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Abstract: Stiffness is a critical weakness in robot-driven manufacturing. Following the idea
of enhancing stiffness by physically coupling multiple robots, the cooperative behavior should
be optimized. We present a reduced Hessian method to generate stiffness optimized placement
and motion for coupled robots with given manufacturing processes. To improve efficiency, the
search space dimension of the optimization problem is reduced while the high-dimensional path
and coupling constraints are satisfied in each iteration. By integrating a stiffness model in the
optimization, cooperative behavior with stiffness enhancement is generated. The results are
validated by experiments for both 7-axis and 6-axis robots with physical coupling.
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1. INTRODUCTION

Utilizing robots in manufacturing processes has the poten-
tial to increase flexibility and reduce costs (Perzylo et al.,
2019). In multi-robot manufacturing systems, physically
coupled robots execute coordinated actions as shown in
Fig. 1. The physical coupling can be realized by a rigid
coupler connecting the flages of multiple robots. With tools
attached to the coupler, various manufacturing tasks such
as drilling, milling, or metal sheet bending can be carried
out. Compared to a single robot, the coupled system is
predicted to exhibit higher manufacturing quality due to
enhanced stiffness in Mühlbeier et al. (2020). To establish
such a manufacturing system with coupled robots, meth-
ods for planning cooperative behavior, i.e. placement and
motion, need to be developed. An optimal cooperative
behavior is characterized by a path tracking with suffi-
ciently low error, a high stiffness against process forces,
and a reasonable distribution of loads according to robots’
capabilities. Excessive internal loading in the coupler is
to be avoided, since it embodies a counter-cooperative
behavior, causing unnecessary structural deformation and
reduction of precision (Erhart and Hirche, 2015).

Compared to machine tools, stiffness is identified as
robots’ major weakness that leads to large errors in manu-
facturing (Abele et al., 2007). Therefore, finding stiff con-
figurations has been the focus of research (Busson et al.,
2017). Although the stiffness can be optimized by inte-
grating the simplified joint stiffness model (Abele et al.,
2007) and the relevant performance indexes in optimiza-
tion problems (Chiu, 1988), these optimization approaches
are not extended to multiple coupled robots.

For coupled robots, additional coupling constraints must
be satisfied along with path tracking. In multi-robot path-
� This work was conducted within the KIT Excellence Initiative
FutureFields project “Wertstromkinematik”.
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Fig. 1. Physical coupling by a rigid coupler with process
force applied by an elastic band

constrained trajectory planning (Kabir et al., 2021), mul-
tiple stages are necessary to sequentially consider different
objectives and constraints. Therefore, it relies on use-case
dependent weight tuning for different stages. Placement
variables, which provide additional degrees of freedom
(DOF) in path-constrained problems, are crucial to robot
performance. But placement is either not explicitly han-
dled (Kabir et al., 2021) or separately considered apart
from joint configurations, creating a nested optimization
framework with inefficient iterations (Nicola et al., 2018).

For equality-constrained optimization, the method of re-
duced Hessian was proposed in Gabay (1982). In Schmid
and Biegler (1994), the optimization is further developed
by integrating a solver for successive quadratic program-
ming (SQP) subproblems. There exist potential benefits
of adopting such method to constrained optimization for
multi-robot systems. On the one hand, the high dimension
of variables describing robots’ behavior and the low DOF
due to strict coupling and path tracking constraints can
be exploited with the low dimensional Hessian matrix,
which reduces the computational complexity. On the other
hand, the descent in null-space ensures the preservation
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ming (SQP) subproblems. There exist potential benefits
of adopting such method to constrained optimization for
multi-robot systems. On the one hand, the high dimension
of variables describing robots’ behavior and the low DOF
due to strict coupling and path tracking constraints can
be exploited with the low dimensional Hessian matrix,
which reduces the computational complexity. On the other
hand, the descent in null-space ensures the preservation
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1. INTRODUCTION

Utilizing robots in manufacturing processes has the poten-
tial to increase flexibility and reduce costs (Perzylo et al.,
2019). In multi-robot manufacturing systems, physically
coupled robots execute coordinated actions as shown in
Fig. 1. The physical coupling can be realized by a rigid
coupler connecting the flages of multiple robots. With tools
attached to the coupler, various manufacturing tasks such
as drilling, milling, or metal sheet bending can be carried
out. Compared to a single robot, the coupled system is
predicted to exhibit higher manufacturing quality due to
enhanced stiffness in Mühlbeier et al. (2020). To establish
such a manufacturing system with coupled robots, meth-
ods for planning cooperative behavior, i.e. placement and
motion, need to be developed. An optimal cooperative
behavior is characterized by a path tracking with suffi-
ciently low error, a high stiffness against process forces,
and a reasonable distribution of loads according to robots’
capabilities. Excessive internal loading in the coupler is
to be avoided, since it embodies a counter-cooperative
behavior, causing unnecessary structural deformation and
reduction of precision (Erhart and Hirche, 2015).

