρ(s). The idea to add random noise
to the output of deterministic policies was proposed by [136].

• We add a value νu that toggles between −drectangle and drectangle in a regular
interval ∆tnoise that may differ from the evaluation interval ∆t to the policy
output ρ(s). Rectangular signals are popular in control theory since they excite
a vast range of frequencies according to Gibb’s phenomenon [69].

While the three proposed approaches to exploration are applicable to the vehicle,
it remains open if they succeed at providing sufficient exploration and excitation
as well as making the agent experience a meaningful distribution of states. In Sec-
tion 4.4 we therefore run experiments with each variant.

2.2.6 Connection to Model-Based RL

MB RL is often defined as substituting (at least a part of [72]) the experience from
the environment with data generated by a (learned) model, but otherwise using the
principles introduced above, see Fig. 2.7 for an overview on the integration of a
model within this work. Some approaches deviate from that, e.g. by making use
of specific model estimation methods to incorporate a notion of uncertainty in the
learning process or by using more traditional control design methods. In this section
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Figure 2.7: Schematic of an RL algorithm using an experience storage and a learning model. A model is
trained using experienced state transitions sampled from the experience storage. The trained
model can either be used to generate additional experience tuples for learning a state(-action)
value function or, as in this case, be directly used in the policy learning step, e.g. for sampling
returns using simulations.

we give a brief overview of model estimation methods and architectures used for MB
RL.

Model estimation is a developed field of research (see e.g. [93]). In the context of
RL, many kinds of model have been proposed. Popular ones include linear models
[26], gaussian processes (e.g. PILCO [27]), nonlinear feedforward (e.g. MLAC [50])
or recurrent networks (e.g. Dreamer [57]); see [115] for a more extensive overview.
Generally, it is assumed that the full state vector x of the plant is observed (i.e.
s = x), which is often not the case with real systems [32]. Partially observed systems
require simultaneous estimation of state vector and model parameters. For some
applications, ignoring unobserved dynamics, i.e. learning a model using only the
observed portion of the state vector may yield a sufficiently accurate model [140]. The
authors of [104] group approaches for reconstructing a complete state from partial
state observations in windowing (concatenating past observations and actions in the
state vector), belief states (maximize likelihood of observation), recurrency (implicitly
form a state in a trained recurrent neural network) and external memory (memory
cells that can explicitly accessed by a neural network).

MB algorithms are often claimed to be more sample-efficient, since a model can be
learned from limited experience data and then used to generate a large amount of
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hypothetical experience [144] to learn a policy from at comparably low cost [115]. A
policy may be learned by (MB) policy search, value function methods or actor-critic
methods as introduced above. Some approaches make additional use of some char-
acteristics of the estimator or the estimation process to guide the learning process,
e.g. to account for robustness using the approximation error [15, 16, 25].

While MB algorithms have the potential to learn from less data, their success depends
on the accuracy of the learned model, which can be a challenge for partially observed
environments.

This work therefore follows two parallel approaches, one MB and one MF, which
allows to compare them in the envisioned application.

2.3 Summary, Technical Description of the Research
Gap

This chapter introduced a deterministic actor-critic algorithm as groundwork for this
thesis. It is briefly summarize here and provide a synopsis of the challenges arising
from the application to speed tracking control in a real vehicle is given.

From the point of view of the RL algorithm, the input is a state and the output is a
commanded action, both are vectors of real continuous-value, discrete-time signals.
The reward function is treated as part of the algorithm and defines the learning goal.
The expectation of the discounted reward sum, i.e. the state value, is to be maxi-
mized in the long run over the distribution of visited states. Everything outside the
algorithm is considered the environment and supposed to adhere to fully observed
dynamics.

In practice, policy search methods and actor-critic designs are the most popular
choices for continuous control tasks. Policy search aims to directly optimize con-
trol parameters to enhance the controller’s performance, e.g. by sampling returns
(Monte Carlo methods) and applying hill-climbing methods. The actor-critic ar-
chitecture adds a value function estimator to guide policy improvement with less
variance.

The deterministic framework this work harnesses the deterministic policy gradient
to estimate the policy gradient from a Q-function learned by TD learning. Both
deterministic policy and state-action value function are learned by applying LM op-
timization to function approximators trained on batches of experience that are stored
in a ringbuffer. MB RL algorithms strive to increase sample efficiency by learning a
model of the environment first and then employ it to generate experience to learn
from.
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When it comes to real applications, however, some of the assumptions that RL algo-
rithms rely on, do not hold. In the case of speed tracking control, the challenges fall
into three groups:

1. The algorithm has to work with relaxed assumptions on the environment:

a) The plant dynamics violate the Markov assumption: it exhibits delays and
only provides a speed measurement. This makes learning a model or a
value function harder.

b) The control target is arbitrary: there is no global description for its dy-
namics. State values can therefore only be predicted with large variance.

2. The algorithm has to be resource efficient: The learning process has to converge
quickly within limited computational resources to avoid wear and experiment
costs28 while staying within onboard processing power. This is at odds with
the many examples in the literature, where large amounts of training time on
powerful computers and data are used for training an RL algorithm. Rapid
learning on limited hardware is therefore a challenge for state of the art algo-
rithms.

3. The algorithm has to be robust to real-world conditions:

a) All occurring optimization problems are noisy, e.g. due to quantization or
measurement noise.

b) The vehicle itself exhibits some stochasticity, behaves nonlinearly at low
speeds and its reaction to control inputs is not symmetric at high fre-
quencies due to the brake system reacting more promptly. Low-level al-
gorithms filter some of the inputs to limit wear on the powertrain. Since
many of the displays of performance have been achieved in simulated en-
vironments that behave ideally, challenges from real-world systems have
been neglected so far.

The next chapter proposes MB and a MF candidate designs to overcome the first two
challenges. After that, we demonstrate that the proposed algorithms are capable of
handling real-world conditions in Chapter 4 and thus the third challenge.

28 Since giving an exact time frame for manual tuning is not possible, this work aims to solve the task
within minutes, which would guarantee a time benefit over manual tuning.
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Based on the basic concepts of RL introduced in Chapter 2, this chapter proposes
two algorithms for vehicle speed tracking control. The work in this chapter can be
understood as enabling MB and MF RL for the vehicle application, such that they
can be used in experiments in Chapter 4.

The first algorithm is based on the MF deterministic actor-critic architecture and
employs a reconstructing state-action value function network to overcome challenges
arising from partially observed states. This work proposes to locally approximate the
control target to remove variance due to changes in the control target and thus enable
tracking control.

The second algorithm learns a model from windowed past states and actions that
is then used to sample returns for policy search. The estimated model additionally
serves as a basis for an automated inversion-based feedforward design.

Both algorithms create little computational burden, e.g. by relying on few parameters
for approximation.

3.1 MF RL Algorithm

Here the actor-critic architecture introduced in Section 2.2 is expanded in two ways:
Section 3.1.1 proposes a combination of augmenting the state vector and a special
architecture for the function approximator in order to cope with the kind of partially
observed systems arising from communication delays and slow actuators. Addition-
ally, Section 3.1.2 proposes a local approximation of the control target along with a
manipulation of the training data to enable learning with little variance while follow-
ing arbitrary trajectories. Finally, Section 3.1.3 provides an overview of the complete
algorithm.

3.1.1 Reconstructing State-Action Value Function Approximator for
Partially Observed Plants

This section proposes an architecture for the state-action value function approxima-
tor to cope with partially observed dynamics (see challenge 1a) while keeping a small
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computational footprint (see challenge 2). The idea is to reconstruct part of the un-
observed state from past actions since it is mainly a comparably slow actuator whose
internal states are unobserved. This work has been published in [119] and [118].

The section begins by surveying approaches to partially observed systems in RL, then
introduces three variants of the proposed combination of reconstructing layer and
state augmentation. A few insights from a simulated example are given to underline
the effectiveness of the proposed structure. As a preliminary to the extensive vehicle
experiments in Chapter 4, we evaluate the reconstruction variants in the car.

Approaches for RL in Partially Observed Plants

There are two ways to apply RL to partially observed environments: either the mea-
surement is treated as if it was the full state, i.e. the unobserved part of the state
vector is disregarded, or past observations and actions are used to reconstruct the
missing information.

Ignore Unobserved Dynamics With only partial information on the system state
available, predictions for the coming states are more uncertain. This uncertainty
in predicted states carries over to rewards and thus estimated returns. With the
optimization goal being subject to variance, the optimization process is often slower
and yields less precise results. For RL, this means possibly slow learning speed
and sub-par performance in the converged state. Yet, ignoring the hidden portion
of the state may work [140], especially RL algorithms with large nonlinear function
approximators seem to fare well in these scenarios [133]. These are not feasible due
to performance restrictions in our application (see challenge 2).

If the policy relies exclusively on observed features (i.e. entries in the state vector), a
value function approximator can be constructed that guarantees bias-free policy gra-
dients according to compatible function approximation theory [146, 136]. However,
it has been shown that these simplest forms of compatible function approximation
yield the same level of variance as an algorithm that learns without a value function
[147].

While disregarding unobserved dynamics may seem tempting from a theoretical
point of view, the toll on learning speed and accuracy can be high, as an example
shows in Section 3.1.1. To avoid poor learning performance, missing state informa-
tion can be reconstructed from past states and actions.

Reconstruct Missing Information from Input and State History Apart from esti-
mators based on a known or learned model, reconstruction can be done using either
a finite window of past observations and actions (also known as finite history, fi-
nite memory or windowing) as an input to a feedforward function approximator or
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using a memory in the function approximator [113, 1]. In environments with com-
parably fast unobserved dynamics, e.g. blinking in Atari games, using several past
measurements has been proven to be effective [102, 79]. Augmenting the input space
usually comes at the price of a larger function approximation network, i.e. higher
computational complexity. Additionally, it raises the question of how to form the
augmented state vector, i.e. how many past state measurements and/or actions to
include. The authors of [61] point out that the algorithm’s performance can suffer
if important events fall beyond the limited horizon provided in the state vector and
suggest to use recurrent neural network (RNN) (see Section 2.1.2). These come at the
cost of a more difficult training procedure that is inherently in contrast to experience
replay, since RNNs require the inputs to be presented in chronological order (see also
[60]). Despite these challenges, impressive results have been reached using recurrent
structures, e.g. in [63, 162].

The proposed approach resembles the windowing method, yet the function approxi-
mator is kept lean by tayloring it to a class of plants. Several methods are investigated
in the following, one uses the windowed input in an RNN-like way, the other two
are feedforward networks. By performing a preliminary experiment the most appro-
priate reconstruction method is selected, a linear filter-like layer with a constraint on
the weights.

Proposed State-Action Value Function Approximator Structure

This work proposes an architecture for the state-value function approximator for
a special class of partially observed systems. Two intuitions motivate its design:
Actuator dynamics can be reconstructed from input history and the optimal value
function structure for the fully observed case. The design therefore combines a re-
constructing filter whose output is fed to a subsequent function approximator. Since
both filter and subsequent function layer are part of the state-action value function
approximator, both learn using standard TD learning.

This section begins with the optimal state-action value function for the fully observed
case, then introduces three candidates for the reconstructing filter and explains how
to implement them.

For the linear-quadratic regulator (LQR) setting, i.e. a linear controller ρθc for a linear,
fully observed, plant with a quadratic reward function (cf. (1.7)), the true state-action
value function is known to be quadratic [19]:

Q̂ρ
W(x, u) =

[
x⊤ u⊤]W

[
x
u

]
(3.1)

with W a quadratic matrix of appropriate size.

For the longitudinal speed control problem (see Fig. 1.2) the full state is not available.
The dynamics are therefore split in two groups: an unobserved system containing
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Figure 3.1: Assumed structure of the learning problem. The plant consists of two blocks Gunobserved and
Gobserved in a series connection. The state vector ζ of the first block is not observed; the state
vector y of the second block is the plant output.

actuators and resistances accounting for the acceleration and integrator returning the
speed, i.e. an observed system29, see Fig. 3.1.

The next step towards the state-action value function structure is to build a learning
observer for the unobserved portion of the state to be used in combination with
the quadratic structure. The estimation can occur from two perspectives: from a
causal perspective the unobserved dynamics is before the observed part and could
therefore be inferred from (past) actions, we call this view the integrator perspective.
Another option would be to reconstruct state vector entries from the output history,
which will be referred to as differentiator perspective. Since the plant dynamics is
slow compared to the sampling time, successive actions from an integrator point of
view are unlikely to have vastly different impact, i.e. the influence of past actions
on the current state estimate to is expected to develop continuously over time. In
the differentiator perspective, approximate derivatives, i.e. finite differences of the
measured outputs, are weighted over time. Here the impact of derivatives is assumed
to evolve in a continuous way over time. In practice, these perspectives are difficult
to separate since the actions are computed based on output measurements30.

In the remainder of this section three reconstruction concepts following the integrator
perspective31 are proposed:

1. a weighted sum of past actions, i.e. a finite impulse response (FIR) filter with
regularization (published in [119]),

2. a FIR filter with smoothed coefficients and regularization (published in [118])
and

3. a linear recurrent layer (published in [118]).

In the following, concept 1 is referred to as ’normalized’ layer, concept 2 as ’gaussian’
layer and to concept 3 as ’rnn’ layer. All presented approaches assume the state

29 Note that this division is strict if considered in continous time, but not in discrete time: in continuous
time the integrator is solely fed acceleration, but the discrete-time form uses small components from
other unobserved states due to matrix exponential/numeric integration. The error introduced is small
if the time step size ∆t is small.

30 Exploration noise plays a crucial role in breaking the correlation between measurements and inputs,
see Section 2.2.5 and Section A.3.4 in the Appendix.

31 The idea behind following the integrator perspective is that differentiation can potentially amplify
noise.
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vector to contain the current speed measurement yt and a window of hu past actions[
ut−hu ... ut−1

]⊤:

st =
[
yt ut−hu ... ut−1

]⊤ . (3.2)

Despite the plant having likely more than one unobserved state dimension, the
proposed structure worked best by learning to reconstruct only a single (i.e. one-
dimensional) state. This may be due to issues with learning reconstruction using
a large number of parameters or difficulties at discerning between different hidden
states32.

Approach 1 can be implemented as a fully connected feedforward layer (see Sec-
tion 2.1.2) with hu inputs and 1 output. It adds only hu parameters to the network.
FIR filter (see e.g. [95] for an introduction) usually become more accurate with in-
creasing length. For the system at hand this gives a good rule of thumb for tuning the
filter length: it should be chosen according to the impulse response of the system.
Increasing the filter beyond a certain value yields little accuracy gains and makes
learning more difficult due to the increasing dimension of the parameter space. An
example is given in appendix A.3. In order to remove unnecessary degrees of free-
dom33, weight normalization [127] is used to fix the norm of the filter weight vector
to 1. This does not affect the approximation power of the approximator as following
layers can compensate for scaling errors.

The proposed FIR filter is designed with the integrator perspective in mind and is
less apt to work with the differentiator perspective, since it cannot simultaneously
compute all possible finite differences of its inputs and weight them. However, the
proposed structure could approximate this by learning gains of alternating signs
with magnitude according to the influence of the respective finite difference. This
would be equivalent to skipping every second finite difference. In our experience
the learned set of FIR parameters is usually a mixture of the (smoother) impulse
response (see Fig. 3.5 in the next section for a simulated example) and an alternating
series when applied to the real vehicle. Concept 2 therefore is designed to enforce
smooth FIR coefficients by reducing the number of learnable coefficients from hu to
nweights and interpolating between them using gaussians34:

wi,smoothed =

nweights

∑
j=1

wj,trainexp
(
(j − i)2

σ

)
(3.3)

32 Note that it is difficult to find a ground truth for the reconstructing layer if more than one system state
is unobserved. Reconstructing only one replacement signal for unobserved states requires learning
a blended signal. The ratio, however, depends on the distribution of the training data and aims to
compensate for missing monomial multiplication in the subsequent layer.

