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Complex systems, such as the power grid, are essential for our daily lives. Many complex systems display multifractal behavior,
correlated fuctuations and power laws. Whether the power-grid frequency, an indicator of the balance of supply and demand in
the electricity grid, also displays such complexity remains a mostly open question. Within the present article, we utilize highly
resolved measurements to quantify the properties of the power-grid frequency, making three key contributions: First, we
demonstrate the existence of power laws in power-grid frequency measurements. Second, we show that below one second, the
dynamics may fundamentally change, including a suddenly increasing power spectral density, emergence of multifractality and
a change of correlation behavior. Tird, we provide a simplifed stochastic model involving positively correlated noise to re-
produce the observed dynamics, possibly linked to frequency-dependent loads. Finally, we stress the need for high-quality
measurements and discuss how we obtained the data analyzed here.

1. Introduction

1.1. Motivation. Complex systems, sometimes natural,
sometimes man-made, surround us at all scales as an integral
part of everyday life, ranging from neural networks at small
scales to global pandemics or the World Wide Web at large
scales [1]. To satisfy the most basic needs of modern people
in everyday life, we rely on power systems, which are an
important example of a complex system [2, 3]. Tis de-
pendence ranges from the simple cooling of food, vital
medical care, long-distance transportation, instant com-
munication, and industrial automation to advanced scien-
tifc experiments, many of which are impossible without
electricity. Since reliability and stability are essential for our

power grid, analysis of power systems as complex systems
has become critically important [4].

A distinguishing feature of complex systems is the
emergence of new phenomena and complex dynamics based
on the various nonlinear interactions of a large collection of
components. One particularly interesting and universal
property is the observation of power laws [5]. Under power
laws, we understand that a function decays as f(x) ∼ x− β,
for large |x|, with some constant β> 0. Such power laws have
been investigated in real-world data sets from a wide variety
of felds, including biological and technical systems [6].
Empirically, they are often discussed as the emergence of
heavy or fat tails, e.g., web nodes with an extremely large
number of connections exist more often than intuitively
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expected. From a theoretical point of view, the scale-
invariance and universality of power laws explain their
popularity in many models [7]. Furthermore, the fractal
dimension of a system can be used to investigate dynamic
processes in complex systems and is indeed one of the most
basic and important quantities to characterize a system [8].
It captures how a system with many degrees of freedom
efectively only occupies a fraction of the high-dimensional
state space.

In the present paper, we focus on power grids, i.e.,
electrical supply networks and their dynamics as a complex
system. While the network itself easily constitutes a complex
system [4], less attention has been paid to individual local
dynamics [9]. One key quantity for control and monitoring
purposes of the power system is the power-grid frequency. It
follows the balance of generation and consumption and
allows insights into the general stability of the grid as well as
the impact of renewable generators [10–12]. So far, only
a few studies have investigated power laws or even multi-
fractality in power grids [13], partially because data are not
easily available. Consistently, frequency fuctuations and
their fractality on a short time scale are not fully understood.

1.2. Literature Review. Te dynamics of the power-grid
frequency are hard to describe analytically and even nu-
merically due to the nonlinear interactions of power gen-
erators and consumers, the complex network topology, the
large number of individuals as well as companies, countries,
and added stochastic efects, e.g., stemming from renewable
generation [9, 14]. Tis stresses the need to acquire high-
quality and trustworthy data on power systems as an ap-
proach to quantitatively describe and understand the power
grid as a complex system. Unfortunately, reliable, high-
quality continental, and global measurements from grid
frequency are only rarely made publicly available [15].

To obtain high-quality measurements, initiatives such as
grid radar [16] and GridEye/FNET [17] have been de-
veloped. From the academic side, the electrical data recorder
(EDR) has been developed as a device for high-resolution
time series acquisition in low-voltage distribution grids. It
provides UTC-time-stamped frequency estimates up to ten
times per second and allows long-term storage of full voltage
and/or current waveforms for further analysis [18–21]. Te
frequency is estimated using the well-known zero-crossing
technique that enables straightforward and fast processing
and is widely developed by scientists [22–25].

1.3. Paper Contribution and Organization. Within the
present article, we make three key contributions: frst, we
observe power-law decay in the power spectral density
(Section 2.1.1). Second, we show how the frequency displays
complex behavior on time scales below one second. In
particular, we observe an increasing spectral density,
emerging multifractality and a switch from correlated to
anticorrelated time series. We further highlight diferences
in short-term fuctuations among various power grids
(Section 2.1.2).Tird, we propose a simple stochastic process
that reproduces key properties of the empirical spectrum

(Section 2.1.3). Next, we emphasize the need for trustworthy,
highly resolved measurements of the power-grid frequency
and show one way how these can be obtained (Section 2.2).
We close with a discussion of our results (Section 3). Note
that an earlier version of this article was published as
a preprint [26].

2. Results

To analyze empirical complex systems, such as the power-
grid frequency dynamics, we require data. Some measure-
ments with the one-second resolution are readily available
from transmission system operators (TSOs) for analysis and
comparison with independent measurements [15]. Mean-
while, time series with the higher temporal resolution is not
easy to obtain. Still, this higher temporal resolution is critical
to uncover key properties of the underlying system, see e.g.,
[27, 28] and Figure 1: representative frequency trajectories
on 1 s and on 100ms (0.1 s) resolutions clearly display
diferent behavior, with notable fuctuations and high vol-
atility on the short time scale.