Compared to machine tools, stiffness is identified as
robots’ major weakness that leads to large errors in manu-
facturing (Abele et al., 2007). Therefore, finding stiff con-
figurations has been the focus of research (Busson et al.,
2017). Although the stiffness can be optimized by inte-
grating the simplified joint stiffness model (Abele et al.,
2007) and the relevant performance indexes in optimiza-
tion problems (Chiu, 1988), these optimization approaches
are not extended to multiple coupled robots.

For coupled robots, additional coupling constraints must
be satisfied along with path tracking. In multi-robot path-
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Fig. 1. Physical coupling by a rigid coupler with process
force applied by an elastic band

constrained trajectory planning (Kabir et al., 2021), mul-
tiple stages are necessary to sequentially consider different
objectives and constraints. Therefore, it relies on use-case
dependent weight tuning for different stages. Placement
variables, which provide additional degrees of freedom
(DOF) in path-constrained problems, are crucial to robot
performance. But placement is either not explicitly han-
dled (Kabir et al., 2021) or separately considered apart
from joint configurations, creating a nested optimization
framework with inefficient iterations (Nicola et al., 2018).

For equality-constrained optimization, the method of re-
duced Hessian was proposed in Gabay (1982). In Schmid
and Biegler (1994), the optimization is further developed
by integrating a solver for successive quadratic program-
ming (SQP) subproblems. There exist potential benefits
of adopting such method to constrained optimization for
multi-robot systems. On the one hand, the high dimension
of variables describing robots’ behavior and the low DOF
due to strict coupling and path tracking constraints can
be exploited with the low dimensional Hessian matrix,
which reduces the computational complexity. On the other
hand, the descent in null-space ensures the preservation
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of constraints. However, these methods have not been
applied to manipulators except point-to-point single-robot
path planning in Schulz (1998). For path-constrained robot
motions, there is yet no suitable procedure to establish the
reduced Hessian matrix or to determine the null-space.

To plan the cooperative behavior in multi-robot manufac-
turing systems, the following challenges are to be tackled:

(a) Modeling of the stiffening effect of physically coupled
robots against given external process forces

(b) Optimization of the stiffness of coupled robots along
a path by adjusting the cooperative behavior

(c) Satisfaction of synchronization and path tracking
constraints throughout the optimization

(d) Generation of smooth motion trajectories

This paper mainly focuses on (b) and (c) where a reduced
Hessian optimization method is developed that involves
both the robot-workpiece placement and the joint con-
figurations as behavioral variables, and considers coupled
stiffness objective under coupling constraints. This paper
not only presents a robotic application of Schmid and
Biegler (1994), but also proposes innovative methods for
generating search spaces and finding the descending direc-
tion with reduced dimension in context of robot kinematics
and B-spline motion path.

2. STIFFNESS MODEL OF COUPLED ROBOTS

Stiffness and compliance at a tool attached to the coupler
are modeled in this section, before a performance index for
stiffness is presented.

2.1 Stiffness and Compliance of a Coupled System

In manufacturing processes, a serial industrial robot is
under external force F ∈ R3 and moment M ∈ R3, which
are combined as process wrenchw = [Mᵀ,F ᵀ]ᵀ at the tool
center point (TCP). TCP of the robot exhibits deviation
δp ∈ R6 in three rotational and three translational direc-
tions. The compliance is a mapping from the wrench to the
deviation: δp = C(w). According to Abele et al. (2007),
the compliance of gears on joints contributes 50% to 75%
of the overall compliance. For simplication, we assume
that the only compliant elements of the robotic system are
the joints which only deform in their rotatable direction.
The angular joint deviation δq under joint torque τ is
assumed to comply to Hooke’s Law: τ = kqδq, whereby
kq is the joint stiffness analog to that of the linear torsion
spring. Therefore, the compliance of a single robot can be
described by matrix C ∈ R6×6, derived as follows in Abele
et al. (2007):

δp = Cw = J(q)K−1
q J(q)ᵀw (1)

whereby J(q) is the configuration dependent Jacobian and
Kq the diagonal joint stiffness matrix. TCP-stiffness is the
inverse of compliance, so it applies:

w = C−1δp (2)

Suppose A is a set of robots. A rigid coupler connects the
flanges of the robots. They share a common TCP on the
coupler so that the TCP-deviations δpr, r ∈ A are equal:

δpr = δpTCP, ∀r ∈ A (3)

The external process wrench on TCP of the coupler is
balanced by the counter-acting wrenches wr provided by
the robots: wTCP =

∑
r∈A wr =

∑
r∈A C−1

r δpr, whereby
(2) is used in the last equality. Under the assumption

that the compliance CTCP of the coupled system is also

linear, it applies that wTCP =
(
CTCP

)−1

δpTCP =∑
r∈A C−1

r δpr. Considering the last equality and (3), and
that the compliance matrices have full rank, the additivity
of stiffness is derived:(

CTCP
)−1

=
∑
r∈A

C−1
r (4)

An intuitive interpretation is that a parallel connection of
compliant serial industrial robots is analog to the parallel
connection of springs.