33 Another method for limiting unusable degrees of freedom in an approximator that uses an FIR filter
for reconstruction is to fix a weight in the linear layer after it.

34 This is motivated by how radial basis function are used to approximate smooth functions with a
limited set of parameters.
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Figure 3.2: Schematic of the proposed network architecture from [119]. The first layer passes the measure-
ment yt (here a version with more than one measured quantity is shown), the reconstruction
output32 ζ̃ and the current action ut to a second layer without learnable parameters that com-
putes all monomials up to degree 2 of its inputs (qf). The third layer outputs a weighted sum
of its inputs (fully connected, fc) that is learned to approximate the state-action value. While
the reconstructing layer can be any of the presented ways, in this schematic reconstruction
according to concept 1 in the form of a fully connected layer (fc) is used.

with σ being a hyperparameter we choose to be 1, and i = 1, ..., hu. Each training
step only updates the meta parameters wtrain, but then the parameters wsmoothed are
calculated and used for evaluation. This is done by including the derivative of (3.3)
in the backpropagation algorithm. Despite this solution, the meta-parameters wtrain
may still be learned as a series with alternating signs, effectively only forming finite
differences over a longer time interval.

Concept 3 also reduces the number of parameters by feeding the appended actions
to a linear recurrent elman network structure [35] in chronological order35.

The proposed estimators are combined with a quadratic function approximator.
Fig. 3.2 gives a schematic overview for the implementation of the FIR filter ap-
proach 1 with the quadratic function approximator. The reconstructing layer can
also be combined with other structures after it, e.g. fully connected networks.

35 This interpretation of parts of the state vector as trajectories avoids the issues of RNNs with experience
replay, but potential issues for training RNNs known as exploding/vanishing gradient persist (see e.g.
[111, 48]).



3.1 MF RL Algorithm 43

Simulation Results

This section aims to prove the intuition that the proposed reconstruction method
is both effective at reducing the variance and can be modularly used in different
approximator architectures. The proposed approximator structure configuration 1
is applied to the example system (1.3) to show that it is able to reduce the variance
in the learning process. This section shows that other approximator structures are
viable by using a fully connected network instead of the quadratic approximator at
the cost of slightly slower learning and reduced accuracy.

To highlight the effectiveness of the proposed approach this section compares two
configurations of the deterministic actor-critic architecture. One uses a quadratic
function approximator for the state-action value function, treating the measurement
as full state, i.e. ignoring the unobserved dynamics. We mark this configuration
as ’ignore’. The other configuration uses the proposed FIR layer for reconstruction;
this configuration is marked as ’reconstruct’. The training occurs in episodes of
200 time steps each, with the plant inititalized in random states36 and the control
target is 0. Training is paused if either the buffer of past actions or the experience
storage are not filled to capacity. Every 10 episodes a validation run is performed,
i.e. training is paused, no exploration noise applied while the controller tries to
drive the system from a fixed initial point x0 =

(
1 0 0

)⊤ to zero in order to
monitor the learning progress by the achieved state value Ṽ(x0) of this point37. This
experiment was presented in [119] and used a fixed parameter in the final layer of
the function approximator instead of weight normalization to eliminate the unused
degree of freedom. The hyperparameters can be found in Table A.1, set A in the
appendix A.4.

A comparison of TD errors during training is given in Fig. 3.3. It shows that the
reconstructing state-action value function helps reducing the TD-error in the steady
state.

The reduction in variance is visible from Fig. 3.4 which shows the approximated
state value computed every 10th run. Not only is learning more precise, i.e. the
performance exhibits less variance throughout the learning process, but also faster.
Note that an output controller is not always optimal throughout the entire state
space. It may therefore be misleading to judge performance from a single state
value.

In order to prove the flexibility of the proposed approach, the proposed combination
of FIR-like reconstructing layer and quadratic function approximator is compared
with a combination of FIR-like normalized reconstructing layer and a shallow fully

36 Episodic training is common in RL, since regular resets to random states help compensate for poor
performance of the agent and help with exploring the state space [145, Section 5.2].

37 A truncated version of the state value is used for computational feasibilty. We truncate the infinite
sum once the norm of the state falls below 10−4.
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Figure 3.3: Mean (µ) and standard deviation interval (µ± σ) of mean squared TD error LTD while learning
a state-action value function for a fixed policy plotted over training episodes from [119]. The
experiment was performed 50 times. The proposed reconstruction method lowers the steady-
state TD error. The experiment was conducted in an episodic setting, which causes the state
augmentation buffer to be purged in reqular intervals, halting learning. Since the buffer for
state augmentation takes longer to fill than the buffer for the TD error, the interruptions of the
learning are only visible for the reconstructing value function.
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Figure 3.4: Mean µ and standard deviation interval µ ± σ of approximated undiscounted and truncated
state value Ṽ(x0) of a fixed initial state x0 over training episodes from [119] averaged over
50 runs. The sum was truncated once the norm of the state vector falls below 10−4. The re-
duced variance when reconstructing unobserved states translates into more accurately learned
control parameters and thus more steady performance, especially when converged. Better
performance in a single state does not necessarily translate to better overall performance in
optimal output control.
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Figure 3.5: Mean (µ) and standard deviation interval (µ ± σ) of learned weights in the normalized FIR
filter when paired with a shallow fully connected layer (’fc’) compared to a combination with
a quadratic function approximator (’qf’) averaged over 50 runs from [119]. Both roughly retrace
the (inverted) impulse response of the unobserved dynamics apart from scaling effects32, but
the coefficients learned in combination with the quadratic function approximator exhibit less
variance. The pattern of the FIR coefficients suggests that a longer FIR filter would not yield
benefits when learning with this environment as the coefficients approach zero for actions
close to the end fo the window of past actions.

connected network. Fig. 3.5 is a plot of the FIR coefficients at the end of the training.
Both approaches learn a similar distribution, with the quadratic form exhibiting less
variance.

Comparison of Recurrent Layer, Interpolated Weights and Fixed-Norm FIR in the
Vehicle

When applied to a real vehicle, the three proposed reconstruction methods exhibit
different behavior. This comparison was published in [118]; see Chapter 4 for more
details on the experiment setup and Table A.1, set C, for hyperparameters. Fig. 3.6
shows the progression of the controller parameter over training time. Both gaus-
sian weights layer and normalized FIR yield fast convergence and stay in a small
region when converged. The RNN-based variant exhibits higher variance and takes
longer to converge. For simplicity, this work therefore focuses on the normalized FIR
reconstruction method.

For the MF approach, this rounds off the proposal for solving the challenge of a
partially observed environment. Next, we turn our attention to tracking a time-
varying target.
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Figure 3.6: Actor weights for different reconstruction methods learned in a real car from [118]. The con-
troller parameter is updated only every 2 s resulting in the step-line-like graph and a maxnorm
constraint in the optimizer causes the linear slope on the way to the steady state. For both
the gaussian weights (marked as ’gaussian’) and the normalized FIR layer (’normalized’) the
controller gain stabilizes around 0.5. The variant using an RNN cell for the reconstruction
converges later and exhibits higher variance.

3.1.2 Tracking Control and Preview Compression

It is difficult to learn a tracking controller (challenge 1b) using RL: This is because
arbitrarily changing target values make it impossible to accurately estimate the ex-
pected return if the target is not known on an infinite horizon. In engineering appli-
cations, this information is usually not available.

For the application at hand, the challenge can be decomposed in two sub-problems:

• the target is known only on a finite horizon and

• it may change arbitrarily, but slowly to maximize passenger comfort most of
the time.

Including a preview helps to predict the state-action value, but bloats the input space
of the function approximator38. This may enable learning with a moving target, but
makes training costly and difficult. Since the target changes only slowly, the en-
tries in the prediction horizon exhibit only minor differences. This makes it difficult
to differentiate between the influences of individual entries on the overall value,
which further slows the learning progress, i.e. requires small learning steps and
large batches.

38 Even for short preview lengths the number of points is large due to the short sampling interval. The
naive approach to use a more coarse grid can be seen as a special case of the presented approach.
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The proposed solution answers these issues: It projects the trajectory preview on a
low-dimensional polynomial. This simultaneously reduces the state dimension and
allows extrapolation to an infinite horizon39. The proposed projection is combined
with a set of methods for training data manipulation providing for compliance with
the Markov assumption, without limiting the proposed approach to trajectories gen-
erated by a time-invariant external system. Using off-policy learning, one variant of
the proposed manipulation methods allows to replace the noise in the action space
with noise on the target, simultaneously adding flexibility and a method for guiding
the agent during learning. This subsection is mostly based on [81], where the pro-
posed method is presented in a general way and applied using linear polynomials,
i.e. an acceleration feedforward. Some parts stem from [119], which uses a constant
polynomial, i.e. no feedforward controller, but highlights some of the aspects on
exploration.

The following section is structured as follows: First, this work is put in the context
of literature on tracking using RL. Then, the proposed projection and training data
manipulation method are presented. Using simulation, it is shown that the target
can account for exploration instead of directly adding noise to the action. Finally,
the simulated example (1.3) is used to prove that the proposed training data manip-
ulation allows to significantly reduce variance during learning.

Literature on Tracking using RL

The following briefly reviews literature on RL for tracking control. For a more in-
depth discussion see [118, 83, 82]. Tracking control signifies following a varying
control target, yet a feedback-controller reacting solely to the deviation of the system
state from the desired state (see e.g. [107, 157, 119]) often lags behind the desired
trajectory.

If the trajectory is known at training time and does not vary in the use case, a learning
algorithm can be trained to follow a specific trajectory [166], but has to be re-trained
each time the trajectory changes.

A slight generalization is to assume the trajectory stems from an exogenous system
with constant dynamics (see e.g. [78, 103, 80, 94, 77]). Since these dynamics are
perceived as part of the environment by the learning algorithm, standard RL meth-
ods can be applied. However, re-training is necessary as soon as the trajectory, i.e.
the related exogenous system changes. The proposed algorithm can be seen as an
extension to this approach, allowing for arbitrary trajectories thanks to the training
data manipulation.

More general methods follow the idea of universal value function approximators
[129], which aim to return a state(-action) value conditioned on a target, allowing to

39 The infinite horizon is helpful for low-variance estimation, yet discount limits the effective horizon.
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learn tasks with different objectives. In their work, however, the target is assumed
to be a time-invariant goal state. For time-varying targets, i.e. trajectories, a ma-
jor challenge is their representation, especially since they are usually only partially
known.

Incorporating preview can be done by explicitly including a finite window of length
hy of reference values ŷt, . . . , ŷt+hy in the state vector. Since the Q-function for TD-
learning is defined on an infinite horizon, an assumption has to be made on the con-
tinuation of the profile, e.g. assuming constant values beyond the provided horizon
[83]. It may however be difficult to make a good choice in hy, since longer previews
reduce bias but bloat the input space, i.e. increase the number of critic weights. This
is prevented by using a low-dimensional polynomial projection as proposed in [82]
in this work.

Our proposed algorithm therefore combines feedforward, arbitrary trajectories and
limited preview with low variance during learning.

Proposed Method for Integrating Feedforward in the RL Algorithm

The proposed approach consists of two parts:

1. The state vector is augmented with a vector of polynomial coefficients obtained
by projection,

2. Compatibility is enforced on the corresponding entries in the state vectors of
the experience tuple for training. This is equivalent of using an approximate
optimization goal or hiding unexpected target dynamics from the algorithm.

The theoretical and more general foundation for this method has been published in
[82].

These components are reflected in the layout of this section: It begins by encoding
a set of preview values for the target as polynomial coefficients, then substitutes the
performance measure (1.7) with an approximate target that assumes the task is to
follow the approximate polynomial forever40. This substitution is done through a
manipulation of the training data. This section is rounded off with an overview of
the complete algorithm.

Polynomials are a common method to compress or encode information41, often used
in the form of orthogonal polynomials (or "Polynomial Chaos", see e.g. [164] for an
introduction), as they allow to flexibly and accurately reflect continuous functions

40 This assumption allows to formulate the value function as an infinite sum, which can be bootstrapped
in TD learning.

41 Encoding using a combination of basis functions weighted by parameters is popular throughout many
domains, e.g. cosine projection in the popular JPEG image compression format (see e.g. [68]). Other
approximation methods that allow for propagation similar to (3.8) are possible in our algorithm, too
[82].
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with a small number of parameters. In the following polynomials are used to reflect
a preview from a finite horizon using polynomial coefficients. The preview ŷt+t̃t
is assumed to be given at constant offsets relative to the current time. While these
preview points do not have to be equidistant, for simplicity here it is assumed that
the preview is sampled at the system sample rate. The offset42 from the current time
step t can therefore be denoted using a discrete index t̃t.

We employ a base set of polynomials ϕ, that allows to recover approximate target val-

ues ˜̂y(t̃t)
t valid for time step t+ t̃t from a set of coefficients pt =

[
p0,t p1,t p2,t . . . pnp,t

]
obtained at time step t:

˜̂y(t̃t)
t = ptϕ(t̃t) (3.4)

with e.g. ϕ(t̃t) =
[
1 t̃t∆t (t̃t∆t)2 (t̃t∆t)2 . . . (t̃t∆t)np

]⊤ and p0,t denoting the
constant term in the approximating polynomial resulting from projecting the pre-
view available at time step t, p1,t the coefficient for the linear term etc. up to polyno-
mial order np.

The assumption of constant samples allows for efficient encoding using a time-
invariant projection matrix43

Pproject =
([

ϕ(0) ϕ(1) . . . ϕ(np)
]⊤)+ (3.5)

with (·)+ being the operator for a pseudo inverse, e.g. by singular value decompo-
sition. Then, the projected polynomial parameters can be retrieved using the vector-
matrix product

pt =
[
ŷt ŷt+1 ŷt+2 . . . ŷt+hy

]
Pproject (3.6)

In the following the polynomial that encodes the reference trajectory is called refer-
ence polynomial.

In contrast to the limited horizon preview, the reference polynomial is defined on an
infinite horizon44 in t̃t. Its coefficients are appended to the state vector

st =
[
yt ut−hu . . . ut−1 p0,t . . . pnp,t

]⊤
. (3.7)

See Section 3.1.1 for the augmentation with previous actions.

Now an optimization goal is defined on a surrogate state value that is based on the
assumption that the reference polynomial is followed infinitely.

42 Note that the local "time" coordinate frames t̃i may be arbitrarily rescaled according to numerical
needs.

43 Other methods for obtaining polynomial coefficients, e.g. projection on orthogonal polynomials, are
viable, too.

44 It is assumed that either the extrapolated values resemble the not yet known trajectory, reference
values in the far future do not affect the currently optimal choices or that the problem is discounted
enough to render extrapolation errors insignificant.
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Figure 3.7: Qualitative example for a polynomial approximation of the target trajectory. The original
control target is given by a finite set of preview points starting in the current time step t. By
projecting on a polynomial, a slight approximation error may be introduced and the domain
is extended to infinity. The reference polynomial can be expressed in different time coordinate
frames, e.g. t̃t−1, t̃t or t̃t+1, to ensure coherent state vector definition for each time step.

Since the reference polynomial is defined relative to the current time step t, a trans-
formation Tshift to subsequent time steps is necessary, e.g. t + 1 in order to use
the same reference polynomial in future state vectors: a shifted reference polyno-
mial allows to define the state vector st+1 according to (3.7), i.e. with an index t̃t+1
starting at t + 1. This transformation ensures coherence of the state definition by
transforming the reference polynomial to coordinate frames of interest, e.g. t̃t+1. An
exemplary trajectory is shown in Fig. 3.7.

