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We consider the scattering of a plane wave by a locally perturbed periodic (with
respect to x1) medium. If there is no perturbation, it is usually assumed that
the scattered wave is quasi-periodic with the same parameter as the incident
plane wave. As it is well known, one can show existence under this condition
but not necessarily uniqueness. Uniqueness fails for certain incident directions
(if the wavenumber is kept fixed), and it is not clear which additional condition
has to be assumed in this case. In this paper, we will analyze three concepts.
For the limiting absorption principle (LAP), we replace the refractive index
n = n(x) by n(x) + i𝜀 in a layer of finite width and consider the limiting case
𝜀 → 0. This will give an unsatisfactory condition. In a second approach, we
require continuity of the field with respect to the incident direction. This will
give the same satisfactory condition as the third approach where we approxi-
mate the incident plane wave by an incident point source and let the location
of the source tend to infinity.
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1 INTRODUCTION

Let k > 0 be the wave number and �̂� ∈ R
2 be a unit vector with �̂�2 < 0 which are fixed. In polar coordinates, we express �̂�

as �̂� =
(

sin 𝜃

− cos 𝜃

)
for some |𝜃| < 𝜋

2
. Furthermore, let n ∈ L∞ (R2) be the real valued index of refraction, which is assumed

to be 2𝜋−periodic with respect to x1 and equal to 1 for |x2| > h0 for some h0 > 0. Let q ∈ L∞ (R2) have compact support
in Q ∶= (0, 2𝜋) × (−h0, h0). We refer to Figure 1 for a sketch of the geometry. It is the aim to solve

Δu + k2(n + q)u = 0 in R
2 (1)

for the total field u(x) = eik�̂�·x + us(x) as the sum of the incident plane wave of direction �̂� and the scattered field us.
Furthermore, a suitable radiating condition for us has to be assumed.
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2 KIRSCH

FIGURE 1 Sketch of the geometry. [Colour figure can be viewed at wileyonlinelibrary.com]

Scattering theory in periodic structures has many important applications in optics, micro-electronics, and photonic
crystals. We refer to [1] for an introduction and overview till 1980. During the past decades, a huge number of publications
appeared on this topic. Most of them deal with the scattering of periodic curves such as [2–7] or [8–11], if the problem is
considered as a special case of a scattering problem by a rough surface. For the scattering by a layer with a space dependent
refractive index, we refer to, for example, [12–15].

In the first part of the paper, we consider the unperturbed case; that is, q = 0. We note that the incident field ui(x) = eik�̂�·x

is 𝛼-quasi-periodic with respect to x1 with parameter 𝛼 = k�̂�1 = k sin 𝜃. (Recall that a function𝜙 = 𝜙(x1) is 𝛼-quasi-periodic
if 𝜙(x1 + 2𝜋) = e2𝜋𝛼i𝜙(x1) for all x1 ∈ R.) Therefore, it is common (see, e.g., [2, 16–18]) to assume that also the scattered
field has to be quasi-periodic with the same parameter 𝛼, and then the Rayleigh expansion provides a suitable radiation
condition.

As we will recall below, for fixed k > 0, there exist angles 𝜃 of incident directions, for which no uniqueness holds
under the Rayleigh expansion. For these particular angles (which correspond to so-called propagative wave numbers, see
Definition 2.1, by 𝛼 = k sin 𝜃), it is not clear which solution is—mathematically or physically—the correct one.

There are at least three ways to derive a correct radiation condition in this case where no uniqueness holds. A classi-
cal way is to apply the limiting absorption principle (LAP). Noting that the scattered field satisfies the inhomogeneous
Helmholtz equation (for q = 0)

Δus + k2nus = −k2(n − 1)ui in R
2 (2)

with incident plane wave ui(x) = eik�̂�·x, we observe that the application of the LAP to the wave number k; that is, replacing
k by k+ i𝜀 does not seem to work because in that case, the right hand side 𝑓 (x) = (k + i𝜀)2(n(x)−1)ui(x) = (k + i𝜀)2(n(x)−
1)eik�̂�·xe−𝜀�̂�·x vanishes for |x2| > h0 but is not even bounded in the layer W ∶= R×(−h0, h0) (note that −�̂� ·x is not bounded
from above in W). An alternative is to apply the LAP to the refractive index n; that is, replace n(x) by n(x) + i𝜀 inside
the waveguide. Since also in this case we do not expect a H1 (R2)-solution for us, we have to add a radiation condition.
The “upwards propagation radiation condition” gives uniqueness in H1

loc

(
R

2) even in the case of general q, that is, with
refractive index n(x) + q(x) + i𝜀. In the unperturbed case q = 0, this condition is equivalent to the Rayleigh expansion.
In Section 3, we will study the question of convergence when 𝜀 tends to zero. It will turn out that this principle gives an
unexpected and unsatisfactory answer in the case where no uniqueness holds.

The second approach demands continuity of the solution with respect to the angle of incidence. As we will see in
Section 6, this will pick one particular solution and gives an additional condition on the field.

In Section 5, we will follow a third approach and consider first the scattering of an incident point source at z ∈ R
2

with z2 > h0 and later let z tend to infinity. Therefore, the incident field is given by ui
z(x) = Φ(x, z), x ∈ R

2∖{z}, where
Φ(x, z) = i

4
H(1)

0 (k|x − z|) denotes the fundamental solution. We recall the asymptotic behavior

Φ(x, z) = 𝛾
eik|z|√|z|e−ikx·z∕|z| +  (|z|−3∕2) , |z| → ∞ ,
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KIRSCH 3

uniformly with respect to directions z∕|z| and x from bounded sets. Here, 𝛾 = ei𝜋∕4√
8𝜋k

. Therefore, if �̂� =
(

sin 𝜃

− cos 𝜃

)
with |𝜃| < 𝜋

2

is the direction of the incident plane wave, we define the source to be z = −t�̂� and note that

1
𝛾
lim
t→∞

[√
t e−ikt Φ(x,−t�̂�)

]
= eik �̂�·x (3)

uniformly for x from bounded sets. Therefore, we expect that the solution of the scattering problem of a point source at
z = −t�̂� (multiplied with the factor 1

𝛾

√
t e−ikt) converges to a solution of the scattering problem for the plane incident field

of direction �̂�. We will prove this convergence result for the unperturbed case, that is, for q = 0, in Section 5.
Section 6 is devoted to the case where q is general, that is, where the refractive index is given by n + q.
All three approaches use the theory of quasi-periodic scattering problems (either because the problems themselves are

quasi-periodic or via the Floquet-Bloch transform), which we repeat in Section 2. Also, the problems are singular in the
sense that they involve invertible operators L𝜀 for 𝜀 ≠ 0, which tend to an operator L0 as 𝜀 → 0, which is singular. For
treating the convergence of the corresponding solutions of L𝜀u𝜀 = r𝜀, we apply an abstract singular perturbation result,
which we learned from [19], section 1.4. We recall and extend it in Theorem 2.7 of Section 2.

Let us summarize some notations on sets and spaces. Let again W ∶= R × (−h0, h0) and Q ∶= (0, 2𝜋) × (−h0, h0) and,
furthermore, Q∞ ∶= (0, 2𝜋) × R and Qh0

+ ∶= (0, 2𝜋) × (h0,∞) and Qh0
− ∶= (0, 2𝜋) × (−∞,−h0) and Γ± ∶= (0, 2𝜋) × {±h0};

that is, Q∞ = Qh0
− ∪ Γ− ∪ Q ∪ Γ+ ∪ Qh0

+ . We set Γ ∶= Γ+ ∪ Γ−.
Let H1

loc

(
R

2) ∶= {u ∶ R
2 → C ∶ u|K ∈ H1(K) for all open and bounded discs K} be the usual local Sobolev

space and H1
𝛼,loc

(
R

2) ∶= {u ∈ H1
loc

(
R

2) ∶ u(·, x2) is 𝛼 − quasi − periodic} where a function u is 𝛼-quasi-periodic if
u(x1 + 2𝜋, x2) = ei𝛼2𝜋u(x1, x2) for all x = (x1, x2). We identify H1

𝛼,loc

(
R

2) sometimes with H1
𝛼,loc(Q

∞) ∶= {u ∶ Q∞ → C ∶
u|QH ∈ H1(QH) for all H > 0andu(·, x2) is𝛼-quasi-periodic}where QH ∶= (0, 2𝜋)×(−H,H); that is, identify quasi-periodic
functions on (0, 2𝜋) with those on R – as we do also by identifying the space {𝑓 ∈ L2 (R2) ∶ 𝑓vanishes outside ofQ∞}
with L2(Q∞). In the same way, H1

𝛼(Q) is defined. The space H1
per(Q) denotes the subspace of H1(Q) of 2𝜋-periodic functions

with respect to x1. Finally, the space H1∕2
𝛼 (Γ) is the trace space of H1

𝛼,loc(Q
∞) on Γ and H−1∕2

𝛼 (Γ) the dual of H1∕2
−𝛼 (Γ).

2 QUASI-PERIODIC PROBLEMS AND A SINGULAR PERTURBATION
RESULT

We first recall some notations.

Definition 2.1.

(a) 𝛼 ∈ R is called a cut-off value if there exists 𝓁 ∈ Z with |𝓁 + 𝛼| = k.
(b) 𝛼 ∈ R is called a propagative wave number (or quasi-momentum or Floquet spectral value) if there exists a

non-trivial 𝜙 ∈ H1
𝛼,loc

(
R

2) such that

Δ𝜙 + k2n𝜙 = 0 in R
2
, (4)

and 𝜙 satisfies the Rayleigh expansion

𝜙(x) =
∑
𝓁∈Z

𝜙
±
𝓁 ei(𝓁+𝛼)x1+i

√
k2−(𝓁+𝛼)2|x2| for all ± x2 > h0 (5)

for some 𝜙
±
𝓁 ∈ C where the convergence is uniform with respect to {x ∈ (0, 2𝜋) × R ∶ |x2| ≥ h0 + 𝛿} for all

𝛿 > 0. The functions 𝜙 are called propagating (or guided) modes.

If we decompose k into k = 𝓁 + 𝜅 with 𝓁 ∈ N ∪ {0} and 𝜅 ∈ (−1∕2, 1∕2], we observe that the cut-off values are given
by ±𝜅 + 𝓁 for any 𝓁 ∈ Z.

Since with 𝛼 also 𝛼 + 𝓁 for every 𝓁 ∈ Z is a propagative wave number, we can restrict ourselves to propagative wave
numbers in (−1∕2, 1∕2].

Under the following assumption, it can easily be seen that every propagating mode𝜙 corresponding to some propagative
wave number 𝛼 is evanescent; that is, 𝜙±𝓁 = 0 for all |𝓁 + 𝛼| ≤ k; that is, there exist c, 𝛿 > 0 with |𝜙(x)| ≤ ce−𝛿|x2| for all|x2| > h0.
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4 KIRSCH

Assumption 2.2. Let |𝓁 + 𝛼| ≠ k for all propagative wave numbers 𝛼 and all 𝓁 ∈ Z. In other words, we assume that
the cut-off values are no propagative wave numbers.