By applying (2), (3), and (1) sequentially, the wrench wr

distributed on robot r is expressed as follows:

wr = C−1
r δpr = C−1

r δpTCP = C−1
r CTCPwTCP (5)

Expression (5) shows that the load distributed on robot
r ∈ A is proportional to its stiffness C−1

r . Furthermore,
the joint torques τ r of robot r, dependent on its Jacobian
Jr, can be expressed as follows:

τ r = Jᵀ
rwr (6)

2.2 Stiffness-Oriented Performance Index

As a multi-robot extension to the task compatibility index
(Chiu, 1988), the objective function Jproc for stiffness in
the direction of unit process wrench ξ = wTCP

/|wTCP| is
described as follows:

Jproc = ξᵀCTCPξ (7)

The process wrench may deviate from the predicted wTCP

by disturbance due to inaccurate process modeling, vibra-
tion etc. Therefore, the objective function also considers
the weakest direction of robot stiffness, i.e. the longest
major axis length of the compliance matrix:

Jmajor = max
{
eig

(
CTCP

)}
(8)

The overall stiffness-oriented objective function is ex-
pressed as a weighted sum as follows:

Jstep = wprocJproc + wmajorJmajor (9)

Further terms such as a penalty of singularities can be
added, since stiff configurations tend to be close to singu-
larities.

3. PROBLEM FORMULATION

The planning of cooperative manufacturing behavior can
be described as a path-constrained trajectory planning
problem as in Kabir et al. (2021). The optimization vari-
ables for such a problem are chosen to be joint config-
urations q along the manufacturing path and placement
y, which are combined as behavioral variables θ = [q,y].
Such a description is specified enough to consider coupling
and path constraints as well as stiffness criteria while it
remains light-weight without involving complex dynamics
and control of robots. The optimized behavior can be used
as a reference in the trajectory generation and tracking
afterwards. In case of a manufacturing with nr coupled

robots, behavioral variables with subscripts r for robots,
wp for workpiece are as follows:

θ = [qᵀ
1 , ..., q

ᵀ
nr
,yᵀ

r ,y
ᵀ
wp]

ᵀ (10)

The vector θ at a certain moment in the manufacturing
process spans the space Vθ with the dimension:

dim(Vθ) = njnr + nwp + npr (11)

Hereby, the axis number of a robot is nj, the adjustable di-
mension of workpiece placement is nwp and the dimension
of placement of all robots yr is npr.

To deal with both static and non-static behavioral vari-
ables in one optimization problem, we use B-splines (Piegl
and Tiller, 2012) with different orders. For example, a
third-order B-spline guarantees the continuity of the an-
gular acceleration of joints. A zero-order B-spline gives a
constant value, which is suitable for placement variables.
B-splines are completely defined by an array of knots U
and several control points x ∈ Rn. Therefore behavioral
variables are expressed as θ (u,U ,x), where u ∈ [0, 1] rep-
resents the progression of the B-spline. As a simplification,
the array of knotsU is evenly distributed between zero and
one. In this way, the planning problem is converted to a
parameter optimization problem of x.

The cooperative behavior should be planned according to
the predefined process variables including tool path and
process forces in task space, which are denoted as s (u,x).
They vary in progress u ∈ [0, 1] of the process and their
position and orientation are dependent on the placement
variables included in x.

The constrained parameter optimization problem of be-
havior planning is as follows:

min
x

Jtotal (x) =
∑

ui∈[0,1]

Jstep (θ (ui,x) , s (ui,x)) (12a)

s.t. epose (θ (ui,x) , s (ui,x)) = 0 (12b)

θmin ≤ θ (ui,x) ≤ θmax, ui ∈ [0, 1] (12c)

The objective function Jstep is given in (9). The con-
straints epose = 0 include elimination of coupling error
and path tracking. The joint limits (12c) can be replaced
by sufficient condition (13), because the interpolated con-
figurations at any point u ∈ [0, 1] do not exceed the values
of minimal and maximal control points:

θmin ≤ x ≤ θmax (13)

A manufacturing task for nr robots with a path containing
l ∈ N control points for each joint constitutes a problem
in a new vector space Vx, extended from (11), spanned by
the behavioral variables of the dimension:

dim(Vx) = n = njnrl + nwp + npr (14)

At each moment on the path, rigid coupling and path
tracking constraints are imposed. Coupling each additional
robot limits three rotational and three translational DOF,
resulting in 6(nr − 1) DOF losts. For path tracking, TCP
must be at the required 3-dimensional way-point on track,
possibly with further 1-3 rotational constraints, so the
DOF lost by tracking is dtr ≤ 6. To obtain a behavior
without constraint violation, The optimization at this
moment has to be carried out in a redundant subspace
Vθ,red of dimension:

dim(Vθ,red) = dim(Vθ)− 6(nr − 1)− dtr
= njnr + nwp + npr − 6(nr − 1)− dtr

(15)

Throughout the whole path, the configuration of redun-
dant joints is determined by l control points. So the joint
redundancy njnr − 6(nr − 1) − dtr is multiplied by l. The
space of overall redundancy Vx,red has the dimension:

dim(Vx,red) = (njnr − 6(nr − 1)− dtr)l + nwp + npr (16)

4. SOLUTION APPROACH

This section illustrates the procedure of an iteration of
the reduced Hessian method with one descending step
under constraint satisfaction and one step to eliminate
constraint violations. The former step requires novel meth-
ods to obtain a null-space projector (Subsection 4.3) and
a reduced gradient vector (Subsection 4.4) in context of
coupled kinematics of robots and B-spline joint paths.