For equidistant steps, polynomial parameters can be transformed using a constant
linear operation

p(1)t = ptTshift (3.8)

with p(1)t indicating that the polynomial coefficients pt have been shifted from a time
coordinate frame t̃t starting at t to t̃t+1 starting at t + 1. This linear transformation
is equivalent to applying a time-invariant dynamics of an exo-system to the respec-
tive part of the state vector and depends on the choice of base polynomials. By
equating the coefficients of ∑

np
i=0 p(0)i,t ((t̃ + 1)∆t)i

= ∑
np
i=0 p(1)i,t (t̃∆t)i the transforma-
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Figure 3.8: Example for manipulation of the target according to methods Mt and Mt+1 for a zero-order
reference polynomial adapted from [118]. The rationale behind both manipulations is to hide
the target change ŷt+1 − ŷt from the learning algorithm. For learning, in the tuple covering
time steps t and t + 1 either the target at time step t can be changed to match the target at
time step t + 1 (manipulation Mt) or the target at time step t + 1 can be changed to match the
target at time step t (manipulation Mt+1). For this example with a constant approximation
of the target, both result in equal target values for time steps t and t + 1. Note that this
manipulation is done solely to the tuple ⟨st, ut, st+1⟩ used for training the state-action value
function. Controller evaluation is unaffected and data for other time steps is manipulated
independently, such that the manipulated target and the target the policy is evaluated with do
not drift apart.

tion matrix45

Tshift =


(

np
0 )∆t0 (

np
1 )∆t1 (

np
2 )∆t2 · · · (np

np
)∆tnp

0 (
np−1

0 )∆t0 (
np−1

1 )∆t1 · · · (
np−1
np−1)∆tnp−1

... · · ·
...

0 · · · · · · 0 (0
0)∆t0

 (3.9)

can be derived.

In the real use case, however, the target will change arbitrarily and the reference
polynomials obtained from approximating the preview points at time steps t and
t + 1 may not fulfill the relation (3.8), i.e. p(1)t ̸= pt+1. We suggest to hide these
incoherences from the learning process by manipulating the data used for training

45 Despite not being part of the publication, this form was developed jointly with Florian KÃ¶pf for [81].
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the state-action value function46, i.e. learning the surrogate value function

V̄π(yt, pt) =
∞

∑
i=t

γi−tR
(

yt, ˜̂y(i−t)
t , π

(
yi, p(i−t)

t

))
(3.10)

or a correspondingly defined state-action value function. When evaluating the TD
error, the algorithm uses the same reference polynomial for augmenting the state
vector s for both time steps t and t + 1, but shifts it to match the difference in time
according to (3.8). Two approaches are possible here:

• Substitute the reference polynomial p(0)t for time step t with a reference poly-

nomial p(−1)
t+1 in accordance with time step t + 1. We call this manipulation

method Mt.

• Substitute the reference polynomial p(0)t+1 for time step t + 1 with a reference

polynomial p(1)t fitting the reference polynomial for time step t. We call this
manipulation method Mt+1.

See Fig. 3.8 for an example. We mark state vectors that contain a manipulated target
as s̄. Since the reward depends on the control target, these manipulations entail
recalculating the reward. The manipulations are solely and indepentently done in
the tuples used for training the state-action value function, e.g. before storing them
in the experience storage. In our experience the actual and the manipulated target
are often only slightly different, enough to move exploration to the target in some
cases (see Section 3.1.2), but still close enough to learn a meaningful state-action
value function.

The important goal of preemptively acting on target changes, i.e. before they affect
the control error, can be achieved by learning a policy that uses the coefficients of
the reference polynomial as its features. Note that for the policy, no manipulation of
the target is applied, such that it accepts truly arbitrary targets as its input. In our
case, we use a linear policy (1.5) to benefit from the linear-quadratic architecture in
our state-action value function.

Next, a short example from [118] is presented to show the variance reduction ca-
pabilities of the proposed manipulation. For this, the system47 (1.3) and a random
target48 is used. The target is given with one time step preview, i.e. just the target
for the next time step is provided49. Two training runs are performed to compare

46 Value functions with encoded preview are still quadratic if the environment is fully observed and the
controller is linear [82], therefore the intuition behind the value function approximator introduced in
Section 3.1.1 still holds.

47 These experiments were performed without adding the delay included in system (1.3), i.e. with a
reduced system order.

48 The target is chosen randomly over time, but in a coherent way, i.e. we stick to what we gave as a
preview but choose randomly how to extend it in subsequent time steps.

49 The projection on a constant polynomial is trivial in this case.
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Figure 3.9: Mean squared TD loss over training steps for configurations using manipulation Mt+1 (marked
as "on") vs. no manipulation (marked as "off") from [118] for multiple training runs. The agent
training on the manipulated data exhibits TD errors several magnitudes lower than the agent
training on the non-manipulated data.

the algorithm’s behavior with training data manipulation Mt+1 and without any
training data manipulation. The hyperparameters are given in Table A.1, set B in
the appendix. Fig. 3.9 shows the progression of the TD error during training. The
proposed manipulation effectively reduces the TD error, suggesting that variance is
lowered significantly during training. Lower variance helps faster and more precise
controller learning, as Fig. 3.10 shows.

Shifting Exploration between Target and Action

Manipulating the target can be advantageous for RL, as we show in the following.

Using manipulation Mt on the tuple ⟨st, ut, st+1⟩ changes st such that the action
ut (calculated from st prior to manipulation) would become off-policy even if no
exploration noise had been applied. Theoretically, this may allow the agent to learn
without additional exploration noise. In practice, however, it may be necessary to
choose a target profile that forces the controller to excite the system, and to ensure
that the controller is aggressive enough to translate the excitation in the target to the
plant (see Section 2.2.5 for purposes of exploration noise).

Experiments with several configurations of exploration noise are performed using
the system47 (1.3):
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Figure 3.10: Mean µ and standard deviation interval µ ± σ of controller gains θc over training steps for a
configuration using manipulation Mt+1 (marked as "on") vs. a configuration training on non-
manipulated data (marked as "off") from [118] for multiple training runs. The agent training
on manipulated data exhibits lower variance and converges faster. One or both solutions are
biased.

• A baseline configuration that uses exploration noise50 added to the controller
output (we mark this as "ex. c") is compared

• against a configuration without exploration noise on the controller output, but
with the random component added51 to the target profile (marked as "ex. t"),

• against a configuration that has uniform exploration noise on both controller
output and target (marked as "ex. c,t"), and

• against a configuration without any additional noise (marked as "-").

This experiment uses the hyperparameters in Table A.1, set B, in the appendix, but
varied the exploration as described. The evolution of the controller gain during
training is diagrammed in Fig. 3.11. Applying exploration noise to both target and
action ("ex. c,t.") yields least variance during training, applying none to both can
make the learning process fail, i.e. the controller gain diverge. Both variants that
have noise either on controller output or target learn, but have higher variance in
comparison and therefore learn slightly slower. It is therefore advisable to be careful
when foregoing the use of exploration noise.

50 We use a random number sampled every 100 time steps from a uniform distribution between −1 and
1 as exploration noise in this example.

51 The target profile consists of an accumulation of a uniform random number sampled between −0.1
and 0.1 at every time step.
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Figure 3.11: Mean µ and standard deviation interval µ ± σ of controller gains during training with the
example system (1.3) with different exploration noise configurations from [118]. When ap-
plying no exploration noise to either target or action (marked as "-"), the learning process
may fail. With exploration noise on either target (marked as "ex. t") or controller (marked as
"ex. c"), learning succeeds. Best results are obtained with noise on both (marked as "ex. c,t"),
where learning occurs quickly and with minimum variance.

The proposed modifications could be even extended beyond what has been pre-
sented here: arbitrary many modified variants of a state transition tuple could be
used in the training data set as long as the targets within the tuple are made to
comply with each other. This is possible as the proposed algorithm learns off-policy
and explicitly includes a notion of the control target in the state-action value func-
tion (cf. Universal Value Function [129]). By assuming different targets, the agent
can learn different state-action values from a single state transition tuple if the re-
ward function is available, therefore efficiently learning the assumed target dynamics
(3.8). This idea has become popular from the concept of hindsight experience replay
[8]52.

This is not only useful for generalizing between targets, but can also be used to
virtually explore target dynamics, i.e. learn quickly without actually adding noise
to the target. This is possible by adding noise to the target in the training data only.
This virtual target noise can be applied before applying either of the manipulations
Mt or Mt+1 directly on the reference polynomial coefficients and helps explore the
exogeneous system dynamics (3.8). We mark state vectors with added noise to the
reference polynomial coefficients as s̆. Virtual target noise can lead to faster learning,
but may skew the distribution of observed targets from the intended use case.

52 In [8] the authors give an example about missing a shot in a Hockey game: instead of simply discard-
ing the actions taken prior to the miss as worthless, an agent could learn that if the goal had been in
a different position, there would have been a reward.
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3.1.3 Summary

This section presented an algorithm based on the (deep) deterministic actor-critic
architecture. The main contributions are a state-action value function that allows
learning with the partially observed dynamics of the powertrain and a manipulation
of the training data that allows learning a feedforward with an arbitrarily changing
control target.

For this, the state vector is extended: it now consists of coefficients of a reference
polynomial, measurements of the plant output and past actions. The state-action
value function approximator uses a learned FIR-filter-like layer to reconstruct miss-
ing state information and combines polynomial coefficients, reconstructed state in-
formation, output measurement and the action in a quadratic function that yields
a low-variance estimate of the state-action value. The proposed method employs
a projection on polynomial parameters, optional virtual target noise and a training
data manipulation to learn tracking control with little variance.

The proposed algorithm is partitioned in three parts (see Fig. 3.12 for a schematic):

• The evaluation step assembles the state vector st from output measurement
yt, past actions ut−hy , . . . , ut−1 and target ŷt (and possibly additional preview
values). It computes the current policy’s response ut and applies this action
to the system. The current policy is updated using parameters θc from the
training step. State vector st along with current action ut are provided to the
subsequent data preparation step.

• Data Preparation is fed the current state vector st and current action ut and out-
puts batches of training data {⟨ ¯̆sk−1, uk−1, ¯̆sk⟩} to train state-action value func-
tion approximator and policy on. This involves applying noise to the target,
buffering states and action, applying training data manipulation and keeping
a ringbuffer of state transitions to sample batches from.

• The training step is based on regular actor-critic learning after evaluating the
reward function. The state-action value function is updated using TD-learning
with LM optimization; the policy is updated using the Deterministic Policy
Gradient and LM optimization. The training step can be run at a sample rate
independent of the evaluation and data preparation step, allowing to trade off
computational load and learning speed.

The proposed measures allow for learning robustly with little parameters. Chapter 4
shows that they fulfill the requirements to be applied to a real vehicle.

The next section presents another candidate algorithm that uses a learned model to
search a policy with to be compared with in Chapter 4.
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Figure 3.12: Schematic of the proposed MF RL architecture. In addition to the MF RL architecture from
Fig. 2.6 we added three blocks: a state augmentation block augments the measured input yt
with past actions and coefficients of a reference polynomial from ŷt. We omitted additional
target preview points to avoid cluttering the overview. The target noise block adds a random
component on the reference polynomial coefficients to accelerate learning of the target dy-
namics. The match target block ensures coherence between the targets in the state vectors s̆t
and s̆t−1 by applying manipulation method Mt or Mt+1. Note that the manipulation of the
target only affects data entered to the experience storage for training. The state vector that
is fed to the policy is not manipulated, therefore allowing to follow arbitrary targets ŷ. The
overall algorithm can be split into (policy) evaluation, data preparation and training, which
can run at independent sample times.
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Figure 3.13: Schematic of a model learning problem, which is a variant of the parameter estimation prob-
lem (cf. Fig. 2.1). Based on a batch of tuples {⟨sk−1, uk−1, sk⟩} and the latest estimate of model
parameters θm,t−1 the value L|t, gradient ∇L|t and the jacobian JL|tare calculated. These are
used in an optimizer to get an updated estimate of the model parameter vector θm. The pro-
cess is repeated with newly sampled batches until convergence.

3.2 Model-Based RL Algorithm

This section proposes a computationally efficient MB policy search algorithm.

MB algorithms have the potential for high data efficiency, as they use the data from
the real plant to learn a model that in turn can be used to generalize the experience
to not yet seen portions of the state space at very low cost (see Section 2.2.6).

Partially observed systems pose the added challenge of simultaneously estimating
state and dynamics, which the proposed algorithm avoids by windowing and esti-
mating an autoregressive model with external inputs (ARX). Based on the estimated
model, an optimal output feedback controller is searched and an inversion-based
feedforward controller is designed automatically. With the exception of the feedfor-
ward design, the proposed algorithm has been published in [120].

This section starts by introducing our approach to model identification, then briefly
touches upon our feedback control optimization using policy search and finally pro-
poses an algorithm for automatically designing a feedforward controller.

3.2.1 ARX Model Estimation for Partially Observed Plant

Since the to-be-learned model serves as a basis for policy search, any error in the
approximated dynamics may lead to a bias in the derived policy. It is therefore im-
portant to ensure approximation power to be able to reflect the true system behavior
– and of course the algorithm must be able to harness these degrees of freedom.
On the other hand, a too high number of learnable parameters may not only cause
the learning process to overfit, e.g. to noise, but also reduce learning speed. This
work tries to find an optimal balance by optimizing a criterion that considers both
accuracy and complexity.

The following briefly explains ARX models and the chosen estimation method.
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The following model estimation method is taken from [93, p. 176]. It is based on an
ARX model that provides a prediction ẙt+1 of the next output yt+1 from n current
and past actions and states53:

ẙt+1 =
n−1

∑
i=0

(
θy,i ẙt−i + θu,i ut−i

)
. (3.11)

For ease of notation, we define the model parameter vector θm =
[ θu,0 ... θu,n−1 θy,0 ... θy,n−1 ]. To minimize the one-step prediction error, the per-element
loss function

l(yt−n+1, . . . , yt+1, ut−n+1, . . . , ut+1, θm) =

(
yt+1 −

(
n−1

∑
i=0

θy,i yt−i + θu,i ut−i

))2

(3.12)
is defined and optimized over batches of bm = 200 samples drawn from the experi-
ence storage of size 5000. LM optimization is employed and a decreasing-over-time
maxnorm constraint is enforced using norm clipping (see Section A.1). This aims
at keeping variance of model parameters to a minimum that would otherwise drive
up the variance of the learned controller parameters. A scheme of the optimization
process is shown in Fig. 3.13.

Model accuracy and model complexity are balanced by choosing the model order
n using the minimum description length (MDL) criterion [142, 106], yielded a con-
sistent optimal model order close to n = 20 [120] for different dataset lengths as
opposed to the equally popular Akaike Information Criterion (AIC) [4, 106].

The resulting model is able to precisely predict the plant output even over extended
periods as the simulation result in Fig. 3.14 suggests.

3.2.2 Sampling-Based Controller Design and Inversion-Based
Feedforward Design

This section briefly states the proposed approach on sampling-based policy search.
Then it describes the automated design process for the inversion-based feedfor-
ward.

The proposed algorithm updates the feedback controller through policy search us-
ing numeric gradients of values estimated using the model (3.11) introduced above.
The state value is approximated by a truncated sum of rewards calculated from a
simulation of model (3.11) with controller (1.5). The infinite sum (1.6) is cut off54

53 We differentiate between the model output ẙ and plant output y for clarity. Later on, we will use plant
output values y in the place of model outputs ẙ to estimate model parameters.

54 This truncation criterion is intended to balance loss of accuracy against computational burden: with
a stable controller and a constant target the expression abates over time while the computational
effort does not. The contribution of the to-be-truncated portion of the sum tends to decrease with the
amount of summands taken into account and eventually falls below numerical accuracy.
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Figure 3.14: Output of a learned model of order 20 and measured speed from [120]. At time 0 s the model
was initialized with measured outputs and then simulated for 100 s using the inputs recorded
in the car. The recording is of a controller trying to follow a target speed varied every 1.25 s
by 1 km h−1 between 19 km h−1 and 21 km h−1. The model output (’Simulated’) is close to the
measured speed (’Measured’).

once γi−tR(yi, ŷi, π(ŷi, yi)) < 10−20 or the amount of summands exceeds 500. The
performance gradient for the policy is computed by finite differences and is fed to an
LM optimizer instance with a maxnorm constraint to update the controller weight.
Gradients and state values are averaged over several initial states sampled from a
ringbuffer of the last 5000 augmented state vectors gathered from the plant.