We address observable changes in the spectrum towards
short time scales as well as the correlation and fractal be-
havior of the time series. To understand these observations
and ensure high data quality, we outline how the recordings
have been obtained. We, therefore, describe the EDR
measurement process and focus on its reliability.

2.1. Emerging Phenomena on Short-Time Scales. Te fol-
lowing observations are based on newly available 100ms
frequency estimates and particularly focus on phenomena
emerging at the newly-accessible time scale below one
second. Te acquisition of the high-resolution frequency
data is described later in Subsection 2.2.

As one key quantity, we compute the power spectral
density (PSD) S(f), which allows us to analyze the power
distribution of diferent oscillations in the components of
the frequency recorded from the system in a stochastic
process [29]. As with many processes observed in nature, we
also expect the power spectrum of self-afne signals to decay
following a power law S(f) ∼ f− β [30, 31]. PSD is a com-
mon tool that allows us to perform further analysis on data
originating from stochastic processes, such as data obtained
from electroencephalogram (EEG) [32], as well as for power-
grid frequency signal analysis, which we are currently
considering here [29]. Furthermore, we may also estimate
other properties such as the fractality, i.e., self-similarity on
various scales, or the correlation of the time series, which are
closely connected to the spectrum [30, 33, 34].

2.1.1. Power Law Analysis. Computing the PSD for the
power-grid frequency recordings reveals new qualitative
dynamics on the short time scale at essentially all mea-
surement locations, Figure 2. We utilize several independent
recordings (see Figure 2(a) for a map) from the Continental
European grid (Figures 2(c) and 2(d)) and from three dif-
ferent synchronous areas Figure 2(b). Let us briefy remark
on two observations we do not discuss in detail.
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Figure 2: Power-grid dynamics change qualitatively at the 1-second time scale.We utilize recordings from various locations in Europe (a) to
then plot the spectral densityS(f) of the power-grid frequency (b)–(d).Tis analysis includes independent synchronous areas (b) as well as
Continental Europe data obtained from grid radar (c) and from the EDR (d). Note that we plotS(f) and also report the corresponding time
scales t � 1/f. While all recordings initially display an approximately decaying power law β, several recordings display a rising spectrum
with slope c for time scales below t ∼ 1s.
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Figure 1: Snippets of power-grid frequency trajectories. Power-grid frequency trajectories from 2019-07-27 06:00 in Continental Europe,
for 20 seconds, including 1-second resolution and 100ms resolution data. Te smaller 100ms resolution recordings fuctuate strongly
around the 1 s resolution data, sometimes with very large jumps.Te frequency dynamics are revealed as fractal for this exemplary trajectory:
if we “zoom in” to higher temporal resolutions, we observe that the data is self-afne, i.e., the data displays self-similarity in its fuctuations.
In the inset, we focus on a 2-second span, where we can observe both small fuctuations (in the 1st second) and large fuctuations (in the 2nd
second).
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First, on the longer time scale of ∼3 . . . 10 seconds, we
observe pronounced interarea oscillations, where diferent
regions within one synchronous area oscillate against each
other. We notice the spatial dependency in the spectrum as
diferent locations show diferent magnitudes and positions
(in terms of time) of these peaks.Tis is explained by the fact
that, e.g., north-south and east-west oscillations have dif-
ferent frequency; see also [15, 27, 35] for a more detailed
discussion of this phenomenon.

Second, there are various narrow and distinct peaks on the
time scale below one second in the spectrum; see, e.g.,
Figure 2(d) Karlsruhe and Oldenburg. Curiously, not all
recordings from the Continental European area display such
peaks, e.g., neither Lisbon nor Istanbul. Other synchronous
areas again show mixed results: recordings from Sweden only
show less pronounced peaks, while the peaks are again present
in the Faroe Island recordings. Tese peaks could arise from
characteristic eigenfrequencies of the power grid when subject
to a disturbance; see Figure 3. While the short circuit with an
active power step of approximately 440MW only leads to
a frequency change of the order 10− 6 (0.15mHz) in a realistic
grid simulation (see Figure 3(a)), the dynamics take place on
the second to subsecond scale with eigenfrequencies of about
1.5Hz. Note the 3 full oscillations between 2 and 4 seconds in
Figures 3(a) and 3(c). Further investigations will be necessary
to fully explore the origin and relevance of these peaks. In the
current study, we instead focus on another key observation:
Te qualitative change in the spectrum around 1 second and
the emergence of complex phenomena at time scales <1
second (greyed out).

