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Abstract: This work deals with non-linear dhkl−sin2 ψ distributions, often observed in X-ray residual
stress analysis of plastically deformed metals. Two different alloys were examined: duplex stainless
steel EN 1.4362 with an austenite:ferrite volume ratio of 50:50 and ferritic stainless steel EN 1.4016.
By means of an in situ experiment with high-energy synchrotron X-ray diffraction, the phase-specific
lattice strain response under increasing tensile deformation was analysed continuously with a sam-
pling rate of 0.5 Hz. From Debye–Scherrer rings of nine different lattice planes {hkl}, the dhkl−sin2 ψ

distributions were evaluated and the phase-specific stresses were calculated. For almost all lattice
planes investigated, oscillating courses in the dhkl−sin2 ψ distributions were observed, already occur-
ring below the macro yield point and increasing in amplitude within the elasto-plastic region. By
comparing the loaded and the unloaded state after deformation, the contribution of crystallographic
texture and plastically induced intergranular strains to these oscillations could be separated. For the
given material states, only a minor influence of crystallographic texture was observed. However, a
strong dependence of the non-linearities on the respective lattice plane was found. In such cases, a
stress evaluation according to the sin2 ψ method leads to errors, which increase significantly if only a
limited ψ range is considered.

Keywords: X-ray diffraction; duplex stainless steel; residual stress; elastic anisotropy; plastic
anisotropy; intergranular strains

1. Introduction

Duplex stainless steels are widely used in mechanical and chemical engineering due
to their excellent combination of properties in terms of strength, ductility, and corrosion
resistance. These advantageous material properties are achieved via the interaction of two
phases, ferrite and austenite, which both exist in large volume fractions. Many manufactur-
ing processes of metal components involve non-uniform plastic deformations and thereby
cause the development of residual stresses. These ‘internal stresses’ are superimposed on
the external loads during operation and can decisively influence the material behaviour,
for example the service life of components subjected to cyclic loads [1]. In plastically de-
formed duplex stainless steels, phase-specific micro-residual stresses are observed, which
are superimposed on the macro-residual stresses. These kinds of microstresses develop
because the ferritic and austenitic phases differ in their mechanical behaviour. The sign and
magnitude of the phase-specific micro-residual stresses are affected by the degree of plastic
deformation and the phase-specific elasto-plastic behaviour, which depends, i.e., on the
specific material composition, crystallographic texture, and previous heat treatments [2].

The most widely used method for the analysis of phase-specific residual stresses on
polycrystalline materials is the sin2 ψ method using X-ray diffraction [3]. The method is
based on the measurement of diffraction lines from specific lattice plane families of type

Crystals 2023, 13, 419. https://doi.org/10.3390/cryst13030419 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13030419
https://doi.org/10.3390/cryst13030419
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-6886-7311
https://orcid.org/0000-0002-5487-8025
https://doi.org/10.3390/cryst13030419
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13030419?type=check_update&version=1


Crystals 2023, 13, 419 2 of 20

{hkl} of one phase under various sample inclinations ψ for a fixed azimuthal direction ϕ. A
classical sample-fixed coordinate system, indicating angles ψ and ϕ, is shown in Figure 1a.
Following Bragg’s law

dhkl =
1
2

nλ

sin θhkl , with n = 1, (1)

the lattice spacing dhkl in the direction of the scattering vector m(ϕ, ψ) can be determined
from the X-ray wavelength λ and diffraction angle θhkl , as schematically depicted in
Figure 1b. From dhkl , the lattice strain εhkl is derived considering the lattice spacing dhkl

0
corresponding to the stress-free state.

Figure 1. Sample reference system with scattering vector m defined by azimuthal angle ϕ and sample
inclination ψ (a). Schematic visualisation of the lattice spacing dhkl and diffraction angle θhkl (b).

In general, the stress calculation from the measured strain data is based on the as-
sumption that the stress tensor, averaged over the measurement volume, causes a linear
dhkl−sin2 ψ distribution. Linear distributions occur when there is a surface-parallel, uniax-
ial or biaxial stress state which is sufficiently homogeneous, i.e., shows no steep in-depth
gradient within the information depth. Furthermore, the material volume irradiated by
the X-rays must contain a sufficient number of randomly oriented grains, i.e., the grain
sizes are very small in comparison to the irradiated sample volume [4]. If shear stresses
are present normal to the specimen surface, the dhkl−sin2 ψ distribution shows an elliptical
course. However, in cold-formed polycrystalline materials, pronounced non-linearities,
i.e., oscillating courses in the dhkl−sin2 ψ plots, can occur. This is due to the phase-specific
crystallographic texture (elastic anisotropy) and the plastically induced microstresses (plas-
tic anisotropy), which are also denoted as intergranular stresses [5]. In situations that
pronounced oscillations are observed, the sin2 ψ method can lead to erroneous results and
should no longer be applied. It is known that near-surface residual stress depth gradients
can also cause non-linear dhkl−sin2 ψ distributions [1]. Because in-depth stress gradients
play no role in this study, this is not further discussed.

The lattice spacing dhkl , determined by diffraction methods, always represents a selec-
tive mean value of those crystallite orientations whose lattice planes {hkl} are perpendicular
to the respective measurement direction m(ϕ, ψ). In terms of strain, this mean value can be
separated into two parts: a mean strain part εhkl

ϕ,ψ, which is related to the mean stress tensor

σij, and a second part ε
hkl,pl.
ϕ,ψ , which is related to orientation-dependent microstresses caused

by previous plastic deformations [6]. At this point, it should be emphasised that the super-
script ‘pl.’ does not indicate plastic strain; instead, it indicates elastic intergranular strain
induced by plastic deformation. Generally, the relation between σij and εhkl is described
by stress factors Fhkl

ij , which can be calculated with knowledge of the single-crystal elastic
anisotropy and the orientation distribution function (ODF) [7]. The crystallite coupling
within the polycrystal is thereby taken into account using appropriate mathematical models,
e.g., according to Voigt [8], Reuss [9] or Eshelby/Kröner [10,11]. A detailed description of
the Fij calculation approaches following different models is given in [12]. The measured
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strain εhkl
ϕ,ψ in the direction m(ϕ, ψ) of a plastically deformed, polycrystalline material is

calculated as follows [6]:

εhkl
ϕ,ψ =

dhkl
ϕ,ψ − dhkl

0

dhkl
0

= ∑
i,j

Fhkl
ij (ϕ, ψ)σij + ε

hkl,pl.
ϕ,ψ . (2)

Thus, the plastically induced intergranular strains ε
hkl,pl.
ϕ,ψ are independent from the acting

mean stress tensor and are instead due to the history of plastic deformation, which is usually
not known.

