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Abstract
The anisotropic elastic properties of injectionmolded composites are fundamentally coupled to the flow of the fiber suspension
during mold-filling. Regarding the modeling of mold-filling processes, both a decoupled and a flow–fiber coupled approach
are possible. In the latter, the fiber-induced viscous anisotropy is considered in the computation of the flow field. This in
turn influences the evolution of the fiber orientation compared to the decoupled case. This study investigates how flow–
fiber coupling in mold-filling simulation affects the stress field in the solid composite under load based on the final elastic
properties after fluid–solid transition. Furthermore, the effects of Newtonian and non-Newtonian polymer matrix behavior are
investigated and compared. The entire process is modeled micromechanically unified based on mean-field homogenization,
both for the fiber suspension and for the solid composite. Different numerical stabilization methods of the mold-filling
simulation are discussed in detail. Short glass fibers with a typical aspect ratio of 20 and a volume fraction of 20% are
considered, embedded in polypropylene matrix material. The results show that the flow–fiber coupling has a large effect
on the fiber orientation tensor in the range of over ±30% with respect to the decoupled simulation. As a consequence, the
flow–fiber coupling affects the stress field in the solid composite under load in the range of over ± 10%. In addition, the
predictions based on a non-Newtonian modeling of the matrix fluid differ significantly from the Newtonian setup and thus
the necessity to consider the shear-thinning behavior is justified in a quantifiable manner.

Keywords Short-fiber reinforced composites · Flow–fiber coupling · Micromechanics · Homogenization · Numerical
stabilization

1 Introduction

1.1 Motivation and state of the art

Short-fiber reinforced composites are commonly used in
lightweight design. The special case of adding fibers into
a polymer matrix allows the mass-production of lightweight
components with complex shapes while retaining the desired
mechanical stiffness and strength.During injectionmolding—
the manufacturing process through which such components
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are produced—the fibers flow within the polymer matrix and
thereby change their orientation based on the experienced
flow conditions. At the same time, a local change of the fiber
orientation affects the overall rheological properties of the
fluid, which become inhomogeneous anisotropic, and in turn
the flow characteristics. This mutual flow–fiber interaction is
subject of recent numerical research efforts addressed in the
following, focussing on the effects of flow–fiber coupling on
the fluid side. In the context of this work, flow–fiber coupling
expresses that the evolution of fiber orientation is influenced
by the effective anisotropic viscosity of the fiber suspension.
Threemain points can be identified in this context: The effect
of the flow–fiber coupling on the flow field, the influenced
fiber orientation evolution due to the changed flow condi-
tions and finally the change of the mechanical properties of
the composite, which depend on the local fiber orientation.
How the flow–fiber coupling during mold-filling affects the
stress state in the solid composite under load after fluid–solid
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transition is a question that received less attention in litera-
ture and is the objective of the present work. Since the correct
prediction of the stress field in the manufactured composite
is an essential part in engineering applications, the need for a
flow–fiber coupled simulation has to be studied. In this con-
text, the question also arises which influence the two-phase
simulation of the actual mold filling has both on the fiber
orientation and on the local anisotropic properties.

The fiber-induced anisotropic viscosity within the flow–
fiber coupled approach causes changes of the velocity field
during mold-filling. Latz et al. [1] investigated the flow–fiber
coupling from a fluid mechanics perspective in a channel
flow, a flow around a cylinder and in a contraction flow. Dif-
ferent coupling intensities were considered with the result,
that the coupling effects are significant in the channel and
in the contraction flow. It is shown that (e.g. for the chan-
nel flow) the stronger the coupling, the flatter the velocity
profile. This flattening was already reported in the early
studies of Altan et al. [2] and Tang and Altan [3]. The impor-
tance of accounting for flow–fiber coupling in mold-filling
simulations was demonstrated in a low Reynolds number
flow through a tapered channel by Krochak et al. [4]. Both
isotropic and aligned orientation states were considered at
the inlet, showing that the flow changes towards a plug flow
because of flow–fiber coupling. Flow–fiber coupled mold-
filling simulation based on probability density function was
carried out byMezi et al. [5] in 2D geometries and by Férec et
al. [6] in 3D axisymmetric geometries. Both studies conclude
that the influence of flow–fiber coupling on the velocity field
is significant and the velocity profile flattens, as mentioned
before. In addition, the difference between Newtonian and
non-Newtonian matrix fluid is addressed by Mezi et al. [5].
Mezi et al. [7] observed a flattening of the velocity profile in
the context of flow–fiber coupling for die swell flows. The
results show that the swell ratio of the flow is affected by
flow fiber coupling. By using a scalar rheologial model, Li
and Luyé [8] studied the flow–fiber coupling effects based
on mold-filling simulations of a rectangular plate. In addi-
tion, three different orientation evolutionmodelswere used in
their study. They observed, that the coupling effects strongly
depend on the chosen orientation evolution model. In this
context, the classical Folgar–Tucker model [9,10] showed
less coupling effects than the reduced-strain closure model
[11]. The aforementioned flattening of the velocity profile
also occured. In addition, the study of Li andLuyé [12] shows
that results based on flow–fiber coupling improve parameter
optimization of fiber orientation models in the core region of
the flow. Tseng and Favaloro [13] introduced the informed
isotropic viscosity model in order to improve convergence
compared to the classicmodels [14,15]. It is shown for simple
and complex geometries, that this model is capable of repro-
ducing experimental findings and that the coupling effects
on the flow field are not negligible. The informed isotropic