To enable high precision trajectory tracking, this work proposes to pair the learning
feedback controller with an automatically designed feedforward controller with an
accompanying reference filter according to the two degrees of freedom controller
scheme [84, 11]. The popular flatness-based (see e.g. [52]) feedforward design re-
quires planning in the coordinate system of the system-dependent flat output (which
is unknown prior to model estimation), while stable inversion [170] constrains tra-
jectory planning. The proposed feedforward controller and filter are automatically
designed by combining a predefined Butterworth low-pass filter with an approx-
imate inverse of the learned model [21], allowing for flexible trajectory planning
in the output space at the cost of possibly suboptimal tracking performance. See
Fig. 3.15 for a schematic overview of the automated design process.

The following applies the z-transform to the ARX model, fixes artifacts of estimation
by correcting poles and filtering and applies approximate inversion.

The first step is to transform the estimated model (3.11) to the z-domain to yield the
transfer function G̃(z) and to divide the numerator in polynomials Nmp and Nnmp
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Figure 3.15: Schematic of autoamted MB feedforward (FF) design. The design procedure takes an esti-
mated ARX model of the plant as its input. It splits the numerator polynomial in stable and
unstable zeros and ensures precise matching of the integrator pole. Then, zero phase error
tracking control (ZPETC) is applied and a step of delay is added before inverting the modi-
fied model. A Butterworth filter completes the design.

with stable and unstable zeros55 respectively, i.e. zeros within/on and outside of the
unit circle.

G̃(z) =
∑n

i=0 θu,izi

1 − ∑n
i=0 θy,izi =

Nmp(z)Nnmp(z)
D(z)

. (3.13)

Since misestimation of the integrator can yield a feedforward with nonzero steady
state gain56, the pole (i.e. zero of D(z)) closest to 1 is moved to exactly one, yielding
D̃(z). To obtain a stable inverse, Nnmp is replaced with Ñnmp. It is constructed
according to the zero phase error tracking control (ZPETC) design (see e.g. [21])
using the zeros aj with j = 1 . . . deg(Nnmp) of Nnmp:

Ñnmp =
deg(Nnmp)

∏
j=1

(−az + 1), (3.14)

effectively projecting unstable zeros onto stable ones while preserving the stationary
gain. Ñnmp is delayed by one time step to ensure causality. This gives

Ĝ(z) =
zNmp(z)Ñnmp(z)

D̃(z)
. (3.15)

The feedforward design is completed by inverting Ĝ(z) and adding a butterworth
filter B(z) of order 3 (see [110]) with cut-off frequency57 1 Hz:

Fffw(z) = B(z)Ĝ−1(z). (3.16)
55 Since zeros in the numerator turn into poles when inverting the transfer function, zeros outside the

unit circle are considered unstable in this context.
56 This means a feedforward controller would still command an acceleration even if the target speed is

steady. Without a stabilizing feedback controller, this would cause the vehicle to continously accelerate
or decelerate.

57 Damping high frequencies in the feedforward design was introduced to limit wear on the variable
valve timing assembly. Experts from BMW recommended to avoid frequencies above 1 Hz in the
input to the drivetrain. In addition, damping high frequencies in the feedforward can help mitigate
artifacts resulting from erroneous model estimation.
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The accompanying reference filter results from cancelling out terms in

Fref(z) = Fffw(z)G̃(z). (3.17)

During learning, the parameters of the feedforward Fffw and the reference filter Fref
are adapted while they are running. With every update in parameters, their internal
state vectors become meaningless, and are therefore reinitialized as if the current tar-
get yt was their steady state to avoid the settling phase during driving. Appendix A.2
aims to give more detailed insight on this matter.

3.2.3 Summary

The proposed algorithm uses an estimated ARX model as a basis for designing a
feedback controller using policy search and a feedforward controller using approxi-
mate inversion. Learning from batches along with a (dynamic) maxnorm constraint
on the optimizer facilitate quick and noise-free learning purely from plant inputs
and outputs, allowing to learn from a partially observed plant. The automated feed-
forward design is implemented in a way that circumvents pitfalls from the model
estimation.

The proposed MB algorithm fits the scheme presented in Fig. 2.7: controller eval-
uation and data preparation are performed within the sample time ∆t while the
training containing model estimation and control design can be prolonged to bal-
ance performance limits against learning speed. This allows to run the algorithm
online on constrained hardware.

The next chapter compares the presented MB and MF algorithms in a real vehicle
across several experiment setups.
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In this chapter, the presented MB and MF algorithms are applied to a real vehicle to
demonstrate that the algorithms are capable to learn under real-world conditions and
constrained resources. It shows that they deliver consistent results robustly under
varying circumstances and points out limitations. The results reveal that the learning
process is fast enough for application in day-to-day engineering as convergence is
reached within minutes.

As a preparation step for the vehicle experiments, a simulation study presents sys-
tematic perturbations of important hyperparameters to visualize their influence and
gives an intuition on why the chosen hyperparameters are deemed sensible. After
that, a basic experiment setup for learning speed control in a real road vehicle is in-
troduced. This basic experiment is conducted multiple times to showcase robustness
and repeatability of learning process and result. Then factors of this experiment are
varied to assess the influence of external factors on the learning results and the in-
fluence of exploration noise on the learning process and the results. See Fig. 4.1 for
an overview. Throughout the presented experiments the results of MB and MF algo-
rithms are close, suggesting the learned results are bias-free or are similarly biased.
A part of the results have been published in [120].

4.1 Hyperparameter Choice

This section gives an intuition on the effect of hyperparameters on the behavior of
the MF RL algorithm presented in Section 3.1. It must not be misunderstood as a
strict proof for the optimality of the parameters chosen in our vehicle experiments.
This is mostly due to three reasons:

• Important criteria for tuning the parameters are hard or even impossible to
define formally. Variance during learning, for example, could be measured
in different ways and behaves differently between transient phases or close
to convergence. Another example could be learning speed that hinges on a
definition of convergence in the learning process and a (not clear) definition of
how far apart the initial parameter set and the parameters at convergence are.

• How good a hyperparameter set works depends on the system the algorithm
is applied to. Since the actual goal is to learn in a real vehicle, tuning hyper-
parameters on an example system can help find a set of hyperparameters that
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Figure 4.1: Overview of experiments. All experiments are variations of the baseline experiment in Sec-
tion 4.2. Variations of the conditions outside the algorithm are marked in shades of blue:
Subsequently, the disturbance level is varied by performing an experiment on a track consist-
ing of ramps and tight turns. Experiments at different speeds (and gears) are described in
Section 4.3 (dark blue). Experiments that vary components of the algorithm are highlighted in
shades of red: Exploration noise configuration is changed in Section 4.4 (dark red). The reward
function is modified in Section 4.5.1 (red) and a learning feedforward controller is added in
Section 4.5.2 (light red).
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works under these circumstances, but can not guarantee good performance in
the real-world experiment.

• Hyperparameters may compensate each other’s effect to some extent. This al-
lows to accomodate for side effects in some choices, but often makes it difficult
to choose one set over another.

The fact that hyperparameters are problem dependent and have a high impact on
the algorithm’s performance is known in the literature: RL algorithms may "require
a high dregree of human expertise" for tuning hyperparameters that fit new appli-
cations [168]. Ambiguos performance resulting from hyperparameter tuning has
sparked a debate on the reliability of performance baselines for algorithm compar-
ison [70]. Frameworks for tuning hyperparameters in RL have started to emerge
in recent years, e.g. [22, 70]. These frameworks aim to find a hyperparameter set
that optimizes performance in simulation in a black-box fashion. The following is
therefore intended to make the choices in this work plausible and serve as a guide
to interested readers with their hyperparameter tuning tasks.

Before presenting the results of our simulation study, this section introduces an un-
derstanding of bias, variance, speed and stability, which make up the (informal)
tuning goal. Then, the simulation experiment setup is presented and an overview of
the hyperparameters to be varied is given.

In contrast to many publications that limit themselves to pointing out the bias-
variance trade-off, this section tries to provide two additional facets to the discussion:
stability and speed.

In this context, variance is considered a measure of how much a learned parameter
fluctuates, especially (but not only) once learning has converged. This fluctuation
can be understood as how much a parameter differs across different training runs,
but also as oscillation or noise around a trajectory that leads the parameter towards
its convergence value over training time. Generally, the goal is low variance when
tuning hyperparameters. Variance can typically be traced back to the respective loss
function (including the data it is evaluated on) and its gradients as well as its inter-
actions with the function approximator. The optimizer (see Section A.1) can mitigate
or aggravate this effect depending on its type and configuration. In the experiments
multiple training runs are performed with each hyperparameter configuration. The
output controller has only one parameter in these experiments, allowing to mean-
ingfully visualize mean and standard deviation over training duration, which gives
an intuition of the variance in policy learning. For the critic, this approach would
not yield informative diagrams58, which is why this work resorts to plotting the TD
Loss (see Section 2.2.2) over training time. The TD error (2.12) is not a direct measure

58 Due to the high amount of parameters in a very similar range, plots of the weights over training time
result in overlapping graphs that are hard to read.
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of variance for the critic59, but its value tries to encode how unexpected the training
data is or how good the state transitions in the training data batch match the critic’s
value estimation60. For training the actor, the Deterministic Policy Gradient is used,
that, if inaccurate, can cause variance in the policy parameters. The gradient’s accu-
racy, in turn, relies on the quality of the state-action value function approximation.
The TD error can therefore be seen as an indicator for the precision of the gradi-
ent used for training the policy. Albeit having a large error margin, the TD error
can therefore be be taken as a hint of how much the Deterministic Policy Gradient
contributes to the variance in the actor parameters.

The following understands bias as the deviation of the learned parameter from the
optimal/desired61 parameter. Especially the latter definition does not allow to mea-
sure bias, since the optimal/desired value may not be available as it depends on
the state distribution (see Section A.5). However, it allows to consider the parame-
ters defining the optimization goal (e.g. in the reward function) as hyperparameters
affecting algorithm performance. For example, it might be a valid choice to devi-
ate from the actual learning objective to enhance learning behavior. Judgement of
bias from the presented experiments is therefore limited: hyperparameters may well
affect the optimal gain (e.g. by changing the observed state distribution), but also
skew the learned policy directly. To some extent, this can be seen by comparing the
performance of different hyperparameter sets, but it is difficult to factor in the effect
of the state distribution. The effect of the state distribution is therefore included in
this work’s definition of bias, allowing to infer a parameter’s influence on bias by
the difference in learned controller gains between tested configurations. The goal is
to limit the amount of bias through hyperparameter choice where possible.

This work’s understanding of stability is how prone the algorithm is to (catastrophic)
failure during learning, i.e. divergence of the learned controller parameters. While
in most cases stability is adversely affected by variance, this section points out that
some hyperparameters pose exceptions to this, thus confirming the need for this
additional perspective. Stability is measured by the relative frequency among exper-
iment rollouts with state vector norms that exceed a large threshold62. Stability is
of utmost importance for real-world applications. If a hyperparameter threatens to
introduce instability it is tuned in a conservative fashion.

In the following, learning speed is the inverse time necessary for the learning process

59 Changes of the TD error between learning steps can be due to noise in the parameters, too. However,
there may also be other reasons, such as sampling of different batches.

60 A vanishing TD error would only be achieved if the state-action value function had been learned to
perfection and the environment is noise-free.

61 This work treats some of the hyperparameters that define the optimum as tunable. Modifying them
therefore leads to a deviation from the desired optimum, but may facilitate learning. The then-optimal
learned parameter set may thus differ from the desired optimum which is considered bias according
to the understanding in this work.

62 Once a simulation crosses the threshold it is terminated immediately. In the plots given in this section
we only include the parameters learned in this run only up to the point the threshold was crossed.
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to converge. This can be looked at from multiple angles: in real-world applications
computation time for a learning step plays an important role, as does the waiting
time for filling the experience storage or optimizer performance. Another aspect in-
fluencing this notion of speed is the definition of convergence, loosely understood as
steady state or plateau63 in the policy parameter. Additionally, the amount of neces-
sary training steps or computation time may depend on how far the starting point
is from convergence, i.e. how far the parameter set the algorithm was initialized
with and the parameter set at convergence are apart. Unfortunately, these concepts
are not unambiguously and accurately measureable, which is why any verdict is
based on experience and the comparison of example training runs. The comparison
of learning speed is therefore limited to cases where the differences in how fast a
plateau is reached are visible in the plot of the controller gain. For real-world ap-
plications speed is very important, since exploration causes wear on the plant and
induces experiment cost.

The following simulation study aims to showcase the influence of important hyper-
parameters on the four goals variance, bias, learning speed and stability. For this,
it systematically varies the hyperparameters used in the vehicle experiments (with
exception of the learning interval, see Table A.1), set E, and applies the resulting
algorithm to the example system (1.3). For each configuration, 10 training runs are
performed. The training process terminates after a simulated duration 200 s or if
the norm of simulated state vector exceeds a threshold of 104 to catch severely un-
stable (i.e. rapidly diverging over a sustained period) controllers. The majority of
the plots in the following are averaged over 10 training runs and we mark the inter-
val of 1 standard deviation around the average in each. Where averaged results are
presented, training runs that are prematurely terminated are subsequently excluded
from the averages.

See Fig. 4.2 for an overview of the parameters varied in the simulation study. Albeit
the example system 1.3 mimics the real vehicle’s behavior reasonably well through-
out most cases, a few exceptions were observed. We therefore comment the results
with our experience from the trial runs in the real car in mind.

The complete results of our simulation study can be found in Appendix A.3. Here,
we limit ourselves to giving the example of the discount factor and provide a tabular
summary.

Discount Factor γ While the present use case values present and future rewards
equally (see Section 2.2.2), in RL it can be beneficial to set the discount to a value
lower than 1. Discount close to 1 decreases stability64, increases variance (see TD

63 While detecting a plateau is feasible with a criterion, this criterion would need to be adapted due to
the different levels of variance across experiments and over training time. An exact comparison is
therefore not possible.

64 Stability was not affected in the simulated experiments, but occasionally diverging controller gains
have been observed with a discount factor of γ = 0.95 and higher.
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Figure 4.3: TD error and actor gain for multiple discount factors γ averaged over 10 training runs and
their respective standard deviation intervals. While a discount factor γ = 1 is considered ideal
in this work, this would induce infeasible variance levels in the policy gradient, as can be seen
by the TD error increasing with the discount factor. However, lower discount factors yield
lower actor gains which translate to controllers that are less aggressive. This can be seen as
bias with respect to the intended controller. The discount factor γ therefore epitomizes the
bias-variance trade-off in RL. Training only begins after the first 100 s since state transitions
from this period are used to fill the experience storage.
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discount γ 0.7 0.9 0.95 ↘ ↗ ↘
reward parameter Cu 0.01 0.05 0.2 ↗ ↘ ↗
actor maxnorm gmax,act 0.001 0.1 10 ↘ ↗ ↗
critic maxnorm gmax,act 0.01 0.1 1 ↗ ↗ ↘ ↗
critic target update rate τ 0.025* 0.1 1 ↗ ↗ ↗ ↗
batch size b 15 150 300 ↗ ↘ (↘)
steps for backup nTD 1 2 5 ↘ ↗ ↘
experience storage size bst 150 1000 5000 ↗ ↘ (↘)
FIR filter length uu 25* 35 45 (↗) (↘) (↘) (↘)
exp. noise amplitude νu 0.05 0.5 5 ↗↘ ↗↘ ↗ ↗
exp. noise sample time ∆texp 0.02 s 1 s 4 s ↘↗ ↘↗
virtual trajectory noise νp 0.005 0.5 5 ↗ ↗ ↗
env. noise νy 0 0.001 0.01 ↘ ↗ ↗ ↘
env. time constant Tacc 0.02 0.1 0.35 ↘ ↗ ↘

Table 4.1: Overview of hyperparameter influence observed on simulated environment. Each parameter
was varied in at least three steps. An asterisk (*) marks that a fourth value has been tested.
The arrows mark how an increase over the given range of the respective hyperparameter would
affect stability, variance, bias and speed. Desired effects are marked in green, undesired ones in
red. If no clear effect is visible, the respective cell is left grey without an arrow. For ambivalent
effects, e.g. an increase at first and a decrease later, two arrows are drawn, and for weak effects
the arrow is put in brackets.

error65 and actor gain in Fig. 4.3) but can be seen as decreasing bias (see actor gain
in Fig. 4.3). This is in line with other research that considers discount as a form of
a regularizer [5] and suggests to progressively increase it during learning [41]. In
the vehicle experiments the discount was chosen below 1 to accomodate for other
sources of variance, e.g. from the environment. From the graph, little difference in
learning speed can be seen: the actor gains stabilize between 110 s and 130 s. The
graph suggests a minor tendency of slowing learning by increasing the discount
factor, but the increase in variance towards higher gains prevents such a conclusion.
The chosen discount value of 0.9 leaves a margin to select other hyperparameters
affecting variance aggressive enough to allow for fast learning.