On the long time scale of t> 1 second, all measurements
display a power law-like decay of the spectral density
S(f) ∼ f− β ∼ tβ, with f the frequency and t � 1/f the pe-
riod. For ease of interpretation, we plotS(f) as a function off

but also provide the corresponding 1/t values; see Figure 2.Tis
decay follows approximately f− β, where we determine the
exponent −β as the slope of the dashed line in the double-
logarithmic plot for each measurement site separately. As
expected, the decay constant β is positive, indicating a decrease
in the spectral density for shorter periods (large frequencies) of
the recordings. Tis decreasing spectral density, i.e., the power
law, has been observed in numerous systems, ranging from
many man-made systems, such as the World Wide Web, over
transport networks to biological systems [5, 6]. Power laws
remain an active feld of research, emerging both on micro-
scopic and macroscopic scales. It often remains open to which
extent the individual units or their collective dynamics con-
tribute to the observed power laws [36].

Meanwhile, the spectral density starts to increase on
short time scales of t< 1 second. We again characterize the
slope of the spectrum via a linear ft in the double-
logarithmic plot and thereby determine the slope c, which
in this case is smaller than zero for all recordings from the
Continental European power grid (Figures 2(c) and 2(d)).
Interestingly, this negative c is not exclusive to the Conti-
nental European region; see Figure 2(b), where we show the
power spectral density of fve other power-grid recordings,
namely from the power grids on the Faroe Islands, Russia
(St. Petersburg), and Nordic (Sweden). Te measurements

taken on the Faroe Islands and in St. Petersburg used again
the EDR, which was also used to make the recordings in
Figure 2(a). In addition, we also include three recordings
provided by the Swedish TSO in three undisclosed distinct
locations in Sweden for the month of January 2020. Tese
locations are reported simply as north Sweden, middle
Sweden, and south Sweden, as provided by the Swedish TSO.

Let us systematically investigate the diferent slopes β and c

of the spectral decays observed in Figure 2 as a scatter plot in
Figure 4, see also SupplementaryMaterial for numerical details.
First, we note that all measurements consistently report
a decaying power law with exponent β ∼ 2.5. However, the
dynamics at short time scales, given by c is more varied (c ∼ −

2 . . . 2). We identify three regimes: the Swedish recordings
display a continuous decay of the spectrum. Next, we observe
several recordings with small absolute values of c, implying the
spectrum becomes almost fat. Finally, many recordings,
mostly from the Continental European grid, display negative c

values and have an increasing spectrum, pointing towards
a complex process emerging at these time scales.

Given this surprising increase of the spectrum on short
time scales, let us elaborate on why this is almost certainly
not a problem of the measurement system but a genuine
efect of the underlying power system. Subsection 2.2. deals
with the EDR data acquisition and analyzes it towards re-
liability and trust. Additionally, we make the following
observations: First, the EDR measurements within one grid
are consistent: We clearly observe negative c values in
Continental Europe at several independent measurement
points, namely in Istanbul, Oldenburg, Karlsruhe, and
Lisbon. Second, the negative c values are further confrmed
for Continental Europe by measurements from grid radar
(Figure 2(c)), relying on a completely independent hardware
and software solution. Tird, the EDR measurements show
c ≈ 0 in some other synchronous areas, such as in Russia (St.
Petersburg) and on the Faroe Islands.

Interestingly, the time series provided by the Swedish
TSO has a positive c, while the EDR-recorded time series in
Stockholm (recorded during a diferent time period) yields
a low negative value of c. As we do not know the reason for
this discrepancy, we list some potential causes: the mea-
surements by the EDR and the Swedish TSO were taken at
diferent times and could hence measure diferent states of
the power system. Furthermore, the EDR was connected to
a power plug in a hotel, i.e., to the low-voltage distribution
grid used for residential areas. Meanwhile, the Swedish TSO
has access to measurements at power plants or directly at the
high-voltage transmission grid. While the frequency is
typically a global property, the negative c values could
possibly arise from the complex dynamics of components at
the local distribution layer, such as inverters and nonlinear
loads. Finally, we do not have access to the raw data recorded
by the Swedish TSO and hence cannot infer anything about
their measurement setup, or fltering while we discuss the
limits of our measurements in detail.

2.1.2. Multifractality and Correlations. In our sample tra-
jectories in Figure 1, we already noted a certain multifractal
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structure to the power-grid frequency recordings. One
natural question arising is: what is the exact nature of the
fractal or multifractal structure that underlies power-grid
frequency?

Power-grid systems are complex dynamical systems
afected and impacted by various endogenous and

exogenous pressures from both within (control mechanics,
thermal efects, and oscillations) and from outside (changes
in generation and consumption, weather, and failures).
Every impactful element acts at various diferent time scales,
and these time scales range from years (ever-growing
generation), to months (weather cycles), to weeks
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(workweek-weekend cycles), to hours (market and dispatch
changes), to minutes (generation adjustments and auto-
mated control), to seconds (dynamic interference, travelling
waves, and occasional failures), to milliseconds (electrody-
namic efects) [10, 37].

To best describe the power-grid frequency on very short
time scales, we model the time series as a combination of
stochastic processes. To that end, we focus on the in-
cremental structure of our recordings f(t), given by

∆fr � f(t + r) − f(t), (1)

where r is our incremental lag. From a stochastic process
point-of-view it is usually denoted “increments.” Tese
increments carry information relating directly to the pro-
cess’ fastest time scales, i.e., a process changes on a time scale
of order r, as well as information relating to the existence of
memory and fractality in the recordings.