viscosity model was used by Huang and Lai [16] to show
that flow–fiber coupling influences the melt front behavior
and that the coupling effects are locally different. Lee et al.
[17] also used the informed isotropic viscosity model and
studied the compressionmolding process of compositemate-
rial. Sommer et al. [18] investigated the flow–fiber coupling
effects in squeeze flow. The results show that only a flow–
fiber coupled analysis is capable of predicting the physically
correct anisotropic behavior of the suspension. Based on
two-phase flow, Witteman et al. [19] implemented the flow–
fiber coupling approach with a non-Newtonian, temperature-
and curing-dependent viscosity model for fiber-laden ther-
mosets. The coupled simulation leads to a better agreement
of the pressure field with experimental measurements than
the decoupled approach.

The flow–fiber coupling effects on the velocity field
addressed above have a direct influence on the fiber ori-
entation evolution. Chung and Kwon [20,21] studied the
flow–fiber coupling effects on both flow field and fiber ori-
entation. Their results show that flow–fiber coupling clearly
influences the fiber orientation prediction. Latz et al. [1]
found that the stronger the coupling, the larger the region
of isotropic orientation in the channel center region. Li and
Luyé [8] observed, that the fiber orientation evolution is
clearly influenced by the changed flow kinematics for the
studied mold-filling process of a rectangular plate. Wang and
Smith [22,23] investigated the flow–fiber coupling regarding
an additive manufacturing process. The fiber orientation evo-
lution referred to the orthotropically closed Folgar–Tucker
model and the coupling was realized based on the fourth-
order fiber orientation tensor. The results indicate that the
fiber-fiber interaction coefficient strongly affects the influ-
ence of flow–fiber coupling. Significant differences in the
fiber orientation tensor were observed due to flow–fiber cou-
pling. In contrast, Mezi et al. [5,7] and Férec et al. [6] did
not observe significant differences regarding the fiber orien-
tation state between the decoupled and the coupled approach
in their simulation setups.

Karl et al. [24] studied the effect of flow–fiber coupling
on both velocity and fiber orientation. A simple channel flow
and a flow over a backward-facing step was considered with
a detailed analysis of the aforementioned velocity flattening.
Consistent with the studies already addressed, large differ-
ences in fiber orientation became evident. Based on polar
plots of the direction-dependent Young’s modulus [25] com-
puted with the Mori–Tanaka model [26,27], the flow–fiber
coupling effects on the local elastic anisotropy are shown. In
this context, the results of Wang and Smith [22,23] demon-
strate significant differences due to flow–fiber coupling in
the engineering constants describing the effective elastic
anisotropy. Wang and Smith [28] present a finite element
procedure regarding flow–fiber coupling with the result that
the differences caused by flow–fiber coupling can be sig-
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nificant. Differences up to 25–50% in the velocity field and
differences up to 8% in the tensile modulus were observed,
depending on the chosen parameters and geometries. Wang
[29] improved the algorithm ofWang and Smith [28] by opti-
mizing the scalar viscosity in order to consider higher fiber
aspect ratios with less numerical difficulties.

1.2 Originality

This study investigates the differences between the decoupled
and the coupled approach of fiber suspensions with focus on
the stress field of the solid composite based on the final elastic
properties depending on the local fiber orientation state. In
addition, the influence of flow–fiber coupling on one side and
the Newtonian and non-Newtonian modeling of the matrix
fluid on the other side is investigated. A detailed analysis
of the flow conditions is omitted, since the coupling effects
were already studied in this context in the literature cited in
Sect. 1.1. The content of this study can be summarized as
follows:

• Application of a unified mean-field homogenization pro-
cedure for both viscous fiber suspensions and solid fiber
reinforced composites.

• Detailed analysis of the two-phase mold-filling simula-
tion effects on the local fiber orientation with respect to
the alternative steady state approach.

• Quantification of the flow–fiber coupling effects on the
stress field of the solid composite representing the local
anisotropic elastic properties considering both Newto-
nian and non-Newtonian matrix behavior during mold-
filling.

• Detailed documentation of the numerical procedure
focusing on stabilization methods of mold-filling sim-
ulation.

• In order to establish a uniform open-source simulation
tool, the use of OpenFOAM® also for solid composite
simulations besides Abaqus® is addressed.