Under Assumption 2.2, it can also be shown (see, e.g., [20]) that at most, a finite number of propagative wave numbers
exist in [−1∕2, 1∕2]. Furthermore, if 𝛼 is a propagative wave number with mode 𝜙, then −𝛼 is a propagative wave number
with mode 𝜙. Therefore, we can numerate the propagative wave numbers in [−1∕2, 1∕2] such they are given by {�̃�𝑗 ∶ 𝑗 ∈
J} where J ⊂ Z is symmetric with respect to 0 and �̃�−𝑗 = −�̃�𝑗 for 𝑗 ∈ J. Furthermore, it is known that every eigenspace

X𝑗 ∶=
{
𝜙 ∈ H1

�̃�𝑗 ,loc
(
R

2) ∶ 𝜙 satisfies (4) and (5)
}

(6)

is finite dimensional with some dimension m𝑗 > 0. We note that the elements of X𝑗 are in H2(Q∞) and even analytic for|x2| > h0. We construct an orthonormal basis in X𝑗 as follows. Let 𝑗 ∈ J be fixed. First, we choose an arbitrary inner
product (·, ·)X𝑗

in X𝑗 . Then we consider the following finite dimensional eigenvalue problem in X𝑗 .
Determine 𝜆𝓁,𝑗 ∈ R, 𝓁 = 1, … ,m𝑗 , and non-trivial 𝜙𝓁,𝑗 ∈ X𝑗 for 𝓁 = 1, … ,m𝑗 such that

−2i∫
Q∞

𝜕𝜙𝓁,𝑗

𝜕x1
𝜓 dx = 𝜆𝓁,𝑗

(
𝜙𝓁,𝑗 , 𝜓

)
X𝑗

for all 𝜓 ∈ X𝑗 . (7)

This eigenvalue problem is self-adjoint because the left hand side defines a Hermitean sesqui-linear form on the finite
dimensional space X𝑗 . Let the eigenfunctions be normalized such that

(
𝜙𝓁,𝑗 , 𝜙𝓁′,𝑗

)
X𝑗

= 𝛿𝓁,𝓁′ for 𝓁,𝓁′ = 1, … ,m𝑗 .

Remark 2.3. In [21], it is shown (for the case of the source problemΔu+k2nu = −𝑓 in the half plane {x ∈ R
2 ∶ x2 > 0}

and additional Neumann boundary conditions for x2 = 0) that the limiting absorption principle (LAP) with respect
to k leads to the eigenvalue problem with inner product (𝜙, 𝜓)X𝑗

= 2k∫Q∞n𝜙𝜓 dx while the LAP with respect to n in
the layer W leads to the eigenvalue problem with inner product (𝜙,𝜓)X𝑗

= k2∫Q𝜙𝜓 dx.

We make a further assumption, which is equivalent to the fact that the group velocities do not vanish (see [22]).

Assumption 2.4. Let 𝜆𝓁,𝑗 ≠ 0 for all 𝓁 = 1, … ,m𝑗 and 𝑗 ∈ J; that is, there is no non-trivial𝜙 ∈ X𝑗 with ∫Q∞
𝜕𝜙

𝜕x1
𝜓 dx =

0 for all 𝜓 ∈ X𝑗 .

In all of the paper, we make Assumptions 2.2 and 2.4 but mentioning this only in the formulations of the theorems.
After these preparations, we will now consider quasi-periodic source problems with source functions 𝑓 ∈ L2(Q∞),

which are not compactly supported.
Let 𝑓 ∈ L2(Q∞) such there exist c, 𝛿 > 0 with |𝑓 (x)| ≤ ce−𝛿|x2| for all |x2| > h0. For any 𝛼 ∈ R, consider the problem to

determine u ∈ H1
𝛼,loc(Q

∞) such that

Δu + k2nu = −𝑓 in Q∞ , (8a)

and u satisfies the generalized Rayleigh condition

∑
𝓁∈Z

||||(sign x2)
du𝓁(x2)

dx2
− i
√

k2 − (𝓁 + 𝛼)2 u𝓁(x2)
||||2 → 0 , |x2|→ ∞ . (8b)

Here, u𝓁(x2) = 1√
2𝜋

∫ 2𝜋
0 u(x1, x2)e−i(𝓁+𝛼)x1 dx1 are the Fourier coefficients of u(·, x2). The corresponding 𝛼-quasi-periodic

Dirichlet-to-Neumann operator Λ𝛼 ∶ H1∕2
𝛼 (Γ) → H−1∕2

𝛼 (Γ) is given by

(Λ𝛼𝜙)(x1,±h0) ∶=
i√
2𝜋

∑
𝓁∈Z

√
k2 − (𝓁 + 𝛼)2𝜙𝓁(±h0)ei(𝓁+𝛼)x1 , x1 ∈ (0, 2𝜋) , (9)

for 𝜙 ∈ H1∕2
𝛼 (Γ).

The following theorem collects properties of the problem (8a), (8b). For a proof, we refer to [22], Theorems 4.1–4.3 and
Remark 4.4.
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KIRSCH 5

Theorem 1. Let Assumptions 2.2 and 2.4 hold.

(a) For every 𝛼 ∈ R, the problem (8a), (8b) is equivalent to the variational equation

∫
Q

[∇u · ∇𝜓 − k2nu𝜓]dx − ∫
Γ

(Λ𝛼u)𝜓 ds = ∫
Q

𝑓 𝜓 dx + ∫
Γ

𝜕w
𝜕𝜈

𝜓 ds (10)

for all 𝜓 ∈ H1
𝛼(Q) where 𝜕w∕𝜕𝜈 ∶= ±𝜕w±∕𝜕x2 on Γ±. Here, w± ∈ H1

𝛼,loc(Q
h0
±) are the (uniquely determined)

solutions of Δw± + k2w± = −𝑓 in Qh0
±, w± = 0 on Γ±, which satisfy the generalized Rayleigh condition (8b);

that is,

∑
𝓁∈Z

||||||(signx2)
dw±

𝓁 (x2)
dx2

− i
√

k2 − (𝓁 + 𝛼)2 w±
𝓁 (x2)

||||||
2

→ 0 , x2 → ±∞ ,

where w±
𝓁 (x2) are the Fourier coefficients of w±(·, x2).

(b) For every 𝛼 ∈ R, the variational equation (10) can be written as

L𝛼u = r𝛼 in H1
𝛼(Q)

where r𝛼 ∈ H1
𝛼(Q) and L𝛼 ∶ H1

𝛼(Q) → H1
𝛼(Q) are given by

(L𝛼u, 𝜓)H1(Q) = ∫
Q

[∇u · ∇𝜓 − k2nu𝜓]dx − ∫
Γ

(Λ𝛼u)𝜓 ds ,

(r𝛼, 𝜓)H1(Q) = ∫
Q

𝑓 𝜓 dx + ∫
Γ

𝜕w
𝜕𝜈

𝜓 ds

for u, 𝜓 ∈ H1
𝛼(Q). The operator L𝛼 is a Fredholm operator with index zero and Riesz number one (that is, the null

spaces of L𝛼 and L2
𝛼 coincide). The operator L𝛼 is invertible if, and only if, 𝛼 is not a propagative wave number. If

𝛼 = �̃�𝑗 + 𝓁 (for some 𝓁 ∈ Z) is a propagative wave number, then the null spaces of L𝛼 and its adjoint L∗
𝛼 coincide

and are given by the restrictions to Q of the corresponding modes in X𝑗 .
(c) If 𝛼 = �̃�𝑗 + 𝓁 is a propagative wave number for some 𝓁 ∈ Z and 𝑗 ∈ J then the problem (8a), (8b) is solvable if,

and only if, ∫Q∞𝑓 𝜙dx = 0 for all 𝜙 ∈ X𝑗 .
(d) Define J𝛼 ∶ H1

per(Q) → H1
𝛼(Q) by (J𝛼𝜙)(x) ∶= ei𝛼x1𝜙(x) and r̃𝛼 ∈ H1

per(Q) and the operator L̃𝛼 from H1
per(Q) into

itself by r̃𝛼 ∶= J−1
𝛼 r𝛼 and L̃𝛼 ∶= J−1

𝛼 L𝛼J𝛼 , respectively. If �̃� ∈ R is not a cut-off value, then there exists a neighborhood
U ⊂ C of �̃� such that 𝛼 → r̃𝛼 and 𝛼 → L̃𝛼 are analytic as mappings from U into H1

per(Q) and  (H1
per(Q)

)
,

respectively.

We note that in the case where 𝑓 ∈ L2(Q∞) has compact support in Q, the generalized Rayleigh condition (8b) can be
replaced by the Rayleigh expansion (5), and the function w appearing in (10) vanishes. Application of this theorem yields
existence of the following quasi-periodic scattering problem.

Theorem 2.6. Let Assumptions 2.2 and 2.4 hold. For a given wave number k > 0 and unit vector �̂� =
(

sin 𝜃

− cos 𝜃

)
with|𝜃| < 𝜋

2
; that is, �̂�2 = − cos 𝜃 < 0, set 𝛼 ∶= k�̂�1 = k sin 𝜃. Then there exists u ∈ H1

𝛼,loc

(
R

2) such that Δu + k2nu = 0 in
R

2, and us(x) ∶= u(x) − eik�̂�·x satisfies the Rayleigh expansion (5).

Proof. The scattered field us satisfies (8a) with 𝑓 = k2(n−1)ui where ui(x) = eik�̂�·x denotes the incident field. If 𝛼 is not
a propagative wave number, then there exists a unique solution us by parts (a) and (b) of Theorem 1. If 𝛼 = �̃�𝑗 + 𝓁 is
a propagative wave number for some 𝓁 ∈ Z and 𝑗 ∈ J, then we have to show that ∫Q∞(n − 1)ui𝜙dx = 0 for all 𝜙 ∈ X𝑗 .
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6 KIRSCH

From the differential equation for 𝜙, we obtain

k2 ∫
Q∞

(n − 1)ui𝜙dx = ∫Q∞
ui [Δ𝜙 + k2𝜙]dx = ∫Q∞

[Δui + k2ui]𝜙dx = 0

by Green's second theorem. We used that the product ui𝜙 is 2𝜋−periodic with respect to x1, that ui is bounded, and
that 𝜙 decays exponentially for |x2| → ∞. □

The following theorem is a special case of a singular perturbation result in [19], Section 1.4. We add the characterization
of the limiting solution and give a more direct proof for the convenience of the reader.