One of the most common characteristics of the in-
cremental time series ∆fr is the “scaling” of the increments
in relation to the incremental lag r. Tis is commonly en-
capsulated in the structure function Sq(∆fr, r)

Sq ∆fr, r( 􏼁 �〈∆f
q
r〉 ∼ r

qh(q)
, (2)

where h(q) is the generalized Hurst exponent, also known as
the Hölder exponent, which captures the change in the
(noncentered and nonnormalized) statistical moments,
where q is the power of the statistical moment. h(q) is related
to the scaling exponent τ(q), which is often used in tur-
bulence analysis, as follows: τ(q) � qh(q) − 1 [38].

We utilize the generalized Hurst exponent for two
purposes: to investigate correlations and to explore multi-
fractality. For an uncorrelated Brownian motion, we have
h(2) � 0.5, while a correlated process has h(2)> 0.5 and an
anticorrelated process h(2)< 0.5. Furthermore, a mono-
fractal process is one where the function h(q) is essentially
constant, i.e., independent of q, while a multifractal process
is characterized by a q-dependent generalized Hurst
exponent h(q).

If the original time series yields a q-dependent h(q), i.e.,
a multifractal process, this could either be due to diferent
long-range correlations or due to a broad probability dis-
tribution. To ascertain how this multifractality emerges, we
shufe the power-grid frequency recordings, i.e., randomize
the position of each time series entry. We can then calculate
the generalized Hurst exponents hshuff led(q) for the shufed
data. Since shufing the data removes correlations, time
series that are not distributional multifractal will have h(q) �

h(2) � 1/2, i.e., they will be uncorrelated at all scales. If, on
the contrary, we fnd that h(q) is nonconstant, this is an
indication of distributional multifractality.

Computing the generalized Hurst exponent reveals again
a complex structure of the time series on the short time scale;
see Figure 5. On a time scale of 0.2 to 1.0 seconds, the
generalized Hurst exponent is clearly dependent on q, in-
dicating a multifractal process coherent with earlier ob-
servations (Figure 1). Tis multifractality persists even when
shufing, indicating a distributional multifractality. For
longer time scales, particularly above 4 seconds, the time

series becomes monofractal (constant h(q)). Interestingly,
the correlation changes over the time scales: On short time
scales of 0.4 second to 1 second, the power-grid frequency is
anticorrelated as indicated by a small value of h(2)< 0.5. For
these time scales, essentially, any disturbance on the grid
away from the reference frequency of 50Hz or 60Hz is
followed by an opposite efect. While we do not expect
control actions to play a major role [10] on this time scale,
the efect is similar, any disturbance is counteracted, leading
to a frequency time series close to the reference value. A
possible explanation for the emerging anticorrelation could
be the self-regulating efect of frequency-dependent loads
[40], i.e., a frequency drop would be met by a reduced load
and thereby counteract the frequency change. Meanwhile,
the time series becomes positively correlated on longer time
scales of several seconds and more, as indicated by a large
value of h(2)> 0.5. Tis persistent behavior aligns with our
expectations of a power system subject to load and gener-
ation ramps on time scales of seconds to minutes and an
overall inertial system.

Let us briefy discuss the role of distributional multi-
fractality before then utilizing the insights about correlations
in the time series to reproduce the observed spectrum. We
do not know for certain why and how the multifractality
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Figure 5: Frequency recordings are multifractal and anticorrelated
on short and correlated on longer time scales. We plot the gen-
eralized Hurst exponent h(q) of power-grid frequency recordings
from the Lisbon recording in Continental Europe at diferent time
scales, from top to bottom: 0.4 ∼ 1 s, 1 ∼ 4 s, and 4 ∼ 10 s. Te
smallest time scales show a nonconstant exponent h(q), which
points to the existence of a large number of degrees of freedom in
the system. As the time scales become larger, the system gets
progressively more ordered, as fuctuations are quenched by the
strong synchrony in the system. At a time scale of 4 ∼ 10 s the
shufed grid frequency recording becomes indistinguishable from
noise (h(q) � 0.5) [39].
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arises in the frequency recordings discussed. However, we
do know that one mechanism giving rise to a multifractal
time series is the superposition of several processes at
a shorter time scale, formalized under the concept of
superstatistics by Beck and Cohen [41]. Assuming the ob-
served frequency time series arises from such superstatistics,
it would ofer further directions of research. In super-
statistics, a system changes from one state to another while
we treat all observations as if they originated from the same
state. In terms of the energy system, these diferent states of
the system could be related to diferent generation mixes and
demand patterns or due to drivers such as superstatistical
behavior in the wind [42]. Note that superstatistics has been
discussed on power-grid frequency recordings before [11],
and there are further hints that the dynamics of power-grid
recordings get more complex on shorter time scales. In fact,
if we consider the temporal scales wherein we observe the
strongest evidence of multifractality, i.e., for t< 4 s, this
agrees well with previous results [27, 28], wherein power-
grid frequency increments are shown to be well described by
a convolution of Gaussian statistics with a parametric
function of varying variance. All of this points to even more
research is necessary to understand the complexity of power-
grid frequency time series on this short time scale.

