
APL Photonics 8, 036109 (2023); https://doi.org/10.1063/5.0139004 8, 036109

© 2023 Author(s).

Exploiting graph neural networks to
perform finite-difference time-domain
based optical simulations

Cite as: APL Photonics 8, 036109 (2023); https://doi.org/10.1063/5.0139004
Submitted: 16 December 2022 • Accepted: 14 February 2023 • Accepted Manuscript Online: 14
February 2023 • Published Online: 14 March 2023

 L. Kuhn, T. Repän and C. Rockstuhl

COLLECTIONS

 This paper was selected as Featured

 This paper was selected as Scilight

ARTICLES YOU MAY BE INTERESTED IN

Graph neural networks solve Maxwell’s equations numerically
Scilight 2023, 111103 (2023); https://doi.org/10.1063/10.0017619

Polarization-mediated multi-state infrared system for fine temperature regulation
APL Photonics 8, 030801 (2023); https://doi.org/10.1063/5.0136842

MaxwellNet: Physics-driven deep neural network training based on Maxwell’s equations
APL Photonics 7, 011301 (2022); https://doi.org/10.1063/5.0071616

https://images.scitation.org/redirect.spark?MID=176720&plid=2018876&setID=376415&channelID=0&CID=739312&banID=520939383&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a11fcc31dc0e85231d5fb9ea20df50cf7df352be&location=
https://doi.org/10.1063/5.0139004
https://aip.scitation.org/topic/collections/featured?SeriesKey=app
https://aip.scitation.org/doi/10.1063/10.0017619
https://doi.org/10.1063/5.0139004
https://orcid.org/0000-0002-5977-0822
https://aip.scitation.org/author/Kuhn%2C+L
https://orcid.org/0000-0001-6596-2022
https://aip.scitation.org/author/Rep%C3%A4n%2C+T
https://orcid.org/0000-0002-5868-0526
https://aip.scitation.org/author/Rockstuhl%2C+C
https://aip.scitation.org/topic/collections/featured?SeriesKey=app
https://aip.scitation.org/topic/collections/scilight?SeriesKey=app
https://doi.org/10.1063/5.0139004
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0139004
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0139004&domain=aip.scitation.org&date_stamp=2023-03-14
https://aip.scitation.org/doi/10.1063/10.0017619
https://doi.org/10.1063/10.0017619
https://aip.scitation.org/doi/10.1063/5.0136842
https://doi.org/10.1063/5.0136842
https://aip.scitation.org/doi/10.1063/5.0071616
https://doi.org/10.1063/5.0071616

APL Photonics ARTICLE scitation.org/journal/app

Exploiting graph neural networks to perform
finite-difference time-domain based
optical simulations

Cite as: APL Photon. 8, 036109 (2023); doi: 10.1063/5.0139004
Submitted: 16 December 2022 • Accepted: 14 February 2023 •
Published Online: 14 March 2023

L. Kuhn,1,2 T. Repän,3 and C. Rockstuhl2,4,a)

AFFILIATIONS
1 Steinbuch Centre for Computing—Scientific Computing and Mathematics, Karlsruhe Institute of Technology,
Karlsruhe, Germany

2 Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
3 Institute of Physics, University of Tartu, Tartu, Estonia
4Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany

a)Author to whom correspondence should be addressed: carsten.rockstuhl@kit.edu

ABSTRACT
Having an artificial neural network that solves Maxwell’s equations in a general setting is an intellectual challenge and a great utility. Recently,
there have been multiple successful attempts to use artificial neural networks to predict electromagnetic fields, given a specific source and
interacting material distribution. However, many of these attempts are limited in domain size and restricted to object shapes similar to the
learned ones. Here, we overcome these restrictions by using graph neural networks (GNNs) that adapt the propagation scheme of the finite-
difference time-domain (FDTD) method to solve Maxwell’s equations for a distinct time step. GNNs yield a significant advantage, i.e., size
invariance, over conventional neural network architectures, such as convolutional or linear neural networks. Once trained, a GNN can work
on graphs of arbitrary size and connectivity. This allows us to train them on the propagation procedure of electromagnetic fields on small
domain sizes and, finally, expand the domain to an arbitrary scale. Moreover, GNNs can adapt to any material shape and work not only on
structured grids, such as FDTD, but also on arbitrary meshes. This work may be seen as the first benchmark for field predictions with graph
networks and could be expanded to more complex mesh-based optical simulations, e.g., those based on finite elements.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0139004

I. INTRODUCTION

Nanophotonics explores the interaction of light with materials
structured on a length scale comparable to or smaller than the
wavelength.1,2 Novel phenomena encountered at the nanoscale
and the disruptive means to tailor the flow of light constitute
an ever-increasing motivation to explore such systems.3 For these
explorations, it is of major importance to reliably simulate the
light–matter interaction.4 On the one hand, it drives the develop-
ment of novel materials, structures, and devices. On the other hand,
it provides insights into the light propagation in actual systems
inaccessible by experimental means. The numerical experiment, as
it is often called, is indispensable to understanding nanophotonic
devices.5,6