Table 4.1 summarizes the intuitions on hyperparameter and noise influence on the
learning process. Each row describes how an increase of the respective parameter
affects stability, variance, bias and speed. The desired effects are coded in green, and
undesired effects are marked in red.

65 Discount has impact on TD error since it dampens approximation error for future rewards in the
Bellman equation.
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Figure 4.4: Test vehicle based on a BMW 740Li [17, 18] used for online training. It is equipped with
a dSpace Autobox that runs our proposed algorithm online, closed-loop and in real time. It
accesses controllers for chassis/brake and powertrain via in-vehicle bus systems.

With the choice of hyperparameters in place66, we embark on our vehicle tests in the
next section.

4.2 Baseline Experiment

The vehicle tests begin with a standard experiment that shows the fitness of the
presented approaches to this application and serves as a baseline to benchmark the
effect of variations later. This section describes the vehicle setup, track and standard
experiment before giving an overview of the results.

4.2.1 Setup

The experiments are carried out using a test vehicle based on a BMW 740Li [141] (see
Fig. 4.4).

The drivetrain consists of a 3.0 L inline six cylinder petrol engine with maximum
power output of 240 kW and 450 N m of torque. It is equipped with a TwinScroll
turbocharger, Valvetronic and VANOS for variable valve timing and lift. The vehi-
cle is driven through an 8 speed automatic transmission and rear wheel drive. In
the presented experiments the vehicle is operated at the upper end of the permissi-
ble weight of 2445 kg with co-driver, driver and an electronics rack installed in the
luggage compartment (see Fig. 4.4).

66 In Appendix A.4 several sets of hyperparameters are given. Despite their similarity, we use several
sets in the following vehicle experiments since the experiments were carried out over several measure-
ment campaigns. It is our goal to keep the experiments comparable and refer to the corresponding
hyperparameter set for each experiment. Since this work aims at comparing two different algorithm
architectures, these are tuned to work with comparable hyperparameter sets, but may only reach their
full potential if this constraint is lifted.



4.2 Baseline Experiment 71

It is equipped with a dSpace Autobox [29] containing a dSpace DS1007 PPC Processor
Board67 [30] that is connected to in-vehicle bus systems. Through these it has ac-
cess to controllers for the drivetrain which are used to command torque requests
from brakes and powertrain. These commands are executed using feedforward con-
trollers. The vehicle speed is estimated based on wheel speed sensors and available
through an in-vehicle bus signal in a quantized form with little noise and delay.
Delays affecting data transferred over the in-vehicle bus systems are negligible. Pro-
gramming, monitoring and evaluation is done via a second computer accessing the
dSpace Autobox via Ethernet.

The dSpace Autobox replaces a factory-installed vehicle controller in the vehicle net-
work and provides the interface to the proposed algorithms (see Fig. 1.2):

• It provides the algorithms with inputs, i.e. control targets ŷ (including preview,
if applicable), measured speeds y and configuration or activation signals.

• It features a low-level controller that accepts the algorithm’s output com-
manded acceleration u and allocates it to feedforward subcontrollers for pow-
ertrain and brakes via bus systems, making use of engine drag torque and
ensuring steady-state accuracy of acceleration. This includes steady-state com-
pensation of resistances. Commands to the powertrain are filtered for high
frequencies to prevent excessive wear on the variable valve timing and lift as-
sembly.

Both algorithms are split in two steps that are run in separate tasks on the dSpace
Autobox (see Figs. 3.12 and 2.7):

• The controller evaluation/data preparation step is called every 20 ms. It com-
putes the controller output u from controller target ŷ (and preview, if applica-
ble) and measured speed y. Also, it stores the experienced state transitions in
the experience storage and provides batches of experience to the learning step.

• The learning step is executed every 600 ms to update model and controller or
critic and actor, respectively.

Except where stated otherwise all our learning experiments are performed on a
1.4 km long, mostly level and straight road. The car is manually accelerated to be
close to a target speed of 20 km h−1 in second gear, then the controller and learning
process are activated simultaneously68. Near the end of the road the controller is de-
activated, the car is turned and again accelerated to a speed close to the target speed

67 At the time of experiment preparation, the hardware used was among the most powerful real-time
capable boards rated for in-vehicle application. Future work may harness the performance available
through more recent hardware.

68 Since both presented algorithms are off-policy and the idea of virtual targets has already been in-
troduced, it seems a natural extension left as future work to gather data from manual operation of
the vehicle and tune the controller in the background. This offline training setting poses the risk of
driving the system in areas of the state-space that have not been observed before, but this topic has
been adressed in the literature recently, see e.g. [26].
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Figure 4.5: Progression of the output feedback gain during four training runs in the default experiment
setup: two with MB and two with MF learning algorithm. The initial slope of the learning
curves is limited by the maxnorm constraint. Both configurations converge to similar results
after a few minutes while keeping a certain amount of variance after convergence.

manually, then the controller and learning process are activated again. The learning
process idles until the experience storage is filled to capacity. The experiments run
until a total of 1500 s of combined time for filling the experience storage and learning
have elapsed.

The baseline uses exploration noise added to the controller output that is sampled
from a uniform distribution between νu = 0.5 m s−2 and −νu every tnoise = 1 s.
While the controller is active, the control target varies in 1 km h−1 steps around a base
speed69 of ¯̂y = 20 km h−1 every 1.5 s in a regular pattern for additional excitation (see
Fig. A.19). For a complete overview of hyperparameters in the baseline experiment
see Table A.1, set E, for the MF algorithm and Table A.2 for the MB algorithm.

4.2.2 Result

The results of two rollouts with MB and MF algorithms each are shown in Fig. 4.5.
All four runs exhibit an almost linear slope at the beginning of the experiment, where
the optimizer is limited by the respective maxnorm constraint. The MB algorithm
has a stricter constraint, which slows the MB algorithm down more than the MF

69 The speed was chosen to reflect average driving speeds in urban areas [7]. It has an additional benefit
for safety and practicability. At low speeds a trained driver can swiftly return to a safe state even
in case of extreme unexpected controller outputs. High speeds have the additional disadvantage of
resulting in longer distance driven, requiring either a more extensive test track (with potentially more
variance in the environment) or more frequent turns.
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algorithm. After around 120 s the MF algorithm reaches its steady state with its
controller gain oscillating around 0.5. The MB algorithm takes around 300 s to reach
a steady state, again around a controller gain of 0.5. In their steady state, both MF
and MB algorithms exhibit some variance with gains70 oscillating between 0.4 and
0.55.

These results show that both algorithms can repeatably learn under real-world con-
ditions. With convergence reached below 2 min and 5 min respectively, both MF and
MB algorithm are relatively fast71. The learned gains are in the same area, suggesting
that either both have the same or no bias.

These results suggest that tuning a speed tracking controller using both proposed RL
approaches is feasible, since both converge to similar values. With hyperparameters
chosen to be comparable, this is in line with our expectations. The differences in the
trajectory of the controller parameter at the beginning of the experiment result from
a stricter maxnorm constraint on the MB algorithm, which is necessary to ensure
stability of the learning process. Still, a significant amount of variance remains even
once learning reaches a steady state for both algorithms.

Both convergence speed and variance in steady state can be influenced by optimizer
tuning, but are conflicting goals. A decaying maxnorm constraint can help alleviate
this. The minimum maxnorm was intentionally kept at nonzero levels even after
convergence to avoid premature stopping and prove that the algorithm converges on
its own72.

The experiment was performed in a controlled environment, yet some factors still
add variance: minimal differences in road grade, slight steering corrections and
different initial conditions after activation of the controller contribute to variance.
However, these influences are expected be minor since they should be averaged out
by sampling learning data from a comparably large experience storage.

To gain an intuition on strategies to optimize rewards, experiments using different
gains without exploration noise were performed. While these considerations are not
sufficient to scientifically prove the RL algorithm’s choice, an interested reader can
find them in appendix A.6.

With the feasability shown and the baseline established, the next experiments vary
a few important factors in the experiment setup to examine the robustness of the
proposed algorithms to different scenarios.

70 The learning result matches the gain θc = 0.5 tuned by an expert engineer according to the subjective
rating scale referred to in section 1.2.3.

71 Convergence speed is influenced by convergence speed of the algorithm and computation time. The
former depends on algorithm design (see chapters 2, 3 and appendix A.1). The latter is a mixture of
algorithm design decisions like neural network architecture (see sections 2.1.2 and 3.1.1) and batch
size (see appendix A.3.2).

72 See Appendix A.3 to get an intuition on how the maxnorm affects learning in a simulated example.
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Figure 4.6: Training runs at target speeds of ¯̂y = 10 km h−1 with a variation of ±1 km h−1 in first gear,
¯̂y = 20 km h−1 with a variation of ±1 km h−1 in second gear and ¯̂y = 30 km h−1 with a variation
of ±1 km h−1 in third gear for MF and MB algorithm. At the lowest speed the learned gain is
slightly lower at around 0.4 compared to the gain learned at ¯̂y = 20 km h−1 and ¯̂y = 30 km h−1

which is 0.5. The gains for MB and MF algorithm converge to similar gains at each speed,
respectively. The evolution of the gains is qualitatively similar, which suggests that the algo-
rithm is capable of learning throughout the tested speed range.

4.3 Effect of Conditions on Learning and Result

Vehicle dynamics is a composite of complex powertrain dynamics and resistances.
This section shows that the controller is able to adapt to the different dynamics
throughout the operational range of the vehicle by testing it at different speeds and
in a scenario with a high disturbance level.

The set of experiments varying speeds relies on mostly the same setup as the baseline
experiment: test vehicle, track and algorithm are identical. Instead of using target
speeds from the interval of 20 km h−1 ± 1 km h−1, the base speed was changed to
10 km h−1 and 30 km h−1 respectively. This reflects common speeds in urban areas [7]
and puts the learning algorithm to the challenge of near-standstill vehicle dynamics
on the one hand and tests its applicability to intermediate speeds on the other.

Fig. 4.6 shows the progression of the learned gain during training runs at different
target speeds:

• At speeds around ¯̂y = 30 km h−1 with a variation of ±1 km h−1 in third gear
the learning results are similar to the results for ¯̂y = 20 km h−1 with a variation
of ±1 km h−1 in second gear for both MB and MF algorithms73.

73 This seems plausible since the powertrain is likely powerful enough to provide a similar acceleration
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Figure 4.7: Test track and path used for learning experiment with disturbances (modified from [49]). Dur-
ing learning, the vehicle was repeatedly driven over a hill with slopes of 12% and 16% and
turned after passing over it. After each pass the vehicle was turned with maximum steering an-
gle to stay within the paved area. Thight turns and slopes act as disturbances on longitudinal
dynamics. Since these disturbances affect the vehicle only briefly, the steady-state compensa-
tion in the low-level controller can only partly compensate them. The path repeatedly driven
during experiments is marked in yellow.

• ¯̂y = 20 km h−1 with a variation of ±1 km h−1 in second gear is from the baseline
experiment presented above.

• Training at ¯̂y = 10 km h−1 with a variation of ±1 km h−1 in first gear results in
a slightly lower gain around 0.4 for both MB and MF algorithm.

The evolution of the gains is similar to the learning process in our default configura-
tion, suggesting that the algorithms are both capable of learning at different speeds74.
The lower gains for the low speed experiment may be due to nonlinear adaptation
of the low-level controller for parking applications or temporary disengagement of
the torque converter75 between engine and automatic gearbox.

The next experiment aims to prove the algorithms’ robustness towards external dis-
turbances. It uses the same vehicle setup as the baseline experiment, but is performed
on a track with slopes up to 16% and tight turns without deactivating the controller.
An aerial of the track with the path driven during the experiment is given in Fig. 4.7.
Due to the frequent changes in disturbance the steady-state compensation of dis-
turbances in the low-level controller can only partly counteract them, requiring the
to-be-learned controller to compensate.

Fig. 4.8 shows that both MB and MF algorithm deviate from their behavior the base-
line experiment: The MF algorithm initially has a similar initial slope, but gradually

behavior at both 20 km h−1 and 30 km h−1. This may change at very high speeds, which were not
tested in this work for safety reasons.

74 The learned controllers could conveniently be combined in a gain-scheduling fashion to provide a
single controller with a wide range of operation. This is left for future work.

75 A torque converter is a hydraulic component used between a combustion engine and an automatic
transmission. It allows the engine to idle while the car is stopped in gear, boosts engine torque at
very low speeds and behaves similar to a (dampened) solid connection at higher speeds. In modern
powertrains the torque converter is either replaced by automated clutches or equipped with a clutch
that can bridge the torque converter to avoid losses at higher speeds [101, Section 6.3.4, pp. 111].
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Figure 4.8: Comparison of evolution of output gains during training under different disturbance condi-
tions. The baseline experiment, performed on a straight, even road is compared to learning
while repeatedly driving over a steep hill. In the latter case neither learning nor controller
were deactivated during turning, resulting a scenario with heavy disturbance. Both MF and
MB controller learn a higher gain76.

climbs towards higher gains and is close to 0.7 at the end of the experiment76. The
MB algorithm shows some variance from the start. The plot of the gain shows more
pronounced interruptions of the downward trend. After around 500 s the gain is
around 0.7 and stays there until the experiment is terminated.

Since the optimal output controller gain depends on the scenario, this behavior is in
line with our expectations.

This shows that the algorithms are capable of learning even in scenarios with fre-
quent and strong disturbances, i.e. in less controlled environments.

4.4 Effect of Exploration Noise on Learning and Result

The choice of exploration noise not only affects the learning result by choosing which
part of the system dynamics are exposed as a consequence of excitation but may also
influence the distribution of experienced states (see Section 2.2.5). Two variations of
the baseline experiment are therefore conducted, in which amplitude and distribu-
tion of exploration noise are varied, respectively. These experiments show that MB
and MF algorithms react differently to variations of exploration noise. While both

76 The experiment had to be terminated earlier due to limited availability of the proving grounds.
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Figure 4.9: Training runs with different amplitudes of exploration noise. The training runs with explo-
ration noise amplitude 0.25 m s−2 tend to slightly higher gains on the MF algorithm than the
training runs with amplitudes 0.5 m s−2 and 0.75 m s−2. In these cases MB and MF converge
to similar values around θc = 0.5.

algorithms are susceptible to amplitude variations, especially the MF algorithm is
sensitive to the distribution.