2.1.3. Stochastic Process. Let us return to the observation of
an increasing spectrum and try to explain this via physical
processes on a short time scale. We have established from
our generalized Hurst exponent analysis that the frequency
is positively correlated on a longer time scale of several
seconds and negatively correlated on shorter time scales. For
now, we consider simple mono-fractal processes and explore
how these can reproduce the observed spectrum. Indeed,
a very simple stochastic process can already reproduce such
a spectrum, namely combining a fractional, positively cor-
related Ornstein–Uhlenbeck process with added, negatively
correlated fuctuations; see Figure 6. Before discussing
Figure 6 in detail, let us motivate the usage of an Orn-
stein–Uhlenbeck process:

Following earlier work [11, 43], we may model the
frequency dynamics of the lossless high-voltage grid on the
short time scale as follows:

d
dt
θi � ωi,

Mi

d
dt
ωi � Pi + σiξi − giωi + 􏽘

N

j�1
Kij sin θj − θi􏼐 􏼑,

(3)

where we assume that each node i in the grid behaves
approximately like a synchronous machine whose state is
characterized by its voltage phase angle θi and angular
velocity ωi � 2π(fi − fR), which is proportional to the
deviation of the frequency from the reference frequency
of fR � 50Hz or fR � 60Hz. Te dynamics of the net-
work are then determined by the following parameters:
inertia Mi, mechanical power Pi (positive for efective
generators and negative for efective consumers),

fuctuations ξi with amplitude σi, damping gi, and the
coupling matrix Kij.

As we typically do not have precise information about
the full network topology, all nodal parameters and states,
we want to simplify this to an equation for the bulk angular
velocity ω ≔ 􏽐

N
i�1Miωi/􏽐

N
i�1Mi by assuming a homogeneous

damping to inertia ratio, c � gi/Mi [44] and balanced av-
erage power 􏽐

N
i�1Pi � 0. We obtain the aggregated swing

equation as follows:

d
dt
ω � −cω + σξ(t), (4)

with aggregated fuctuation amplitude σ and aggregated
fuctuations ξ, which depend on the precise nature of the
noise [11]. Te bulk frequency dynamics given in equation
(4) describes the average behavior in one synchronous area,
such as the Continental European grid, neglecting specifc
local properties. Crucially, we have simplifed the nonlinear
network dynamics to a relatively simple Orn-
stein–Uhlenbeck process. One main diference to a standard
Ornstein–Uhlenbeck process is that the aggregated fuctu-
ations ξ are typically not well described by ordinary
Brownian motion, but instead, the efective fuctuations
acting on the system are either heavy-tailed itself or arise
from a superposition of several stochastic processes, so-
called superstatistics [11, 41], mentioned earlier.

Regardless of the precise nature of the fuctuations ξ, for
an Ornstein–Uhlenbeck process, we would expect a spec-
trum following a simple power law (dotted line in Figure 6).
In order to obtain an explicit expression for the power-
spectral density, recall that the energy of a time series is given
by

E ≔ 􏽚
∞

−∞
|x(t)|

2dt. (5)

Power law
Power law + fluctuations

Lisbon

0.05 0.1 0.2 0.5 1.0 2.0 5.0
f (Hz)
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100
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z2

H
z

)

20.0 10.0 5.0 2.0 1.0 0.5 0.2
t (s)

Figure 6: Reproducing the spectrum using an Ornstein-Uhlenbeck
process with added correlated short-term fuctuations.
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Parseval’s theorem dictates that

􏽚
∞

−∞
|x(t)|

2dt � 􏽚
∞

−∞
|􏽢x(f)|

2df, (6)

with 􏽢x(f) the Fourier transform of x(t), i.e.,

􏽢x(f) � 􏽚
∞

−∞
x(t)e

− i2πftdt, (7)

with i the imaginary unit. Using Parseval’s theorem, we see
that the integrand of the energy in equation (5) is simply the
spectral density S(f) given as follows:

S(f) ≔ |􏽢x(f)|
2
. (8)

In the following, we are interested in a solution to the
aggregated swing equation (4) in Fourier space. Defning 􏽢ω
and 􏽢ξ as the Fourier transforms of the bulk angular velocityω
and the aggregated noise amplitude ξ, respectively, and
noting that c and σ are constants, yields

if􏽢ω + c􏽢ω � σ􏽢ξ, (9)

which we can express in relation to 􏽢ω as follows:

􏽢ω �
σ􏽢ξ

if + c
. (10)

Inserting this into our expression of the power spectral
density in equation (8) results in the power spectral density
of ω as follows:

S(f) �
σ2|􏽢ξ|

2

f
2

+ c
2 . (11)

Since σ2 and c2 are constants, the spectral density de-
pendence on the frequency f is solely determined by the
1/f2-term and the noise contribution ξ. If the noise is
homogeneous in the frequency, i.e., it is white noise, then we
obtain a power law S(f) ∼ f− 2, i.e., S(f) decays with an
exponent of −2, consistent with our observations.