One of the most common and well-known numerical simu-
lation tools is the finite-difference time-domain method (FDTD).7
It originates from a discrete version of Maxwell’s equations and
evolves electromagnetic fields in time-domain with high accuracy.
The FDTD method is particularly useful for understanding how light
interacts with a given structure. It allows us to define an incident
field and a given structure and to observe the evolution of the field
in that specific setting afterward.8,9 With that, it provides a way to
observe the evolution of light exactly as it would happen in the real
world. However, as with all computational techniques, the speed
could always be accelerated and the domain size that can be handled
could always be larger. While the parallelization of FDTD algorithms
is fairly standard, it quickly requires computational infrastructures
for its execution that are not accessible to everybody. Thus, even

APL Photon. 8, 036109 (2023); doi: 10.1063/5.0139004 8, 036109-1

© Author(s) 2023

https://scitation.org/journal/app
https://doi.org/10.1063/5.0139004
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0139004
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0139004&domain=pdf&date_stamp=2023-March-14
https://doi.org/10.1063/5.0139004
https://orcid.org/0000-0002-5977-0822
https://orcid.org/0000-0001-6596-2022
https://orcid.org/0000-0002-5868-0526
mailto:carsten.rockstuhl@kit.edu
https://doi.org/10.1063/5.0139004

APL Photonics ARTICLE scitation.org/journal/app

moderately sized problems may come along with a high computa-
tional cost and time.

Lately, in the slip-stream of developments in the field of com-
puter sciences, in general, and machine learning, in particular, there
have been tremendous efforts to approach this problem with the
use of deep learning-based data-driven methods.10–13 Many of these
attempts have been very successful and promoted not only accel-
erated simulation but also inverse design processes.14–19 In addi-
tion, a few approaches were already reported that looked into the
question of how to translate an FDTD simulation to a machine
learning approach.20,21 Generally, this reads extremely rewarding.
Once trained, the neural networks are expected to solve the same
computational problems in a much shorter time. While the general
feasibility was demonstrated in these pioneering prior contribu-
tions, these initial approaches also came along with some drawbacks
caused by deep-learning architectures and a lack of generalizabil-
ity due to limited data. This is a commonly encountered problem,
and these surrogate physics solver approaches were restricted with
respect to the materials and shapes of the scatterers, as well as the
domain size and scale of the simulation. These previously considered
neural networks mostly include convolutional layers, which learn
features on a certain scale and are not able to extrapolate on an arbi-
trary resolution. Additionally, the input shape of the model has to be
fixed. Thus, variable domain sizes could not be considered.

To circumvent these aforementioned problems, we consider
here the use of graph neural networks (GNNs) for the same purpose.
In general, GNNs are suitable to process unstructured, non-uniform
data and have been already useful to classify molecules,22,23 to
model fluid and particle dynamics,24,25 for computer vision tasks,26

in particle and high-energy physics,27,28 or to work as graph neu-
ral operators.29–31 GNNs work independently of the graph size
or structure and can easily store information about scaling and
resolution.

We exploit these features to train GNNs to propagate electro-
magnetic field distributions in time for arbitrary domain sizes and
material distributions. We stress that in this approach, we do not
necessarily seek for steady-state solutions of the field but, instead,
seek to advance the field propagation by a certain amount of time.
The main purpose of our GNNs is to learn the FDTD scheme while
exploiting all benefits offered by GNNs, e.g., working on unstruc-
tured grids, extrapolation to larger domain sizes, and extrapolation
to material distributions not seen in the training process.

This paper is structured as follows: first, we discuss our meth-
ods, including FDTD, graphs, and graph neural networks. Subse-
quently, we outline the physical setup and training data generation.
Here, we follow two approaches and focus either on the prediction of
the electric field only or on performing full-field predictions. Finally,
we conclude with our results and sketch improvements, extensions,
and applications.

II. METHODS
A. The finite-difference time-domain method

The finite-difference time-domain method (FDTD) is an iter-
ative numerical update procedure to compute the evolution of an
electromagnetic field in space and time.32 For reasons of consistency,
we will briefly sketch the approach in 2D assuming a transverse-
magnetic (TM) polarization, starting from the source-free Maxwell

equations. Please note that, since different conventions exist, TM
is understood in this contribution as the situation where, in an
x–y plane, the considered electric field has a non-zero component
perpendicular to this plane, while the magnetic field has non-zero
components in this plane. An understanding of how the FDTD
works is necessary to appreciate the formulation in form of a graph
afterward, which is the natural starting point for a graph neural
network to solve these equations.

For simplicity, we write down Maxwell’s equations for a non-
dispersive material characterized in the spatial domain by permittiv-
ity ε(r), permeability μ(r), electric conductivity σ(r), and magnetic
conductivity σm(r) as the point of departure. These Maxwell
equations read as

− σm(r)H(r, t) − μ(r)∂H(r, t)
∂t

= ∇× E(r, t) = êx
∂Ez(r, t)

∂y
− êy

∂Ez(r, t)
∂x

, (1)

σ(r)E(r, t) − ε(r)∂E(r, t)
∂t

= ∇×H(r, t)

= êz
∂Hy(r, t)

∂x
− êz

∂Hx(r, t)
∂y

, (2)

∇ ⋅ E(r, t) = 0, (3)

∇ ⋅H(r, t) = 0. (4)

In these equations, E(r, t) is the electric field, H(r, t) is the
magnetic field, σm(r) is the magnetic conductivity, σ(r) is the
electric conductivity, and ε(r) and μ(r) are the permeability and
permittivity, respectively. If dispersive materials are required to be
considered, auxiliary differential equations would be needed to sup-
plement these Maxwell equations. These auxiliary equations would
describe the temporal evolution of a polarization or magnetization
depending on the electric or magnetic field, respectively.