The first variation of the baseline experiment changes the amplitude νu of the ex-
ploration signal added to the controller output. The baseline experiment uses
νu = 0.5 m s−2, which is lowered to νu = 0.25 m s−2 and increased to νu = 0.75 m s−2

respectively. Values beyond this range were not deemed feasible77: Large ampli-
tudes can result in commands that cause the vehicle to stop or strongly increase the
engine speed if the controller allows too high of a deviation from the target speed.
Additionally, exploration noise amplitude controls how much sudden changes in ac-
celeration are magnified, which result in wear on the engine. All other aspects of the
experiment setup remain unchanged compared to the baseline experiment.

The results are shown in Fig. 4.9. In the presented scenario the MF algorithm learns
gains around 0.7 when run with a maximum amplitude of νu = 0.25 m s−2. The MB
algorithm returns a learned gain around 0.5 in this case. Increasing the exploration
noise amplitude to νu = 0.75 m s−2 yields gains around 0.5 for both algorithms.

In comparison to the learned gain in the baseline experiment, learning with the
lowered exploration noise amplitude yields a higher gain, while the gain learned
using an increased exploration noise amplitude is similar to the one learned in the
baseline experiment.

77 More extreme choices are presented in a hyperparameter study based on simulation in appendix A.3.4.
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Figure 4.10: Training runs with different kinds of exploration noise. While the MB algorithm converges
around θc = 0.5 with all tested variants of exploration noise, the MF algorithm is more
sensitive to the choice of exploration noise type. The training run with rectangular noise
reaches a lower convergence value around θc = 0.3 while the run using parameter noise does
not converge within the experiment duration.

The experiment shows that the presented MF algorithm is susceptible to changes in
exploration noise. This may be due to the differences in policy search: the MF algo-
rithm optimizes its controller in noise-free simulated rollouts of its learned model.
Changes in observed state distribution due to exploration are therefore not reflected
in this process.

In a second variation of the baseline experiment the exploration noise distribution
is changed. Again, all other factors are kept the way they are in the baseline ex-
periment. In addition to the uniform distribution used in the baseline experiment
a rectangle signal and parameter noise were used as exploration signal. The sam-
pling interval of the exploration noise was not varied to avoid damage to the variable
valve timing assembly due to high frequency. Appendix A.3.4 shows the effects of
this variation in simulated experiments. See Section 2.2.5 for more information on
exploration noise.

The presented MB algorithm seems to be more robust against different choices of
exploration noise, with all configurations converging to matching gains as shown
in Fig. 4.10. The MF algorithm exhibits large variance when paired with parameter
noise, with its parameters oscillating over a large range of values (not depicted) or
converging to slightly different values when combined with rectangular noise.

Exploration noise seems to be a sensitive influence on the MF algorithm, less so on
the MB algorithm. We expected the optimal gain to be influenced by the exploration
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noise, since the optimal output control gain depends on the initial state for the opti-
mization. The optimization of the MB controller gain results from simulated rollouts
starting from observed initial states. In contrast, the MF algorithm solely relies on
observed data. The distributions of simulated and experienced states may differ,
with the simulated data not corrupted by exploration noise. This may explain the
difference in sensitivity towards exploration noise.

4.5 Extensions

With a modification of the proposed algorithms it is possible to include the com-
manded jerk as an additional measure for comfort in the reward function. Learning
then results in a slightly lower controller gain for the MB algorithm, but fails to con-
verge under the MF algorithm. The MF algorithm is extended to learn an optimal
feedforward using preview (introduced in Section 3.1.2) and the MB algorithm is
enabled to learn an inversion-based feedforward (introduced in Section 3.2.2).

4.5.1 Including Commanded Jerk in Reward

As proposed in Section 1.2.3 a variant of the proposed algorithms includes com-
manded jerk in the reward function to better reflect common measures for passenger
comfort for longitudinal dynamics. With the reward function changed accordingly,
both algorithms undergo an experiment with all other factors equal to the baseline
experiment.

Fig. 4.11 shows that both algorithms learn a slightly lower gain compared to the
baseline experiment. The MF training run yields a gain around 0.4 which is close to
the result of the baseline experiment.

The difference in behavior may again be due to the different distributions the con-
trollers are optimized with: the MB algorithm relies on simulated rollouts starting
from observed initial states while the MF algorithm purely works on observed state
vectors. Since exploration noise increases jerk in the recorded data, but is not present
in simulated rollouts, the resulting controller gains may differ.

Generally, it seems plausible that the added penalty for commanded jerk pushes
the balance between controller output and tolerated control error towards higher
potential control errors which can be achieved by lower controller gains compared
to our baseline experiment.
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Figure 4.11: Training including commanded jerk. Both algorithms converge to a lower gain than when
trained without jerk with the MF algorithm exhibiting little difference to the baseline experi-
ment.

4.5.2 Learning Feedforward

The experiment presented in this section varies the target speed over a range of
speeds. The feedforward extensions to MB and MF algorithms are applied, respec-
tively, and it shows that while they still converge they enhance the ability of the
learned controller to follow the target profile.

As stated in Section 1.2.2, this work considers feedforward control as an additional
component of the controller that enables better tracking of a changing reference
value. See Sections 3.1.2 and 3.2.2 for the implementation of MF and MB feedforward
algorithms, respectively.

In the experiments presented in this section the control target changes according
to a repeating profile consisting of a sinusoid with its value held constant at its
extremes78, see Fig. 4.14. This maneuver79 covers target speeds ranging between
10 km h−1 and 25 km h−1 and is therefore performed with automated gear shifts be-
tween first and second gear. The gear changes occur around 15 km h−1 and since
they are neither directly influenced nor observed by the algorithm, the algorithms
perceives them as change in the plant dynamics.

78 Note that the factory controller requires differentiable trajectories and includes a position control loop
and therefore cannot be compared to the learned result.

79 The influence of the target trajectory on the presented algorithms is an unexplored avenue for research
open for future work. Driving cycles like the WLTP [151] provide scenarios that are more prone to
what a consumer vehicle experiences, and the learned controllers would likely be optimal in these
driving use cases.
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Figure 4.12: Controller gains during training MF with (marked as "ff") and without feedforward (marked
as "fb"). In the experiments the MF algorithm uses a projection on a reference polynomial
of order 1 (marked as "PO1") for learning feedforward. In this case, since two coefficients
(constant an linear) of the reference polynomial serve as inputs to the policy, two gains are
learned, where the on weighting the linear term accounts for the feedforward component. The
feedback-only case uses a projection on a constant polynomial (equivalent to no projection
at all) and is therefore marked as "PO0". The convergence values for the feedback gains
are similar in both cases, albeit higher than in the default scenario with rectangular target
variation.

The hyperparameters for the MF algorithm for this experiment are given in Table A.1,
set D, in the appendix80; the MB algorithm is used in its default configuration but
with the added inversion-based feedforward. See Table A.2 for hyperparameters.
The vehicle setup and track are identical to the baseline experiment.

Fig. 4.12 shows that the MF algorithm learns higher feedback gains than with the
default target speed variation (see Section 4.2), yet converges with similar variance
independently of a simultaneously learned feedforward. The MB algorithm behaves
similarly as in the default case: the initial slope for the controller gain is equally
limited by the maxnorm constraint. In the steady state it exhibits a similar amount
of variance as in the feedback-only baseline experiment. The learned feedback gain
matches the feedback gain of the MF algorithm as Fig. 4.13 shows81.

The learned controllers are tested to track the sinoid maneuver without exploration
noise; track and vehicle are identical to the baseline experiment.

80 This experiment is part of an earlier campaing published in [81], relying on a different set of hyper-
parameters.

81 The feedforward gains are not depicted because of the large number of coefficients and different value
range.
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Figure 4.13: Feedback gains during training of MB algorithm with and without feedforward. The learning
progresses in a similar way as in the default scenario, yet the learned gains converge at higher
values around 0.7 for both cases.
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Figure 4.14: Trained controllers with and without feedforward following the reference maneuver without
exploration noise. Both approaches to feedforward learning outperform the feedback-only
variants as they significantly reduce lag. The MF feedforward variant is more aggressive than
the MB feedforward.
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Both approaches yield an improvement in tracking performance as Fig. 4.14 shows82.
The manuever is performed with less lag by both learned feedforward controllers.
The MF controller allows the vehicle speed to lag behind the target more than the
MB controller does. However, the latter controller makes the vehicle speed overshoot
at the end of the acceleration phase. As the MF feedforward is designed to optimize
the reward, it trades accuracy for reduced controller outputs. This is contrast to the
MB controller, which is designed to track the target as closely as possible.

Both algorithms provide viable options for learning feedforward control and increase
tracking performance in our experiment. This work is among the first ones exploring
tracking control using RL in a real-world application. It could be an interesting field
for future research to examine the influence of the trajectory during training on the
learned feedforward controller.

82 When training artificial neural networks it is generally avoided to measure the performance of the
trained network on the data it was trained on since this would encourage overfitting to the training
data, i.e. hamper generalization ability [48, Section 5.2]. This work adheres to this principle, too: While
the planned trajectory was the same during learning and evaluation, the trajectory the algorithm
learned from significantly differed between training and evaluation due to the addition of virtual
trajectory noise (see Section 3.1.2) and exploration noise during training.





5 Discussion and Conclusion

This chapter glances over the proposed algorithms from Chapter 3 and the experi-
ment results from Chapter 4. We interpret them and use them to answer the research
questions from Chapter 1, point out limitations and finish with a few suggestions for
future work.

This work set out to answer three main research questions in Section 1.4, which we
re-state here for convenience:

1. How can optimal speed tracking controllers be learned? For this, the capabili-
ties of RL have to be expanded to tracking control and online learning in a real
vehicle.

2. How do MB and MF methods compare in this task?

3. How can a feedforward controller be learned in an RL framework?

To adress these, this work proposes two approaches to RL for speed tracking control
in a real vehicle. These have to overcome specific challenges that result from the
intended application (see Section 2.3): tracking control using RL, a partially observed
plant, constrained computational resources, limited learning time and fitness for real-
world application.

The proposed MB algorithm is based on a combination of a learning ARX model and
policy search. An additional automated feedforward design is based on approximate
inversion. The ARX model is estimated from vectors of current and past plant inputs
and outputs, which works on the partially observed plant. With a limited number
of parameters and a linear model structure the computational effort for parameter
estimation is limited. The computational load for the simulation-based controller
design can be matched with the available resources depending on batch size and
update frequency.

Additionally, this work proposes a MF algorithm based on the actor-critic architec-
ture employing a critic network architecture taylored to a class of partially observed
plants that are common in control applications. The MF algorithm is extended with
a target compression method that allows to learn an optimal feedforward controller
using common actor-critic architectures.

In contrast to prior work that was mostly based on simulation, this work success-
fully applies both algorithms to a real vehicle for online, closed-loop learning. In
the presented experiments both algorithms have proven to perform under various
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conditions. These include variations of speed and gear, strong disturbances, differ-
ent kinds of exploration noise and the reward function. Both algorithms consistently
converge in an array of experiments, learn a feedforward controller and yield similar
results except for the experiments varying exploration and reward signal.

These extensive real-world tests prove that both approaches are valid solutions for
learning optimal speed tracking controllers. The results suggest that the proposed
MB algorithm tends to be slightly more robust, e.g. to different kinds of exploration
noise or discount levels while the MF algorithm converged more quickly. This may,
however, be due to our choice of hyperparameters.

When it comes to feedforward control, again, both approaches are viable. However,
from an engineering perspective an ideal feedforward, i.e. ideally inverting the plant,
may be preferred over an optimal feedforward, i.e. balancing cost of deviation from
target against control effort, since the target trajectory is likely already optimized
during planning.

By enabling online learning in a real vehicle, this work is a step forward for RL re-
search and control theory. The proposed algorithms have proven to work well within
the constraints of computational resources, time and real-world experiment condi-
tions. With these additions to the state of the art, it overcomes several limitations
that prevented RL from being applied to tasks outside simulated examples. Algo-
rithms of this capability can take the tedious controller tuning work off an engineer’s
shoulders.



A Appendix

A.1 Optimizer

Several algorithms have been presented to solve optimization problems. This section
quickly goes over the most popular gradient-based algorithms and introduces the
Levenberg-Marquardt algorithm that is used throughout this work. At the end of
this section we present step size limitation, an extension that can be applied to most
optimizers.

Gradient Descent Gradient descent is a basic iterative optimization algorithm that
consists of taking steps ∆θt in the opposite direction of the gradient dL/dθ, often with
a step size proportional to the gradient norm:

∆θt = −α∇L
∣∣
θt

. (A.1)

Here, t is a discrete index denoting the optimization step. The scalar α is commonly
referred to as learning rate. The subsequent parameter estimate θt+1 consists of the
old estimate θt and the gradient step ∆θt:

θt+1 = θt + ∆θt. (A.2)

This algorithm depends on the hyperparameter α. A too small choice may require
many optimization steps and therefore slow convergence, while a too high value can
make the optimization process divergent, i.e. diverge from the optimum. The effect
of the parameter depends on the optimization problem. Stochastic optimization may
make the algorithm behave erratically if the gradient is affected by noise. In ideal
conditions83, gradient descent can solve problems that are linear-in-parameters in a
single step and is therefore considered a first-order optimization technique.

Gradient Descent Based Algorithms The downsides of gradient descent were
adressed by two extensions to the algorithm:

• AdaGrad [31],[48, Section 8.5.1] and RMSProp [48, Section 8.5.2] try to choose
an individual learning rate for each entry in the gradient vector, therefore
alleviating slow learning while avoiding divergence as far as possible.

83 Ideal conditions include optimal choice in step size, noise-free and non-stochastic optimization.
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• Momentum [121], [48, Section 8.3.2] is a popular technique to enhance robust-
ness to noise in the gradient and local optima using a running average over
past parameter steps.

Both techniques are combined in the popular adaptive moment estimation (ADAM)
[76], [48, Section 8.5.3] optimizer. It counters the shortcomings of gradient descent
optimization to some extent at low computational cost and is therefore considered
state of the art in machine learning applications.

Second Order Optimization While ADAM may exhibit performance beyond reg-
ular first-order optimization, in some cases second-order optimization may still out-
perform it [48, Section 4.3.1]. Second-order optimization is based on Newton’s
method which relies on a second-order Taylor series expansion of the loss function
to compute the parameter update ∆θt.

The GauÃŸ-Newton algorithm makes use of the fact that for least-squares loss func-
tions the required Hessian for the approximation can be constructed using the Jaco-
bian [39].

The Levenberg-Marquardt (LM) algorithm [105], [48, Section 8.6.1] adds regulariza-
tion to the (GauÃŸ-) Newton step, effectively scaling between (GauÃŸ-) Newton step
and (small) gradient descent steps:

∆θt = −
[

J⊤L JL + λI
]−1

∇L
∣∣∣∣
θt

. (A.3)

The regularization factor λ is adapted in accordance with the success of the last
step in the optimization: if the loss increases, the step is discarded, λ is increased
(decreasing the step size and making the step more prone to a small gradient descent
step). If the loss decreases, the step is accepted and λ is decreased, making the next
step closer to a GauÃŸ-Newton step.

The matrix inversion is expensive for large matrices, but may be feasible for applica-
tions with a comparably low number of variables to optimize.

An example for the behavior of exemplary implementations of the presented op-
timizers is given in Fig. A.1, where they are applied to the difficult to optimize
Rosenbrock function. The figure shows that second order optimizers converge to a
proximity of the optimum in significantly less steps.

Step Size Limitation Erroneous gradients may lead to misguided optimizer steps
in stochastic optimization84, introducing variance in the optimization process. In the
worst case a single (possibly large) erroneous step may cause the entire optimization

84 This may be an effect of unfortunate sampling of minibatches from noisy data.
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Figure A.1: Example for trajectories of optimization algorithms finding the minimum of the Rosenbrock
function [125]. While gradient descent with a learning rate of 0.0005 is not divergent in
this example, it takes 8225 steps to get within a radius of 0.05 around the optimum at

(
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)
.