To reproduce the observed spectrum on short time
scales, we consider the addition of negatively correlated
Brownian fuctuations η(t) so that the full dynamics reads

ω(t) � −c􏽚
t

0
ω t
′

􏼒 􏼓dt
′
+ σ􏽚

t

0
ξ t
′

􏼒 􏼓dt
′
+ η(t). (12)

Indeed, the experimental spectra can be reproduced by
this synthetic process; see Figure 6. We observe that instead
of a continued decaying power law, both the synthetic
process but also the measurements (in this case from Lisbon)
do change qualitatively at the one-second time scale with
a positive slope of the spectrum.

In this section, we have demonstrated new charac-
teristics of the power-grid frequency dynamics on a time
scale below one second. Our analysis relied on the
availability of high-resolution frequency readings. In the

next section, we discuss how such recordings were ob-
tained and validated.

2.2. Obtaining High-Quality Recordings from the Power Grid.
To explain and investigate the origin of our frequency
measurements, we begin by defning the power-grid fre-
quency. We model the power-grid voltage curve u(t) at
a measurement location in the grid by

u(t) � A sin (θ(t)), (13)

wherein θ(t) is the instantaneous phase at time t and A the
amplitude.Te instantaneous frequency of this signal is then
defned as follows:

finst(t) �
1
2π

dθ(t)

dt
. (14)

With finst(t) we have the defnition of the power-grid
frequency. Unfortunately, though, finst(t) is not directly
observable, so we need a measurement process to determine
some repeated approximations of finst(t) from u(t).

In the following, we will lay out this process in Sub-
sections 2.2.1–2.2.3. Making use of already published de-
velopments and we focus on accuracy in II B 4. We extend
the works by addressing the impact of signal disturbances on
S(f) in II B 5.

2.2.1. Data Acquisition. Our measurement device, the
electrical data recorder (EDR), was introduced some years
ago and is being developed continuously; see also [18–21]. In
the following, we provide a general overview of the data
acquisition and frequency calculation. We then specify how
to derive frequency data with high temporal resolution.

Te EDR captures the voltage u(t) at a given connection
point with a sampling frequency of 25 kHz. Using the time
information provided by a GPS satellite receiver, captured
data are assigned a standardized time and date information
(UTC timestamp). Via the time stamps, the acquisition and
the subsequent data processing inherit the precision of GPS
as a local standard of the second. Tis allows to directly
overlay and compare data from diferent locations without
the need for manual alignment in postprocessing. Based on
the recording of the u(t) time series, we extract features,
such as the signal frequency. We visualize the data pro-
cessing chain in Figure 7.

2.2.2. Calculation of the Frequency. Signal frequency esti-
mation in the EDR begins by passing the digitized waveform
u(t) through a linear phase low-pass fnite impulse response
(FIR) flter. For 25 kHz sampling rate and 50Hz nominal
frequency, the flter has a length of L � 200 and a 3 dB cut-of
frequency close to 50Hz. Subsequently, the EDR determines
periodwise frequency readings fp(k) by measuring the time
between zero-crossings as follows:

fp(k) �
1

tzc(k) − tzc(k − 1)
. (15)
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Te series of zero-crossing times tzc(k) are designated by
instances where θ � 0, 2π, . . ., and k is the index of a specifc
zero-crossing. Looking at zero-crossings makes the sampling
times tzc dependent on the instantaneous phase of u(t). For
any practical signal, the elements of tzc(k) are not equi-
distantly spaced on the time axis.

Since data with nonuniform sampling is subsequently
harder to analyze and impossible to compare directly be-
tween locations and with other data sources, the acquired
information needs to be mapped to regular time intervals.
We call this desired regular output “frequency reports” f(n),
where n points to a specifc element of the series. Each report
carries a time stamp trep that is derived from a GPS-
synchronized clock. Te time between trep(n) and trep(n +

1) is called “report interval.” In the following, we describe
how we calculate f(n) from fp(k).

2.2.3. Frequency Estimation-Increasing Time Resolution.
As shown in the previous section, frequency estimates are
especially interesting at time scales around and below one
second, as they reveal new characteristics. Obtaining these
estimates requires special attention with regard to temporal
alignment.

For report intervals of one second and larger, it seems
plausible to directly aggregate fp and assign the results to tr
-ignoring the slight misalignment due to the position of the
zero-crossings. We call this approach the full-period method
(fp). Figure 8 illustrates the aggregation window used by this
approach in red and the report interval in blue. Te fre-
quency estimation ffp for the aggregation interval n is found
by averaging over the K periods of the aggregation interval.

ffp(n) �
1

K(n)
􏽘

K(n)

k�1
fp(k, n). (16)

Due to the time misalignment, this kind of estimation
causes an error that depends on both the phase θ(t) at the
interval borders and the derivative of the instantaneous
frequency finst within the interval. Te error thereby scales
linearly with the latter. In the worst case, a full period in the
average does not actually belong to the report interval n. For
one-second records, this equals 2% of the involved data and
is usually tolerated. For 100ms reports this fgure increases
to 20% and causes intolerable deviations during transient
frequency events.