At the k-th iteration of solving the problem (12), a SQP
method should generate a descending step d ∈ Rn from
the current iterate point xk ∈ Rn by solving the following
subproblem as stated in Schmid and Biegler (1994):

min
d∈Rn

∇Jtotal,k(xk)
ᵀd+

1

2
dᵀBkd (17a)

s.t. epose(xk) +∇eᵀpose(xk)d = 0 (17b)

θmin ≤ xk + d ≤ θmax (17c)

Bk is an approximation towards the Hessian of the original
objective function Jtotal at xk. The solution is decomposed
into two components in null space and range-space of pose
errors respectively:

d = hk + vk (18)

The null-space component hk, also known as horizontal
step, is a descending step towards higher stiffness without
violating the linearized coupling and tracking constraints.
The range-space component vk, also known as vertical
step, corrects residual violations of constraints caused by
linearization errors.

4.1 Range-Space Step and Constraint Dimensions

As in Schmid and Biegler (1994), the range-space step

is calculated by vk = −
(
∇eᵀpose(xk)

)†
epose(xk). The

pseudoinverse designated by † can only be carried out
when ∇epose(xk) ∈ Rn·dim(Ve) has full column rank, where
Ve is the space spanned by the pose errors. Therefore, Ve

has the dimension:

dim(Ve) ≤ dim(Vx)− dim(Vx,red) = (6(nr − 1) + dtr)l
(19)

This means that the equality constraints (12b) can only
be imposed on l points on the path if the null-space
descent is utilized. The tracking precision on the stretches
between the selected l points cannot be guaranteed. This
is adequate for a behavioral planning to obtain stiff poses
for a given manufacturing process optimally, but the
trajectory needs to be refined in the post-processing.

4.2 Null-Space Step and Reduction of Dimension

The null-space step is obtained from a null-space projec-
tion hk = Zkd̄, where d̄ ∈ Rdim(Vx,red) is the descent in
subspace of redundancy. The null-space projector Zk ∈
Rn·dim(Vx,red) projects the subspace descent into the space
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robots, behavioral variables with subscripts r for robots,
wp for workpiece are as follows:
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wp]

ᵀ (10)

The vector θ at a certain moment in the manufacturing
process spans the space Vθ with the dimension:

dim(Vθ) = njnr + nwp + npr (11)

Hereby, the axis number of a robot is nj, the adjustable di-
mension of workpiece placement is nwp and the dimension
of placement of all robots yr is npr.

To deal with both static and non-static behavioral vari-
ables in one optimization problem, we use B-splines (Piegl
and Tiller, 2012) with different orders. For example, a
third-order B-spline guarantees the continuity of the an-
gular acceleration of joints. A zero-order B-spline gives a
constant value, which is suitable for placement variables.
B-splines are completely defined by an array of knots U
and several control points x ∈ Rn. Therefore behavioral
variables are expressed as θ (u,U ,x), where u ∈ [0, 1] rep-
resents the progression of the B-spline. As a simplification,
the array of knotsU is evenly distributed between zero and
one. In this way, the planning problem is converted to a
parameter optimization problem of x.

The cooperative behavior should be planned according to
the predefined process variables including tool path and
process forces in task space, which are denoted as s (u,x).
They vary in progress u ∈ [0, 1] of the process and their
position and orientation are dependent on the placement
variables included in x.

The constrained parameter optimization problem of be-
havior planning is as follows:

min
x

Jtotal (x) =
∑

ui∈[0,1]

Jstep (θ (ui,x) , s (ui,x)) (12a)

s.t. epose (θ (ui,x) , s (ui,x)) = 0 (12b)

θmin ≤ θ (ui,x) ≤ θmax, ui ∈ [0, 1] (12c)

The objective function Jstep is given in (9). The con-
straints epose = 0 include elimination of coupling error
and path tracking. The joint limits (12c) can be replaced
by sufficient condition (13), because the interpolated con-
figurations at any point u ∈ [0, 1] do not exceed the values
of minimal and maximal control points:

θmin ≤ x ≤ θmax (13)

A manufacturing task for nr robots with a path containing
l ∈ N control points for each joint constitutes a problem
in a new vector space Vx, extended from (11), spanned by
the behavioral variables of the dimension:

dim(Vx) = n = njnrl + nwp + npr (14)

At each moment on the path, rigid coupling and path
tracking constraints are imposed. Coupling each additional
robot limits three rotational and three translational DOF,
resulting in 6(nr − 1) DOF losts. For path tracking, TCP
must be at the required 3-dimensional way-point on track,
possibly with further 1-3 rotational constraints, so the
DOF lost by tracking is dtr ≤ 6. To obtain a behavior
without constraint violation, The optimization at this
moment has to be carried out in a redundant subspace
Vθ,red of dimension:

dim(Vθ,red) = dim(Vθ)− 6(nr − 1)− dtr
= njnr + nwp + npr − 6(nr − 1)− dtr
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Throughout the whole path, the configuration of redun-
dant joints is determined by l control points. So the joint
redundancy njnr − 6(nr − 1) − dtr is multiplied by l. The
space of overall redundancy Vx,red has the dimension:

dim(Vx,red) = (njnr − 6(nr − 1)− dtr)l + nwp + npr (16)

4. SOLUTION APPROACH

This section illustrates the procedure of an iteration of
the reduced Hessian method with one descending step
under constraint satisfaction and one step to eliminate
constraint violations. The former step requires novel meth-
ods to obtain a null-space projector (Subsection 4.3) and
a reduced gradient vector (Subsection 4.4) in context of
coupled kinematics of robots and B-spline joint paths.