Several works have already dealt with the experimental analysis of phase-specific
stresses in plastically deformed duplex stainless steels, e.g., [13–20]. Although materi-
als with comparable chemical compositions and similar phase fractions were examined,
different conclusions were drawn regarding the phase-specific yield strength and the for-
mation of phase-specific microstresses. On the one hand, this can be attributed to the fact
that phase-specific strength is affected by the specific crystallographic texture (orientation
strengthening) and by the differences in the precise phase-specific chemical composition
(solid solution strengthening). On the other hand, different measurement and evaluation
approaches were used, which can also lead to different stress results for such complex
material states. A systematic study on the evolution of non-linear dhkl−sin2 ψ distributions
for several lattice planes {hkl} caused by plastic deformation and the accompanying error
in residual stress evaluation has not yet been performed. Usually, only the residual stress
state is analysed. Without a comparison of the same material state under additional exter-
nal loading, the influences of texture and intergranular strains cannot be easily separated.
Furthermore, the data are frequently obtained by diffraction experiments using conven-
tionally generated X-rays (lab X-ray applications) in reflection mode. In this case, mostly
only a limited sin2 ψ range is accessible due to the absorption at high inclination angles
(ψ) or simply due to the geometric constraints of the applied measurement setup, and the
oscillatory courses of dhkl vs. sin2 ψ are not necessarily visible.

The use of high-energy synchrotron X-ray in transmission mode, however, enables the
analysis of mean phase-specific stresses for metal samples having a thickness of up to a few
millimetres. Here, the diffraction data contain integral information over the sample thickness;
hence, depth gradients of the crystallographic texture or residual stresses are not resolved. In
contrast, the information gained reflects an overall material response that is unaffected by local
deviations due to near-surface effects. By means of a 2D detector, full diffraction rings of several
lattice planes can be recorded for polycrystalline samples. After azimuthal segmentation of
the diffraction pattern, the diffraction profiles can be analysed for various azimuthal directions.
Using these means, dhkl−sin2 ψ distributions can be evaluated based on a single exposure [21,22].
This approach allows for the determination of lattice spacings with polar angles of up to
|ψ| = 90◦. Thus, it is a valuable tool for the systematic analysis of the development of oscillatory
dhkl−sin2 ψ distributions with elastic and elasto-plastic deformations.

In the present work, the phase-specific lattice strain responses of a cold-rolled duplex
stainless steel sheet and a ferritic stainless steel sheet were analysed under increasing
tensile deformations up to a total strain of about ε = 0.12. The aim was to analyse the
development of oscillatory courses in dhkl vs. sin2 ψ for several lattice planes for single-
phase and two-phase materials and to obtain a better comprehension of the respective
contributions of elastic and plastic anisotropy. Therefore, in situ loading experiments using
2D high-energy synchrotron X-ray diffraction were carried out at the P07B@PETRA III
beamline at Deutsches Elektronen-Synchrotron (DESY) Hamburg, Germany. During uni-
axial deformation in the elastic and elasto-plastic regime, entire Debye–Scherrer rings
of several lattice planes {hkl} for the ferritic phases were detected by means of a flat-
panel detector. In the case of the duplex stainless steel, the Debye–Sherrer rings were also
found for the austentitic phase. From these, the direction-dependent lattice spacings dhkl

ϕ,ψ
were evaluated.
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The results are presented and discussed in the following order. At first, the continuous
evolution of the phase-specific lattice strain is analysed for selected directions with respect
to the loading direction. Thereafter, dhkl−sin2 ψ plots of the individual lattice plane families
of both materials are discussed for four particular load increments including the unloaded
state. It is investigated whether linear regression over oscillating distributions leads to
comparable stress results for different lattice planes if the entire range in sin2 ψ (from 0.1)
can be considered. The ferritic phase of the duplex stainless steel and the ferritic stainless
steel exhibit the same crystal structure. In comparing the dhkl−sin2 ψ distributions of the
single-phase material and the two-phase material, it is investigated if the second phase
has an influence on the non-linearities. Finally, the influences of intergranular strains and
crystallographic texture on the dhkl−sin2 ψ courses are separated by comparing the loaded
and unloaded state.

2. Materials and Methods
2.1. Initial Material State

Duplex stainless steel EN 1.4362 (Alloy 2304, German grade X2CrNiN23-4) and ferritic
stainless steel EN 1.4016 (AISI 430, German grade X6Cr17) were used in this study, both
in a cold-rolled state with a sheet thickness of 1.5 mm. The abbreviations DSS for duplex
stainless steel and FSS for the ferritic stainless steel are used throughout this work. The
materials’ chemical compositions, as determined by optical emission spectroscopy, are
shown in Table 1.

Table 1. Chemical composition of duplex stainless steel EN 1.4362 (DSS) and ferritic stainless steel
EN 1.4016 (FSS).

C Cr Ni Mn Mo Co Cu Fe

DSS 0.034 23.91 4.74 1.33 0.37 0.1 0.27 bal.
FSS 0.034 16.07 0.24 0.35 0.02 0.02 0.21 bal.