Theorem 2.7. Let �̃� ∈ I for some open interval I ⊂ R, K𝛼 compact operators from some Hilbert space X into itself and
r𝛼 ∈ (L𝛼) for all 𝛼 ∈ I where L𝛼 ∶= I − K𝛼 , and (L𝛼) denotes the range of L𝛼 . Furthermore, let L𝛼 be one-to-one (thus
invertible) for all 𝛼 ≠ �̃� and let L�̃� = I − K�̃� have Riesz number one; that is, the null spaces of L�̃� and L2

�̃�
coincide. Let

P ∶ X →  ∶=  (L�̃�) be the projection onto the null space of L�̃� along the direct decomposition1 X =  ⊕ where
 = (L�̃�). Finally, let 𝛼 → r𝛼 and 𝛼 → K𝛼 be analytic in a neighborhood U ⊂ C of �̃� and let PL′

�̃�
| be an isomorphism

from  onto itself where L′
�̃�

denotes the derivative of L𝛼 with respect to 𝛼 at 𝛼 = �̃�.
Then the mapping 𝛼 → u𝛼 ∶= L−1

𝛼 r𝛼 has an extension to an analytic mapping from U into X. The limit u�̃� = lim𝛼→�̃�u𝛼 is
the unique solution of the system L�̃�u�̃� = r�̃� and PL′

�̃�
u�̃� = Pr′

�̃�
where r′

�̃�
denotes the derivative of r𝛼 at 𝛼 = �̃�. Furthermore,

there exists a closed interval I0 ⊂ I containing �̃� in its interior and c > 0 with

||u𝛼||X ≤ c
[
sup
𝛽∈I0

||r𝛽 ||X + sup
𝛽∈I0

||𝜕r𝛽∕𝜕𝛽||X] for all 𝛼 ∈ I0 . (11)

Proof. Without loss of generality we assume that �̃� = 0. First, we show uniqueness of the system L0u0 = r0 and
PL′

0u0 = Pr′0. Let u(𝑗)
0 for 𝑗 = 1, 2 denote two solutions. Then u0 = u(1)

0 − u(2)
0 satisfies L0u0 = 0 and PL′

0u0 = 0; that is,
u0 ∈  and thus u0 = 0 because PL′

0 is one-to-one on  .
For 𝛼 ≠ 0, we decompose u𝛼 into u𝛼 = uN

𝛼 + uR
𝛼 with uN

𝛼 ∈  and uR
𝛼 ∈  and project the equation L𝛼u𝛼 = r𝛼 onto

 and ; that is, PL𝛼(uN
𝛼 + uR

𝛼 ) = Pr𝛼 and QL𝛼(uN
𝛼 + uR

𝛼 ) = Qr𝛼 where Q = I − P is the projection onto .
The operator QL0| is an isomorphism from  onto itself as easily seen. Therefore, by a perturbation argument,

there exist A𝛼 ∶= [QL𝛼|]−1 from  onto itself for all 𝛼 in a neighborhood V ⊂ U of 0 and they depend analytically
on 𝛼 ∈ V . Therefore, substituting uR

𝛼 = A𝛼(Qr𝛼 − QL𝛼uN
𝛼 ) into the first equation yields

PL𝛼(I − A𝛼QL𝛼)uN
𝛼 = Pr𝛼 − PL𝛼A𝛼Qr𝛼 in  ,

which we write briefly as C𝛼uN
𝛼 = s𝛼 . From PL0 = 0 and Pr0 = 0, we conclude that C0 = 0 and s0 = 0. Therefore,

C𝛼uN
𝛼 = s𝛼 is equivalent to 1

𝛼
(C𝛼 − C0)uN

𝛼 = 1
𝛼
(s𝛼 − s0). The operators 1

𝛼
(C𝛼 − C0) and the elements 1

𝛼
(r𝛼 − r0) depend

analytically on 𝛼 in the neighborhood V of 𝛼 = 0 with lim𝛼→0
1
𝛼
(C𝛼 − C0) = C′

0 and lim𝛼→0
1
𝛼
(s𝛼 − s0) = s′0. By the

chain rule, we compute C′
0 = PL′

0| and s′0 = Pr′0 − PL′
0A0r0. Since C′

0 = PL′
0| is invertible by assumption also

1
𝛼
(C𝛼 − C0) is invertible for 𝛼 in some interval I0 and its inverses are uniformly bounded with respect to 𝛼 ∈ I0, thus||uN
𝛼 ||X ≤ c||(s𝛼 − s0)∕𝛼||X ≤ c′sup𝛽||s′𝛽||X . Also, it is easily seen that uN

𝛼 converges to the unique solution uN
0 ∈  of

C′
0uN

0 = s′0; that is, of PL′
0uN

0 = Pr′0 − PL′
0A0r0.

Finally, we observe from above that uR
𝛼 converges to uR

0 = A0(Qr0 − QL0uN
0 ) = A0r0. Therefore, uN

0 satisfies
PL′

0uN
0 = Pr′0 − PL′

0uR
0 ; that is, PL′

0u0 = Pr′0, which ends the proof. □

Remark 2.8. From the proof of this theorem, we observe that we can modify the assumptions on the mappings 𝛼 → r𝛼
and 𝛼 → K𝛼 . If these mappings are only continuously differentiable in an open interval J ⊂ I (as a subset of R) which
contains �̃�, then the solution maps 𝛼 → u𝛼 is continuous from J into X , and the estimate (11) holds. Also, if the
assumption on the injectivity of L𝛼 holds only for 𝛼 ∈ J with 𝛼 > �̃�, then the one-sided limit u�̃� = lim𝛼→�̃�,𝛼>�̃�u𝛼 exists
and solves the system L�̃�u�̃� = r�̃� and PL′

�̃�
u�̃� = Pr′

�̃�
.

1This is an immediate consequence of Riesz' third theorem, see, e.g., [23], Theorem 3.3.
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KIRSCH 7

3 THE LIMITING ABSORPTION PRINCIPLE

In this section we consider the unperturbed case; that is, q = 0, and prove the limiting absorption principle (LAP) with
respect to the refractive index; that is, we replace n(x) in W ∶= R × (−h0, h0) by n(x) + i𝜀p(x) for 𝜀 > 0 and let 𝜀 tend to
zero. Here p ∈ L∞(W) is any fixed non-negative function which is 2𝜋−periodic with respect to x1 and satisfies p(x) ≥ p0
on some open set Ω ⊂ Q for some p0 > 0. As an example we can take the constant function p = 1. Therefore, let

n𝜀(x) ∶=
{

n(x) + i𝜀p(x) for x ∈ W ,

1 for x ∈ R
2∖W .

The incident plane wave is given by ui(x) = eik�̂�·x where �̂� =
(

sin 𝜃

− cos 𝜃

)
for some fixed |𝜃| < 𝜋

2
. Then ui is 𝛼-quasi-periodic

with parameter 𝛼 ∶= k�̂�1 = k sin 𝜃. Therefore, for 𝜀 > 0, we wish to determine u𝜀 ∈ H1
𝛼,loc(Q

∞) such that

Δu𝜀 + k2n𝜀 u𝜀 = 0 in R
2 (12)

and the scattered field us
𝜀 ∶= u𝜀 − ui satisfies the Rayleigh expansion (5). The scattered field satisfies Δus

𝜀 + k2n𝜀us
𝜀 =

−k2(n𝜀 − 1)ui, and by (10), its variational form is given by

∫
Q

[∇us
𝜀 · ∇𝜓 − k2n𝜀 us

𝜀 𝜓]dx − ∫
Γ

(Λ𝛼us
𝜀)𝜓 ds = k2 ∫

Q

(n𝜀 − 1)ui𝜓 dx

for all 𝜓 ∈ H1
𝛼(Q). Green's theorem applied to ui and 𝜓 in Q yields

∫
Q

[∇ui · ∇𝜓 − k2n𝜀 ui𝜓]dx − ∫
Γ

𝜕ui

𝜕𝜈
𝜓 ds = −k2 ∫

Q

(n𝜀 − 1)ui𝜓 dx

and thus by adding both equations

∫
Q

[∇u𝜀 · ∇𝜓 − k2n𝜀 u𝜀 𝜓]dx − ∫
Γ

(Λ𝛼u𝜀)𝜓 ds

= ∫
Γ

[
𝜕ui

𝜕𝜈
− Λ𝛼ui

]
𝜓 ds = ∫

Γ+

[
𝜕ui

𝜕x2
− Λ𝛼ui

]
𝜓 ds

= 2ik �̂�2 eik�̂�2h0

2𝜋

∫
0

ei𝛼x1 𝜓(x1, h0)dx1 = −2ik cos 𝜃 e−ikh0 cos 𝜃

2𝜋

∫
0

ei𝛼x1 𝜓(x1, h0)dx1

(13)

for all 𝜓 ∈ H1
𝛼(Q). Here, we used that for x2 < −h0, the incident field satisfies the Rayleigh condition; thus, 𝜕ui

𝜕𝜈
= Λ𝛼ui on

Γ−. Furthermore, for x2 > h0, the 𝛼-quasi-periodic solution of the Dirichlet problem with boundary data ui on Γ+ is given
by ei𝛼x1+|�̂�2|(x2−2h0); thus, Λ𝛼ui = ik |�̂�2|ei𝛼x1+ik�̂�2h0 on Γ+.

Lemma 3.1. For all 𝜀 > 0, there exists a unique solution u𝜀 ∈ H1
𝛼,loc(Q

∞) of (12), (5), or, equivalently, (13).

Proof. Since by Theorem 1, this equation can be written as L𝜀u𝜀 = r in H1
𝛼(Q) where L𝜀 is a Fredholm operator of

index zero it suffices to prove uniqueness. For ui = 0, we substitute 𝜓 = u𝜀 into the variational equation and obtain

0 = ∫
Q

[|∇u𝜀|2 − k2n𝜀|u𝜀|2] dx − ∫
Γ

(Λ𝛼u𝜀)u𝜀 ds

= ∫
Q

[|∇u𝜀|2 − k2n𝜀|u𝜀|2] dx − i
∑

𝜎∈{+,−}

∑
𝓁∈Z

√
k2 − (𝓁 + 𝛼)2 |u𝜀,𝓁(𝜎h0)|2 .
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8 KIRSCH

Taking the imaginary part

0 = −𝜀k2 ∫
Q

p |u𝜀|2dx −
∑

𝜎∈{+,−}

∑
|𝓁+𝛼|<k

√
k2 − (𝓁 + 𝛼)2 |u𝜀,𝓁(𝜎h0)|2

yields u𝜀 = 0 in Ω. Unique continuation implies that u𝜀 vanishes in all of Q. □

Theorem 3.2. Let Assumptions 2.2 and 2.4 hold, and let u𝜀 ∈ H1
𝛼,loc(Q

∞) be the unique solution of the quasi-periodic

scattering problem (12), (5) for the plane incident wave of direction �̂� =
(

sin 𝜃

− cos 𝜃

)
for some fixed |𝜃| < 𝜋

2
. Here, 𝛼 ∶= k�̂�1 =

k sin 𝜃. Then u𝜀 converges to some u0 in H1(Q) which is a solution of (12), (5) for 𝜀 = 0. Furthermore, in the case that
𝛼 = �̃�𝑗 + 𝓁 (for some 𝓁 ∈ Z and 𝑗 ∈ J) is a propagative wave number, u0 is the only solution which satisfies in addition
∫Qpu0𝜙dx = 0 for all modes 𝜙 ∈ X𝑗 .

Proof. We note that now 𝛼 is fixed and 𝜀 takes the role of the parameter which tends to zero. We write (13) again in
the form L𝜀u𝜀 = r where L𝜀 ∶ H1

𝛼(Q) → H1
𝛼(Q) and r ∈ H1

𝛼(Q) are given by (compare with part (b) of Theorem 1)

(L𝜀u, 𝜓)H1
𝛼
(Q) ∶= ∫

Q

[∇u · ∇𝜓 − k2n𝜀 u𝜓]dx − ∫
Γ

(Λ𝛼u)𝜓 ds ,

(r, 𝜓)H1
𝛼
(Q) ∶= −2ik cos 𝜃 e−ikh0 cos 𝜃

2𝜋

∫
0

ei𝛼x1 𝜓(x1, h0)dx1

for u, 𝜓 ∈ H1
𝛼(Q).

If 𝛼 is no propagative wave number, then L0 is invertible, and one has convergence of u𝜀 to the unique solution u0
of L0u0 = r in H1(Q) as 𝜀 tends to zero.