1.3 Notation

Throughout this manuscript, a symbolic tensor notation is
used. Scalar quantities are denoted by a, b, . . . and a, b, . . .
indicate vectors. Second-order tensors are represented by
A, B, ε, σ , . . . and A,B, . . . refer to fourth-order tensors.
Two different mappings of tensors are used and indicated by
AB and A[B], with Aik Bk j and Ai jkl Bkl representing the
Cartesian index notation. The dyadic product refers to n⊗n
with the Cartesian index representation nin j . The Frobenius
tensor norm is denoted by ‖A‖ = √

A · A with the scalar
product between equal order tensors A · A = Ai j Ai j . The
trace of a tensor A is represented by tr(A) = Aii .

2 Governing equations

For both viscous fiber suspensions and solid fiber reinforced
composites, the governing equations, material models and
assumptions are addressed in the following. It should be
noted that all governing equations must be interpreted in the
context of the finite volumemethod. Regarding the numerical
procedure, the reader is referred to Sect. 3.

2.1 Volume of fluid approach for viscous fiber
suspensions

Throughout this study, the fiber orientation is described based
on the second-order and fourth-order fiber orientation tensor
N and N of the first kind [10,30]

N(x, t) =
∫
S

f (x, t, n)n⊗n dS,

N(x, t) =
∫
S

f (x, t, n)n⊗n⊗n⊗n dS. (1)

In Eq. (1) the probability density function f depends on the
direction n defined on the unit sphere S, on the time t and
the spatial position x. The surface element dS on S is given
by dS = sin(θ)dθdϕ/4π , with θ ∈ [0, π ] and ϕ ∈ [0, 2π).
Duringmold-filling the fiber orientation evolution ismodeled
based on the Folgar–Tucker equation [9,10]

Ṅ = W̄ N − NW̄ + ξ
(
D̄N + N D̄ − 2N[ D̄]

)

+ 2CI ˙̄γ (I − 3N), (2)

with the effective strain rate tensor D̄, the effective spin
tensor W̄ , the fiber interaction coefficient CI and the
second-order identity tensor I . The scalar shear rate is
defined by ˙̄γ =

√
D̄ · D̄/2 and the shape parameter refers

to ξ = (α2 − 1)/(α2 + 1), with α denoting the fiber aspect
ratio. The scalar shear rate is introduced consistently to
previous studies [24,31]; other definitions may be applied
along with changingCI accordingly to ensure the same fiber-
fiber interaction strength. Since Eq. (2) depends on N, an
adequate closure method is required which can be selected
from numerous approaches given in the literature, e.g., [32–
34]. In this study the invariant-based optimal fitting closure
(IBOF) [34], whose implementation details are addressed in
Appendix A, is adopted. It should be noted that neutrally
buoyant, isotropically interacting rigid short fibers are con-
sidered embedded in an incompressible matrix fluid without
body forces [9,35,36]. Regarding further discussion, param-
eterizations, and admissible parameter ranges of second- and
fourth-order orientation tensors of the first kind, the reader
is referred to the recent work of Bauer and Böhlke [37].
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In order to realize the flow–fiber coupling, the effective
viscosity tensor V̄ of the fiber suspension is formulated in
terms of fiber orientation tensors N and N. Throughout this
study, the effective Cauchy stress tensor σ̄ refers to a gen-
eralized incompressible Newtonian fluid. Furthermore, the
Mori–Tanaka model [26,38–40] is used reading

σ̄ = − p̄ I + V̄[ D̄],
V̄ = VM + cF

cM

〈
P

−1
0

〉
OA. (3)

The effective pressure is denoted by p̄, VM stands for the
viscosity tensor of the matrix fluid, cF and cM = 1 − cF refer
to the fiber (F) andmatrix (M) volume fraction. The polariza-
tion tensor P0 contains information about the fiber geometry
and the matrix material and can be computed analytically
for spheroidal fibers. In this work the expressions given in
Ponte Castañeda andWillis [41] are adapted for viscosity and
simplified for incompressiblematrix behavior followingKarl
and Böhlke [40]. The inversion P

−1
0 is defined on the sym-

metric deviatoric subset (symDev) for the considered case of
incompressible suspensions with P

−1
0 P0 = P2 representing

the identity on symDev for second-order tensors. The oper-
ator 〈·〉OA denotes the orientation averaging procedure (OA)
[10] leading to the following expression simplified for the
special case of incompressibility

V̄[ D̄] = VM[ D̄] + cF
cM

(
b1N[ D̄] + b2(N · D̄)I

+ 2b3(N D̄ + D̄N) + b5 D̄
)
, (4)

with the coefficients b1, . . . , b5 depending on the orientation
averaged tensor P−1

0 [10]. As discussed by Karl et al. [24],
the formulation of the fiber-induced viscous stress based on
Eqs. (3) and (4) in general is not traceless for anisotropic fiber
orientation, even for traceless D̄ in the incompressible case.
In the framework of the decoupled approach (cF = 0), only
V̄ = VM is used and, therefore, the flowfield is not influenced
by the evolution of the fiber orientation distribution.