In our considered setting, i.e., the propagation of the fields in
the x–y-plane and with the restriction to TM polarization, the dif-
ferential equations that describe the spatial and temporal evolution
of the three involved field components are

− σmHx(r, t) − μ
∂Hx(r, t)

∂t
= ∂Ez(r, t)

∂y
, (5)

σmHy(r, t) + μ
∂Hy(r, t)

∂t
= ∂Ez(r, t)

∂x
, (6)

σEz(r, t) + ε
∂Ez(r, t)

∂t
= Hy(r, t)

∂x
− ∂Hx(r, t)

∂y
. (7)

To render the equations manageable on a computer, the space
and time are discretized in the FDTD on a finite grid spaced by
Δx = Δy and Δt. For the spatial discretization, we define a
grid indexed by m and n for the x- and y-direction, respec-
tively; thus, r = (x, y) = (mΔx, nΔy). The temporal steps follow

Δt = 1
c{(

1
Δx)

2 + (1
Δy)

2
}
−

1
2
, where c is the speed of light in the

APL Photon. 8, 036109 (2023); doi: 10.1063/5.0139004 8, 036109-2

© Author(s) 2023

https://scitation.org/journal/app

APL Photonics ARTICLE scitation.org/journal/app

FIG. 1. (a) Yee-grid in TM polarization. (b) Graph representations as a grid and an unstructured mesh. The node features encode the electric field Ez and permittivity ε, and
the edge features hold Hx,y and local Cartesian vector rc .

medium, leading to discrete times tq = qΔt. To find suitable update
rules for E and H, they have to be arranged in a staggered manner
in space and time. The resulting spatial discretization follows a Yee-
grid (see Fig. 1), where the components Ez and Hx/y are displaced
by Δx/2 and Δy/2 in space and Δt/2 in time. This naturally yields
the validity of Eqs. (3) and (4). Replacing all partial derivations with
finite differences in Eqs. (5)–(7), we can deduce update rules for the
electric and magnetic fields in space and time. For the electric field,
the update-expression reads

Ez(m, n, q + 1) = 1 − σΔt
2ε

1 + σΔt
2ε

Ez(m, n, q)

+ 1
1 + σΔt

2ε
(Δt

εΔx
{Hy(m + 1

2
, n, q + 1

2
)

−Hy(m − 1
2

, n, q + 1
2
)}

− Δt
εΔy
{Hx(m, n + 1

2
, q + 1

2
)

−Hx(m, n − 1
2

, q + 1
2
)}). (8)

Nearly identical expressions can be found for Hx and Hy,
respectively. A detailed derivation can be found in the literature.7,33

The idea of the FDTD is now to evolve the fields in a leap-frog-
scheme. To be specific, the spatial differences from the magnetic
field allow to advance the electric field in time. Afterward, those spa-
tial differences from the electric field allow advancing the magnetic
field in time. To solve the PDE, we have to impose some bound-
ary conditions and potentially some perfectly matched layers, i.e., an
impedance matched material that absorbs incoming radiation with-
out any reflection. Such a material is necessary to imitate the infinite
open space on a finite grid. To execute an actual simulation, we
also need to define sources of electromagnetic radiation. We provide
more details on these aspects in the section titled RESULTS since
they are related to the training data generation.

B. Graph representation
As sketched in Sec. II A, the whole FDTD formalism is based

on a local and iterative updating scheme. That is why the use of

graph neural networks appears very suitable to treat this prob-
lem. GNNs rely on the information exchange of neighboring nodes,
which is ideal to capture the locality of the updating procedure.
Moreover, FDTD works independently of the domain size, which
can be translated to a GNN working on arbitrary input graphs.

The purpose of this section is a brief introduction to graph
representations and graph neural networks; thus, it becomes clear
to the reader how and why GNNs are potentially useful for FDTD
computations.

A graph 𝒢(𝒱 ,ℰ) comprises a set of nodes or vertices 𝒱
= v1, v2, . . . and edges ℰ ⊆ 𝒱 ×𝒱 . We consider here only undirected
graphs. Therefore, every edge represents an undirected link between
two graph nodes eij = (vi, vj) ∈ ℰ. Both nodes and edges hold a set
of attributes, the node features hv ∈ RD and edge features he ∈ RC,
respectively. In general, the number of features for each node or edge
can vary in the so-called heterogeneous graphs. However, in our
case, we have a fixed number of features, making our graphs homo-
geneous. Additionally, we assign spatial positions pi = (pi,x, pi,y) of
the nodes that coincide with the simulation coordinates.

Graphs are very suitable to represent unstructured data, such
as networks, molecules, or meshes.22–24 For the purpose of field
propagation, we represent the electromagnetic field and material dis-
tribution as graphs. To keep things simple in this initial work, we
concentrate here on dielectric materials only, for which it is suffi-
cient to describe them using a spatially resolved dielectric function
only. We can think about two possible graphs.