Let now 𝛼 be a propagative wave number. It is the aim to apply Theorem 2.7 in the modification of Remark 2.8
with X = H1

𝛼(Q). Then we know from Theorem 1 that the Riesz number of L0 is one and the null spaces  of L0
and its adjoint L∗

0 coincide and are given by the restrictions to Q of the space of corresponding propagating modes.
Furthermore, L𝜀 depends obviously analytically on 𝜀. It remains to show that r is in the range of L0 and that PL′

0| is
an isomorphism from  onto itself (where L′

0 denotes the derivative with respect to 𝜀 at 𝜀 = 0). Since the null spaces
of L0 and its adjoint L∗

0 coincide, we have to show that (r, 𝜙)H1
𝛼
(Q) = 0 for all propagating modes 𝜙 corresponding to

the propagative wave number 𝛼. We have

(r, 𝜙)H1
𝛼
(Q) = −2ik cos 𝜃 e−ikh0 cos 𝜃

2𝜋

∫
0

ei𝛼x1 𝜙(x1, h0)dx1 = 0

because the Fourier coefficients of the propagating modes 𝜙 vanish for all |𝓁 + 𝛼| < k, in particular for 𝓁 = 0 because|𝛼| = k| sin 𝜃| < k. Furthermore,

(
L′

0v, 𝜓
)

H1(Q) = −ik2 ∫
Q

pv𝜓 dx , v, 𝜓 ∈ H1
𝛼(Q) ,

which shows that PL′
0| is an isomorphism from  onto itself. Application of Theorem 2.7 yields convergence of u𝜀

to u0 as 𝜀 tends to zero, and u0 solves the k sin 𝜃-quasi-periodic scattering problem and, in addition, ∫Qpu0𝜙dx = 0
for all modes 𝜙. □

This result is quite unsatisfactory because the orthogonality condition ∫Qpu0𝜙dx = 0 depends on p. The scattering
problem for the limiting case 𝜀 = 0, however, is independent of p. Therefore, also the extra condition in the case of a
propagative wave number should be independent of p.
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KIRSCH 9

4 CONTINUITY WITH RESPECT TO THE DIRECTION OF INCIDENCE

We continue with the unperturbed case; that is, q = 0, and the scattering of a plane wave ui
𝜑(x) = eik�̂�·x for some �̂� =(

sin𝜑

− cos𝜑

)
with |𝜑| < 𝜋

2
such that 𝛼 ∶= k�̂�1 = k sin𝜑 is not a propagative wave number in the sense of Definition 2.1.

Then Theorem 1 yields uniqueness and existence of a 𝛼−quasi-periodic solution u𝜑 of Δu𝜑+ k2nu𝜑 = 0 such that u𝜑−ui
𝜑

satisfies the Rayleigh expansion (5). Let now �̂� =
(

sin 𝜃

− cos 𝜃

)
with |𝜃| < 𝜋

2
such that �̃� ∶= k�̂�1 = k sin 𝜃 is a propagative wave

number and consider 𝜑 in a neighborhood of 𝜃. It is the aim to prove that the unique solution u𝜑 converges to a solution
u𝜃 of the problem for �̂� and give a characterization.

We recall from (13) that the scattering problem for the incident direction �̂� is equivalent to the variational equation

∫
Q

[∇u𝜑 · ∇𝜓 − k2nu𝜑𝜓]dx − ∫
Γ

(Λ𝛼u𝜑)𝜓 ds

= − 2ik cos𝜑e−ikh0 cos𝜑

2𝜋

∫
0

ei𝛼x1 𝜓(x1, h0)dx1 for all 𝜓 ∈ H1
𝛼(Q)

(14)

where 𝛼 = k sin𝜑. With this variational formulation of the scattering problem we are able to prove the following
convergence result.

Theorem 4.1. Let Assumptions 2.2 and 2.4 hold and let �̃� ∶= k sin 𝜃 for some |𝜃| < 𝜋

2
be a propagative wave num-

ber; that is, �̃� = k sin 𝜃 = 𝓁 + �̃�𝑗 for some 𝓁 ∈ Z and 𝑗 ∈ J. Furthermore, let u𝜑 be the unique solution of the
k sin𝜑-quasi-periodic scattering problem of the plane wave incidence of direction �̂� =

(
sin𝜑

− cos𝜑

)
for 𝜑 in a neighbor-

hood of 𝜃. Then u𝜑 converges in H1(Q) to some u𝜃 as 𝜑 tends to 𝜃, and u𝜃 is a �̃�-quasi-periodic solution of the scattering
problem corresponding to the incident field of direction �̂� and the only solution which also satisfies ∫Q∞

𝜕u𝜃

𝜕x1
𝜙dx = 0 for

all propagating modes 𝜙 ∈ X𝑗 .
Proof. We transform (14) into the 2𝜋-periodic form by setting ũ𝜑(x) = e−ik sin𝜑 x1 u𝜑(x) and replacing 𝜓(x) by
eik sin𝜑 x1𝜓(x) for some 𝜓 ∈ H1

per(Q). Then we substitute the form of the Dirichlet-Neumann map and use partial
integration ∫Q

𝜕𝜓

𝜕x1
ũ𝜑dx = −∫Q

𝜕ũ𝜑

𝜕x1
𝜓dx. This yields

∫
Q

[
∇ũ𝜑 · ∇𝜓 − 2ik sin𝜑

𝜕ũ𝜑

𝜕x1
𝜓 − k2(n − sin2𝜑) ũ𝜑𝜓

]
dx

− i
∑

𝜎∈{+,−}

∑
𝓁∈Z

√
k2 − (𝓁 + k sin𝜑)2 ũ𝜑,𝓁(𝜎h0)𝜓𝓁(𝜎h0)

= − 2ik cos𝜑e−ikh0 cos𝜑

2𝜋

∫
0

𝜓(x1, h0)dx1 for all 𝜓 ∈ H1
per(Q) .

(15)

Here, ũ𝜑,𝓁(±h0) are the Fourier coefficients of ũ𝜑(·,±h0). We write this as L̃𝜑ũ𝜑 = r̃𝜑 in H1
per(Q) where L̃𝜑 ∶= J−1

𝛼 L𝛼J𝛼
as in Theorem 1. Since �̃� = k sin 𝜃 is a propagative wave number it is not a cut-off value by Assumption 2.2. Therefore,
by Theorem 1 the operator L̃𝜑 satisfies the smoothness assumptions of Theorem 2.7 in a neighborhood of 𝜃, and also
the right hand side r̃𝜑 depends obviously analytically on 𝜑. Furthermore, L̃𝜃 has Riesz number one and the null spaces
 of L𝜃 and its adjoint L∗

𝜃
coincide and are given by the restrictions to Q of the space of corresponding propagating

modes (transformed to the periodic case). The derivatives with respect to 𝜑 are given by

(L̃′
𝜑ṽ, �̃�)H1(Q) = − 2ik cos𝜑∫

Q

[
𝜕ṽ
𝜕x1

+ ik sin𝜑 ṽ
]
�̃� dx

+ ik cos𝜑
∑

𝜎∈{+,−}

∑
𝓁∈Z

𝓁 + k sin𝜑√
k2 − (𝓁 + k sin𝜑)2

ṽ𝓁(𝜎h0) �̃�𝓁(𝜎h0) ,

(r̃′𝜑, �̃�)H1(Q) = 2ik sin𝜑e−ikh0 cos𝜑 [1 − ikh0 cos𝜑
] 2𝜋

∫
0

�̃�(x1, h0)dx1
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10 KIRSCH

for ṽ, �̃� ∈ H1
per(Q). To show that PL̃′

𝜃
is one-to-one on  , we compute (L̃′

𝜑ṽ, �̃�)H1(Q) for ṽ, �̃� ∈  . As mentioned above,
ṽ(x) = e−ik sin 𝜃 x1 v(x) and �̃�(x) = e−ik sin 𝜃 x1𝜓(x) in Q with propagating modes v, 𝜓 ∈ X𝑗 which have expansions outside
of Q in the forms

v(x) = 1√
2𝜋

∑
|𝓁+k sin 𝜃|>k

v𝓁(±h0)ei(𝓁+k sin 𝜃)x1−
√
(𝓁+k sin 𝜃)2−k2(|x2|−h0) ,± x2 > h0 ,

𝜓(x) = 1√
2𝜋

∑
|𝓁+k sin 𝜃|>k

𝜓𝓁(±h0)ei(𝓁+k sin 𝜃)x1−
√
(𝓁+k sin 𝜃)2−k2(|x2|−h0) ,± x2 > h0 ,

respectively. A direct computation yields that

∫
Q

𝜕v
𝜕x1

𝜓 dx = ∫
Q

[
𝜕ṽ
𝜕x1

+ ik sin 𝜃 ṽ
]
̄̃𝜓 dx and (16a)

∞

∫
h0

2𝜋

∫
0

𝜕v
𝜕x1

𝜓 dx1 dx2 = i
2

∑
|𝓁+k sin 𝜃|>k

𝓁 + k sin 𝜃√
(𝓁 + k sin 𝜃)2 − k2

v𝓁(h0)𝜓𝓁(h0)

= − 1
2

∑
|𝓁+k sin 𝜃|>k

𝓁 + k sin 𝜃√
k2 − (𝓁 + k sin 𝜃)2

v𝓁(h0)𝜓𝓁(h0)

(16b)

and analogously for the integral over (0, 2𝜋) × (−∞,−h0). Therefore,

(L̃′
𝜃
ṽ, �̃�)H1(Q) = −2ik cos 𝜃 ∫

Q∞

𝜕v
𝜕x1

𝜓 dx

for ṽ, �̃� ∈  . Therefore, PL̃′
𝜃
ṽ = 0 for some ṽ ∈  implies that ∫Q∞

𝜕v
𝜕x1

𝜓 dx = 0 for all 𝜓 ∈ X𝑗 which implies that v
vanishes identically by Assumption 2.4.

Application of Theorem 2.7 yields continuity of 𝜑 → ũ𝜑 in H1(Q) and PL̃′
𝜃
ũ𝜃 = Pr̃′

𝜃
; that is, (L̃′

𝜃
ũ𝜃, �̃�)H1(Q) =

(r̃′
𝜃
, �̃�)H1(Q) for all �̃� ∈  . As above we go back to the quasi-periodic fields u𝜃 and 𝜓 . We observe that for x2 > h0 and

x2 < −h0 the total field u𝜃 is given by

u𝜃(x) = eik sin 𝜃 x1
[
e−ik cos 𝜃 x2 − eik cos 𝜃(x2−2h0)

]
+ 1√

2𝜋

∑
𝓁∈Z

u𝜃,𝓁(h0)ei(𝓁+k sin 𝜃)x1−
√
(𝓁+k sin 𝜃)2−k2(x2−h0) , x2 > h0 ,

u𝜃(x) =
1√
2𝜋

∑
𝓁∈Z

u𝜃,𝓁(−h0)ei(𝓁+k sin 𝜃)x1−
√
(𝓁+k sin 𝜃)2−k2(−x2−h0) , x2 < −h0 ,

where u𝜃,𝓁(±h0) = 1√
2𝜋

∫ 2𝜋
0 u𝜃(x1,±h0)e−i(𝓁+k sin 𝜃)x1 dx1. From this and the fact that

∫ 2𝜋
0 𝜓(x1, h0)e−ik sin 𝜃 x1 dx1 vanishes the propagating modes, we conclude as before that

(L̃′
𝜃
ũ𝜃, 𝜓)H1(Q) = −2ik cos 𝜃 ∫

Q∞

𝜕u𝜃

𝜕x1
𝜓 dx and (r̃′

𝜃
, 𝜓)H1(Q) = 0

for all propagating modes 𝜓 ∈ X𝑗 which proves ∫Q∞
𝜕u𝜃

𝜕x1
𝜓 dx = 0 for all modes. □

We note that this condition on u𝜃 is independent of h0 in contrast to the condition obtained by the LAP.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9147 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [16/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KIRSCH 11

5 APPROXIMATION BY POINT SOURCES

We begin with the scattering problem of a point source at z ∈ R
2 with z2 > h0. The total field uz(x) = Φ(x, z) + us

z(x) is
required to satisfy

Δuz + k2(n + q)uz = 0 in R
2∖{z} , (17)

where Φ(x, z) = i
4

H(1)
0 (k|x − z|) denotes again the fundamental solution. Furthermore, the scattered part us

z = uz −Φ(·, z)
is required to be smooth at x = z; that is, us

z ∈ H1
loc

(
R

2), and uz has to satisfy the following open waveguide radiation
condition.