The mold-filling process is based on the volume of fluid
method (VOF) covering the two-phase flow of fiber suspen-
sion and air. Details about this established method are not
given here, but reference is made to the literature [42,43].
Both phases are considered immiscible, isothermal, incom-
pressible and without phase transition and body forces. The
location of both phases is described by the scalar phase
parameter ψ with the value ψ = 1 indicating the fiber-laden
melt and ψ = 0 indicating the air phase. The following sys-
tem of equations (5) is solved for ψ , the effective velocity
field v̄ and p̄

∂ψ

∂t
+ grad(ψ) · v̄ = 0,

div(v̄) = 0,

∂ρ̄v̄

∂t
+ grad(ρ̄v̄)v̄ = −grad( p̄) + div(2μ D̄)

+ σκ grad(ψ) + f , (5)

with the additional force vector f being present only in the
fiber-laden melt or suspension (susp) for the flow–fiber cou-
pled approach

f =
{
div

(
cF
cM

〈
P

−1
0

〉
OA[ D̄]

)
, x ∈ Vsusp

0, x ∈ Vair
. (6)

Details about the implementation are given in Sect. 3. The
surface tension of the fiber suspension is denoted by σ and
the curvature κ is defined as follows [44]

κ = −div

(
grad(ψ)

‖grad(ψ)‖
)

. (7)

Furthermore, the effective mass density ρ̄ and the viscosity
μ are defined by the following adapted mixture rules repre-
senting phase-dependent fields

ρ̄ = ψρsusp + (1 − ψ)ρair

= ψ(cMρM + cFρF) + (1 − ψ)ρair,

μ = ψμM + (1 − ψ)μair. (8)

It should be noted that the fibers are considered within ρ̄ but
not within μ and that ρsusp = cMρM + cFρF corresponds to
Voigt’s average leading to the exact suspension’s density.

In Eq. (3) thematrix viscosityVM is considered bothNew-
tonian and non-Newtonian in the context of a generalized
Newtonian fluid.Within the present study, the shear-thinning
Cross-model [45] for the polymer matrix is implemented
as follows to be compared against the Newtonian behavior
[40,46]

μ = μ0

1 + (m ˙̄γM)n
,

˙̄γM =
√ 〈D〉M · 〈D〉M

2
=

√
D̄ · D̄

2(1 − cF)2
. (9)

The Newtonian viscosity is denoted by μ0 and m, n repre-
sent model parameters. It should be noted that the air phase is
always modeled as a Newtonian fluid. In Eq. (9) the assump-
tion of rigid fibers 〈D〉F = 0 is used in order to express ˙̄γM
with respect to D̄ and cF using D̄ = (1 − cF)〈D〉M. Since
the flow–fiber coupling affects the constitutive behavior,
˙̄γM is used instead of ˙̄γ introduced in the context of the
Folgar–Tucker equation (2). It should be noted that the fiber
orientation evolution is considered only dependent on the
macroscopic kinematic fields D̄, W̄ and ˙̄γ . As a consequence,
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the coupling effects on the fiber orientation evolution are
only present based on changes in the flow field compared to
the decoupled approach. This procedure ensures a compara-
ble fiber orientation evolution in order to study the coupling
effects purely due to viscous anisotropy.

2.2 Solid fiber reinforced composites

After fluid–solid transition, effective linear elastic behavior
σ̄ = C̄[ε̄] is assumed for the solid fiber reinforced compos-
ite, with ε̄ denoting the effective strain and C̄ representing the
effective stiffness tensor. It is assumed that the geometry and
fiber orientation do not change during the fluid–solid tran-
sition. For clarity, the basics regarding mean-field modeling
are omitted here and the reader is referred to further litera-
ture, e.g., Nemat-Nasser and Hori [47] or Kanaun and Levin
[48]. Based on the Mori–Tanaka model [26], the effective
stiffness tensor reads C̄ = CM + R̄ with the abbreviation R̄

defined as follows [27,40,49]

R̄ = cF
(
cFδC

−1 + cM
〈(
δC−1 + P0

)−1〉−1
OA

)−1
. (10)

It should be noted that only homogeneous and isotropic
phases are considered. In Eq. (10), the abbreviation δC refers
to CF − CM with the stiffness of the fiber material CF and
of the matrix material CM. The polarization tensor P0 can
be computed analytically based on the expressions given in
Ponte Castañeda and Willis [41]. Analogously, 〈·〉OA refers
to the orientation averaging procedure given in Advani and
Tucker [10].

The stationary balance of linear momentum without body
force densities 0 = div(σ̄ ) is used as the governing equation
for the effective displacement field ū

0 =
(
KM + 1

3
GM

)
grad div(ū) + GM�ū

+ div
(
R̄[grad(ū)]). (11)

The bulk modulus is represented by K and the shear mod-
ulus by G. Based on the right minor symmetry of R̄, the
mapping R̄[grad(ū)] inherently uses only the symmetric
part of grad(ū) referring to ε̄. The tensor R̄ contains the
information about the local fiber orientation state based
on orientation averaging. After solving Eq. (11) for ū, the
effective strain is computed directly by the kinematic rela-
tion ε̄ = sym grad(ū) and the effective stress follows from
σ̄ = C̄[ε̄].