One approach is a direct representation of the Yee-grid; see
Fig. 1. Here, the node features hv ∈ R2 encode the electric field
Ez(r, t0) and the permittivity ε(r). In extension, the edge features
he ∈ R4 comprise the magnetic field components Hx,y(r, t0) and the
relative Cartesian vector rij of linked nodes,

rij = (pj,x − pi,x, pj,y − pi,y). (9)

Another approach is a meshing of the domain [see Fig. 1(b)] with
equivalent edge and node features. While, technically, there is no
distinction between a regular grid and a mesh at the level of the
graph, it would make a tremendous difference at the level of the
FDTD. In the FDTD, frequently, a regular grid is used, which causes
a stair-case approximation of the surface of rounded objects. This

APL Photon. 8, 036109 (2023); doi: 10.1063/5.0139004 8, 036109-3

© Author(s) 2023

https://scitation.org/journal/app

APL Photonics ARTICLE scitation.org/journal/app

approximation can lead to computational artifacts that can be
avoided with such a mesh.

In both cases, the choice of resolution is important. It does not
have to be as fine as it is chosen for the FDTD simulation, but a too-
low resolution leads to poor results. This is not necessarily caused by
bad predictions but rather by a poor interpolation of the predictions
to achieve the fields at all points in space inside the domain. Over-
all, the resolution is a trade-off between exceedingly large graphs,
which slows down computation, and too less nodes to achieve accu-
rate results at all points in space. In this work, we use a resolution
that is found by manually tuning and choosing a sweet spot.

C. Graph neural networks
After having discussed the classical FDTD algorithm used to

advance electromagnetic fields in space and time and having dis-
cussed how to represent the discretized Maxwellian problem in
terms of a graph, we provide the following short introduction to
graph neural networks. In short, the purpose of these networks will
be to learn how to propagate a given input field in space and time.

A graph neural network (GNN) is an artificial neural network
(ANN) that works on graphs. In contrast to conventional ANNs,
such as linear or convolutional networks, a GNN does not rely on a
specific shape and size of the input data. It works on any graph, inde-
pendent of its number of nodes, edges, or connectivity and yields
permutation invariance. A GNN can be interpreted as a graph oper-
ator ℱ that acts on a graph 𝒢 and returns a new graph 𝒢′ with
updated features and potentially new nodes and edges. GNNs can
perform tasks on different levels, specifically node-level, edge-level,
and graph-level. We want to predict the electric field at each point in
space after a fixed time step. This coincides with a node-level regres-
sion task since these encode the electric field in space. The graph
that our network takes corresponds to the field at a certain moment
in time, and afterward, it returns the field after a time step.

Our network comprises several components, depicted in Fig. 2.
First, we have two encoders that lift the graph’s node and edge fea-
tures in a high-dimensional embedding space. Both encoders are
fully connected feedforward networks of three linear layers with
ReLU activation. The number of features increases with every MLP
layer to 32, 64, and 128. Node and edge features must have the
same dimension to enable the following generalized graph convolu-
tion (GCN) layers.34 To perform the graph convolution, each node
vi gathers edge and node features of every neighboring node vj : j

∈ 𝒩(i) and connecting edge eij, the so-called message passing.
Subsequently, the messages get aggregated (message aggregation)
and added to the original node features. Finally, a multi-layer per-
ception (MLP) processes the features. With that, we achieve updated
node features v′i . The whole operation reads

v′i =MLP(vi + AGG({ReLU(vj + eij) + ε : j ∈ 𝒩(i)})), (10)

where ε is a small positive parameter to ensure non-zero division in
the aggregation scheme, for which we use max aggregation. Addi-
tionally, we use a layer normalization before non-linear activation
and we add residual connections after every GCN layer. The mes-
sage passing allows information exchange of connected neighbors,
which we use to adapt the updating scheme performed in the Yee
grid. However, since we use several GCN layers, we achieve infor-
mation exchange not only of directly connected but also of further
away nodes. Finally, we have a single decoder, another three-layered
MLP, that projects the resulting features of each node back to a single
value, the updated electric field. Please note that the whole opera-
tion on the input graph 𝒢 is independent of the amount of nodes
and edges, only the number of input features is fixed. In general,
this is one of the main strengths of GNNs, which we exploit to treat
different domain sizes with the same model.

We trained GNNs with different hyperparameters to find a suit-
able configuration. However, we observed only minor differences
in the final performance; thus, a qualitative reproduction of our
results can also be achieved with different parameters. In our exper-
iments, we found that a minimum number of trainable parameters
of ∼300 000 is needed.

III. RESULTS
We train different GNNs to evolve a given electromagnetic

field distribution Ez(r, t0), Hx,y(r, t0) for a distinct time step Δt. We
follow two different approaches for this purpose. First, we train dif-
ferent GNNs to perform a single time step in electric field prediction,
given a comparatively low spatial resolution. We test and evaluate
this for both grid and meshing. Second, we want to be able to pre-
dict the full field. Therefore, we keep a high temporal and spatial
resolution and deduce the magnetic fields from predicted electric
fields following the FDTD propagation procedure. The training is
performed in parallel on four NVIDIA A100 Tensor Core graphics

FIG. 2. GNN structure. Encoding of edge
and node features followed by general-
ized graph convolution. Finally, decod-
ing back to the electromagnetic field at
t = t1.

APL Photon. 8, 036109 (2023); doi: 10.1063/5.0139004 8, 036109-4

© Author(s) 2023

https://scitation.org/journal/app

APL Photonics ARTICLE scitation.org/journal/app

processing units (GPUs) with 40 GB RAM each. The training time
varies, depending on model specifications, between 40 minutes and
up to 4 hours.