Newton’s method and Levenberg-Marquardt both converge in less than 10 iterations.

process to diverge. A possible countermeasure could be to limit the maximum step
size an optimizer is allowed to take. While other methods exist, in this work we
rely on norm clipping [111], i.e. we rescale the step ∆θt if its norm |∆θt| exceeds a
threshold gmax to gmax/|∆θt |∆θt.

A.2 Motivation for Initializing the MB RL Feedforward
Controller in its Steady State

Section 3.2.2 states that the MB RL Feedforward Controller was initialized in its
steady state. This section provides background to this decision by laying out the
available choices and their impact on the system during learning.

During learning, the feedforward controller has to be reset after every update to its
parameters, because its internal state may not be meaningful with the feedforward
dynamics after an update. With updates occuring every 600 ms, the reaction of the
feedforward after initialization frequently affects the vehicle. The choice of initializa-
tion method is therefore an important one.

For initializing any simulated dynamic system the state can be chosen arbitrarily or
filled with zeros - in both cases and indepentently of the input fed to the system
its output generally cannot be predicted. In the context of learning longitudinal
control this may amount to extreme controller commands that may trigger safety
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thresholds and deactivate the controller or cause drastic braking or acceleration. This
behavior would lead to learning an ill-fitting model which in turn results in a poor
controller.

This work therefore chooses to initialize the feedforward controller in its steady state.
At this state, the output of the system remains constant - with the learned model
forced to have a pole at 1, the steady state gain of the inverted system is 0, and
thus the output in steady state is also 0. When following a constant target during
learning, the feedforward is not contributing to the controller output. Periodic re-
sets to its steady state following parameter updates therefore have no impact on its
(non-existent) output. If the trajectory to follow varies over time, the feedforward
contribution is non-zero. Periodically resetting its state, and thus its output to zero
therefore can cause oscillating behavior during learning. Since resets do not occur
once learning is deactivated, these oscillations were tolerated during learning, where
they aided exploration.

A.3 A Simulation Study on Hyperparameter Influence

Here, the complete results from the simulation study introduced in Section 4.1 are
presented.

This part begins by varying the hyperparameters defining the optimality criterion for
the controller, then it shows the effect of parameters for the optimization in actor and
critic before presenting a study on the effects of noise both for exploration and in the
environment. A graphical overview of the presented experiments can be found in
Fig. 4.2. A tabular overview of the influences of the individual parameters is given
in Table 4.1.

A.3.1 Hyperparameters in the Optimality Criterion

For discount factor γ, see Section 4.1 and Fig. 4.3.

While low values for parameter Cu encourage the agent to learn more aggressive con-
trollers, it slightly increases variance (see actor gain in Fig. A.2) in the learning pro-
cess and therefore makes it less stable. At first glance it seems counterintuitive that
low values for Cu simultaneously increase variance in the actor gain and decrease
TD error levels. However, lower TD errors are a direct consequence of lowering the
impact of the action on state values, thus reducing the error potential from misadap-
tation of the critic. The actor gains exhibit higher variance regardless of that, since it
is learned from the policy gradient which is derived from aforementioned lowered
impact. Since the advantage component in the critic is reduced while the overall
noise level remains equal, the resulting gradient is less accurate. The outcome can be
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Figure A.2: Averages and standard deviation intervals for 10 training runs with different values for reward
parameter Cu. In classic control parameter Cu is used to tune the aggressivity of the controller.
While lower values for Cu tend to lower the TD error, this has and adverse effect on policy
learning: it increases variance and slows learning. Within this learning setup, the parameter
Cu can therefore not be varied freely and the engineer once more has to trade bias for variance,
if an aggressive controller is desired.

seen in the actor gain progression in Fig. A.2: at lower Cu values learning is slower
and affected by higher variance.

The parameter Cu is considered a tuning factor for how aggressive the controller
shall be in classic optimal control. In vehicle experiments we found values around
0.025 to be the lower feasible limit. Values below this required excessive choices in
other hyperparameters to achieve stable learning in the real vehicle.

A.3.2 Hyperparameters for the Optimization Steps

While LM provides quick learning, this comes at the cost of a somewhat noisy behav-
ior. It tends to take big steps even in the proximity of the optimum in the presence
of noise. This introduces variance in the controller parameter estimation. If a restric-
tive maxnorm is applied in the optimizer for the actor, this effect can be dampened
at the cost of learning speed (see actor gain in Fig. A.3). On the contrary, if the
limit does not constrain the actor optimizer, this may allow the actor to move faster
than the critic can track it or cross the stability boundary, leading to failure of the
learning process. This can be seen from our simulated experiment in Fig. A.3: with a
very open maxnorm limit for the actor, not only TD errors become large, but it leads
to several failed training runs. In the vehicle application, a restrictive maxnorm in
the actor is therefore mandatory to ensure stability. In order to benefit from quick
learning, a slightly higher limit is used when training begins and decayed during the
learning process until it reaches a lower boundary.
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Figure A.3: Average and standard deviation interval over 10 training runs for multiple values for actor
maxnorm constraint. 6 of the training runs with maxnorm 10 failed and were subsequently
excluded from the plot. High actor maxnorm limits can cause instability due to the critic not
being able to track the value changes due to policy evolution. This can be seen from very high
TD errors and failed test runs with actor maxnorm 10, and high variance in the actor gain
θc. Lower values may slow learning. The actor maxnorm therefore trades off speed against
variance and stability.
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Figure A.4: Critic maxnorm variation with 10 experiments per maxnorm value. The plot shows average
and standard deviation interval for each maxnorm limit. While using maxnorm 1, every
experiment run was stable, 1 run was unstable with maxnorm 0.1 and all 10 runs were broken
off with maxnorm 0.01. This simulated experiment shows that high maxnorm limits aid
stability in learning.
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Figure A.5: Average and standard deviation interval for critic target update rate variation. Very low val-
ues for target update rate make it harder for the critic to track the state-action value with high
fidelity, therefore resulting in higher variance in both actor gain and TD error, thus slowing
learning at very low target update rates. A target update rate of 1 results in fastest conver-
gence, but may introduce bias due to overestimation of state-action values (see subsection
2.2.4, not visible from graph due to variance and slow learning).

In the context of critic optimization, the maxnorm constraint reverses its effect on
learning stability: a liberal limit on the maxnorm generally increases stability, since
it allows to quickly learn value changes resulting from a shift in the controller. This
is visible from an opposite perspective in the TD error in Fig. A.4: the lowest critic
maxnorm first causes the TD error to explode, then the runs are terminated due to
instability. In the vehicle experiments it was observed that learning without any limit
would become unstable again in some cases (not seen in the simulated experiments).
However, regarding noise its effect is fully parallel to the actor: lower maxnorm
constraints reduce variance, which generally enhances both learning speed and pre-
cision in the actor. In the experiments the critic optimizer was loosely constrained,
yet not entirely left without a maxnorm limit to avoid (rare) cases of instability due to
large erroneous parameter changes in the critic. Over the course of the experiment,
the limit was slowly restrained to additionally reduce variance.

While target networks were originally introduced to aid stability in the learning
process (see subsection 2.2.4), they can have a similar effect as slowing the critic
optimizer: at very low target update rates the critic may fail to track the actor’s
learning progress. While [152] claim that target networks may help reduce bias in
certain cases, no clear conclusion can be drawn from this experiment (see actor gain
in A.5), mainly because learning was slowed due to high variance and therefore
terminated before convergence (e.g. for ηcrit = 0.005) or because of too high variance
in the steady state (ηcrit = 0.025). In the vehicle experiments an intermediate value
of ηcrit = 0.1 was chosen to not slow learning down too much while retaining some
of the stabilizing effect.
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Figure A.6: Average and standard deviation for training runs with different batch sizes. With the smallest
batch size b = 15 variance was increased both in TD error and actor gain. A batch size of
b = 150 yielded lower TD errors that b = 300, but similar results on the actor gain. Albeit the
difference in TD error may be explained with overfitting to a small batch size, it is considered
a negligible risk.

Big batches help avoiding local minima and yield better gradient estimates which
results in less variance in the learned policy, which can be seen best in the TD error
plot in Fig. A.6: low batch sizes85 yield low TD errors in some cases, but are stricken
with high variance, suggesting that the critic approximator overfits to the small pro-
vided batches, but fails to match state transitions in other batches. Higher batch sizes
reduce this effect, keeping a higher average TD error but with lower variance. Very
small batch sizes may even compromise stability, while very large batch sizes bring
little benefit, which is visible in the actor gains from Fig A.6. Batch size can therefore
be seen as a way to balance between low variance and fast computation, i.e. quick
learning (within the hardware limits).

However, higher batch sizes come at the cost of higher computation time86 as Fig.
A.7 shows. A batch size of b = 150 was chosen to balance precision in learning with
low computational load.

A.3.3 Variation of Algorithm Architecture Elements

The number of steps for the TD backup (see Section 2.2.2) is often referred to as an
example for a bias-variance trade-off (see e.g. [60]), i.e. more steps for backup should
reduce bias in the learned policy at the cost of higher variance. The simulation ex-
periments show that a higher number of steps for backup does significantly increase

85 We used batches of identical size for training actor and critic.
86 Note that the hardware used in the vehicle differs from the one used in this comparison. Additionally,

while this comparison relies on interpreter-based Matlab code while compiled generated code was
employed in the vehicle experiment. The comparison can therefore only indicate a trend.
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Figure A.7: Average computation time for different batch sizes for 10 simulated training runs each. Log-
ging and environment dynamics are included in the computation time measurement but can
be considered as negligible. The analysis was performed on a Laptop containing an Intel Core
i5-8350 paired with 16 GB RAM using Matlab R2018b and Windows 10 Build 17134. The setup
differs both in hardware and in software from vehicle experiments and therefore reacts dif-
ferently to the batch size, but the general trend towards higher computation times is valid in
both cases. With faster computation times, the learning interval for the vehicle tests can be
shortened, allowing for faster convergence and therefore shorter experiment duration.
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Figure A.8: Average and standard deviation for training runs with different amounts of steps for backup.
More steps for backup significantly increase variance in the TD error (plot for 1 step barely
visible at the lower end of the plot), slightly change them average learned controller gain but
add variance there, too.
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Figure A.9: Experience storage size variation. The configuration with the smallest buffer size crossed the
instability threshold once, but tends in that direction towards the end of the training run.
Filling a large experience storage may take longer, but yields repeatably stable learning with
little variance afterwards.

the TD error and slightly affects the learned gains (see A.8). We choose not to use
more than one step for backup in the Bellman equation since the slight change in
learned gain is not worth increasing the variance by orders of magnitude.

The authors of [91] recommend using a large experience storage. The next exper-
iment shows why: If the buffer is limited to the batch size, the agent may start to
learn early on, but fail soon after. With a large experience storage, learning is re-
peatably stable. In the vehicle experiments, stable learning was achieved with a low
amount of variance using the largest setting (5000 time steps). This helps increase
robustness against short disturbances like bumps, ramps or lane changes. Experi-
ence storage size therefore can be used to increase stability and decrease variance
at the expense of some waiting time before the learning process starts, i.e. effective
learning speed.

In [119] we suggested to choose the length hu of the FIR filter according to the im-
pulse response of the system of interest. Fig. A.10 supports this: while all configura-
tions have similar TD errors, shorter filter length settings yield higher gains. Filters
with length equal to or greater 35 yield similar gains. When looking at the unit im-
pulse response in Fig. A.11 it can be seen that the output is constant at around 35
time steps. Using no filter at all can increase variance up to the point of instability
[119], but too short filters can yield biased results.

A.3.4 Exploration Noise

Fig. A.12 shows the influence of exploration noise amplitude. While higher ampli-
tudes increase the TD error, they benefit policy learning by making it quicker and
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Figure A.10: Mean and standard deviation interval for different FIR filter length settings. Short filters
tend towards higher gains, but this effect vanishes towards higher filter lengths. There is no
effect on the TD error.
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Figure A.11: Response to a unit impulse for example system (1.3) with and without noise. Note that the
time scale is in discrete time steps, not seconds. The initial response is flat due to delay. After
roughly 35 time steps the output is roughly constant again.



XXII A Appendix

100 120 140 160 180 2000

0.1

0.2

Time in s

𝐿
TD

100 120 140 160 180 200−1

0

1

Time in s

Ac
to
rg

ai
n
𝜃
c

𝜇𝜈u=0.05 𝜇𝜈u=0.5 𝜇𝜈u=5
𝜇𝜈u=0.05 ± 𝜎𝜈u=0.05 𝜇𝜈u=0.5 ± 𝜎𝜈u=0.5 𝜇𝜈u=5 ± 𝜎𝜈u=5

Figure A.12: Mean and standard deviation of TD error and actor gain for training runs with different
exploration noise amplitudes. Intermediate values for exploration noise perform best for
TD-error values, TD error variance and actor gain variance. Very low values fail to excite
the system, making it harder to learn without overfitting. The intermediate noise amplitude
provides the agent with rich data to learn from, and further increasing the noise amplitude
brings little benefit for learning: it increases the TD error, but only slightly increases learning
performance in the actor gain. Very high amplitudes may not be feasible in real-world
systems.

more precise. If the amplitude is too low, the exploration noise may fail to excite the
system, thus yielding data that is not rich enough to meaningfully fit the state-action
value function to. This causes high variance in the learning process, increasing the
risk of unstable learning. Very high amplitudes on the other hand enhance the learn-
ing process only slightly and may not be applicable to real-world systems without
risking to damage the plant.

Despite the objective of exciting the system with exploration noise, learning should
generally occur around the envisioned operation area of the controller to be learned.
Since exploration noise is only added during learning, it may skew the resulting
policy and should therefore be used carefully.

Exploration noise amplitude needs to balance stability and variance against bias
while staying within the limits of the system.

Holding a value for the exploration noise for more than one time step can be used to
shift the frequency spectrum towards lower frequencies. Depending on the system,
this may not only prevent it from being harmed, but also enhance excitation. Holding
for no more than one time step in this experiment results in higher variance than
holding it for 50 time steps, i.e. 1 s, as can be seen from the actor gain evolution
in Fig A.13. Longer hold phases deteriorate the learning performance again. The
real-world vehicle has low-pass characteristics and may suffer from excessive wear if
too high frequency signals are used as an input. We chose an intermediate value of
50 time steps for our experiments.



A.3 A Simulation Study on Hyperparameter Influence XXIII

100 120 140 160 180 2000
2
4
6
8

·10−2

Time in s

𝐿
TD

100 120 140 160 180 200
0.2
0.4
0.6
0.8
1

Time in s

Ac
to
rg

ai
n
𝜃
c

𝜇Δ𝑡exp=0.02 s 𝜇Δ𝑡exp=1 s 𝜇Δ𝑡exp=4 s
𝜇Δ𝑡exp=0.02 s ± 𝜎Δ𝑡exp=0.02 s 𝜇Δ𝑡exp=1 s ± 𝜎Δ𝑡exp=1 s 𝜇Δ𝑡exp=4 s ± 𝜎Δ𝑡exp=4 s

Figure A.13: Exploration noise sampling time variation plotted with averages and standard deviation
intervals. The sampling time allows to scale the signal between white noise and a step-like
signal by sampling the random component used for exploration at a lower frequency. A
hold factor of 1 is equivalent to sampling the exploration noise at each controller time step of
20 ms, a hold factor of 200 keeps the random part constant for 200 time steps (equivalent to
4 s) before resampling it. High hold factor values therefore emphasize low frequencies. The
optimal hold factor depends on the system characteristics. In this example a hold factor of 1
or 200 results in higher variance in the actor gain compared to a hold factor of 50 (equivalent
to 1 s).
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Figure A.14: Average and standard deviation for TD error and actor gain in virtual trajectory noise ampli-
tude size variation. Adding a random component was proposed to enhance learning speed
for feedforward components, but in this case only increases variance and bias.
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Figure A.15: Effect of environment noise levels on TD error and actor gain. The higher the noise level in
the environment, the higher the TD error becomes and the higher the variance in actor gains
becomes.