2.3 Scale separation and requirements for
homogenization

Fiber orientation tensors inherently represent the averaged
orientation state, e.g., on every numerical grid cell in the

context of coarse graining. Therefore, labeling N and N as
effective fields by ¯(·) is omitted throughout this manuscript.
All other fields are labeled as effective fields to emphasize
that they are averages regarding the scale on which the orien-
tation tensor description is valid. In this context, every grid
cell used for numerical computation is seen as a statistically
representative volume across which the describedmean-field
homogenization is performed. The spatial distribution of
the fibers is assumed to be statistically homogeneous and
the ergodic hypothesis is applied. In addition, the consid-
ered microstructure does not contain cracks or voids, the
Hill-Mandel condition [50,51] is assumed to be valid and
phase-wise constant properties are used. Further informa-
tion can be found in the literature, e.g., in Nemat-Nasser and
Hori [47] or in Torquato [52]. Regarding the uniform mean-
field homogenization of viscous fiber suspensions and solid
short-fiber reinforced composites, reference is made to the
recent work of Karl and Böhlke [40].

3 Numerical procedure

3.1 Mold-filling simulation using OpenFOAM®

For both fluid and solid simulations the 2D rib geometry
shown in Fig. 1 is used. This generic geometry is inspired
by the bifurcation flow of Haagh and van de Vosse [53] and
represents a classic thin-walled component. The length h is
2.5 · 10−3 m. The geometry is chosen such that the two
ribs experience different flow states towards the end of the
mold-filling process, which is discussed in detail in Sect. 4.1.
It is shown that the two-phase simulation considering the
actual mold-filling is necessary in order to predict the fiber
orientation state correctly.

The implemented VOF solver is based on the inter-
IsoFoam solver of OpenFOAM® (version 2106) for the
isothermal mold-filling of two immiscible and incompress-
ible fluids with Newtonian or non-Newtonian viscosity [54].
The solver in use differs from the interFoam solver by using
the isoAdvector scheme improving the advection towards
a sharp interface [55–58]. Within the fluid solver, vol-
ume forces due to gravity are neglected in the balance of
linear momentum analogous to the solid solver. The imple-
mented methods of stabilizing the mold-filling simulations
are addressed in Sect. 3.4. Regarding the temporal discretiza-
tion, the second-order implicit backward scheme is usedwith
the time step �t determined by the maximum Courant num-
ber max(Co) = 0.02. This value corresponds to the order of
magnitude of the value of 0.05 proposed by Larsen et al.
[58] for the related interFoam solver. To ensure sufficient
accuracy, �t is limited by the maximum value of 10−3 s.
All simulations are stopped at the filling level of 99.999%.
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Fig. 1 Geometry considered for
both the mold-filling simulation
and for the solid composite
simulation with the definition of
the area of interest being the
basis for the results in Sect. 4

In addition, only second-order spatial discretization schemes
are used. For solving the systems of equations the multigrid
solver GAMG is chosen with GaussSeidel as the smooth-
ing method. In addition, p̄ and v̄ are computed based on the
PISO algorithm with 10 correction steps and no momentum
predictor step. As a result of a grid study 80 orthogonal and
uniformly distributed cells per h are set to resolve the fields
with sufficient accuracy.

Throughout this study, polypropylene (PP) is consid-
ered as the thermoplastic polymer matrix with the melt
density ρM = 728 kg/m3 (≈ 0.8 solid density [59] of
910 kg/m3 [60]). The Newtonian kinematic viscosity is set
to νM = 0.779 m2/s which corresponds to ν0 in the shear-
thinning Crossmodel given in Eq. (9) with the parameter val-
ues n = 0.749 and m = 17.366 · 10−3 [61]. Please note that
the kinematic viscosity ν and the density ρ are used as input
in OpenFOAM® instead of the dynamic viscosity μ = νρ.
The surface tension is set to σ = 0.028 N/m [62]. For the
air phase the default parameters νair = 1.48 · 10−5 m2/s and
ρair = 1 kg/m3 are used. In this study glass fibers are con-
sidered with the density ρF = 2540 kg/m3 [60]. By defining
h, v̄b, νM, ρM, σ as the characteristic quantities, theReynolds
number (Re) and the capillary number (Ca) describing the
problem have the following values

Re = v̄bh

νM
≈ 3 · 10−4,

Ca = ρMνMv̄b

σ
≈ 2025. (12)

Based on the value of Re, the mold-filling process approxi-
mately corresponds to creepingflowconditions andCa shows
that viscous forces are larger than surface tension forces.
The aspect ratio of the short glass fibers equals α = 20
withCI = 0.01 as the fiber-fiber interaction parameter affect-
ing the orientation tensor evolution given in Eq. (2). The
fibers are considered with a volume fraction cF = 0.2 which
corresponds to 41.1 wt − % based on the solid densities.
Analogous to Karl et al. [24], the thermodynamic consis-
tency is checked during mold-filling based on the isothermal
dissipation inequality D̄ · V̄[ D̄] ≥ 0.