We use the open-source Python FDTD-implementation meep35

for data generation and testing. We consider a plane wave source
at λ = 1 μm and arbitrarily shaped non-magnetic, non-conducting,
non-dispersive, dielectric 2D scatterers of ε = 2.1025 in vacuum. The
domain size varies between 1 and 3 μm side length with perfectly
matched layers as boundary conditions. We chose a spatial reso-
lution of 60 pixels/wavelength to ensure physically correct results.
The source is a time-harmonic plane wave propagating along the
+x-direction into the considered domain. This comparably basic set-
ting is most suitable for initial investigations. However, the method
is not restricted to a specific source or material properties. An
expansion to dispersive materials and different sources is possible.

A. Electric field prediction
To evolve the electric field only for a fixed time step, we can use

a low spatial resolution and comparatively large time step Δt = λ
4c .

This Δt coincides with 15 high resolution time steps in meep. It is
possible to choose such a high time step since the underlying training
data were created with a high temporal resolution. Thus, it is phys-
ically accurate. The model then learns from correct data to adapt
larger time steps. We construct graphs as structured grids, similar
to the Yee grid, and meshes. In this case, edge features include both
Hx and Hy values.

The training set comprises 125 different shapes, sampled at
20 different time steps of discretization Δt = λ

4c . The shapes are
generated from random noise after applying a Gaussian filter. Start-
ing from the initial field distribution, either a structured grid or a
meshed graph is constructed; see Fig. 1. For meshing, we use the
Python library meshpy36 to create a triangular mesh. We control the
number of mesh points by restricting the volume size. The domain

edges and the scatterer boundary are added manually. Subsequently,
the GNN performs the temporal evolution for Δt, leading to a trans-
formed graph𝒢′. The loss function compares the ground truth result
of FDTD with the node features of 𝒢′ and computes the mean
squared error (MSE),

MSE(𝒢,𝒢) = 1
Nv

Nv

∑
i
(hv,i − ĥ v,i)2 (11)

= 1
Nv

Nv

∑
i
(Ez,i − Ê z,i)2. (12)

Here, the FDTD ground truth values are interpolated in the case
of meshed graphs to get the field values at every node position.
The whole dataset is split into 2000 and 500 samples for training
and validation, respectively. We use the optimizer ADAM37 and a
learning rate scheduler, which reduces the learning rate by a factor
of 0.5 if no further improvement of the validation loss is observed
within 10 epochs. We train for a total of 200 epochs and observe the
convergence of validation and training loss.

To achieve the resulting field at every point in space, not only
at the node positions, we linearly interpolate the nodes to a grid.

We test the resulting models on 20 different shapes and time
steps and observe excellent agreements of the predicted fields with
GNN and FDTD simulations. In the case of square grid graphs, we
reach a mean squared error of 7.8 × 10−4, whereas meshing results
in 4.4 × 10−4. Figure 3 shows two examples for each grid (a) and
meshing (b). Here, the left figure shows the initial state. The fol-
lowing figure, i.e., the second to left, shows the predicted field after
a time step Δt = λ

4c with the GNN. The third figure from the left
shows the predicted field values as computed with FDTD for ref-
erence purposes. Both predictions from the GNNs considering grids
and meshes are in excellent agreement with the ground truth FDTD
simulations. To quantify this agreement, we evaluate the normed

FIG. 3. Example prediction with grid graphs (a) and meshing (b). Both yield only small deviations from the actual FDTD calculations in the order of a few percent. The
presented mean normed relative error follows Eq. (13).

APL Photon. 8, 036109 (2023); doi: 10.1063/5.0139004 8, 036109-5

© Author(s) 2023

https://scitation.org/journal/app

APL Photonics ARTICLE scitation.org/journal/app

FIG. 4. Extrapolation to larger domain sizes and arbitrary scatterer shape in meshing. The left panel shows the initial, i.e., input, field. The largest trained domain size is
marked in gray. The ground truth values are computed with meep, and the respective mean normed relative error is at 1.4%.

relative error of the GNN predicted field Ez(r) and FDTD computed
field Ez,0(r) at t0 + Δt,

δ(r, Ez , Ez,0) =
∣Ez(r) − Ez,0(r)∣
∣Ez,0(r)∣ + ∣Ez,0∣

, (13)

where ∣Ez,0∣ is the average absolute value of the correct field with
respect to r. The error is shown in the right of Figs. 3(a) and 3(b).
The prediction is slightly worse for smaller propagation times due to
transitional temporal effects arising from the source initiation. These
effects are particularly hard to capture with meshing with coarser
elements in the spatial domain. This results in interpolation errors
when converting the graph representation to fields. However, the
prediction with grids of resolution 30 pixels/wavelength covers the
effects quite well.

Now, we test the trained GNNs on domain sizes outside the
trained range of 1–3 μm. Figure 4 shows an example with 5 μm side
length in meshing. The mean value for this example coincides with
≈1.4% deviation, which is very low. In addition, the shape of the
scatterer is rather specific compared to the ones used in training.
This shows that our model learned to adapt the propagation proce-
dure of a given electromagnetic field. It can extrapolate very well to
larger domain sizes and even complex shapes not seen in training.
We achieve similar results with grid graphs.