Definition 5.1. Let 𝜓+, 𝜓− ∈ C∞(R) be any (fixed) functions with 𝜓±(x1) = 1 for ±x1 ≥ 𝜎0 (for some 𝜎0 > 2𝜋 + 1)
and 𝜓±(x1) = 0 for ±x1 ≤ 𝜎0−1. Denote by D a disc centered at the origin which contains the source z and the support
of q and by WH ∶= R × (−H,H) the layer of width 2H for any H > 0.

A solution u ∈ H1
loc(R

2∖D) of Δu + k2nu = 0 in R
2∖D satisfies the open waveguide radiation condition with respect

to given inner products (·, ·)X𝑗
in X𝑗 if

(a) u has a decomposition in the form u = urad + uprop where urad ∈ H1(WH∖D) for all H > h0 and

uprop(x) =
∑
𝑗∈J

⎡⎢⎢⎣𝜓+(x1)
∑
𝜆𝓁,𝑗>0

a𝓁,𝑗 𝜙𝓁,𝑗(x) + 𝜓−(x1)
∑
𝜆𝓁,𝑗<0

a𝓁,𝑗 𝜙𝓁,𝑗(x)
⎤⎥⎥⎦ (18)

for x ∈ R
2∖D and some a𝓁,𝑗 ∈ C. Here, 𝜆𝓁,𝑗 ∈ R and 𝜙𝓁,𝑗 ∈ X𝑗 for 𝑗 ∈ J are the eigenvalues and corresponding

eigenfunctions, respectively, of the eigenvalue problem (7) in X𝑗 .
(b) The radiating part urad satisfies the following generalized angular spectrum radiation condition

∞

∫
−∞

||||(sign x2)
𝜕(urad)(𝜔, x2)

𝜕x2
− i
√

k2 − 𝜔2 (urad)(𝜔, x2)
||||2d𝜔 → 0 (19)

as |x2| → ∞ where (urad)(·, x2) denotes the Fourier transform of urad(·, x2) with respect to x1. We normalize
the Fourier transform as (𝜙)(t) = 1√

2𝜋
∫ ∞
−∞ 𝜙(s)e−ist ds for t ∈ R.

Remark: We refer to [2, 8, 24] for the original angular spectrum representation condition (ASR) which can shortly be
formulated as (signx2)

𝜕(urad)(𝜔,·)
𝜕x2

− i
√

k2 − 𝜔2 (urad)(𝜔, ·) = 0 on R for almost all 𝜔.
We transform this scattering problem to a problem with a compactly supported source. Indeed, for some 𝜀 > 0 we

choose a function 𝜂 ∈ C∞ (R2)with 𝜂(𝑦) = 1 for |𝑦| ≤ 𝜀∕2 and 𝜂(𝑦) = 0 for |𝑦| ≥ 𝜀. We decompose uz as uz = 𝜂zΦ(·, z)+ ûs
z

with ûs
z ∶= uz − 𝜂zΦ(·, z) where we have set 𝜂z(x) = 𝜂(x − z). Then ûs

z satisfies (note that (1 − n + q)𝜂z vanishes identically
if z2 > h0 + 𝜀)

Δûs
z + k2(n + q) ûs

z = −𝑓z in R
2
, (20)

where the right hand side 𝑓z ∶= 2∇𝜂z · ∇xΦ(·, z) + Δ𝜂zΦ(·, z) is supported in the annulus {x ∈ R
2 ∶ 𝜀∕2 < |x − z| < 𝜀}

which we assume to be in D.
It has been shown in [20] for the case of a half plane problem that the radiation condition of Definition 5.1 for compactly

supported source functions 𝑓 ∈ L2(Q) is a consequence of the limiting absorption principle. In [22], it is shown that the
source problem (20) for any source function 𝑓 ∈ L2(Q) has a unique solution satisfying the open waveguide radiation
condition. Furthermore, we note that the solution ûs

z of (20) satisfies the open waveguide condition if, and only if, the
solution uz of (17) satisfies the radiation condition because ûs

z − uz vanishes for |x − z| > 𝜀 and can be subsumed into the
radiating part.

From now on, we consider again the unperturbed case q = 0. In this case, the coefficients a𝓁,𝑗 = a𝓁,𝑗(z) are given
explicitly by
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12 KIRSCH

a𝓁,𝑗(z) ∶=
2𝜋i|𝜆𝓁,𝑗| ∫|x−z|<𝜀

𝑓z(x)𝜙𝓁,𝑗(x)dx , (21)

see again [22]. It is the aim to prove the following convergence result.

Theorem 5.2. Let Assumptions 2.2 and 2.4 hold and let �̂� =
(

sin 𝜃

− cos 𝜃

)
∈ R

2 be a fixed unit vector with |𝜃| < 𝜋

2
; that

is, �̂�2 < 0. In addition, let �̃� ∶= k�̂�1 = k sin 𝜃 not be a cut-off value in the sense of Definition 2.1. Let ut be the unique
solution of the unperturbed (that is, for q = 0) scattering problem of the point source at z = −t�̂� for t|�̂�2| > 2h0 such that
us

t ∶= ut − Φ(·,−t�̂�) ∈ H1
loc

(
R

2) and ut satisfies the open waveguide radiation condition of Definition 5.1. Then

1
𝛾
lim
t→∞

[√
t e−iktut

]
= v𝜃 in H1(QR) (22)

for any R > 0 where QR ∶= (−R,R) × (−h0, h0), and where v𝜃 ∈ H1
�̃�,loc

(
R

2) solves the �̃�−quasi-periodic scattering
problem Δv𝜃 + k2nv𝜃 = 0 in R

2 such that the scattered field vs
𝜃
(x) ∶= v𝜃(x) − eik�̂�·x satisfies the Rayleigh expansion (5) for

𝛼 = �̃� = k sin 𝜃.
If �̃� = k sin 𝜃 = 𝓁 + �̃�𝑗 is a propagative wave number (for some 𝓁 ∈ Z and 𝑗 ∈ J) with corresponding space X𝑗 of

propagating modes then the total field v𝜃 is the only solution which satisfies in addition

∫
Q∞

𝜕v𝜃
𝜕x1

𝜙dx = 0 for all 𝜙 ∈ X𝑗 . (23)

We note that the convergence of the total fields in (22) corresponds exactly to the convergence of the incident fields
in (3). Therefore, this theorem justifies rigorously the assumption that one searches right away for k sin 𝜃-quasi-periodic
solutions of the scattering problem. We note however that this result holds also for the case that k sin 𝜃 is a propagative
wave number. In this case, there is no uniqueness of the scattering problem by the plane wave of direction �̂� of incidence,
and Theorem 5.2 formulates the extra orthogonality condition (23) which coincides with the condition of Theorem 4.1.

We were not able to prove Theorem 5.2 in the case that k sin 𝜃 − 𝓁 is one of the cut-off values ±𝜅 for some 𝓁 ∈ Z.
Proof of Theorem 5.22: For the moment, we consider any z ∈ R

2 with z2 > h0 + 𝜀. From (20) (for q = 0), we note that
the radiating part uz,rad of us

z solves

Δuz,rad + k2nuz,rad = −𝑓z − gz in R
2
, (24)

where

𝑓z = 2∇𝜂z · ∇xΦ(·, z) − Δ𝜂zΦ(·, z) = (Δ + k2)
[
(𝜂z − 1)Φ(·, z)

]
and (25a)

gz =(Δ + k2n)uz,prop =
∑
𝑗∈J

m𝑗∑
𝓁=1

a𝓁,𝑗(z)𝜑𝓁,𝑗 with

𝜑𝓁,𝑗(x) =
⎧⎪⎨⎪⎩

2𝜓 ′
+(x1)

𝜕𝜙𝓁,𝑗 (x)
𝜕x1

+ 𝜓 ′′
+ (x1)𝜙𝓁,𝑗(x) if 𝜆𝓁,𝑗 > 0 ,

2𝜓 ′
−(x1)

𝜕𝜙𝓁,𝑗 (x)
𝜕x1

+ 𝜓 ′′
− (x1)𝜙𝓁,𝑗(x) if 𝜆𝓁,𝑗 < 0 .

(25b)

Now, we use the Floquet-Bloch transform F to transform (24) to a family of quasi-periodic problems. For functions v ∈
C∞

0
(
R

2), the transform is defined as

(Fv)(x, 𝛼) ∶=
∑
𝓁∈Z

v(x1 + 2𝜋𝓁, x2)e−i𝛼2𝜋𝓁 , x ∈ R
2
.

2We note already here that we will interrupt the proof by four lemmas.

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9147 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [16/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KIRSCH 13

Then it is known (see, e.g., [25–27]) that F has an extension to an isomorphism from H1(W) onto

H1
QP(Q × I) ∶=

{
u ∈ L2 (Q × I) ∶

u(·, 𝛼) ∈ H1
𝛼(Q) for almost all 𝛼 and

𝛼 → ||u(·, 𝛼)||H1(Q) is in L2(I)

}

where I = (−1∕2, 1∕2) (or any other interval of length 1). The inverse is given by u = ∫I(Fu)(·, 𝛼)d𝛼 in W where (Fu)(·, 𝛼)
is extended 𝛼-quasi-periodically to W .

We know from [22] that the Floquet-Bloch transformed equation

Δu𝛼,z + k2nu𝛼,z = −(F𝑓z)(·, 𝛼) − (Fgz)(·, 𝛼) in Q∞ (26)

for u𝛼,z = (Fuz,rad)(·, 𝛼) is solvable for all 𝛼 ∈ R (without exception) and that 𝛼 → u𝛼,z has an extension to a mapping in
W 1,1 (I,H1(Q)

)
and is even analytic in neighborhoods of points �̃� which are no cut-off values. By part (b) of Theorem 1

this equation can be written as a variational equation in the form

∫
Q

[∇u𝛼,z · ∇𝜓 − k2nu𝛼,z𝜓]dx − ∫
Γ

(Λ𝛼u𝛼,z)𝜓 ds = ∫
Q

(Fgz)(·, 𝛼)𝜓 dx + ∫
Γ

𝜕w𝛼,z

𝜕𝜈
𝜓 ds (27)

for all 𝜓 ∈ H1
𝛼(Q) or shortly as L𝛼u𝛼,z = r𝛼,z in H1

𝛼(Q) where r𝛼,z ∈ H1
𝛼(Q) denotes the Riesz representation of the right

hand side. Note that F𝑓z vanishes in Q and therefore appears only implicitly in w+
𝛼,z. The functions w±

𝛼,z ∈ H1
𝛼,loc(Q

h0
±) are

the 𝛼-quasi-periodic solutions of

Δw+
𝛼,z + k2w+

𝛼,z = − (F𝑓z)(·, 𝛼) − (Fgz)(·, 𝛼)

= − (Δ + k2)F ((𝜂z − 1)Φ(·, z)) − (Fgz)(·, 𝛼)

= − (Δ + k2)F ((𝜂z − 1)Φ(·, z) + Φ(·, z∗)) − (Fgz)(·, 𝛼)

(28a)

in Qh0
+ with w+

𝛼,z = 0 for x2 = h0 and

Δw−
𝛼,z + k2w−

𝛼,z = −(Fgz)(·, 𝛼) in Qh0
− (28b)

with w−
𝛼,z = 0 for x2 = −h0, satisfying the generalized Rayleigh condition (8b). Here, we used the definition of 𝑓z and the

fact that 𝜂z vanishes in Qh0
− . The point z∗ = (z1, 2h0 − z2)⊤ is the reflection of z at the line x2 = h0.