Metallographic analysis on the DSS revealed a nearly equal volume fraction of the
phases ferrite (α, body-centred cubic) and austenite (γ, face-centred cubic), see Figure 2a.
No further phases could be determined. The ferritic phase exhibits relatively large grains
that are elongated in the rolling direction with a mean diameter of approximately 13 µm. In
contrast, the austenitic phase has smaller grains of with a rather spherical shape with sizes
of about 4 µm in diameter [19]. The ferritic stainless steel has rather large globular ferrite
grains of sizes within a range of 10 µm to 25 µm, see Figure 2b. In addition, small carbide
segregations were observed, regularly arranged in lines along the rolling direction (RD).
However, the volume fraction of carbides is rather low and does not exceed 5%. Hence, the
ferritic stainless steel is considered as single-phase material within this work.

The crystallographic textures of the initial states were analysed by lab X-ray exper-
iments using a four-circle X-ray diffractometer with 1 mm collimated Fe-filtered Co–Kα-
radiation (photon energy ECoKα = 6.93 keV, wavelength λCoKα = 1.789 Å). On the sec-
ondary side, a 4 mm slit aperture was installed in front of the point detector. From the
measured incomplete pole figures of ferritic lattice planes ({200}α, {211}α, {220}α) and
austenitic lattice planes ({200}γ, {220}γ, {311}γ) the phase-specific ODFs ( f (g)) and main
texture components {hkl}〈uvw〉 of both materials were calculated using the Matlab toolbox
MTEX [23]. To account for the depth gradient, the texture was repeatedly characterised
after step-wise layer removal until half of the sheet thickness was reached. Each layer had
a thickness of about 250 µm and was removed by grinding and subsequent electrochemical
polishing. The volume fractions of the main texture components as well as the overall
texture index J, which describes the degree of anisotropy [24], are depicted in Figure 3
over the distance to the surface. Both phases show ideal texture components that are
frequently observed for body-centred cubic (bcc) and face-centred cubic (fcc) metals after
rolling. Major components of the austenitic phase of the DSS are Taylor {4 4 11}〈11 11 8〉
(also named Dillamore), copper {123}〈111〉, S1 {124}〈211〉, brass {110}〈112〉 and Goss
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{110}〈001〉 orientations. The ferritic phases of the DSS and the FSS both have components
of α-fibre ({100}〈110〉, {115}〈110〉, {112}〈110〉) and γ-fibre ({111}〈110〉, {111}〈112〉). Yet,
the texture of the FSS is less pronounced in comparison to the ferritic phase of the DSS.
According to the texture index J, the ferritic phase in the DSS also exhibits a sharper texture
than the austenitic phase. For both materials (DSS and FSS), only a negligible variation of
the texture vs. depth was observed.

Figure 2. Micrographs of longitudinal sections of duplex stainless steel 1.4362 (a) and ferritic stainless
steel 1.4016 (b), determined by light optical microscopy after etching with Lichtenegger–Bloech and
V2A etchant, respectively; rolling direction (RD) and normal direction (ND) are indicated.

Figure 3. Depth gradients of crystallographic texture from sheet surface to centre of the austenitic
phase (a) and ferritic phase (b) of the DSS and the FSS (c), depicted by volume fractions of the main
texture components (top row) and the texture index J (bottom row).

2.2. In Situ Loading Experiment

Tensile specimens were cut out of the sheet metals with their longitudinal direction
aligned parallel to the sheet’s rolling direction. The sample volume experiencing an
homogeneous strain has a length, width, and thickness of 21 × 8 × 1.5 mm. For the
tensile tests, a miniature tensile testing machine from Walter+Bai AG, Switzerland, with
an attached 10 kN load cell was used. The macro stress–strain curves were determined
up to a maximum strain of about εt = 0.12 using an extensometer. The strain rate was
approximately ε̇ = 4× 10−5 s−1. During the in situ experiments, i.e., during X-ray exposure,
the extensometer was dismounted to avoid shadowing effects.

The in situ high-energy X-ray diffraction (HEXRD) experiments were carried out at beam-
line P07B@PETRA III at DESY in Hamburg, Germany. Monochromatic synchrotron X-rays with
a photon energy of EHE = 87.1 keV (wavelength λHE = 0.1423 Å) and a beam size of 1 mm in
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width and 0.6 mm in height were used. Diffraction patterns were detected by a Perkin–Elmer
flat -panel detector of type XRD 1621 with a 2048× 2048 array of 200× 200 µm pixels having a
distance to the sample of 1365 mm. The experimental setup was calibrated using a Fe-powder
reference sample.

During the uniaxial deformation, the diffraction patterns were continuously recorded
with an acquisition time of ∆t = 2 s (sampling rate 0.5 Hz). Thereby, nine complete Debye–
Scherrer rings, corresponding to the {111}γ, {200}γ, {220}γ, {311}γ, {222}γ austenite
interference lines and the {110}α, {200}α, {211}α, {220}α ferrite interference lines were
recorded for the DSS sample. For the FSS sample, diffraction rings of {110}α, {200}α,
{211}α, {220}α were detected.

2.3. Determination of sin2 ψ Courses from Debye–Scherrer Rings

To enable direction-dependent data evaluation, the diffraction patterns were sectioned
into 72 diffraction profiles via integration along the azimuthal angle η in the detector plane
in steps of ∆η = 5◦ using the software FIT2D [25]. As exemplified for η = 90◦ in Figure 4,
each of the intensity vs. 2θ profiles corresponds to one azimuthal direction η.

Figure 4. Exemplary diffraction profile of the duplex stainless steel sample after azimuthal integration
of a segment over ±2.5◦ at η = 90◦ (a) and experimental setup with tensile testing machine and
flat-panel detector (b).