B. Full field prediction
Instead of only predicting Ez(r, t0 + Δt), we want to train mod-

els that are able to compute the full electromagnetic field. For
that, we add two feature channels to the node decoder to enable
direct prediction of Hx,y(r, t0 + Δt) for grid graphs. The used net-
work architecture and hyperparameters are the same, besides the
additional decoder channels. It is worth mentioning that an alter-
native approach is a second pure edge encoder. However, we stick
to a single decoder for the full field. Again, we test our results on
20 unknown test shapes at 20 time steps and achieve a mean squared
error of 4.4 × 10−4 on Hx and 5.3 × 10−4 on Hy components. The

extrapolation on larger domain sizes works very well and shows the
same accuracy as pure Ez predictions.

Alternatively, we can directly deduce the magnetic fields from
Ez . Since the network input comprises the full field, we can follow the
FDTD propagation procedure. Therefore, the graph construction
changes slightly. We stick to grid graphs of the same high resolution
as the simulation, namely 60 pixels/wavelength. Adapting to the Yee
grid, we only use Hx fields for vertical edges and Hy fields for hori-
zontal ones. Additionally, we sample Ez and Hx,y at different times,
shifted by Δt/2. From the predicted field Ez , we compute Hx,y fol-
lowing the FDTD formalism. To achieve accurate results for Hx,y,
we add a Maxwell loss in training,

Loss(Ez , Êz) = Lossdata + LossMaxwell

= 1
Nv
∑ (Ez − Ê z)2

+ α
1

Ne
∑ (Hx,y − Ĥ x,y(Ê z))2. (14)

Here, Hx,y is the ground truth magnetic field from the simu-
lation at t = t1 + 1/2Δt and Ĥx,y(Êz) is the field resulting from the
network output Êz plugged in the FDTD update equation. By that,
we compare not only the electric field predictions to ground truth
values in training but also the derived magnetic fields. Additionally,
we introduce α as a parameter to control the strength of the Maxwell
loss. Including Maxwell’s equation in the loss has been applied
successfully before, yielding performance improvements.38–40

Figure 5 shows the results for a single test case. The mean error
on the magnetic field components is slightly higher than on the elec-
tric field. In any case, the deviation is in the order of only a few
percent.

In principle, the prediction of the whole field allows passing the
output back to the input of the GNN. Unfortunately, we observe a
fast error accumulation leading to very bad results after just a few
iterations, independent of the choice of the Hx,y prediction. This
problem is known24 and can be treated or partially solved by training

APL Photon. 8, 036109 (2023); doi: 10.1063/5.0139004 8, 036109-6

© Author(s) 2023

https://scitation.org/journal/app

APL Photonics ARTICLE scitation.org/journal/app

FIG. 5. Full field predictions compris-
ing Ez , Hx , and Hy . The magnetic field
components are computed using the pre-
dicted Ez following the FDTD formalism.
The deviations are low in the order of a
few percent.

on noisy input data or including several iterations in the loss
function.

IV. CONCLUSION AND OUTLOOK
We demonstrated that a GNN is capable of propagating electro-

magnetic fields for a fixed time step, given the initial field distribu-
tion. After the training is finished, the model is able to interpolate
very well for unknown scenarios with parameters similar to the
trained ones. Moreover, the GNN can also extrapolate on very large
domains and very specific scatterer shapes. By that, we proved to
overcome one of the main issues of conventional ANN architec-
tures: fixed input size, i.e., domain size. The very good performance
on many different scatterer shapes implies that the model actually
learned to propagate fields by adapting the physical propagation pro-
cedure. Despite the high prediction accuracy, the computation of
multiple time steps by iteratively feeding the output of the network
back as input was not successful. However, there exist approaches
to circumvent the problem of error accumulation, which we have
outlined in the section titled RESULTS.

Yet, the use of GNNs to perform a single time step is not advan-
tageous to proper FDTD simulations, since at least in 2D, those are
cheap and fast. However, in the case of 3D scenarios with more com-
plex materials and scatterer shapes, the use of a GNN potentially
saves time and computational efforts. Along these lines, our method
could particularly be suitable for dispersive materials, since these are
more costly and time-consuming in FDTD computations. Addition-
ally, a generalization to different sources may be possible by adding
the respective information to the input graph. We also showed that
the model can work with meshing, which is not possible in a pure
FDTD formulation. These findings support that GNNs can also be
used for more complex mesh-based simulations, for example finite
element methods, which are, in general, very demanding. Addition-
ally, the graphs we process with the GNNs are very large with only
a few connections to the nearest neighbors. This results in a very
sparse matrix representation. Unfortunately, common graph learn-
ing frameworks only support static representations of these matrices;
thus, a lot of unnecessary computations are performed. However,

there are already efforts to include the treatment of sparse matri-
ces,41 which would potentially speed up computations with graphs
similar to ours. In the long run, we foresee hybrid implementations
where the time stepping of fields is alternatively done in a classi-
cal FDTD scheme and using GNNs. This will save computational
resources and time and will speed up simulations.