To address this challenge, we introduced the partial
period method (pp) in [21] that performs a local resampling
of the data to the regular report intervals. Contributions of
the border periods (i.e., periods 1 and 6 in Figure 8) are
partially included in the average according to their temporal
overlap with the report interval marked in blue as follows:

fpp(n) �
1

K(n) − 2 + w1 + wK

􏽘

K(n)

k�1
wkfp(k, n), (17)

where K is the number of periods that are in touch with the
aggregation interval n and wk are weights for the individual
periods.

Te frst weight is given by

w1 � tzc(1) − trep(n − 1)􏼐 􏼑 · fp(1), (18)

and the last weight is given by

wK � trep(n) − tzc(K − 1)􏼐 􏼑 · fp(K), (19)

while all periods in between are equally weighted with
wk�2...K−1 � 1.

While the pp-method eliminates the majority of shift-
related estimation errors, subtle deviations remain. Te
main reason is that the approach assumes that finst is
constant during a period. Tis condition is hardly satisfed
for any real signal. Nevertheless, the estimation error in
dynamic conditions is drastically improved compared to the
fp-method [21]. Te partial period method, therefore,
practically solves the temporal alignment problem.

2.2.4. Accuracy of Frequency Measurements. Since the in-
dividual period, measurements are only as good as the
underlying time reference, we use the GPS receivers’ pulse
per second (PPS) signal as a local frequency standard. Te
error in frequency ∆f relates to the uncertainty in the time
∆t via

∆f � − T �
1

fnom
􏼠 􏼡

− 2􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
∆t. (20)

GPS
receiver

time

mains
connection

data
acquisition

local
processing

raw samples

features

PC
post processingstorage

frequency data

Figure 7: Conceptual illustration of the data acquisition and
processing chain. Data are acquired, processed, and stored on the
electrical data recorder device. Both raw samples and processed
data are available for in-depth analysis on a PC. Te EDR also
supports remote data storage, live monitoring, and current mea-
surements, which are not depicted here. See [18, 45, 46] for details.
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Figure 8: Zero-crossing algorithm (ZC algorithm). Illustration of
the zero-crossing positions relative to a 100ms time interval.
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Te edge-to-edge error of our receiver (Garmin GPS-
18LVC) and PPS acquisition is less than 50 ns, which
translates to a worst-case frequency error of 125 µHz in the
50Hz case. Experimentally, we further verify that the fre-
quency estimation error in steady-state conditions over a 10-
minute interval is only 26.7 µHz at 50Hz within a 95.4%
confdence interval [45]. In dynamic conditions, however,
the estimation errors are dominated by the principles of the
zero-crossing method. A detailed analysis of the estimation
errors in the time domain can be found in [21]. For the
frequency ramps defned in the standard for Phasor Mea-
surement Units (IEEE 60255-118-1) we found the error limit
of our method to be ±0.6mHz.

2.2.5. Infuence of Signal Disturbances. As shown in II A 3.
and Figure 6, the observed PSDs can be reproduced using
a stochastic process composed of an Ornstein-Uhlenbeck
process (including white noise) and added correlated fuc-
tuations, where the latter lead to the increasing spectrum on
a short time scale. We thus investigate how our processing
chain deals with disturbances in the signal. By doing so, we
also ensure that no artifcial signal is introduced into the
system.

From reviewing the signal chain, disturbances super-
imposed on u(t) are the most likely source of the observed
fuctuations, since adding a random signal eu(t) to u(t) will
impact how well the period boundaries can be determined.
Te relation between such voltage noise eu and noise in the
period duration (time) measurement et is given by the
gradient of u(t) at the zero-crossing as follows:

et(k) � eu
d
dt

u t � tZC(k)( 􏼁 � 2πAf0eu(k). (21)

Voltage noise, therefore, translates linearly to noise in
period duration (phase noise), scaled by power-grid fre-
quency and the signal amplitude. However, if eu is not
random, the infuence might vanish. Tis is especially the
case for harmonics, where eu is periodic in multiples of f.

To gain an impression of the infuence of noise, we
conduct the following computer experiment. We generate
a sinusoidal signal, superimpose it with white Gaussian noise
and process it with the estimation algorithm to obtain
a series of frequency readings f(n). We then determine the
Welch PSD estimates S(f) of this series as carried out for
the measured frequency time series. Results are shown in
Figure 9 from which we make three major observations:

(1) Te curves for 30 dB and 60 dB signal-to-noise ratio
(SNR) are similar in shape but vertically shifted by
three orders of magnitude. Te shift corresponds
exactly to the 30 dB diference in noise excitation
levels.Terefore, the noise levels in f and u(t) can be
directly related.

(2) S(f) rises approximately proportional to quadratic
with t− 2 which is expected from frequency de-
modulator theory [47]. Since the ZC algorithm av-
erages K period measurements, we would assume
that the total noise amplitude of f scales with 1/

��
K

√
.

However, due to the increase in noise density, the
total noise amplitude in f increases linearly with K.
Changing the resolution from 1 s to 100ms translates
to a tenfold increase in noise amplitude (in the 60 dB
case, and σ � 0.48mHz vs.4.9mHz in the 30 dB
case). Hence, the data with higher temporal reso-
lution contains more noise in absolute terms.