After linear background subtraction, the individual diffraction peaks were fitted with
pseudo-Voigt functions using a self-written MATLAB routine. From the evaluated mean
2θhkl positions, the lattice spacings dhkl were calculated according to Bragg’s law (see
Equation (1)). For better comparability of the evolution of lattice spacings of different lattice
planes dhkl , they are expressed by the changes of the uniform lattice spacing d100 using the
following equation:

d100
ϕ,ψ = dhkl

ϕ,ψ

√
h2 + k2 + l2. (3)

In the laboratory system, each measurement direction is defined by the scattering
vector m, which depends on the azimuthal angle η in the detector plane and the particular
diffraction angle θhkl , as schematically depicted in Figure 5a. For the evaluation of strains
and stresses, the scattering vectors have to be expressed in respect to a sample-fixed
reference system, which is generally defined by an azimuthal angle ϕ and a polar angle ψ.
In Figure 5, two different stereographic projections of the scattering vectors m are illustrated,
assuming a diffraction angle θ = 4.1◦. Figure 5b depicts the projection perpendicular to the
sheet’s normal direction (ND), whereas Figure 5c depicts the projection perpendicular to
the sheet’s transverse direction (TD). The respective projections are indicated by indices.
The coordinate transformation was performed using a rotation matrix as described in [26].
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Figure 5. Schematic visualisation of the scattering vector orientations m(θ, η) in the laboratory
system (a). Scattering vectors for a specific diffraction angle of θ = 4.1◦ in the sample-fixed system as
stereographic projection perpendicular to the sheet’s normal direction (ND), defined by azimuthal
angle ϕND and polar angle ψND (b) and perpendicular to the transverse direction (TD), defined by
azimuthal angle ϕTD and polar angle ψTD (c).

In classical application of the sin2 ψ method, the stress in direction ϕ is evaluated from
measured lattice spacings for various sample inclinations ψ under constant azimuthal direc-
tion ϕ. The path of the scattering vectors in coordinate system (c) approximately describes a
path of various ψTD angles for a fixed azimuthal angle ϕTD = 0◦. The negligible offset from
the LD–TD plane is simply due to the diffraction angle θ (compare Figure 5a). Considering
the very small diffraction angles for the given experimental setup (θhkl

max = θ220α ≈ 4.1◦),
this angular offset is ignored in further evaluation and the following approximations
are made:

m(ϕ, ψ) = m(ϕ = 0◦ = LD, ψ = η) ≈ m(ϕTD, ψTD). (4)

Thus, the dϕ,ψ-sin2 ψ distributions dealt with in this work can be assigned to the
sample-fixed LD–TD plane. Because the angles ϕ and ψ do not correspond exactly to
ϕTD and ψTD, they are not indexed with ’TD’. The stress error made by this assumption
was calculated assuming non-textured ferritic steel with a simulated uniaxial stress state
(σLD = 100 MPa, σLD = σLD = 0). For the maximum diffraction angle investigated (θ220α)
the stress error is less than 0.5% and is thus within the range of usual measurement
error. Comparable evaluation approaches have already been proposed by [21,22,27]. To
correct any inaccuracies in the determination of the beam centre, the lattice spacings dhkl

ϕ,ψ
determined from opposing azimuthal angles within the Debye–Scherrer rings are averaged:

d100
ϕ,ψ =

d100(ϕ, ψ) + d100(ϕ, ψ+180◦)
2

, for |ψ| ≤ 90◦. (5)

2.4. Stress Evaluation

Although significant oscillations in the dhkl−sin2 ψ distributions are expected in this
study, the phase-specific stress evaluation is carried out according to the sin2 ψ method.
In this way, it can be verified, if the stress values determined from different lattice planes
correlate, given that the entire range 0 ≤ sin2 ψ ≤ 1 is covered. Gradients of residual
stresses cannot be resolved with the transmission experiment, as only integral values across
the sheet thickness are determined. In multi-phase materials however, there are homo-
geneous phase-specific micro-residual stresses which are balanced by the homogeneous
micro-residual stresses of the other phases. The presence of such homogeneous micro-
residual stresses must be considered for all measurement directions in the sample reference
system. Hence, only the differences of the mean stresses 〈σLD − σTD〉ϑ of the respective
phase ϑ can be obtained by the applied method:
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〈σLD − σTD〉ϑ =
1

1
2 shkl

2

1
d100

0

∂d100
ϕ,ψ

∂ sin2 ψ
. (6)

Because the uniform lattice spacing for the stress-free state d100
0 of the respective phases

is unknown, it is replaced by the average of the uniform lattice spacings of all analysed
interference lines measured for the materials initial state. The stress error introduced by
this assumption is less than 0.1 % for most materials if stresses are evaluated according to
the sin2 ψ method [4]. In Table 2, the used d100

0 values for DSS and FSS are provided.

Table 2. Applied reference lattice spacings d100
0 .

DSS Austenite DSS Ferrite FSS Ferrite

d100
0 /Å 3.5894 2.8642 2.8630

The diffraction elastic constants 1
2 shkl

2 , as specified in Table 3, are calculated according
to the self-consistent model, known as the Eshelby/Kröner model, following the iterative
approach proposed by [28]. The single-crystal elastic constants for the ferritic and austenitic
phases were taken from [29,30], respectively.

Table 3. Diffraction elastic constants 1
2 shkl

2 used for the austenitic phase and the ferritic phase.

Austenite Ferrite

{111} {200} {220} {311} {222} {110} {200} {211} {220}
1
2 shkl

2 /TPa−1 5.0229 8.7707 5.9598 7.0052 5.0229 5.7005 7.6284 5.7005 5.7005

3. Results and Discussion
3.1. Lattice Strain Evolution of DSS for Selected ψ Angles

At first, the continuously recorded measurement data are shown for three selected
polar angles ψ = 0◦, ψ = 45◦ and ψ = 90◦ in order to illustrate the evolution of lattice strain
response from both phases of the DSS sample with increasing load. The strain response
is given as a change in lattice strain ∆εhkl

ϕ,ψ, which is calculated with respect to the lattice
spacing of the initial state dhkl

init:

∆εhkl
ϕ,ψ =

dhkl
ϕ,ψ − dhkl

init

dhkl
init

. (7)

When the lattice strain versus applied load deviates from a linear dependency, os-
cillations in the dhkl−sin2 ψ plots can also be expected. The theoretical strain evolution
for a linear dependency is calculated by the stress factors F11(ϕ, ψ) multiplied with the
nominal applied stress σn. The stress factors F11(ϕ, ψ) for the three particular directions ψ
were calculated using the software isoDEC applying the Eshelby/Kroener model [31]. The
phase-specific ODFs from the initial material state were taken into account as input data.