Lemma 5.3. Let w±
𝛼,z be the solutions of (28a) and (28b), respectively. Then 𝜕w±

𝛼,z∕𝜕x2 are given by

𝜕w+
𝛼,z(x1, h0)
𝜕x2

= 1
2𝜋
∑
𝓁∈Z

ei
√

k2−(𝓁+𝛼)2(z2−h0) ei(𝓁+𝛼)(x1−z1)

+ 1√
2𝜋

∑
𝓁∈Z

∞

∫
h0

(Fgz)𝓁(𝑦2, 𝛼)ei
√

k2−(𝓁+𝛼)2(𝑦2−h0) d𝑦2 ei(𝓁+𝛼)x1 ,

𝜕w−
𝛼,z(x1,−h0)
𝜕x2

= − 1√
2𝜋

∑
𝓁∈Z

∞

∫
h0

(Fgz)𝓁(−𝑦2, 𝛼)ei
√

k2−(𝓁+𝛼)2(𝑦2−h0) d𝑦2 ei(𝓁+𝛼)x1

for x1 ∈ (0, 2𝜋) where (Fgz)𝓁(𝑦2, 𝛼) = 1√
2𝜋

∫ 2𝜋
0 (Fgz)(𝑦, 𝛼)e−i(𝓁+𝛼)𝑦1 d𝑦1 are the Fourier coefficients of (Fgz)(·, 𝑦2, 𝛼).

Proof. We write (𝜂z − 1)Φ(·, z) +Φ(·, z∗) = −G+(·, z) + 𝜂zΦ(·, z) where G+(x, z) = Φ(x, z) −Φ(x, z∗) denotes the Green's
function for the half space {x ∈ R

2 ∶ x2 > h0}. Furthermore, the Floquet-Bloch transform (FG+(·, z))(x, 𝛼) is just the
𝛼−quasi-periodic Green's function in Qh0

+ , given by
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14 KIRSCH

(
FG+(·, z)

)
(x, 𝛼) = i

4𝜋
∑
𝓁∈Z

1√
k2 − (𝓁 + 𝛼)2

[
ei
√

k2−(𝓁+𝛼)2|x2−z2| − ei
√

k2−(𝓁+𝛼)2(x2+z2−2h0)
]

ei(𝓁+𝛼)(x1−z1) .

Indeed, this follows from the connection between the Fourier transform  and the Floquet-Bloch transform F

(𝜙)(𝓁 + 𝛼) = 1√
2𝜋 ∫

∞

−∞
𝜙(s)e−is(𝓁+𝛼) ds = 1√

2𝜋

2𝜋

∫
0

(F𝜙)(t, 𝛼)e−i(𝓁+𝛼)t dt

(just decompose the region of integration into
⋃

𝓁∈Z(2𝜋𝓁, 2𝜋𝓁 + 2𝜋)), writing this as (F𝜙)(t, 𝛼) = 1√
2𝜋

∑
𝓁∈Z(𝜙)(𝓁 +

𝛼)ei(𝓁+𝛼)t, and using formulas 3. and 4. in [28], Section 6.677.
Therefore, F

(
G+(·, z) − 𝜂zΦ(·, z)

)
is smooth near x = z and vanishes for x2 = h0 and satisfies the Rayleigh

expansion (5) because 𝜂z vanishes near x2 = h0 and for |x| > |z| + 𝜀. Therefore,

w+
𝛼,z = F

(
G+(·, z) − 𝜂zΦ(·, z)

)
(·, 𝛼) + v+𝛼,z in Qh0

+

where v+𝛼,z is the radiating solution of Δv+𝛼,z + k2v+𝛼,z = −(Fgz)(·, 𝛼) in Qh0
+ with v+𝛼,z = 0 for x2 = h0. Expanding v+𝛼,z

into a Fourier series and solving the one dimensional boundary value problem d
dx2

v+𝓁,𝛼,z(x2)+ (k2 −(𝓁 + 𝛼)2)v+𝓁,𝛼,z(x2) =
−(Fgz)𝓁(x2, 𝛼) for x2 > h0 and v+𝓁,𝛼,z(h0) = 0 and the generalized Rayleigh condition (8b) for its Fourier coefficients
gives

v+𝓁,𝛼,z(x2) =
i
2

∞

∫
h0

(Fgz)𝓁(𝑦2, 𝛼)
ei
√

k2−(𝓁+𝛼)2|x2−𝑦2| − ei
√

k2−(𝓁+𝛼)2(x2+𝑦2−2h0)√
k2 − (𝓁 + 𝛼)2

d𝑦2 .

This proves the form for w+
𝛼,z. Since w−

𝛼,z plays the role of v+𝛼,z in Qh0
− the representation is shown analogously. □

With this result we rewrite (27) as

(L𝛼u𝛼,z, 𝜓)H1(Q) =∫
Q

(Fgz)(·, 𝛼)𝜓 dx + 1√
2𝜋

∑
𝓁∈Z

ei
√

k2−(𝓁+𝛼)2(z2−h0) e−i(𝓁+𝛼)z1 𝜓𝓁(h0)

+
∑

𝜎∈{+,−}

∑
𝓁∈Z

𝜓𝓁(𝜎h0)

∞

∫
h0

(Fgz)𝓁(𝜎𝑦2, 𝛼)ei
√

k2−(𝓁+𝛼)2(𝑦2−h0) d𝑦2 ,

(29)

where the operator L𝛼 from H1
𝛼(Q) into itself is again defined as

(L𝛼v, 𝜓)H1(Q) ∶= ∫
Q

[∇v · ∇𝜓 − k2nv𝜓]dx − ∫
Γ

(Λ𝛼v)𝜓 ds , v, 𝜓 ∈ H1
𝛼(Q) .

At this point we define the sources z to be z = z(t) = −t �̂� for t > 0 where �̂� =
(

sin 𝜃

− cos 𝜃

)
for |𝜃| < 𝜋

2
is the fixed direction of

the incident plane wave with �̂�2 = − cos 𝜃 < 0. We choose t > 0 such that z2(t) = −t�̂�2 = t cos 𝜃 > 2h0. Then z2(t) → ∞ as
t → ∞. We change the symbols slightly and write u𝛼,t and gt and a𝓁,𝑗(t) for u𝛼,z(t) and gz(t) and a𝓁,𝑗(z(t)), respectively.

It is now the aim to study the inverse Floquet-Bloch transform ut(x) = ∫ 1∕2
−1∕2 u𝛼,t(x)d𝛼 when t tends to infinity. We will

decompose ut into components and split the region into parts and discuss the contributions separately.
From the definitions (25b) and (21) of gz and a𝓁,𝑗(z), respectively, the exponential decay of 𝜙𝓁,𝑗 , and the fact that the

support of 𝑓z is contained in the disc {x ∈ R
2 ∶ |x − z| ≤ 𝜀} we first note that |a𝓁,𝑗(t)| ≤ ce−𝛿t, and thus,

||ut,prop||H1(QR) ≤ cR
∑
𝑗∈J

m𝑗∑
𝓁=1
|a𝓁,𝑗(t)| ≤ ce−𝛿t (30)
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KIRSCH 15

for some c > 0 and

|(Fgt)(x, 𝛼)| + |𝜕(Fgt)(x, 𝛼)∕𝛼| ≤ ce−𝛿(t+|x2|) , x ∈ Q∞∖Q , (31)

for all t > 0, R > 0, and 𝛼 ∈ [−1∕2, 1∕2].
We split the first series on the right hand side of (29) into propagating and evanescent parts. Decompose k again into the

form k = 𝓁 + 𝜅 with 𝓁 ∈ N0 and 𝜅 ∈ (−1∕2, 1∕2]. Then ±𝜅 are the cut-off values. We can always decompose [−1∕2, 1∕2]
in the form [−1∕2, 1∕2] = I1 ∪ I2 ∪ I3 with closed intervals Im such that their interiors are pairwise disjoint and find
corresponding sets m ⊂ {−𝓁, … ,𝓁} such that |𝓁 + 𝛼| ≤ k for all 𝛼 ∈ Im and 𝓁 ∈ m and |𝓁 + 𝛼| ≥ k for all 𝛼 ∈ Im
and 𝓁 ∉ m for m = 1, 2, 3. For example, if 𝜅 ≥ 0, then I1 = [−𝜅, 𝜅] with 1 = {−𝓁, … ,𝓁}, I2 = [−1∕2,−𝜅] with
2 = {−𝓁 + 1, … ,𝓁}, and I3 = [𝜅, 1∕2] with 3 = {−𝓁, … ,𝓁 − 1}. Some of the intervals can degenerate into points (as
I3 in the preceding example if 𝜅 = 1∕2 or I1 if 𝜅 = 0) and some of the sets m can be empty (as 2 and 3 in the preceding
example if 𝓁 = 0). The cut-off values are contained in the boundary points of Im.

For 𝛼 ∈ Im (where m ∈ {1, 2, 3} is kept fixed), we rewrite (29) in the form

(
L𝛼u𝛼,t, 𝜓

)
H1(Q) =

1√
2𝜋

∑
𝓁∈m

eit[(𝓁+𝛼)�̂�1+
√

k2−(𝓁+𝛼)2|�̂�2|] e−i
√

k2−(𝓁+𝛼)2h0 𝜓𝓁(h0)

+ 1√
2𝜋

∑
𝓁∉m

et[i(𝓁+𝛼)�̂�1−
√
(𝓁+𝛼)2−k2|�̂�2|] e

√
(𝓁+𝛼)2−k2h0 𝜓𝓁(h0)

(32)

+ ∫
Q

(Fgt)(·, 𝛼)𝜓 dx +
∑

𝜎∈{+,−}

∑
𝓁∈Z

𝜓𝓁(𝜎h0)

∞

∫
h0

(Fgt)𝓁(𝜎𝑦2, 𝛼)ei
√

k2−(𝓁+𝛼)2(𝑦2−h0) d𝑦2

for all 𝜓 ∈ H1
𝛼(Q). We recall that if 𝛼 is not a propagative wave number, then this equation is uniquely solvable. If 𝛼 = �̃�𝑗 is

a propagative wave number in Im, then by the choice of a𝓁,𝑗(t), this equation is also solvable because r�̃�𝑗 ,t is orthogonal to
X𝑗 ; that is, the right hand side of (32) vanishes for modes 𝜓 = 𝜙𝑗 ∈ X𝑗 corresponding to �̃�𝑗 . This has been shown in [22].