The initial and boundary conditions for every field are
summarized in Table 1 with the boundaries wall, inlet and

outlet sketched in Fig. 1. The zeroGradient condition refers
to a vanishing gradient normal to the respective boundary.
The zeroGradient condition for ψ corresponds to a contact
angle of 90◦ at the wall. The boundary condition fixedFlux-
Pressure adjusts the pressure gradient in order to get a flux
on the boundary which is consistent with the velocity bound-
ary condition [54]. At the inlet a parabolic velocity profile is
set with the bulk velocity v̄b = 0.1 m/s [53]. By choosing
the standard interIsoFoam solver, pinning of the contact line
is observed. However, experiments in comparable settings
show that form-filling flows are achieved with the selected
process data described above [63,64]. The observed contact
line pinning is most likely related to the large capillary num-
ber given in Eq. (12). Under large Ca number conditions it
is known that a large deformation of the free surface area
can occur before the occurrence of a moving contact line.
As a result, the advancing contact angle, which is related to
Ca through the Cox–Voinov law [65,66], basically decouples
from the static contact angle [67]. This physical process can-
not be captured by the employed VOF formulation in which
only the static contact angle is prescribed. In order to enable
the corresponding simulations at high Ca with a moving con-
tact line in the standard interIsoFoam solver a novel boundary
condition, referred to as localAirVent, is implemented. The
localAirVent boundary condition—which is inspired by a
freely escaping air phase in previous mold flow simulations
[68–70]—enables an outflow of air in an area around the con-
tact point. The boundary condition airVentBC allows the air
phase to leave the domain across the outlet until the bound-
ary cells are almost filled with polymer. Then, the condition
switches linearly from zeroGradient to the standard no-slip
condition and prevents the suspension fromflowing out. Both
localAirVent and airVentBC are based on the following equa-
tion with the implemented blending function g(ψ) and the
outward pointing unit normal vector n at each boundary

g(ψ)v̄ + (
1 − g(ψ)

)
grad(v̄)n = 0. (13)

The mixedPressureOut boundary condition used by, e.g.,
Ospald [70] refers to a constant reference pressure if the
boundary cells are completely filled with air. If the boundary
cells are completely filled with suspension, then the zero-
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Table 1 Initial and boundary conditions regarding the extended interIsoFoam solver

Field Initial condition Wall Inlet Outlet

ψ zero zeroGradient fixedValue 1 zeroGradient

p̄ zero fixedFluxPressure zeroGradient mixedPressureOut

v̄ zero localAirVent parabolic airVentBC

N isotropic zeroGradient isotropic zeroGradient

f zero zeroGradient zeroGradient zeroGradient

Gradient condition is applied. In between, a mixed boundary
condition is applied until the cells are completely filled with
suspension following the condition

(1 − ψ) p̄ + ψgrad(ψ) · n = (1 − ψ) p̄ref, (14)

with the reference pressure chosen as pref = 0. All other
boundary conditions listed in Table 1 are self-explaining and
OpenFOAM® standard. The 2D flow is achieved by assign-
ing the empty boundary condition to the front and back faces.

3.2 Solid composite simulation using Abaqus®

Regarding the solid composite simulations, theYoung’smod-
ulus of 1.6 GPa is used for PP and 73 GPa for the glass
fibers [60]. The Poisson’s ratio of PP equals 0.4 and 0.22
for the glass fibers [60]. With these parameter values, the
equations (10) and (11) are uniquely determined. The inlet
is clamped with suppressed displacement and rotation. The
displacement ū1 = 1.5 · 10−4 m is applied at the two outlets
of the ribs, which results in a bending of the whole struc-
ture. All details about the boundaries are illustrated in Fig. 1.
It should be noted that the fluid–solid transition during and
after the mold-filling process is assumed to occur instantly
without modification of the fiber orientation.

The solid composite simulations throughout this study are
mainly carried out with the commercial finite element soft-
ware Abaqus® CAE Standard/Explicit (version 2020). The
anisotropic stiffness corresponds to the algorithmic tangent
within a user-material (UMAT) subroutine implemented in
Fortran 90. The fiber orientation data corresponds to a prede-
fined field as an additional input of the UMAT. Based on the
2D load case, the 4-node bi-linear plane strain element CPE4
is used for meshing the geometry shown in Fig. 1. As a result
of a grid study 80 orthogonal and uniformly distributed cells
per h are used to resolve the stress field sufficiently. More-
over, the mapping of the orientation data from the fluid to the
solid mesh is done based on the nearest-neighbor procedure
used by Gajek et al. [71] extended by the trace-preserving
correction scheme of Kuzmin [72]. It should be noted that
the orientation data is mapped from the cell centers of the
openFOAM® mesh to the nodes of the Abaqus® mesh. Since
the UMAT is used at the element integration points, the nodal

orientation values are interpolated byAbaqus®. It is observed
that elements with quadratic trial functions lead to negative
eigenvalues of the system matrix. Therefore, using elements
with linear trial functions is suggested.