In Figures 6a and 7a the Debye–Scherrer rings from the austenitic and the ferritic
phase are highlighted and the selected ψ directions are marked (ψ = η). The solid lines
in Figures 6b and 7b depict the corresponding changes in lattice strain ∆εhkl

ϕ,ψ of the inves-
tigated austenitic and ferritic lattice planes, respectively. The dotted lines indicate the
theoretical strain evolution, calculated by F11(ϕ, ψ) multiplied with σn. The experimen-
tally determined strain development ∆εhkl

ϕ,ψ of both phases is accurately predicted by the
calculated values for almost all investigated lattice planes as long as the applied load
is clearly below the macro yield strength (σn�ReS, compare Figures 6b and 7b). Hence,
both constituents of the DSS share approximately the same load σn within the purely
elastic deformation, which seems plausible because of their only minor differences in
elastic properties.
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Figure 6. Debye–Scherrer rings of the austenitic phase (γ) of the DSS (a); lattice strain vs. applied load
for three selected directions ψ = η = 0◦, ψ = η = 45◦ and ψ = η = 90◦ experimentally determined
(solid lines) and calculated (dotted lines) for lattice planes {111}γ, {200}γ, {220}γ, {311}γ and
{222}γ (b).

When the applied load approaches the macro yield strength, significant deviations
from the linear stress–strain relationship are observed. This is due to the plastic anisotropy
of the individual crystallites, i.e., the direction-dependent yield strength [32]. Crystallite
orientations with low strength with respect to the direction of the applied load show
plastic yielding already below the macro yield strength. This causes additional elastic
strain within the crystallites that have a high-strength orientation, due to the constraints of
the surrounding polycrystal [33]. The selective nature of diffraction methods means that
those strain heterogeneities become visible, especially when various {hkl} interference lines
are studied. Depending on the particular polar angle ψ, positive or negative deviations
from linear stress–strain-dependency are observed, which are related to oscillations in a
dhkl−sin2 ψ plot.

Figure 7. Debye–Scherrer rings of the ferritic phase (α) of the DSS (a); Lattice strain vs. applied load
for three selected directions ψ = η = 0◦, ψ = η = 45◦ and ψ = η = 90◦ experimentally determined
(solid lines) and calculated (dotted lines) for lattice planes {110}α, {200}α, {221}α and {220}α (b).

The unfilled symbols indicate the residual strain after unloading. It can be seen that
for both phases, the introduced intergranular strains also remain in the unloaded state.

Furthermore, in Figure 6b, a difference between the lattice strains determined by
{111}γ and {222}γ interference lines is evident for applied loads beyond ReS. This sys-
tematic shift is due to the stacking fault probability in the austenitic phase which increases
with plastic deformation and has been frequently observed for materials that exhibit a low
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stacking fault energy (SFE) [34]. For the ferritic lattice planes {110}α and {220}α, no such
strain differences exist (see Figure 7b), which can be explained by the usually high SFE of
body-centred cubic metals.

3.2. Stress Evaluation According to the sin2 ψ Method

The d100−sin2 ψ plots are determined from Debye–Scherrer rings as described in detail in
Section 2.3. For reasons of clarity, only results of four characteristic load states during the tensile
deformation are shown. Those are the initial unloaded state (I), the macro yield point σt = ReS
(II), the maximum deformed state under load (εt = 0.12, (III)), and the unloaded deformed
state (IV). From two crystallographic-equivalent lattice planes, only one is depicted, namely
{222}γ for the austenitic phase and {220}α for the ferritic phase. According to the theory
of [34], it is assumed that the shift of lattice strain due to deformation stacking faults is
non-directional. Hence, it does not affect the slope of dhkl−sin2 ψ distributions and will not
be considered further in this work. The stress differences 〈σLD−σTD〉 of the respective phase
are calculated from the slopes of the linear regressions according to Equation (6) using
the isotropic diffraction elastic constants given in Table 3. Stress errors are calculated for
each sin2 ψ evaluation, taking into account the variances of the regression line as described
in [1].

3.2.1. DSS—Austenitic Phase

In Figure 8, the d100−sin2 ψ distributions for the four load states (I–IV) determined
from austenitic lattice planes {200}γ (a), {220}γ (b), {311}γ (c) and {222}γ (d) are shown.
The uniform lattice spacings d100 are depicted over sin2 ψ. Positive and negative ψ angles
are indicated with white-filled and black-filled symbols, respectively. The variances in
the individual d100 values are propagated from the peak fit and are given by error bars.
The result of the linear regression is shown as a red dotted line from which the stresses
〈σLD−σTD〉γ are calculated. In the initial state (I), all austenitic lattice planes show a linear
d100−sin2 ψ dependency. Merely, minor scattering can be observed which results in small
stress errors (≤± 3 MPa). The initial residual stress difference 〈σLD−σTD〉γ of the austenitic
phase is negative in sign, and the average from all lattice planes amounts to about−22 MPa.

In the load state II, tendencies towards oscillating deviations are already visible for the
{200}γ and the {220}γ planes. The stress evaluation of different lattice planes leads to an
average value of about 453 MPa, from which {200}γ deviates the most, by approximately
19 MPa. The calculated stress errors are ±13 MPa at maximum. It is well known that
oscillatory d100−sin2 ψ distributions observed for {h00} or {hhh} lattice planes of cubic
centred materials cannot be caused by crystallographic texture [35]. Consequently, the
non-linearities visible for {200}γ already indicate the influence of plastically induced
intergranular strains. With further plastic deformation (load state III) the oscillations for
{200}γ and {220}γ increase significantly in amplitudes. The dhkl−sin2 ψ distributions
of {311}γ and {222}γ lattice planes now also exhibit deviations from linearity, although
those are much smaller compared to the latter. The evaluated stresses 〈σLD−σTD〉γ for
this load state range from 651 MPa to 906 MPa, with an average value of about 786 MPa.
The oscillations result in higher calculated stress errors, which, however, significantly
underestimate the true uncertainty in stress evaluation if the results from different lattice
planes are considered.