The right hand side of (32) suggests to decompose u𝛼,t for 𝛼 ∈ Im into a sum of the form

u𝛼,t =
i

4𝜋
∑
𝓁∈m

eit[(𝓁+𝛼)�̂�1+
√

k2−(𝓁+𝛼)2|�̂�2|] 1√
k2 − (𝓁 + 𝛼)2

v𝓁,𝛼 + u(1)
𝛼,t (33)

with functions v𝓁,𝛼 ∈ H1
𝛼(Q) for 𝓁 ∈ m which are independent of t and solutions of(
L𝛼v𝓁,𝛼 , 𝜓

)
H1(Q) = − 2i

√
2𝜋
√

k2 − (𝓁 + 𝛼)2 e−i
√

k2−(𝓁+𝛼)2h0 𝜓𝓁(h0)

= − 2i
√

k2 − (𝓁 + 𝛼)2 e−i
√

k2−(𝓁+𝛼)2h0

2𝜋

∫
0

𝜓(x1, h0)ei(𝓁+𝛼)x1 dx1

(34)

for all 𝜓 ∈ H1
𝛼(Q). The solutions exist for all 𝛼 ∈ Im because for every propagative wave number 𝛼 = �̃�𝑗 ∈ Im the right

hand side of (34) vanishes for every 𝜓 = 𝜙 ∈ X𝑗 . Indeed, in this case 𝜙 is evanescent; that is, the Fourier coefficients
1√
2𝜋

∫ 2𝜋
0 𝜙(x1, h0, �̃�)e−i(𝓁+�̃�)x1 dx1 vanish for |𝓁 + �̃�| < k; that is, for all 𝓁 ∈ m. This proves existence of a solution for all

𝛼 ∈ Im. The functions v𝓁,𝛼 are solutions of 𝛼−quasi-periodic scattering problems for plane wave incidence as the next
lemma shows.

Lemma 5.4. v𝓁,𝛼 is the restriction to Q of a solution of the 𝛼-quasi-periodic scattering problem of the incident plane wave

of direction �̂�𝓁 = 1
k

(
𝓁 + 𝛼,−

√
k2 − (𝓁 + 𝛼)2

)⊤
to determine the total field v𝓁,𝛼 as the sum v𝓁,𝛼(x) = ei(𝓁+𝛼)x1−i

√
k2−(𝓁+𝛼)2x2 +

vs
𝓁,𝛼(x) such that

Δv𝓁,𝛼 + k2nv𝓁,𝛼 = 0 in R
2
, (35)

and the scattered field vs
𝓁,𝛼 satisfies the Rayleigh expansion (5) outside of Q.
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16 KIRSCH

Proof. We consider the scattering problem and make an ansatz for the solution in the form

v𝓁,𝛼(x) = ṽs
𝓁,𝛼(x) +

{
ei(𝓁+𝛼)x1

[
e−i
√

k2−(𝓁+𝛼)2x2 − ei
√

k2−(𝓁+𝛼)2(x2−2h0)
]
, x2 > h0,

0 , x2 < −h0 ,

where

ṽs
𝓁,𝛼(x) =

1√
2𝜋

∑
𝓁′∈Z

a𝓁′ (±h0)ei(𝓁′+𝛼)x1+i
√

k2−(𝓁′+𝛼)2(|x2|−h0) for ± x2 > h0 . (36)

Then v𝓁,𝛼 = ṽs
𝓁,𝛼 on Γ = Γ+ ∪ Γ−, and thus,

𝜕v𝓁,𝛼(x1, h0)
𝜕x2

= (Λ𝛼v𝓁,𝛼)(x1, h0) − 2i
√

k2 − (𝓁 + 𝛼)2 e−i
√

k2−(𝓁+𝛼)2h0 ei(𝓁+𝛼)x1 ,

𝜕v𝓁,𝛼(x1,−h0)
𝜕x2

= (Λ𝛼v𝓁,𝛼)(x1,−h0) .

Therefore, the variational form of (35) is

∫
Q

[
∇v𝓁,𝛼 · ∇𝜓 − k2nv𝓁,𝛼 𝜓

]
dx − ∫

Γ

(Λv𝓁,𝛼)𝜓 ds

= − 2i
√

k2 − (𝓁 + 𝛼)2 e−i
√

k2−(𝓁+𝛼)2h0

2𝜋

∫
0

ei(𝓁+𝛼)x1𝜓(x1, h0)dx1 for all 𝜓 ∈ H1
per(Q)

which coincides with (34). □

Lemma 5.5. Let �̃� be a fixed value in the interior of Im and v𝓁,𝛼 as in the previous lemma for 𝓁 ∈ m and 𝛼 ∈ Im. Then
the solution map 𝛼 → v𝓁,𝛼 can be extended to an analytic map from an open neighborhood U ⊂ C of �̃� into H1(Q).
Furthermore, if �̃� = �̃�𝑗 is a propagative wave number, then this extension into �̃�𝑗 satisfies

∫
Q∞

𝜕v𝓁,�̃�𝑗
𝜕x1

𝜙dx = 0 (37)

for all corresponding modes 𝜙 ∈ X𝑗 .

We omit the proof because it follows from Theorem 4.1 if one writes (𝓁 + 𝛼)∕k as (𝓁 + 𝛼)∕k = k sin𝜑 in the incident
plane wave of direction �̂�𝓁 .

Next we consider the remaining term

u(1)
𝛼,t ∶= u𝛼,t −

i
4𝜋
∑
𝓁∈m

eit
[
(𝓁+𝛼)�̂�1+

√
k2−(𝓁+𝛼)2|�̂�2|] 1√

k2 − (𝓁 + 𝛼)2
v𝓁,𝛼

of (33) which satisfies(
L𝛼u(1)

𝛼,t , 𝜓
)

H1
𝛼
(Q)

= 1√
2𝜋

∑
𝓁∉m

et[i(𝓁+𝛼)�̂�1−
√
(𝓁+𝛼)2−k2|�̂�2|] e

√
(𝓁+𝛼)2−k2h0 𝜓𝓁(h0)

+ ∫
Q

(Fgt)(x, 𝛼)𝜓(x)dx +
∑

𝜎∈{+,−}

∑
𝓁∈Z

𝜓𝓁(𝜎h0)

∞

∫
h0

(Fgt)𝓁(𝜎𝑦2, 𝛼)ei
√

k2−(𝓁+𝛼)2(𝑦2−h0) d𝑦2

for all 𝜓 ∈ H1
per(Q) which we write briefly as L𝛼u(1)

𝛼,t = r(1)
𝛼,t + r(2)

𝛼,t + r(3)
𝛼,t .
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KIRSCH 17

Lemma 5.6. There exists c > 0 such that

∫
Im

||u(1)
𝛼,t||H1(Q) d𝛼 ≤ c

t
for all t|�̂�2| ≥ 2h0 .

Proof. We decompose Im into a finite union of closed intervals I ⊂ Im with non-intersecting interiors where I is one
of the following two types.

First case: Let I ⊂ Im does not contain any of the propagative wave numbers �̃�𝑗 . Then L̃−1
𝛼 is uniformly bounded

with respect to 𝛼 ∈ I. We estimate the three terms r(𝑗)
𝛼,t on the right hand side. The inequality of Cauchy-Schwarz and

the trace theorem yields for every 𝛼 ∈ Im

||r(1)
𝛼,t ||H1(Q) ≤ c

(∑
𝓁∉m

e−2
√
(𝓁+𝛼)2−k2 (t|�̂�2|−h0)

)1∕2

where c > 0 is independent of 𝛼 and t. Furthermore, (31) implies

||r(2)
𝛼,t ||H1(Q) ≤ ||(Fgt)(·, 𝛼)||L2(Q) ≤ ce−𝛿t for all 𝛼 ∈ Im .

For r(3)
𝛼,t , we consider first |𝓁| ≥ k + 1. Then |||ei

√
k2−(𝓁+𝛼)2(𝑦2−h0)||| = e−

√
(𝓁+𝛼)2−k2(𝑦2−h0), and thus,

⎡⎢⎢⎢⎣
∑
|𝓁|≥k+1

|𝜓𝓁(h0)| ∞

∫
h0

|(Fgt)𝓁(𝑦2, 𝛼)| |||ei
√

k2−(𝓁+𝛼)2(𝑦2−h0)||| d𝑦2

⎤⎥⎥⎥⎦
2

≤ ∑
|𝓁|≥k+1

|𝜓𝓁(h0)|2 ∑
|𝓁|≥k+1

∞

∫
h0

|(Fgt)𝓁(𝑦2, 𝛼)|2d𝑦2

∞

∫
h0

e−2
√
(𝓁+𝛼)2−k2(𝑦2−h0)d𝑦2

≤ c1||𝜓||2H1(Q)||(Fgt)(·, 𝛼)||2L2(Qh0
+ )

≤ c2 e−2𝛿t||𝜓||2H1
per(Q)

for all 𝛼 ∈ [−1∕2, 1∕2] by (31). The remaining finite sum is estimated as

∑
|𝓁|≤k+1

|𝜓𝓁(h0)| ∞

∫
h0

|(Fgt)𝓁(𝑦2, 𝛼)| |||ei
√

k2−(𝓁+𝛼)2(𝑦2−h0)||| d𝑦2

≤ ∑
|𝓁|≤k+1

|𝜓𝓁(h0)| ∞

∫
h0

|(Fgt)𝓁(𝑦2, 𝛼)| d𝑦2 ≤
√

2k + 3√
2𝜋

||𝜓||H1(Q)

2𝜋

∫
0

∞

∫
h0

|(Fgt)(𝑦, 𝛼)| d𝑦2 d𝑦1

≤ c ||𝜓||H1(Q) e−𝛿t for all 𝛼 ∈ [−1∕2, 1∕2]

where we used (31) again. The restrictions of these estimates to 𝛼 ∈ I and the uniform boundedness of L̃−1
𝛼 yield the

existence of c > 0 with

||u(1)
𝛼,t||H1(Q) ≤ c

(∑
𝓁∉m

e−t
√
(𝓁+𝛼)2−k2 |�̂�2|

)1∕2

+ ce−𝛿t (38)

for all 𝛼 ∈ I and t|�̂�2| ≥ 2h0
Second case: Let I ⊂ Im contain no cut-off value (that is, I ⊂ intIm; that is, |𝓁 + 𝛼| ≠ k for all 𝓁 ∈ Z and 𝛼 ∈ I). In

this case we wish to apply Theorem 2.7 (in the modification of Remark 2.8) to the equation L̃𝛼ũ(1)
𝛼,t = r̃(1)

𝛼,t + r̃(2)
𝛼,t + r̃(3)

𝛼,t in
the space H1

per(Q) of periodic functions. We have to show that r̃(𝑗)
𝛼,t is differentiable with respect to 𝛼 and have to bound
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18 KIRSCH

the derivative. First we note that in this case of I there exists c0 > 0 with
√
(𝓁 + 𝛼)2 − k2 ≥ c0(|𝓁|+ 1) for all 𝛼 ∈ I and

𝓁 ∉ m. We begin with r̃(1)
𝛼,t . For 𝛼 ∈ I and 𝓁 ∉ m, we have

|||| 𝜕𝜕𝛼 eit(𝓁+𝛼)�̂�1−
√
(𝓁+𝛼)2−k2(t|�̂�2|−h0)

|||| =
||||||it�̂�1 −

𝓁 + 𝛼√
(𝓁 + 𝛼)2 − k2

(t|�̂�2| − h0)
|||||| e−

√
(𝓁+𝛼)2−k2(t|�̂�2|−h0)

≤ ct e−c0(|𝓁|+1)(t|�̂�2|−h0) .