3.3 Solid composite simulation using OpenFOAM®

As a basis of the present study the solids4foam toolbox
[73–75] for OpenFOAM® is used. For further information
regarding the finite volume method in solid mechanics the
reader is referred to Cardiff and Demirdz̆ić [76] and the ref-
erences therein. TheMori–Tanaka model given in Eq. (10) is
implemented as a new solid model in the solids4foam tool-
box. On the one hand, both fluid and solid simulations are
possible in a uniform open-source environment and on the
other hand, a comparison with finite element solvers can be
made in view of anisotropic fiber-reinforced composites.

The material parameters are given in the section above. At
the inlet, the fixedDisplacement boundary condition is used
realizing the clamping. For the two ribs, the solidDirection-
Mixed boundary condition is used with ū1 = 1.5 · 10−4 m
as the horizontal displacement and free vertical displace-
ment ū2. For all other boundaries the solidTraction condition
is set as zeroGradient. The plane strain state is achieved
by assigning the empty boundary condition to the front
and back faces of the geometry. For solving the system
of equations the multigrid solver GAMG is chosen with
diagonal-based incomplete Cholesky preconditioner as the
smoothingmethod. All chosen spatial discretization schemes
are of second order and 80 orthogonal and uniformly dis-
tributed cells per h are used based on a grid study. Please
note that in this study the same mesh is found to be suffi-
ciently accurate for the mold-filling simulations, the finite
element and for the finite volume simulations. In order to
correct possible interpolation errors, whichmay occur during
the transition between the fluid and the solid mesh, the trace-
preserving correction schemeofKuzmin [72] is implemented
analogously to the finite element procedure described above.
In contrast to the finite element implementation, methods for
stabilization must be actively implemented in this context,
which is described in Sect. 3.5.
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3.4 Fluid solver stabilizationmethods

In the following subsections methods of stabilizing the two-
phase fluid solver for computing the flow–fiber coupled
mold-filling process are addressed in detail. The discussion
of the methods is adapted to the use of OpenFOAM® and is
intended to support engineering practice implementing flow–
fiber coupled computations. All of the shown methods are
implemented to enable parallel computations.

3.4.1 Implicit-explicit splitting of the coupling term

In order to improve the stability, as many terms of f given in
Eq. (6) as possible should be discretized implicitly regarding
the primary field v̄. It turns out to be numerically unfa-
vorable that gradients can only be discretized explicitly in
OpenFOAM® and that the coupling term is dominated by
velocity gradients [70]. The coupling term f given in Eq. (6)
can be rewritten as follows

f = div

(
cF
cM

(
b1N[ D̄] + b2(N · D̄)I

+ 2b3(N D̄ + D̄N)
))

+ div

(
cFb5
cM

D̄
)

. (15)

Only one part of the second term on the right-hand side of
Eq. (15) can be discretized implicitly by using the product
rule and the incompressibility condition leading to

div

(
cFb5
cM

D̄
)

= D̄ grad

(
cFb5
cM

)
+ cFb5

2cM
�v̄. (16)

By using Eq. (16) and Eq. (15), the implemented splitting of
f reads

f expl = div

(
cF
cM

(
b1N[ D̄] + b2(N · D̄)I

+ 2b3(N D̄ + D̄N)
))

+ D̄ grad

(
cFb5
cM

)
,

f impl =
cFb5
2cM

�v̄. (17)

The implicit-explicit splitting of all other terms in the system
of governing equations (5) for computing ψ, p̄ and v̄ is not
changed and corresponds to the implementation of the basic
solver interIsoFoam described in Sect. 3.1.

3.4.2 Treatment of the viscous stress

As already discussed by Karl et al. [24] the fiber-related part
of the viscous stress

σ̄ V,F = cF
cM

〈
P

−1
0

〉
OA[ D̄] (18)

is not traceless in the case of anisotropic fiber orientation,
even for traceless D̄. As a consequence, additional contri-
butions to the spherical stress −p I are present, which can
be spatially strongly inhomogeneous with negative effects
on the pressure solver convergence. Since the pressure acts
as a Lagrangian multiplier for satisfying the incompressibil-
ity constraint, one can use, without loss of generality, the
following expression for the fiber-related viscous stress

σ̄ V,F = cF
cM

P2
〈
P

−1
0

〉
OA[ D̄]. (19)

Since the mass balance div(v̄) = 0 is fulfilled in terms of
fluxes over the cell faces, the cell-centered D̄ is not neces-
sarily traceless due to interpolation errors. Simulation results
show that this error might be large close to the interface with
the error decreasing to tolerable values as the distance from
the interface increases. In order to ensure, that only traceless
D̄ is used within the viscous stress tensor, the following final
expression is implemented [39]

σ̄ V,F = cF
cM

P2
〈
P

−1
0

〉
OAP2[ D̄]. (20)

3.4.3 Spatial restriction of the coupling term

In the following, the spatial restriction of f given in Eq. (6)
is described in detail. As discussed in the literature, e.g.,
[53,77–79], the three-phase contact point (TPCP) shown in
Fig. 2 is critical in view of stress singularities. Furthermore,
the large material contrast of the air and melt phases com-
bined with the coupling in the area of the phase front has an
unfavorable effect. In order to obtain convergence, the cou-
pling is switched on successively with increasing distance
from the phase front. Therefore, anisotropic viscosity effects
directly at the phase front cannot be taken into account with
this procedure. But this is not critical since the analyzed
orientation tensor further downstream is not significantly
influenced by this gradual introduction of the flow–fiber cou-
pling behind the phase front.