After unloading (load state IV), the deviations from the linear distribution almost
completely remain for all lattice planes. The average stress difference 〈σLD−σTD〉γ from
all investigated planes calculates to about 51 MPa. However, it should be pointed out that
depending on the respective lattice plane compressive residual stress ({220}γ), tensile
residual stress ({200}γ, {311}γ) and residual stress values of close to zero are determined.
A direct comparison of load state I and IV reveals the magnitude of strain heterogeneities
introduced by the elasto-plastic tensile deformation, which is observable for all examined
austenitic lattice planes.
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Figure 8. d100−sin2 ψ distributions of austenite lattice planes {200}γ (a), {220}γ (b), {311}γ (c) and
{222}γ (d) for selected load states during tensile deformation of the DSS: initial state (I), macroscopic
yield strength (II), plastically deformed (III) and unloaded after deformation (IV); stress differences
〈σLD−σTD〉γ determined by linear regression (red dotted line) according to the sin2 ψ method.
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3.2.2. DSS—Ferritic Phase

The d100−sin2 ψ distributions obtained from the Debye–Scherrer rings of the ferritic
phase are depicted in Figure 9. The distributions of {200}α (a), {211}α (b) and {220}α (c)
are shown here for load states I–IV in an equivalent representation to Figure 8.

In the initial state (I), all lattice spacings d100 show a nearly linear dependency of
sin2 ψ. Only local fluctuations can be observed, which are greater in magnitude compared
to the austenitic phase. Those fluctuations are presumable due to a larger average size
and thus a lower number of coherently scattering domains. Such local non-linearities due
to ’coarse grains’ superimpose on the linear or non-linear dhkl−sin2 ψ distributions [35].
Hence, the larger stress errors (≤±14 MPa) observed for the ferritic phase in the initial
state can be attributed to the larger grain size in comparison to the austenitic phase. The
evaluated residual stress difference of the ferritic phase 〈σLD−σTD〉α is of a positive sign
with an average value of about 21 MPa.

Figure 9. d100−sin2 ψ distributions of ferrite lattice planes {200}α (a), {211}α (b) and {220}α (c) for
selected load states during tensile deformation of the DSS: initial state (I), macroscopic yield strength (II),
plastically deformed (III) and unloaded after deformation (IV); stress differences 〈σLD−σTD〉α determined
by linear regression (red dotted line) according to the sin2 ψ method.

At load state II, minor d100 oscillations are already visible for all lattice planes except
for {211}α. However, the evaluated stresses of different lattice planes show comparable
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results, with an average value of about 553 MPa from which {211}α deviates the most, by
approximately 23 MPa. The maximum stress error from linear regression is about ±22 MPa.

For load state III, it can be observed that the non-linearities of d100 vs. sin2 ψ are
increased for lattice planes {200}α and {220}α, whereas {211}α still shows an almost
linear distribution. The stress values 〈σLD−σTD〉α range from approx. 732 MPa to 814 MPa
with an average value of about 765 MPa. Whereas the error in stress calculation increases
for lattice planes {200}α and {220}α, it decreases for {200}α compared to the previous
load state II. This is due to the reduced local fluctuations from a continuous d100−sin2 ψ
distribution, which is evident for all lattice planes after plastic deformation.

As already observed for the austenitic phase, the oscillations persist after unloading
(load state IV). The residual stress difference 〈σLD−σTD〉α from all three lattice planes
averages to about −71 MPa with a minimum value of approx. −131 MPa and a maximum
value of −25 MPa for {220}α and {200}α, respectively. A direct comparison of load states I
and IV shows the extent of the oscillations introduced by tensile plastic deformation with
simultaneous reduction in the local fluctuations which were present in the initial state.
The latter indicates that the domain size is reduced significantly due to the increase in
lattice defects caused by plastic deformation. This hypothesis could be confirmed by a peak
profile analysis on the measurements data set according to Williamson-Hall, which allows
for the separation of size and strain effects on diffraction line broadening [36]. However, the
measurement statistic of the interference profiles was not sufficient for a precise quantitative
analysis of the respective contributions, hence, results on this evaluation is not presented
here. Nonetheless, from comparison of load state I and IV a decrease in average domain
sizes after plastic deformation could be qualitatively confirmed for both, the ferritic and
austenitic phases.

3.2.3. FSS—Ferritic Phase

The results obtained from the FSS sample are presented in Figure 10 in the same manner
as for the DSS sample. The load states I–IV correspond to equivalent positions on the macro
stress strain curve of the FSS. The d100−sin2 ψ distributions in the initial state (I) show a nearly
horizontal line for all three lattice planes. The residual stress difference 〈σLD−σTD〉α is close
to zero with an average value of about−9 MPa confirming the expected stress-free state for a
single-phase steel. Compared to the ferritic phase of the DSS even higher local fluctuations in
d100 vs. sin2 ψ are determined, which supports the aforementioned assumption of grain size
influences because the FSS exhibits the largest grains (see Figure 2).

In load state II the average stress obtained from all lattice planes amounts to approx.
291 MPa. Any oscillations that may already be present in the d100−sin2 ψ distribution are
superimposed by the local scattering deviations and can therefore not be clearly recognised.

Those local fluctuations reduce significantly after plastic deformation (load state III) and
the d100−sin2 ψ oscillations are clearly visible for {200}α and {220}α planes. The average
stress determined by the sin2 ψ method is about 499 MPa, whereby {211}α, the only lattice
plane with linear d100−sin2 ψ distribution, shows the highest stress, with approximately
519 MPa.