ACKNOWLEDGMENTS
L.K. acknowledges the support by the NHR@KIT program

and the Karlsruhe School of Optics and Photonics. L.K. acknowl-
edges the Jülich Supercomputing Centre, specifically the JUWELS
Booster for training and validation. C.R. acknowledges the support
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy via the Excel-
lence Cluster 3D Matter Made to Order (Grant No. EXC-2082/1-
390761711). T.R. is supported by Estonian Research Council Grant
(No. PSG716). We acknowledge support by the KIT-Publication
Fund of the Karlsruhe Institute of Technology.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

L. Kuhn: Conceptualization (equal); Formal analysis (equal); Inves-
tigation (equal); Writing – original draft (equal). T. Repän: Supervi-
sion (equal); Validation (equal); Writing – review & editing (equal).
C. Rockstuhl: Project administration (equal); Supervision (equal);
Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APL Photon. 8, 036109 (2023); doi: 10.1063/5.0139004 8, 036109-7

© Author(s) 2023

https://scitation.org/journal/app

APL Photonics ARTICLE scitation.org/journal/app

REFERENCES
1A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based
technology,” Science 348(6234), 516–521 (2015).
2F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,”
Rep. Prog. Phys. 80(3), 036401 (2017).
3C. Lienau, M. A. Noginov, and M. Lončar, “Light–matter interactions at the
nanoscale,” J. Opt. 16(11), 110201 (2014).
4A. V. Lavrinenko, J. Lægsgaard, N. Gregersen, F. Schmidt, and T. Søndergaard,
Numerical Methods in Photonics (CRC Press, 2018).
5B. Gallinet, J. Butet, and O. J. F. Martin, “Numerical methods for nanophotonics:
Standard problems and future challenges,” Laser Photonics Rev. 9(6), 577–603
(2015).
6P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin, “Light interaction
with photonic and plasmonic resonances,” Laser Photonics Rev. 12(5), 1700113
(2018).
7A. Taflove, S. C. Hagness, and M. Piket-May, “Computational electromagnet-
ics: The finite-difference time-domain method,” in The Electrical Engineering
Handbook (Elsevier, Inc., 2005), pp. 629–670.
8V. Jovanov, U. Palanchoke, P. Magnus, H. Stiebig, J. Hüpkes, P. Sichanugrist,
M. Konagai, S. Wiesendanger, C. Rockstuhl, and D. Knipp, “Light trapping in peri-
odically textured amorphous silicon thin film solar cells using realistic interface
morphologies,” Opt. Express 21(S4), A595–A606 (2013).
9A. Vaccari, L. Cristoforetti, A. C. Lesina, L. Ramunno, A. Chiappini,
F. Prudenzano, A. Bozzoli, and L. Calliari, “Parallel finite-difference time-domain
modeling of an opal photonic crystal,” Opt. Eng. 53(7), 071809 (2014).
10J. Park, S. Kim, D. W. Nam, H. Chung, C. Y. Park, and M. S. Jang, “Free-form
optimization of nanophotonic devices: from classical methods to deep learning,”
Nanophotonics 11(9), 1809–1845 (n.d.).
11W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu, “Deep
learning for the design of photonic structures,” Nat. Photonics 15(2), 77–90
(2021).
12Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Machine
learning–assisted global optimization of photonic devices,” Nanophotonics 10(1),
371–383 (2021).
13T. Repän, V. Ramakrishna, and C. Rockstuhl, “Artificial neural networks used to
retrieve effective properties of metamaterials,” Opt. Express 29(22), 36072–36085
(2021).
14Y. Tang, K. Kojima, T. Koike-Akino, Y. Wang, P. Wu, Y. Xie, M. H. Tahersima,
D. K. Jha, K. Parsons, and M. Qi, “Generative deep learning model for inverse
design of integrated nanophotonic devices,” Laser Photonics Rev. 14(12), 2000287
(2020).
15P. R. Wiecha, A. Arbouet, C. Girard, and O. L. Muskens, “Deep learning in
nano-photonics: Inverse design and beyond,” Photonics Res. 9(5), B182–B200
(2021).
16S. So, T. Badloe, J. Noh, J. Bravo-Abad, and J. Rho, “Deep learning enabled
inverse design in nanophotonics,” Nanophotonics 9(5), 1041–1057 (2020).
17L. Kuhn, T. Repän, and C. Rockstuhl, “Inverse design of core-shell particles
with discrete material classes using neural networks,” Sci. Rep. 12(1), 19019
(2022).
18I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation from
dielectric nanostructures using reinforcement learning,” Opt. Express 27(4),
5874–5883 (2019).
19C. Majorel, C. Girard, A. Arbouet, O. L. Muskens, and P. R. Wiecha,
“Deep learning enabled strategies for modeling of complex aperiodic plasmonic
metasurfaces of arbitrary size,” ACS Photonics 9(2), 575–585 (2022).
20H. M. Yao and L. J. Jiang, “Machine learning based neural network solving
methods for the FDTD method,” in 2018 IEEE International Symposium on Anten-
nas and Propagation and USNC/URSI National Radio Science Meeting (IEEE,
2018), pp. 2321–2322.