At the k-th iteration of solving the problem (12), a SQP
method should generate a descending step d ∈ Rn from
the current iterate point xk ∈ Rn by solving the following
subproblem as stated in Schmid and Biegler (1994):

min
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∇Jtotal,k(xk)
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dᵀBkd (17a)

s.t. epose(xk) +∇eᵀpose(xk)d = 0 (17b)

θmin ≤ xk + d ≤ θmax (17c)

Bk is an approximation towards the Hessian of the original
objective function Jtotal at xk. The solution is decomposed
into two components in null space and range-space of pose
errors respectively:

d = hk + vk (18)

The null-space component hk, also known as horizontal
step, is a descending step towards higher stiffness without
violating the linearized coupling and tracking constraints.
The range-space component vk, also known as vertical
step, corrects residual violations of constraints caused by
linearization errors.

4.1 Range-Space Step and Constraint Dimensions

As in Schmid and Biegler (1994), the range-space step

is calculated by vk = −
(
∇eᵀpose(xk)

)†
epose(xk). The

pseudoinverse designated by † can only be carried out
when ∇epose(xk) ∈ Rn·dim(Ve) has full column rank, where
Ve is the space spanned by the pose errors. Therefore, Ve
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dim(Ve) ≤ dim(Vx)− dim(Vx,red) = (6(nr − 1) + dtr)l
(19)

This means that the equality constraints (12b) can only
be imposed on l points on the path if the null-space
descent is utilized. The tracking precision on the stretches
between the selected l points cannot be guaranteed. This
is adequate for a behavioral planning to obtain stiff poses
for a given manufacturing process optimally, but the
trajectory needs to be refined in the post-processing.

4.2 Null-Space Step and Reduction of Dimension

The null-space step is obtained from a null-space projec-
tion hk = Zkd̄, where d̄ ∈ Rdim(Vx,red) is the descent in
subspace of redundancy. The null-space projector Zk ∈
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spanned by all decision variables without affecting the pose
errors, which demands:

∇eᵀpose(xk)Zk = 0 (20)

By substituting (18) with the known range-space step and
the unknown null-space step in (17a), the SQP subproblem
becomes a quadratic programming with only boundary
constraints (Schmid and Biegler, 1994):

min
d̄

ḡᵀ
kd̄+ vᵀ

kBkZkd̄+
1

2
d̄
ᵀ
B̄kd̄ (21)

s.t. θmin − xk − vk ≤ Zkd̄ ≤ θmax − xk − vk (22)

where ḡk = Zᵀ
k∇Jtotal,k is the reduced gradient and B̄k =

Zᵀ
kBkZk is the reduced Hessian. As such, the dimension

of the quadratic programming subproblems in SQP will
be reduced from dim(Vx) to dim(Vx,red). In the routine
of solving the quadratic subproblem, B̄k is updated by
BFGS formula (Nocedal and Wright, 1999) and the cross
term vᵀ

kBkZkd̄ is commonly ignored (Schmid and Biegler,
1994). Therefore, for solving the optimization problem,
only the null-space projector Zk and the reduced gradient
ḡk are still to be determined.

4.3 Null-Space Projector

Before dealing with Zk, we set up the projector Zθ ∈
Rdim(Vθ)·dim(Vθ,red) that projects the adjustment of redun-
dant configurations in subspace Vθ,red into Vθ without
affecting pose errors. Each column ofZθ should represent a
mode of null-space motion when one redundant dimension
in Vθ,red is adjusted. Elements in this column represent
the reactive adjustment of each configuration in response
so that pose errors are kept unchanged. It is recommended
in Biegler et al. (1995) to construct null-space projectors
to be orthonormal in sake of numerical stability and ro-
bustness, but in robotic application, movement simplicity
and interpretability in the column assignments is of signif-
icance. For example, when a redundant joint of a robot is
adjusted, only the joint configurations of this single robot
is allowed to react, but the placements do not. Such a
projector column is generated as follows.

Firstly, among the configurations in Vθ, redundant ones
in Vθ,red are assigned by an assignment matrix A ∈
Rdim(Vθ,red)·dim(Vθ) with its elements either 0 or 1. Such
assignment is described by θ̇red = Aθ̇. For example, the
third joint of 7-axis robots, which is absent in 6-axis-
robots, and all nwp+npr placement variables are assigned.