Adding additional noise on the trajectory was proposed by [81] in order to accelerate
learning of feedforward components in the controller, but only adds bias for this sim-
ple policy as Fig. A.14 shows. This is because it shifts the target in the training data
to be more diverse for off-policy learning. This, however makes the distribution of
training data differ from the actual use case, which may make the controller be sub-
optimal for the envisioned scenario. When learning a policy without a feedforward
component virtual trajectory noise was therefore abandoned.

A.3.5 Environment Dynamics and Noise

The proposed algorithm is affected by environment noise as Fig. A.15 shows87.
The noise level is reflected in the variance of the learned gain and the TD error
level. This experiment only shows that it is desirable to have low levels of noise
in the environment. In real-world systems the amount of noise generally cannot be
influenced.

The next simulated example presents how different dynamics affect the learning pro-
cess in Fig. A.16. For the algorithm it seems to be easier to learn from comparably
fast dynamics: with smaller time constants Tacc, the learning process converges ear-
lier. This suggests that slow systems are harder to learn from for an RL agent. An
integrator would pose the limiting case here: it can be seen as having an infinite time
constant, and would thus be hardest to learn88.

87 The noise level chosen in for the linear system 1.3 was chosen to have a comparable amplitude as the
measurement noise on the measurements in the vehicle setup, but this was not based on a thorough
analysis, e.g. by Fourier transformation.

88 An RL agent generally cannot learn a policy if the policy it is currently training on is unstable in
combination with the system since the value function has infinite values, i.e. the critic would diverge.
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Figure A.16: Effect on TD error and actor gain of environment time constant. The slower the system
dynamics are, i.e. the harder it is to excite the system, the slower the learning process and
the higher the variance.

A.4 Hyperparameters Used in Experiments

In Table A.1 and its continuations we a provide tabular hyperparameter overview
for each experiment.

For brief instants an unstable policy can be tolerated if the current policy is unstable, since the critic
only slowly tracks the policy. For systems that cannot be stabilized with the policy structure, the
learning process must diverge.

89 The derivative of the value used for bootstrapping was included. See footnote 21 on page 26 for more
details.
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Table A.1: Hyperparameters MF

Hyperparameter Symbol Set A Set B
Intervals
Controller sample time ∆tc 0.02 s 0.02 s
Learning interval actor ∆tl,act 0.02 s 0.08 s
Learning interval critic ∆tl,crit 0.02 s 0.04 s
Exploration noise sample time ∆texp 0.02 s 0.02 s
Dimensions
Preview length hy – 1
Reference Polynomial Order np 0 0
Experience Storage Capacity bst 1000 500
Number of appended actions hu 20 35
Batch size critic bcrit 300 100
Batch size actor bact 150 100
Actor Optimization
Actor optimizer type SGD LM
Actor learning rate αact 0.05 –
Actor initial maxnorm gmax,act,0 0.001 0.1
Actor minimum maxnorm gmax,act,min 0.001 0.1
Actor maxnorm decay rate βact 1 1
Critic Optimization
Critic TD gradient type double89 single
Steps for TD backup nTD 1 1
Method to eliminate FIR DOF fix par. weightnorm
Critic optimizer type LM LM
Critic learning rate αcrit – –
Critic initial maxnorm gmax,crit,0 5 0.15
Critic minimum maxnorm gmax,crit,min 5 0.15
Critic maxnorm decay rate βcrit 1 1
Critic target update rate ηcrit 1 1
Learning Goal
Discount factor γ 1 0.95
Reward weight control error Cy 1 1
Reward weight control effort Cu 0.1 0.1
Noise Configuration
Distribution exploration noise uniform uniform
Exploration noise amplitude νu 0.2 2
Distribution target noise – –
Standard deviation target noise νp – –
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Table A.1: Hyperparameters MF (ctd.)

Hyperparameter Symbol Set C Set D
Intervals
Controller sample time ∆tc 0.02 s 0.02 s
Learning interval actor ∆tl,act 2 s 0.6 s
Learning interval critic ∆tl,crit 1 s 0.6 s
Exploration noise sample time ∆texp 3 s 2 s
Dimensions
Preview length hy 1 1, 2
Reference Polynomial Order np 0 0, 1
Experience Storage Capacity bst 200 5000
Number of appended actions hu 35 35
Batch size critic bcrit 100 200
Batch size actor bact 100 200
Actor Optimization
Actor optimizer type LM LM
Actor learning rate αact – –
Actor initial maxnorm gmax,act,0 0.01 0.01
Actor minimum maxnorm gmax,act,min 0.01 0.01
Actor maxnorm decay rate βact 1 1
Critic Optimization
Critic TD gradient type single single
Steps for TD backup 1 1
Method to eliminate FIR DOF weightnorm weightnorm
Critic optimizer type LM LM
Critic learning rate αcrit – –
Critic initial maxnorm gmax,crit,0 0.1 10
Critic minimum maxnorm gmax,crit,min 0.1 10
Critic maxnorm decay rate βcrit 1 1
Critic target update rate ηcrit 1 1
Learning Goal
Discount factor γ 0.85 0.95
Reward weight control error Cy 1 1
Reward weight control effort Cu 0.025 0.1
Noise Configuration
Distribution exploration noise rectangle uniform
Exploration noise amplitude νu 0.7 m s−2 1 m s−2

Distribution target noise – gaussian
Standard deviation target noise νp – 1



XXVIII A Appendix

Table A.1: Hyperparameters MF (ctd.)

Hyperparameter Symbol Set E
Intervals
Controller sample time ∆tc 0.02 s
Learning interval actor ∆tl,act 0.6 s
Learning interval critic ∆tl,crit 0.6 s
Exploration noise sample time ∆texp 1.5 s
Dimensions
Preview length hy 1
Reference Polynomial Order np 0
Experience Storage Capacity bst 5000
Number of appended actions hu 35
Batch size critic bcrit 150
Batch size actor bact 150
Actor Optimization
Actor optimizer type LM
Actor learning rate αact –
Actor initial maxnorm gmax,act,0 0.01
Actor minimum maxnorm gmax,act,min 0.001
Actor maxnorm decay rate βact 0.995
Critic Optimization
Critic TD gradient type single
Steps for TD backup 1
Method to eliminate FIR DOF weightnorm
Critic optimizer type LM
Critic learning rate αcrit –
Critic initial maxnorm gmax,crit,0 10
Critic minimum maxnorm gmax,crit,min 0.25
Critic maxnorm decay rate βcrit 0.999
Critic target update rate ηcrit 0.1
Learning Goal
Discount factor γ 0.95
Reward weight control error Cy 1
Reward weight control effort Cu 0.05
Noise Configuration
Distribution exploration noise uniform
Exploration noise amplitude νu 0.5 m s−2

Distribution target noise –
Standard deviation target noise νp –
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Table A.2: Hyperparameters MB Algorithm from [120].

Hyperparameter Symbol Value
Intervals
Controller sample time ∆tc 0.02 s
Learning interval actor ∆tl,act 0.6 s
Learning interval critic ∆tl,crit 0.6 s
Exploration noise sample time ∆texp 1.5 s
Dimensions
Preview length hy 1
Experience Storage Capacity bst 5000
Batch size critic bcrit 200
Batch size actor bcrit 20
Model order nm 20
Controller Optimization
Actor optimizer type LM
Initial Maxnorm controller gmax,c,0 0.015
Decay factor maxnorm controller βc 1
Minimum maxnorm controller gmax,c,min 0.015
Model Optimization
Number of time steps to predict 1
Initial Maxnorm model gmax,m,0 0.1
Decay factor maxnorm model βm 0.995
Minimum maxnorm model gmax,c,min 0.001
Learning Goal
Discount factor γ 0.95
Reward weight control error Cy 1
Reward weight control effort Cu 0.05
Noise Configuration
Distribution exploration noise uniform
Exploration noise amplitude νu 0.5 m s−2
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Figure A.17: Histogram of optimal output gain for 2000 randomly chosen initial states within the unit
cube from truncated policy search. The distribution sports two discrete maxima and spreads
over a wide range of values. The optimal gain strongly depends on the initial state.

A.5 A Simulation Study on Optimal Output Control
Gains

While for the fully observed linear case the optimal controller is valid throughout
the entire state-space, this is not the case for optimal output control. This section
aims to illustrate this by computing the optimal output feedback gain for a noise-
free variant of the system (1.3) using (truncated) policy search (see subsections 2.2.3
and 3.2.2).

First the optimal output feedback gain is computed for 2000 randomly distributed
initial states within the unit cube. Fig. A.17 shows that the optimal gain is multi-
modal and varies over a wide range depending on the initial state.

Next, the initial state is sampled over grids in the coordinate planes. Fig. A.18 shows
strong dependence of the optimal output feedback gain over the initial state position
in the state space.

This implies that even in the best case a learned gain can only be considered opti-
mal in a close proximity of the conditions it was learned in. For the controller to
be learned within this work it can therefore be assumed that the optimal controller
depends on the distribution of states seen during training, which is affected by ex-
ternal factors from the experiment, e.g. road slope, or from the target trajectory and
exploration noise.

A.6 Validation of Example Gains in the Real Car

This section aims to understand if the controller chosen by the RL algorithm is plau-
sible. For this, the learning goal of the controller is approximated using data of test
runs using controllers with a series of different gains. The results suggest that the
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Figure A.18: Optimal output gain over initial state in the coordinate planes; delay initialized with zero.
The optimal gain in the x(2)-x(3)-plane is zero throughout, but assumes different values
along trajectories in the x(2)-x(4)-plane and x(3)-x(4)-plane.
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controller may be close to optimal. However, this estimation relies on several ap-
proximations that are necessary for feasibility but limit precision. Therefore these
estimations cannot be considered as proof for optimality, but can instead provide
some insights from recorded trajectories that make the algorithm’s decision plausi-
ble.

First, the approximation of the controller’s learning goal (2.7) is introduced. To this
end, (2.7) is expanded to

H =
∫

V̂π(s)∫ (s)ds. (A.4)

However, it is difficult to simultaneously obtain V̂π(s) and ∫ (s) from experimental
data:

• The goal is to recreate the value estimation of our RL algorithm. Due to the
data manipulation proposed in Section 3.1.2, the state value is estimated as if
the assumed trajectory was followed on an infinite horizon. In this case, this
would be a constant target speed ŷ and no exploration noise. The ideal experi-
ment would therefore be to start the controller in a random starting condition
and leave it activated without exploration noise forever, which is not feasible,
especially with a large number of initial conditions to test. Additionally, it
might be difficult to reach the desired starting point in the real-world exper-
iment. The observed state distribution in such an experiment would starkly
deviate from what the controller observes during learning.

• The state distribution during learning results from excitation with exploration
noise and changing setpoints. In this scenario, however, it is impossible to
generate the ideal trajectories necessary for computing state values, since the
controller actions taken are off-policy.

An intermediate experiment is therefore conducted: The output controller is used
without noise to follow the step-like trajectory90, balancing excitation from setpoint
changes with settling periods in which the target remains constant. At least 10 set-
point change cycles are recorded for an array of control gains. The target and the
resulting vehicle trajectories are given in Fig. A.19.

From this data, the controller values (A.4) are approximated for an array of controller
gains. The continuous integral in (A.4) is replaced with a finite sum over weighted
state values. For this, multiple approximations are taken:

1. Instead of considering the entire multi-dimensional state space, only the control
error is considered, which is divided into n = 26 bins. Due to the limited
data from the experiments, considering the entire space S would not yield a
meaningful distribution.

90 The same type of trajectory was used during our training experiments.
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Figure A.19: Average µ and standard deviation interval µ ± σ of speed measurements for different con-
troller gains following the trajectory used for training. Lower gains θc tend to make the
vehicle stay close to the average speed ¯̂y, higher gains make the vehicle deviate from it to
follow the variation ∆y.
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Figure A.20: Estimated truncated controller values from trajectories averaged over experienced state dis-
tribution. According to this estimation the optimal controller is close to 0.5, suggesting that
the learned controllers are optimal.

2. The state value is approximated by an interpolation of the truncated state value
at the geometrical mean each interval. Truncation of the infinte sum defining
the state value (see Section 2.2.1) is necessary for feasibility. The sum is trun-
cated after 51 elements. This value is again a compromise: a longer series gives
a more precise estimation of the state value91, but limits the number of state
values that can be computed from a recorded trajectory92. To dampen variance
from the limited sample size and ensure the availability of a state value for each
bin we apply a gaussian filter to the curve of state values over control error and
interpolate the state value at the geometrical mean of each interval.

3. The probability density ∫ is approximated with a quantized relative frequency
of values within these intervals, which can be obtained from experimental data.

According to this estimation (see Fig. A.20), the optimal controller is close to 0.5,
suggesting that the gain learned by both algorithms in the baseline experiment is
close to optimal. However, we cannot take this result as proof due to the multitude
of sources for inaccuracy.

Instead a few strategies for optimizing the learning objective can be pointed out from
the obtained trajectories that can help to understand the algorithm’s choice.

The control error distribution for the validation experiment gives insight to the dif-
ferent strategies to balance when following this varying target using output control.
Since the target changes very frequently, trying to follow it closely, i.e. using a
high controller gain, may not be beneficial for the control error distribution (see Fig.
A.21a). While high gains yield a distribution containing both high and low control
errors, keeping the speed constant and using almost no control effort, i.e. a low
controller gain, yields three distinct maxima in the control error distribution: since

91 With a discount factor of γ = 0.9, the accumulated discount is small: γ51 < 0.005.
92 A trajectory to compute a valid state value from must not contain a setpoint change. Due to the

repeating target trajectory, the portion of states a state value can be computed for is limited.
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the target assumes three different values, but the speed stays mostly constant, the
control error is either close to 0 or equal to the variation of the target speed. Note
that this strategy works best if disturbances are low (cf. section 4.3). Controllers
in the mid range trade these effects off, seldom reaching a control error close to 0,
but also avoiding very high control errors. This effect is also visible in the average
state measurements in Fig. A.19. Fig. A.21 shows that exploration noise spreads the
experienced control errors over a wider band while changing the control target less
frequently has the opposite effect.

It is therefore not possible to prove the optimality of the learned gain from this
experiment, but it appears plausible that trading off control effort against control
error favors an intermediate gain in line with the algorithm’s choice.
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(a) Control error distribution without exploration noise on even road with target change every 1.5 s.
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(b) Control error distribution without exploration noise on even road with target change every 10 s.
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(c) Control error distribution with exploration noise on even road with target change every 1.5 s.

Figure A.21: Control error distributions over gain for example use cases. The experienced control error
is strongly influenced by the choice of target trajectory, the presence of disturbances and
exploration noise.
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(d) Control error distribution without exploration noise and high disturbances but constant target.

Figure A.21: (ctd.) Control error distributions over gain for example use cases. The experienced control
error is strongly influenced by the choice of target trajectory, the presence of disturbances
and exploration noise.
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Automating controller tuning tasks is an enticing prospect for carmakers offering advanced 
driver assistance systems. While Reinforcement Learning is a promising approach in simulation, 
it needs significant extension to work in challenging real-world scenarios.

This book not only presents algorithmic extensions to both model-free and model-based 
Reinforcement Learning, but also compares their learning behavior for longitudinal control 
across an array of real-world test cases.

Despite noise and partially observed dynamics, the proposed algorithms converge within 
minutes, provide feedforward control to track arbitrary trajectories and are computationally 
lightweight even during training. As an often-overlooked aspect, exploration noise is investi-
gated as an important influence on learning performance and result.

The proposed additions to the state of the art enable Reinforcement Learning for engineering 
practice, relieving engineers of tedious manual tuning tasks.
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