21D. Zhu, Q. Zhao, Y. Bo, W. Chen, and L. Yang, “Application of deep learning in
FDTD method,” in 2021 13th International Symposium on Antennas, Propagation
and EM Theory (ISAPE) (IEEE, 2021), Vol. 1, pp. 1–3.
22O. Wieder, S. Kohlbacher, M. Kuenemann, A. Garon, P. Ducrot, T. Seidel, and
T. Langer, “A compact review of molecular property prediction with graph neural
networks,” Drug Discovery Today: Technol. 37, 1–12 (2020).
23H. Ma, Y. Bian, R. Yu, W. Huang, T. Xu, W. Xie, G. Ye, and J. Huang, “Multi-
view graph neural networks for molecular property prediction,” arXiv:2005.13607
(2020).
24P. Tobias, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia, “Learning
mesh-based simulation with graph networks,” arXiv:2010.03409 (2020).
25F. De Avila Belbute-Peres, T. Economon, and Z. Kolter, “Combining differ-
entiable PDE solvers and graph neural networks for fluid flow prediction,” in
Proceedings of the 37th International Conference on Machine Learning, Proceed-
ings of Machine Learning Research, edited by H. Daumé III and A. Singh (PMLR,
2020), Vol. 119, pp. 2402–2411.
26K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision GNN: An image is worth
graph of nodes,” arXiv:2206.00272 (2022).
27X. Ju, S. Farrell, P. Calafiura, D. Murnane, Prabhat, L. Gray, T. Klijnsma,
K. Pedro, G. Cerati, J. Kowalkowski, G. Perdue, P. Spentzouris, N. Tran, J.-R.
Vlimant, A. Zlokapa, J. Pata, M. Spiropulu, S. An, A. Adam, J. Hewes, A. Tsaris,
K. Terao, and T. Usher, “Graph neural networks for particle reconstruction in high
energy physics detectors,” arXiv:2003.11603 (2020).
28J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in particle
physics,” Mach. Learn.: Sci. Technol. 2(2), 021001 (2020).
29Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar, “Neural operator: Graph kernel network for partial differential
equations,” arXiv:2003.03485 (2020).
30Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, A. Stuart, K. Bhattacharya,
and A. Anandkumar, “Multipole graph neural operator for parametric partial
differential equations,” Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6–12, 2020.
31N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and
A. Anandkumar, “Neural operator: Learning maps between function spaces,”
arXiv:2108.08481 (2021).
32J. B. Schneider, “Understanding the finite-difference time-domain method,”
School of Electrical Engineering and Computer Science, Washington State
University (2010), 28.
33A. Taflove, A. Oskooi, and S. G. Johnson, Advances in FDTD Computational
Electrodynamics: Photonics and Nanotechnology (Artech house, 2013).
34G. Li, C. Xiong, A. Thabet, and B. Ghanem, “All you need to train deeper
GCNs,” arXiv:2006.07739 (2020).
35A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G.
Johnson, “MEEP: A flexible free-software package for electromagnetic simulations
by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
36I. Steinbrecher and A. Popp, “MeshPy: A general purpose 3D beam finite
element input generator,” https://compsim.gitlab.io/codes/meshpy, 2021.
37D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980.ISO 690 (2014).
38M. Chen, R. Lupoiu, C. Mao, D.-H. Huang, J. Jiang, P. Lalanne, and J. A. Fan,
“High speed simulation and freeform optimization of nanophotonic devices with
physics-augmented deep learning,” ACS Photonics 9(9), 3110–3123 (2022).
39Z. Fang and J. Zhan, “Deep physical informed neural networks for metamaterial
design,” IEEE Access 8, 24506–24513 (2020).
40P. Zhang, Y. Hu, Y. Jin, S. Deng, X. Wu, and J. Chen, “A Maxwell’s equations
based deep learning method for time domain electromagnetic simulations,” IEEE
J. Multiscale Multiphys. Comput. Tech. 6, 35–40 (2021).
41S. Qiu, L. You, and Z. Wang, “Optimizing sparse matrix multiplications
for graph neural networks,” Languages and Compilers for Parallel Computing
(Springer International Publishing, 2022), pp. 101–117.

APL Photon. 8, 036109 (2023); doi: 10.1063/5.0139004 8, 036109-8

© Author(s) 2023

https://scitation.org/journal/app
https://doi.org/10.1126/science.1261243
https://doi.org/10.1088/1361-6633/aa518f
https://doi.org/10.1088/2040-8978/16/11/110201
https://doi.org/10.1002/lpor.201500122
https://doi.org/10.1002/lpor.201700113
https://doi.org/10.1364/oe.21.00a595
https://doi.org/10.1117/1.OE.53.7.071809
https://doi.org/10.1515/nanoph-2021-0713
https://doi.org/10.1038/s41566-020-0685-y
https://doi.org/10.1515/nanoph-2020-0376
https://doi.org/10.1364/OE.427778
https://doi.org/10.1002/lpor.202000287
https://doi.org/10.1364/prj.415960
https://doi.org/10.1515/nanoph-2019-0474
https://doi.org/10.1038/s41598-022-21802-3
https://doi.org/10.1364/oe.27.005874
https://doi.org/10.1021/acsphotonics.1c01556
https://doi.org/10.1016/j.ddtec.2020.11.009
http://arxiv.org/abs/2005.13607
http://arxiv.org/abs/2010.03409
http://arxiv.org/abs/2206.00272
http://arxiv.org/abs/2003.11603
https://doi.org/10.1088/2632-2153/abbf9a
http://arxiv.org/abs/2003.03485
http://arxiv.org/abs/2108.08481
http://arxiv.org/abs/2006.07739
https://doi.org/10.1016/j.cpc.2009.11.008
https://compsim.gitlab.io/codes/meshpy
http://arxiv.org/abs/1412.6980.ISO 690
https://doi.org/https://doi.org/10.1021/acsphotonics.2c00876
https://doi.org/10.1109/access.2019.2963375
https://doi.org/10.1109/jmmct.2021.3057793
https://doi.org/10.1109/jmmct.2021.3057793