Secondly, a Jacobian Je mapping the adjustment rate
of configurations θ̇ towards the changing rate of pose
error ėpose is obtained from the model of robot-workpiece
ensemble. Such mapping is described as follows:

ėpose = Je(θ)θ̇ (23)

Afterwards, null-space projectors from the space spanned
by vector θ̇ toward itself are generated using pseudoinverse
which is expressed as follows (Slotine and Siciliano, 1991):

N(θ) = I − Je(θ)
†Je(θ) (24)

A projected adjustment rate θ̇N = N(θ)θ̇ has no effect
on pose errors at this configuration. An adjustment rate
in the redundant configurations can be projected similarly:
θ̇N = N(θ)A†θ̇red. Therefore the projector is derived:

Zθ(u,x) = Zθ(θ(u,x)) = N(θ(u,x))A† (25)

The required null-space projector Zk is derived from Zθ

using the base functions of B-spline:

∂qr,j(u)

∂xr,j
= Rk(u), 1 ≤ r ≤ nr, 1 ≤ j ≤ nj (26)

where Rk(u) = [R1,k(u), ..., Rl,k(u)]
ᵀ has a length equal

to the number of control points l, and k ∈ N is the spline
order. r stands for robot index and j joint index. For static
workpiece placement, k = 0 and l = 1. So the vector

of base functions becomes a scalar value
∂ywp

∂xwp
= 1. The

placement of robots is similar to that of the workpiece.
Thus, a matrix is constructed, mapping control point
adjustment to configuration changes at any given u ∈
[0, 1]:

∂θ (u,x)

∂x
=




Rk(u)
. . .

Rk(u)
I


 ∈ Rn·dim(Vθ) (27)

As such, an adjustment of redundant configurations at a
certain u in space Vθ,red is projected into the adjustment

of control points by ∂θ(u,x)
∂x Zθ. Throughout the B-spline

with u ∈ [0, 1], redundant configurations are adjusted at
l different values of u. The corresponding adjustment of
control points is accumulated. A null-space projector is
obtained by:

Z
′

k =

l∑
i=1

∂θ (ui,x)

∂x
Zθ(ui)Ā(ui) (28)

where Ā(ui) ∈ Rdim(Vθ,red)·dim(Vx,red) determines the in-
dices of redundant control points corresponding to the re-
dundant configurations. However, there remains a problem

to Z
′

k ∈ Rdim(Vx)·dim(Vx,red) that the elements projecting

static placement are added to the same entry of Z
′

k for l
times while the elements projecting non-static joint con-
figurations are added to different entries which correspond
to l control points. To compensate this, a weighting matrix

is constructed W k =
∑l

i=1
∂θ(ui,x)

∂x ·1 ·Ā(ui), where 1 is a
matrix of the same dimension as Zθ(ui) with all elements
set to one. The final null-space projector is thus obtained
by an element-wise division � at entries for placement

variables: Zk = Z
′

k �W k.

4.4 Reduced Gradient

A direct calculation of the reduced gradient ḡk =
Zᵀ

k∇Jtotal,k without obtaining the gradient ∇Jtotal,k with
respect to each control point is desirable, because the
number of cost function evaluations in finite differenti-
ation is reduced from dim(Vx) to dim(Vx,red). For each
ui ∈ [0, 1], i = 1, ..., l in the B-spline, the dim(Vθ,red)
variations of redundant configurations δθred are created,
each represented by εej , j = 1, ...,dim(Vθ,red). Hereby, ε

is a small number and ej ∈ Rdim(Vθ,red) is a vector with
1 in the j-th element and 0 in others. Then dim(Vθ,red)
variations of all configurations are obtained by a null-
space projection δθ = Zθδθred so that the pose errors
do not change when the configuration is varied by δθ. The
gradient ∇redJstep (ui) ∈ Rdim(Vθ,red) is computed:

∇redJstep (ui) =
Jstep(θ +Zθδθred, s)− Jstep(θ, s)

Zθδθred

The gradient of redundant configurations is then mapped
into the space of control points Vx:

∇J ′
total,k =

l∑
i=1

(
∂θ (ui,x)

∂x

)ᵀ

A†∇redJstep (ui) (29)

Unlike the gradient w.r.t. all control points ∇Jtotal,k ∈
Rdim(Vx), the obtained gradient ∇J ′

total,k ∈ Rdim(Vx) is a
vector that can be completely contained in space Vx,red and
results in a zero vector if projected in space Vx\Vx,red. The
reduced gradient is calculated by ḡk = Zᵀ

k∇J ′
total,k.

4.5 Pre- and Post-Processing

The optimization problem (12) needs the initial guess x0.
Redundant configurations have to be given. The rest of
joint configurations can be obtained using inverse kine-
matics on sampled points of the tool path. The joint
configurations make up a matrix Q1:lsmp

∈ Rlsmp×nj with
lsmp being the number of sampled points on tool path.
Control points of the k-th ordered B-spline X1:l ∈ Rl×nj

are to be generated by solving the system of equations:

Q1:lsmp
=ΦX1:l (30)


Q1
...

Qlsmp


 =




R1,k(u1) . . . Rl,k(u1)
...

. . .
...