This yields

∑
𝓁∉m

|||| 𝜕𝜕𝛼 eit(𝓁+𝛼)�̂�1−
√
(𝓁+𝛼)2−k2(t|�̂�2|−h0)

|||| |𝜓𝓁(h0)|
≤ ct ||𝜓||H1

per(Q)

(∑
𝓁∉m

e−2c0(|𝓁|+1)(t|�̂�2|−h0)

)1∕2

≤ ct e−c0(t|�̂�2|−h0) ||𝜓||H1
per(Q) ;

that is, ||𝜕r̃(1)
𝛼,t∕𝜕𝛼||H1

per(Q) ≤ ct e−c0(t|�̂�2|−h0) ≤ ct e−c0t|�̂�2|∕2 for all 𝛼 ∈ I and t|�̂�2| ≥ 2h0.
The estimates of ||𝜕r̃(𝑗)

𝛼,t∕𝜕𝛼||H1
per(Q) for 𝑗 = 2, 3 follow the same arguments as for ||r(𝑗)

𝛼,t||H1(Q) using in addition that|𝓁 + 𝛼|∕|√k2 − (𝓁 + 𝛼)2| is uniformly bounded with respect to 𝓁 ∈ Z and 𝛼 ∈ I.
Therefore, application of Remark 2.8 yields an estimate of the form (38) where the second term is replaced by c2 t e−c3t

for some c2, c3 > 0. Since we can decompose Im as a finite union of closed intervals I of the first or second type with
non-intersecting interiors,3 we have an estimate of the form

||u(1)
𝛼,t||H1(Q) ≤ c1

(∑
𝓁∉m

e−t
√
(𝓁+𝛼)2−k2 |�̂�2|

)1∕2

+ c2 t e−c3t

for all 𝛼 ∈ Im and t|�̂�2| ≥ 2h0. Therefore, by the inequality of Cauchy-Schwarz,

∫
Im

||u(1)
𝛼,t||H1(Q) d𝛼 ≤ c

⎛⎜⎜⎝
∑
𝓁∉m

∫
Im

e−t
√
(𝓁+𝛼)2−k2 |�̂�2|d𝛼⎞⎟⎟⎠

1∕2

+ c2 t e−c3t .

For large values of |𝓁|, say |𝓁| ≥ k + 1, we use the estimate
√
(𝓁 + 𝛼)2 − k2 ≥ c0|𝓁| which yields that the series over|𝓁| ≥ k + 1 decays exponentially to zero as t tends to infinity. For fixed 𝓁 ∉ m with |𝓁| ≤ k + 1, we make the

substitution 𝛽 = 𝜓(𝛼) =
√
(𝓁 + 𝛼)2 − k2. Then

∫
Im

e−t
√
(𝓁+𝛼)2−k2 |�̂�2|d𝛼 = ∫

𝜓(Im)

e−t𝛽|�̂�2| 𝛽√
𝛽2 + k2

d𝛽 ≤ 1
k ∫

𝜓(Im)

𝛽 e−t𝛽|�̂�2|d𝛽

which tends to zero as 1∕t2. Indeed, if 𝜓(Im) = [a, b] with b > a ≥ 0, then this follows from

b

∫
a

𝛽 e−s𝛽 d𝛽 = 1
s
(

ae−sa − be−sb) − 1
s2

(
e−sb − e−sa) .

This ends the proof. □

3Note that the cut-off values are no propagative wave numbers by assumption.
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We go back to the decomposition (33) of u𝛼,t for 𝛼 ∈ Im and consider the integrals (for 𝓁 ∈ m)

i
4𝜋 ∫

Im

eit[(𝓁+𝛼) �̂�1+
√

k2−(𝓁+𝛼)2|�̂�2|] 1√
k2 − (𝓁 + 𝛼)2

v𝓁,𝛼 d𝛼

in H1(QR) (for some fixed R > 0) with the method of stationary phase. We recall from Lemmas 5.4 and 5.5 that v𝓁,𝛼 is the
total 𝛼-quasi-periodic field corresponding to the incident plane wave ei(𝓁+𝛼)x1−i

√
k2−(𝓁+𝛼)2x2 , which is analytic with respect

to 𝛼 in the interior of Im and is also in W 1,1 (Im,H1(QR)
)
.

We define 𝜓(s) = s �̂�1 +
√

k2 − s2 |�̂�2| for |s| ≤ k. Then it easily seen that s̃ = k�̂�1 is the only critical point (that is,
𝜓 ′(s̃) = 0) and 𝜓(s̃) = k and 𝜓 ′′ (s̃) = − 1

k�̂�2
2
< 0. There is exactly one 𝓁 ∈ Z and �̃� ∈ (−1∕2, 1∕2] with s̃ = k�̂�1 = 𝓁 + �̃�. We

note that �̃� ≠ ±𝜅; that is, �̃� is not a cut-off value by assumption on k�̂�1.
Then there exists exactly one interval Im̃ such that �̃� is in the interior of Im̃ and 𝓁 ∈ m̃.
Since v𝓁,𝛼 is smooth in Im̃, the method of stationary phase is applicable to the integral over Im̃, which gives

i
4𝜋 ∫

Im̃

eit[(𝓁+𝛼) �̂�1+
√

k2−(𝓁+𝛼)2|�̂�2|] 1√
k2 − (𝓁 + 𝛼)2

v𝓁,𝛼 d𝛼

= i
4𝜋
√

k2 − (𝓁 + �̃�)2
eitk−i𝜋∕4

√
2𝜋k �̂�2

2

t
v𝓁,�̃� + o

(
1∕
√

t
)

= 𝛾
eikt√

t
v𝓁,�̃� + o

(
1∕
√

t
)

as t → ∞. For 𝓁 ∈ m̃∖{𝓁} the function 𝛼 → (𝓁 + 𝛼) �̂�1 +
√

k2 − (𝓁 + 𝛼)2 |�̂�2| is monotonous. Substituting 𝛽 = (𝓁 +
𝛼) �̂�1 +

√
k2 − (𝓁 + 𝛼)2 |�̂�2| and using partial integration yields that these integrals decay as (1∕t). Therefore, by (33) and

Lemma 5.6,

∫
Im̃

u𝛼,t d𝛼 = 𝛾
eitk√

t
v𝓁,�̃� + o

(
1∕
√

t
)

as t → ∞ in H1(QR). For the intervals Im with m ≠ m̃ and 𝓁 ∈ m, partial integration yields again that these integrals decay
as (1∕t). Therefore, the integration can be done over all of [−1∕2, 1∕2], and the inverse Floquet-Bloch transform gives

ut =

1∕2

∫
−1∕2

u𝛼,t d𝛼 = 𝛾
eitk√

t
v𝓁,�̃� + o

(
1∕
√

t
)

in H1(QR). From Lemma 5.4, we observe that v𝓁,�̃� is the solution of the �̃�−quasi-periodic scattering problem for the incident
plane wave uinc(x) = ei(𝓁+�̃�)x1−i

√
k2−(𝓁+�̃�)2x2 = eik�̂�·x; that is, v𝓁,�̃� = v𝜃 with the field v𝜃 from Theorem 5.2. If k�̂�1 is a propagative

wave number �̃�𝑗 + 𝓁 for some 𝓁 ∈ Z, then ∫Q∞
𝜕v𝜃
𝜕x1

𝜙dx = 0 for all corresponding modes 𝜙 ∈ X𝑗 by Lemma 5.5. Finally
we note that the propagating part ut,prop tends to zero exponentially by (30) and ut = ũs

t on Q. This ends the proof of
Theorem 5.2.

6 THE CASE OF A LOCALLY PERTURBED PERIODIC INDEX

Now we consider the more general problem that the periodic refractive index n is perturbed by some function q ∈ L∞ (R2)
with support in Q. The following result on uniqueness and existence has been shown in [22].

Theorem 6.1. Let Assumptions 2.2 and 2.4 hold and, in the case q ≠ 0, the additional assumption that no bound states
exist; that is, no non-trivial w ∈ H1 (R2) with Δw + k2(n + q)w = 0 in R

2 exist; that is, k2 is not in the point spectrum of

 10991476, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

m
a.9147 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [16/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 KIRSCH

− 1
n+q

Δ. Then for all 𝑓 ∈ L2(Q) there exists a unique solution u ∈ H1
loc

(
R

2) of Δu+k2(n+q)u = −𝑓 in R
2 which satisfies

the open waveguide radiation condition of Definition 5.1. Furthermore, the solution operator 𝑓 → u|Q is bounded from
L2(Q) into H1(Q).

It is the aim to prove the following extension of Theorem 5.2.

Theorem 6.2. Let Assumptions 2.2 and 2.4 hold and let �̂� =
(

sin 𝜃

− cos 𝜃

)
∈ R

2 be a fixed unit vector with |𝜃| < 𝜋

2
; that is,

�̂�2 < 0. In addition, let �̃� ∶= k�̂�1 = k sin 𝜃 not be a cut-off value in the sense of Definition 2.1 and assume that there exist
no bound states. Let wt = Φ(·,−t�̂�) + ws

t be the unique solution of the scattering problem

Δwt + k2(n + q)wt = 0 in R
2∖{−t�̂�} , (39)

of the point source at z = −t�̂� for t|�̂�2| > 2h0 such that ws
t ∈ H2

loc

(
R

2) and wt satisfies the open waveguide radiation
condition of Definition 5.1. Then

1
𝛾
lim
t→∞

[√
t e−iktwt

]
= v𝜃 + w in H1(QR) (40)

for any R > 0 where again QR ∶= (−R,R)×(−h0, h0). Here, v𝜃 ∈ H1
�̃�,loc

(
R

2) is exactly the limit function as in Theorem 5.2;
that is, v𝜃 solves the �̃�-quasi-periodic scattering problem Δv𝜃 + k2nv𝜃 = 0 in R

2 for such that the scattered field vs
𝜃
(x) ∶=

v𝜃(x) − eik�̂�·x satisfies the Rayleigh expansion (5) for |x2| > h0. If k�̂�1 = k sin 𝜃 is a propagative wave number then v𝜃
satisfies in addition the orthogonality condition (37).

The function w ∈ H1
loc

(
R

2) solves the source problemΔw+k2(n+q)w = −k2qv𝜃 inR
2, and satisfies the open waveguide

radiation condition of Definition 5.1.

Proof. We define ut = us
t +Φ(·,−t�̂�) as in Theorem 5.2 to be the unique solution of the unperturbed scattering problem

Δut + k2nut = 0 in R
2∖{−t�̂�} for the point source incidence at z = −t�̂� such that us

t ∈ H1
loc

(
R

2) and ut satisfies the
open waveguide radiation condition of Definition 5.1. Then Theorem 5.2 implies that 1

𝛾
e−ikt
√

tut converges in H1(Q)
to the solution v𝜃 of the �̃�-quasi-periodic scattering problem for the plane wave of incidence �̂�. In the case that k�̂�1
is a propagative wave number v𝜃 satisfies in addition the orthogonality condition (37). Then w̃t = wt − ut satisfies
Δw̃t + k2(n + q)w̃t = −k2qut in R

2 and the open waveguide radiation condition of Definition 5.1. The convergence of
1
𝛾

e−ikt
√

tut to v𝜃 in H1(Q) yields convergence of 1
𝛾

e−ikt
√

tw̃t to w in H1(Q) because of the continuous dependence of the
solution on the right hand side. This ends the proof. □

7 CONCLUDING REMARKS

In this paper, we have, first, justified the assumption that in a purely periodic structure the scattered field has the same
quasi-periodicity property as the incident field. Second, in the case where no uniqueness holds, we have compared three
additional properties to achieve uniqueness. While continuity with respect to the incident angle or the approximation
of the incident plane wave by sources where the source point tends to infinity leads to the same additional property, the
limiting absorption principle with respect to the refractive index leads to a different one which depends on the kind of
absorption and is therefore not appropriate. Third, in the case where the periodic refractive index is locally perturbed, we
have shown that the solution can be represented as the sum of the solution to the unperturbed problem and a correction
term which satisfies the open waveguide radiation condition.
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