The non-linear distributions that are also present in the unloaded state (IV) lead to
considerable differences in the evaluated residual stresses based on different lattice planes.
The residual stress, determined by the almost linear d100−sin2 ψ distribution of {211}α, is
again close to zero with a value of about 〈σLD−σTD〉α = −3 MPa.
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Figure 10. d100−sin2 ψ distributions of ferrite lattice planes {200}α (a), {211}α (b) and {220}α (c) for
selected load states during tensile deformation of the FSS: initial state (I), macroscopic yield strength
(II), plastically deformed (III), and unloaded after deformation (IV); stress differences 〈σLD−σTD〉α

determined by linear regression (red dotted line) according to the sin2 ψ method.

3.2.4. Comparison of DSS and FSS

For equivalent lattice planes of the deformed FSS (Figure 10(IVa–c)) and the fer-
ritic phase of the deformed DSS (Figure 9(IVa–c)), comparable features in the oscillating
d100−sin2 ψ distributions are observed. Hence, these oscillations are not affected by the
presence of a second phase, i.e., the austenitic phase of the DSS. The lower oscillation
amplitudes for the FSS compared to those observed for the ferritic phase of the DSS are
due to the lower yield strength and thus the lower number of microstresses caused by
plastic deformation.

For a better overview, the evaluated stress values are listed together with the applied
loads in Tables 4 and 5 for FSS and DSS, respectively. If stress values are determined from
d100−sin2 ψ distributions showing significant or marginal oscillations, they are shaded with
light red of light pink, respectively. Because the FSS is considered a single-phase material,
no homogeneous phase-specific residual stress should be observable. The measured data
were obtained by a transmission experiment, so that a macro-residual stress depth gradient
always integrates to zero in order to fulfil the equilibrium condition of residual stresses.
This assumption is confirmed by the very low stress values determined by two lattice
planes in the initial state and by the {211}α planes after unloading (Table 4).
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Table 4. Stresses in the ferritic phase 〈σLD−σTD〉α of the FSS for different load states (LS) at the
applied true stress σt and the true strain εt; evaluation according to sin2 ψ method.

LS I II III IV

εt/- 0.0000 0.0022 0.1138 0.1106

σt/MPa 0 295 520 0

〈σLD−σTD〉α/MPa
{200}α −10 ± 12 295 ± 14 500 ± 22 9 ± 20
{211}α 11 ± 7 321 ± 7 519 ± 3 −3 ± 3
{220}α −28 ± 9 256 ± 11 479 ± 19 −45 ± 16

dhkl−sin2 ψ oscillations: negligible marginal significant

In the DSS, however, the mean phase-specific residual stresses over the sample thick-
ness are not equal to zero because they are balanced by the mean stresses of the other
phase. Because both phases have approximately equal volume fractions, the phase-specific
micro-residual stresses of both phases must add up to zero.

Table 5. Stresses in the austenitic phase 〈σLD−σTD〉γ and ferritic phase 〈σLD−σTD〉α of the DSS for
different load states (LS) at the applied true stress σt and the true strain εt; evaluation according to
sin2 ψ method.

LS I II III IV

εt/- 0.0000 0.0037 0.1202 0.1151

σt/MPa 0 502 793 0

〈σLD−σTD〉γ/MPa

{200}γ −31 ± 3 472 ± 13 906 ± 35 151 ± 25
{220}γ −12 ± 3 444 ± 6 651 ± 41 −37 ± 31
{311}γ −25 ± 2 446 ± 4 815 ± 9 87 ± 9
{222}γ −20 ± 3 449 ± 3 770 ± 12 3 ± 8

〈σLD−σTD〉α/MPa
{200}α 8 ± 14 542 ± 22 750 ± 41 −25 ± 40
{211}α 26 ± 8 576 ± 9 814 ± 5 −58 ± 3
{220}α 29 ± 8 540 ± 17 732 ± 35 −131 ± 32

dhkl−sin2 ψ oscillations: negligible marginal significant

This is confirmed by the average stress differences in the initial state (I), which amount
to about 〈σLD−σTD〉γ = −22 MPa and 〈σLD−σTD〉α = 21 MPa for the austenitic and ferritic
phases, respectively. The unloaded state after deformation showed 〈σLD−σTD〉γ = 51 MPa
for the austenitic phase and 〈σLD−σTD〉α = −71 MPa for the ferritic phase. The fact that the
phase-specific residual stresses change due to uniaxial deformation shows that ferritic and
austenitic phase exhibit different strength and/or hardening behaviour with respect to the
direction of loading (LD‖RD). A further evaluation of the phase-specific triaxial stress tensor
requires the precise lattice parameters for the stress-free state d100

0 , which are not known in
the present state and are difficult to determine. σhkl

TD must not be assumed to be zero because
significant hydrostatic phase-specific stresses can arise in multi-phase materials. Therefore, the
phase-specific hardening behaviour unfortunately cannot be derived from the presented results.

3.3. Influence of Texture on d100-sin2 ψ-Oscillations

For the initial state (load state I) and the macro yield point (load state II), no consid-
erable oscillations in the d100−sin2 ψ distributions were observed for DSS and FSS. It is
therefore assumed that no significant plastically induced intergranular strains εpl. existed in
the initial states. Furthermore, it is concluded that the initial crystallographic textures only
minorly affect non-linear d100−sin2 ψ distributions for the given material states. However,
it should be noted that texture generally develops through plastic deformation. The ob-
served significant increase in non-linearities with further tensile deformation might thus be
affected by both elastic anisotropy (i.e., the crystallographic texture) and plastic anisotropy
(i.e., intergranular strains). At this point, it should be mentioned that the crystallographic
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texture also influences the development of plastically induced intergranular strains. It is
expected that different incompatibility stresses arise during plastic deformation of non-
textured materials than in highly textured materials. However, no variation in textures was
investigated within this study. The term ’influenced by texture’ in this work is therefore
exclusively associated with the effect of elastic anisotropy on the oscillatory courses in dhkl

vs. sin2 ψ.
To separate the effects of texture and plastically induced strains, the results obtained

for load state III and load state IV were examined in more detail. Generally, it can be
assumed that the texture and the plastically induced intergranular strains εpl. do not change
during unloading given that the unloading process is purely elastic:

∆εpl.(ϕ, ψ, hkl) = ε
pl.
loaded(ϕ, ψ, hkl)− ε

pl.
unloaded(ϕ, ψ, hkl) !