R1,k(ulsmp
) . . . Rl,k(ulsmp

)






X1

...
X l


 (31)

Afterwards, X1:l is reorganized in a vector and combined
with the initial values of placement variables to get the
initial guess of x0.

After solving (12), it returns a local minimizer x with
residue pose errors due to the limited points for error
elimination as indicated in the inequality (19). A refine-
ment by imposing cost function for pose errors on more
sampling points is conducted. To generate smooth motion
trajectories, a velocity profile along u ∈ [0, 1] is obtained
by B-spline interpolation using Runge Kutta algorithm
(Cheng et al., 2002).

5. RESULTS

The method proposed in Section 4 can be validated in
manufacturing processes which are imitated by the sce-
nario of two physically coupled robots pulling an elastic
band. Fig. 1 illustrates the experimental setup. Fig. 2
visualizes the imitated manufacturing path and the pro-
cess force. The path is a parallelogram on x-y plane with
base 0.05m, height 0.18m, and corners rounded with the
radius 0.02m. The process force reaches its maximum of
70N when the TCP is moved to the top right corner of
the path (the yellow point in the zoomed view), 0.23m
from the workpiece origin (labeled as WP in the zoomed
view). To imitate a manufacturing process with adjustable
workpiece placement, adjustments of the path are allowed
in three translational and one rotational (z) directions.
The amount and direction of the process force w.r.t. the
path (workpiece coordinate) are not changed by these
adjustments, because the mounting point of the elastic
band on the plattform is changed accordingly.

TCP
WP

L
R

Fig. 2. Visualization of physically coupled robots following
a path with process force shown in quivers

5.1 Numerical Experiments

The computational performance of the proposed method
(redHess) is compared to some available algorithms in the
Matlab function fmincon (interior point and active set), as
shown in Table 1. Experiments are conducted both for 7-
axis KUKA LBR iiwa 14 R820 robots (KUKA) and 6-axis
Comau NJ-290-3.0 robots (Comau).

Table 1: Performance of algorithms
Computing Iteration Performance

Robots Algorithm time [s] count index

KUKA x2
interiorPt 65.99 300 -4.87%
activeSet 21.73 17 -5.06%
redHess 65.89 100 -36.82%

Comau x2
interiorPt 50.91 78 -8.27%
activeSet 38.30 75 -5.11%
redHess 36.72 75 -59.49%

After around five iterations with less than 9% reduction of
performance index, the existing algorithms get trapped in
local optima enclosed by the constraints and the objective
function. The proposed method helps find a “corridor”
toward stiffer solutions with permanent constraint satis-
faction. For 6-axis robots, lower dimension of redundant
space as in (16) leads to shorter time per iteration.

5.2 Process Experiments

Experiments are conducted with KUKA for two catalogs of
cooperating behavior: (I) generated from a given configu-
ration by (31), and (II) after optimization of the first cata-
log only allowing adjustment of the work-piece placement
without changing robot distance. For each catalog, two
groups of experiments of coupled robots (a) under process
force, and (b) without process force are conducted. We do
a subtraction of joint torques between the two goups (a)-
(b) to obtain joint torques that are induced by the process
force without effects of control errors. TCP displacement
and stiffness can be calculated from the identified values
in Busson et al. (2017) using equations (1), (5), and (6).
The diagrams in Fig. 3 show the joint loads before and
after optimization. The loads on the left and right el-
bows τL,elb, τR,elb are representative to be plotted. Elbows
are the fourth joint of each robot, marked in yellow in
Fig. 2. The measured (meas.) torques of both elbows are
significantly reduced by the optimization. Moreover, the
predictions (pred.) of load distribution according to the
stiffness model in (6) fit well with the measured data,
indicating the applicability of the stiffness model. The 1-
norm of measured loads of all 14 joints ‖τ‖1 is plotted in
black. The optimization reduces the peak value of ‖τ‖1 by
33% and, by calculation, the peak TCP-deviation by 43%.
The diagrams in Fig. 4 show the process induced internal
force F int in the coupler, which is taken from the three
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∇redJstep (ui) =
Jstep(θ +Zθδθred, s)− Jstep(θ, s)

Zθδθred

The gradient of redundant configurations is then mapped
into the space of control points Vx:

∇J ′
total,k =

l∑
i=1

(
∂θ (ui,x)

∂x

)ᵀ

A†∇redJstep (ui) (29)

Unlike the gradient w.r.t. all control points ∇Jtotal,k ∈
Rdim(Vx), the obtained gradient ∇J ′

total,k ∈ Rdim(Vx) is a
vector that can be completely contained in space Vx,red and
results in a zero vector if projected in space Vx\Vx,red. The
reduced gradient is calculated by ḡk = Zᵀ

k∇J ′
total,k.

4.5 Pre- and Post-Processing

The optimization problem (12) needs the initial guess x0.
Redundant configurations have to be given. The rest of
joint configurations can be obtained using inverse kine-
matics on sampled points of the tool path. The joint
configurations make up a matrix Q1:lsmp

∈ Rlsmp×nj with
lsmp being the number of sampled points on tool path.
Control points of the k-th ordered B-spline X1:l ∈ Rl×nj

are to be generated by solving the system of equations:

Q1:lsmp
=ΦX1:l (30)


Q1
...