(3) For smaller values of f we observe a slight fattening
of S indicating a possible convergence to a constant
value. Te shallow part indicates some feed-through
of white phase noise, which is even more pro-
nounced for the full-period method (shown in
Supplementary Material). We fnd the source of this
efect in the violation of the previously introduced
assumption. Te instantaneous frequency is not
constant during each period. Compared to the noise
contributions from the high-frequency end of the
spectrum, the feed-through has a minuscule efect on
the results.

2.2.6. Quantifcation of Disturbance Infuence. So far, we
have characterized the efects of noise on frequency esti-
mation. We still need to quantify what noise contribution is
to be expected in an actual measurement environment so
that we can establish a boundary of trust for our results. For
this, we need to (a) analyze the distortions in the real-world
setting and (b) characterize the susceptibility of the
algorithm.

To approach (a), we investigate the properties of u(t). In
Figure 10, we plot an excerpt of the waveform and the
spectrum of the measured voltage. Te majority of the
disturbance is in the nonsinusoidal shape of the waveform
and, therefore, in the harmonic content.

From the spectrum of u(t) we can determine the power
contained in the disturbances to obtain an SNR for the
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Figure 9: Power spectral density of f for the partial period zero-
crossing method. Input is a sine wave with the additional white
noise of diferent levels. PSD estimates saturate for a long period
duration and rise nearly quadratic (solid black line) towards shorter
periods. For 60 dB SNR the dashed line indicates the maximum
level of S(f) at 0.01mHz2·Hz−1.
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measurements (details in Supplementary Material).
Troughout the campaigns, we fnd a minimum SNR of
≈30 dB. However, if we selectively suppress the contribution of
the frst ten harmonics, the minimum SNR rises to ≈60 dB.

Additionally to the above, short-term transients caused
by local switch operations will occasionally occur in u(t).
From the time-domain analysis of the algorithm in [21], we
know that such transients will cause large (usually 0.1Hz and
above) single-point frequency deviations. Since a pulse in the
Dirac sense translates to a constant in the frequency domain,
those transients might cause slightly elevated S(f) levels.
However, most of these single-point deviations are removed
from the data via an outlier flter prior to our investigation.

For (b), we already know from the processing chain, that
components above 50Hz are rejected by the initial low-pass
fltering. It is further known that static waveform de-
formations have no impact on the estimation [21]. We are
therefore convinced that omitting the major harmonic
contributions from the SNR estimation is justifed (further
discussion in Supplementary Material).

Consequently, the expected contribution of the ZC al-
gorithm to the observed PSD estimates follows the 60 dB
curve in Figure 9. Tis means that in all cases except
Oldenburg the algorithm’s contribution explains less than
one-tenth of the observed S(f). In the case of Oldenburg,
the factor is ≈1/4, while in most cases, it is in the range of
≈1/100. Hence, we are confdent that the observed increases
ofS(f) are not ameasurement artifact but a signal property.

3. Discussion

Overall, we uncovered complex behavior in power-grid
frequency recordings from high-quality measurements.
Analyzing the data, we made three key contributions:

(i) First, we have seen that the PSD decays approxi-
mately following a power law until a time scale of

1 second, thereby displaying a typical complex
system property.

(ii) Second, we noted distinct dynamics on the shorter
time scale with increasing spectral amplitude,
multifractal behavior and a change from positive to
negative correlations.

(iii) Tird, we showed how key properties of the spec-
trum might be reproduced by describing the power
grid as a complex system following an Orn-
stein–Uhlenbeck process with added fuctuations,
motivated mostly by basic principles.

Finally, we described the acquisition processing chain used
to acquire the frequency data. Te challenges in terms of
temporal alignment and measurement noise arising when
moving to the high temporal resolution were outlined, and we
discussed how the EDR-derived data deals with these challenges.

What does this mean for our understanding of complex
systems and power system operation and modeling? To
enable any of our observations, it was critical to have access
to high-quality, highly resolved data. Tis stresses the need
to monitor power systems closely and also to make these
data, including simultaneous and independent measure-
ments in multiple synchronous areas, available for broad
analysis and comparison.

Furthermore, we have seen that fuctuations, especially
on short time scales, are complex and not simply described
as Gaussian white noise but instead seem to follow an
anticorrelated and multifractal process. Possible explana-
tions for the emerging anticorrelation range from efects in
the distribution grid, the self-regulating efect of frequency-
dependent loads [40], and layered network dynamics [48] to
superstatistics. Regardless of the cause, this complexity
should be implemented explicitly by any modeler when
simulating and analyzing power systems, especially as an
increasing share of renewables and reductions of the total
inertia will likely amplify nonstandard statistics only further.
Only when we fully model and understand fuctuations can
we design efcient and efective control strategies to ensure
stability.

Further research is necessary to fully explain what
particular elements in power systems give rise to multifractal
phenomena and investigate their potential connection to
superstatistics. On a similar note, complex spectra are ob-
served in other systems [49], so we suspect the existence of
more nonstandard spectra in other time series.

Data Availability

Te power-grid frequency provided by gridradar are not
publicly available but are typically made available for sci-
entist upon reasonable request. Te remaining frequency
data used in this study are openly available at https://power-
grid-frequency.org/. Most code to reproduce the results
shown here is made available on GitHub [50].
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