= 0. (8)

The change in elastic strain between the loaded and unloaded state ∆ε therefore only
depends on the loading stress ∆〈σij〉. Equations (2) and (8) yield:

∆ε(ϕ, ψ, hkl) = εloaded(ϕ, ψ, hkl)− εunloaded(ϕ, ψ, hkl) = ∑
i,j

Fij(ϕ, ψ, hkl)∆〈σij〉. (9)

With respect to the change of the lattice spacing d100, the equation is:

∆d100(ϕ, ψ, hkl) = d100
loaded(ϕ, ψ, hkl)− d100

unloaded(ϕ, ψ, hkl) = ∑
i,j

Fij(ϕ, ψ, hkl)∆〈σij〉d100
0 . (10)

In Figure 11a, this approach is exemplified for the {220}γ lattice plane. The strongly
pronounced oscillations which are present in load state III and IV disappear almost completely
if the difference in lattice spacings of both states is calculated (load state V = III–IV). The
remaining deviations from the regression line that might be caused by the crystallographic
texture are comparatively small. Figure 11b depicts the same measurement results but here
only dhkl values for the lower-half range of sin2 ψ are considered, which correspond to sample
inclinations |ψ| ≤ 45◦. In laboratory X-ray applications, the ψ range is frequently limited to
such low angles due to the restrictions of the used instruments (e.g., mobile diffractometers)
or shadowing caused by the geometry of the sample being investigated. A comparison of
Figure 11a,b shows that the evaluated stresses differ drastically (IIIa/b) and even change signs
for the residual stress state (IVa/b). Even for the difference of both load states (Va/b), in which
the effect of plastically induced intergranular strains can be excluded, a considerable stress
difference is evident. In the case of plastically deformed material states, it must be taken into
account that non-linearities might be recognisable only in the upper tilt angle range. A stress
evaluation based on the apparently linear dhkl−sin2 ψ distribution within the lower ψ angle
range in this case leads to strongly erroneous stress results.

The comparison of Figure 11a,b reveals that the stress errors, which are calculated
from variances in linear regression, are far from the true stress inaccuracies.

From all investigated lattice planes of the ferritic and austenitic phases within this
study, only the {211}α plane remained almost unaffected regarding oscillatory d100−sin2 ψ
distributions for the applied deformation.
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Figure 11. d100
ϕ,ψ-sin2 ψ plots for the {220}γ lattice planes of the DSS for the deformed state (III),

deformed state after unloading (IV) and the difference between loaded and unloaded state (V); stress
evaluation is performed considering the full sin2 ψ range 0 ≤ sin2 ψ ≤ 1 (a) and considering only the
lower half 0 ≤ sin2 ψ ≤ 0.5 for demonstration purposes (b).

4. Conclusions

The in situ HEXRD experiments have shown that significant oscillations in the
dhkl−sin2 ψ distributions arise during elasto-plastic tensile deformation for both materials
investigated: duplex stainless steel EN 1.4362 and ferritic stainless steel EN 1.4016.

A comparison of the results from selected load states and deformation states resulted
in the following findings, irrespective of the material considered:

• Local fluctuations in dhkl−sin2 ψ, which are present in the initial state, significantly reduce
during tensile plastic deformation, presumably due to the decrease in domain sizes.

• The oscillations of the dhkl−sin2 ψ distributions, observed after plastic deformation,
are only minorly affected by crystallographic texture. This is due to the rather weak
textures of both cold-rolled steel grades investigated.

• In contrast, the non-linearities are predominantly caused by plastically induced in-
tergranular strains. Hence, they are observed also for lattice planes which are not
susceptible to crystallographic texture ({h00}, {hhh}).

• The crystallographic texture’s influence on the development of plastically induced
intergranular strains could not be analysed because only one initial texture state
was investigated.

• The oscillations occur for almost all examined interference lines, although they differ
strongly in characteristics and amplitudes depending on the respective lattice planes.

• Stress evaluation by linear regression of oscillating dhkl−sin2 ψ distributions varies for
different lattices planes, even if the entire sin2 ψ range is covered.

• The non-linearities frequently occur, in particular, under higher tilt angles, which
cannot be accessed with stationary and mobile diffractometers using conventionally
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generated X-rays (lab X-ray applications). Thus, in case of plastically deformed
material states, stress evaluation according to sin2 ψ method might be highly erroneous.
Even if presumably linear distributions are obtained within the limited sin2 ψ range,
the results must be interpreted with caution.

Regarding the respective material, following conclusions can be drawn:

• No phase-specific residual stresses are determined for the FSS. The stresses determined
from lattice plane {211}α are in good accordance with the applied stress values.

• The DSS exhibits phase-specific microstresses, which change with plastic deformation.
The tensile residual stress of the ferritic phase is balanced by compressive residual
stress of the austenitic phase prior to the deformation. After uniaxial deformation, the
inverse is true.

• Because only the stress differences 〈σLD−σTD〉α,γ were determined, the phase-specific
strain hardening could not be derived.

• For the ferritic phases of DSS and FSS, similar characteristics in the dhkl−sin2 ψ os-
cillations were observed. Thus, their evolution in the DSS is barely affected by the
austenitic phase.

We believe that the results of this study are well suited for the validation of models
used for the prediction of elasto-plastic material behaviour. This concerns, for example,
crystal plasticity models or EPSC (elasto-plastic self-consistent) models, which are able to
predict the evolution of intergranular strains and texture during plastic deformation.
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Abbreviations
The following abbreviations are used in this manuscript:

bcc body-centred cubic
DESY Deutsches Elektronensynchrotron
DSS duplex stainless steel
fcc face-centred cubic
FSS ferritic stainless steel
HEXRD high-energy X-ray diffraction
LD loading direction
LS load state
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ND normal direction
ODF orientation distribution function
RD rolling direction
TD transverse direction
XRD X-ray diffraction
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