Qlsmp


 =




R1,k(u1) . . . Rl,k(u1)
...

. . .
...

R1,k(ulsmp
) . . . Rl,k(ulsmp

)






X1

...
X l


 (31)

Afterwards, X1:l is reorganized in a vector and combined
with the initial values of placement variables to get the
initial guess of x0.

After solving (12), it returns a local minimizer x with
residue pose errors due to the limited points for error
elimination as indicated in the inequality (19). A refine-
ment by imposing cost function for pose errors on more
sampling points is conducted. To generate smooth motion
trajectories, a velocity profile along u ∈ [0, 1] is obtained
by B-spline interpolation using Runge Kutta algorithm
(Cheng et al., 2002).

5. RESULTS

The method proposed in Section 4 can be validated in
manufacturing processes which are imitated by the sce-
nario of two physically coupled robots pulling an elastic
band. Fig. 1 illustrates the experimental setup. Fig. 2
visualizes the imitated manufacturing path and the pro-
cess force. The path is a parallelogram on x-y plane with
base 0.05m, height 0.18m, and corners rounded with the
radius 0.02m. The process force reaches its maximum of
70N when the TCP is moved to the top right corner of
the path (the yellow point in the zoomed view), 0.23m
from the workpiece origin (labeled as WP in the zoomed
view). To imitate a manufacturing process with adjustable
workpiece placement, adjustments of the path are allowed
in three translational and one rotational (z) directions.
The amount and direction of the process force w.r.t. the
path (workpiece coordinate) are not changed by these
adjustments, because the mounting point of the elastic
band on the plattform is changed accordingly.
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Fig. 2. Visualization of physically coupled robots following
a path with process force shown in quivers

5.1 Numerical Experiments

The computational performance of the proposed method
(redHess) is compared to some available algorithms in the
Matlab function fmincon (interior point and active set), as
shown in Table 1. Experiments are conducted both for 7-
axis KUKA LBR iiwa 14 R820 robots (KUKA) and 6-axis
Comau NJ-290-3.0 robots (Comau).

Table 1: Performance of algorithms
Computing Iteration Performance

Robots Algorithm time [s] count index

KUKA x2
interiorPt 65.99 300 -4.87%
activeSet 21.73 17 -5.06%
redHess 65.89 100 -36.82%

Comau x2
interiorPt 50.91 78 -8.27%
activeSet 38.30 75 -5.11%
redHess 36.72 75 -59.49%

After around five iterations with less than 9% reduction of
performance index, the existing algorithms get trapped in
local optima enclosed by the constraints and the objective
function. The proposed method helps find a “corridor”
toward stiffer solutions with permanent constraint satis-
faction. For 6-axis robots, lower dimension of redundant
space as in (16) leads to shorter time per iteration.

5.2 Process Experiments

Experiments are conducted with KUKA for two catalogs of
cooperating behavior: (I) generated from a given configu-
ration by (31), and (II) after optimization of the first cata-
log only allowing adjustment of the work-piece placement
without changing robot distance. For each catalog, two
groups of experiments of coupled robots (a) under process
force, and (b) without process force are conducted. We do
a subtraction of joint torques between the two goups (a)-
(b) to obtain joint torques that are induced by the process
force without effects of control errors. TCP displacement
and stiffness can be calculated from the identified values
in Busson et al. (2017) using equations (1), (5), and (6).
The diagrams in Fig. 3 show the joint loads before and
after optimization. The loads on the left and right el-
bows τL,elb, τR,elb are representative to be plotted. Elbows
are the fourth joint of each robot, marked in yellow in
Fig. 2. The measured (meas.) torques of both elbows are
significantly reduced by the optimization. Moreover, the
predictions (pred.) of load distribution according to the
stiffness model in (6) fit well with the measured data,
indicating the applicability of the stiffness model. The 1-
norm of measured loads of all 14 joints ‖τ‖1 is plotted in
black. The optimization reduces the peak value of ‖τ‖1 by
33% and, by calculation, the peak TCP-deviation by 43%.
The diagrams in Fig. 4 show the process induced internal
force F int in the coupler, which is taken from the three
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translational entries of wint = wL − wR, calculated
according to (6). It implies that the reduction of the
internal force leads to the overall reduction of ‖τ‖1.
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6. CONCLUSION AND OUTLOOK

A reduced Hessian method is proposed to gener-
ate stiffness-optimized behavior for coupled cooperating
robots in manufacturing with the performance surpassing
existing algorithms. The optimization results in coopera-
tive behaviors with reduced joint load, reduced process-
induced internal force, as well as enhanced stiffness.
An outlook is to control the overall internal force in the
coupler caused by the control error when two coupled
robots run their individual position controllers. We are
developing a hybrid motion-force controller so that the
coupled robots can maintain a desired force interaction
while tracking the manufacturing path. With an optimized
internal force, robots can support each other in a com-
plementary way to enhance precision and manufacturing
quality. Moreover, the presented optimization problem is

non-convex and exhibits multiple local optima of stiffness.
Global search methods with multiple instances of the re-
duced Hessian algorithm can thus be applied.
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