In order to circumvent interface-induced coupling insta-
bilities, the followingprocedure is implementedwith all areas
shown in Fig. 2. The area Vsusp occupied by the fiber sus-
pension is divided into three sub-areas. In the area Vdecoupled
close to the interface, no flow–fiber coupling is present avoid-
ing large explicit coupling terms. Next, in the transition zone
Vtrans the coupling strength is increased linearlywith increas-
ing distance from the interface. The full flow–fiber coupling
is present in Vcoupled. As an input, dmin is set as the minimum
distance between the phase front (interface) and the begin-
ning of flow–fiber coupling. In addition, dtrans is set as an
input representing the width of the transition area. In every
time step, the positions of the interface grid cells x interface
are detected by ‖grad(ψ)‖ > 5000 m−1, which turns out to
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Fig. 2 Graphical representation
of the areas regarding the spatial
restriction of the coupling term
f with the area totally occupied
by the suspension
Vsusp = Vdecoupled + Vtrans
+ Vcoupled

be sufficiently large for the used mesh. Then, for every point
x ∈ Vsusp the spatially restricted (sr) coupling term f sr is
clearly determined as follows based on d = ‖x − x interface‖

f sr =

⎧⎪⎨
⎪⎩
0, d < dmin
d−dmin
dtrans

f , dmin ≤ d < dmin + dtrans
f , d ≥ dmin + dtrans

. (21)

It should be noted that Eq. (21) refers to both the implicit and
the explicit part of the coupling term. Within this study the
distances are set to dmin = dtrans = h/10.

3.4.4 Under-relaxation of the explicit coupling term

Under-relaxation is a commonmethod in computational fluid
dynamics improving numerical convergence [80]. Through-
out this study the explicit part of the coupling term is
under-relaxed (ur) as follows

f urexpl = f nexpl + r
(
f n+1
expl − f nexpl

)
, (22)

with the relaxation factor 0 < r < 1, the coupling term of the
previous time step f nexpl and f n+1

expl referring to the explicit
coupling term depending on the updated fiber orientation
tensor and flow kinematics. As a result of under-relaxation,
the explicit coupling term is not used entirely updated in
the linear-momentum balance. As described in the literature
[80], the relaxation parameter r depends on the flow prob-
lem and, therefore, cannot be chosen a priori. Within this
study it is observed that strong under-relaxation is necessary
for strong flow–fiber coupling (cF > 0.1, α > 10), even for
kinematically simple channel flows. Throughout this study,
r = 0.05 is fixed for the simulation setup. There are no neg-
ative effects on the convergence due to this small value of
r since both the fiber orientation and the flow field quickly
reach stationary values. The simulations results show that
the difference f n+1

expl − f nexpl is only present around the tran-
sition region (see Sect. 3.4.3), in which the coupling is not
considered fully present anyway.

3.4.5 Stabilizing the Folgar–Tucker equation

As discussed by Paschkewitz et al. [81], an explicit solu-
tion procedure of Eq. (2) may lead to instabilities, which
are manifested by a loss of positive semi-definiteness and by
invalid values of the orientation components. Therefore, as
many terms as possible are discretized implicitly regarding
N , as shown in Appendix A in order to make the manuscript
self-contained. Throughout this study, no numerical issues in
view of solving the Folgar–Tucker equation occur by apply-
ing the procedure addressed in Appendix A. Nevertheless,
further possibilities for stabilizing and correcting the Folgar–
Tucker equation are summarized below, which are useful for
the reader in case of numerical issues.

Since the Folgar–Tucker equation represents a purely con-
vective equation, an artificial diffusion term Rart = β�N
can be used to stabilize the solution procedure with β rep-
resenting the artificial diffusion. Mezi et al. [5] used this
stabilization method within the Fokker-Planck equation for
the probability density function f . Alternatively, artificial
diffusion can be restricted to regions where N loses its pos-
itive semi-definiteness [81,82]

Rart =
{
0, det(N) ≥ 0

β�N, det(N) < 0
. (23)

The parameter β can be modeled depending on the local grid
spacing and a proper value depending on the flow problem
[81,82]. It should be noted that unsuitable values of β lead
to numerical issues and, therefore, a parameter study is sug-
gested [82]. The trace condition tr(N) = 1 is not violated by
adding artificial diffusion terms to the Folgar–Tucker equa-
tion. This can be easily shown by expanding the evolution
equation for s:=tr(N) given in Linn [83] by the artificial
diffusion term as follows

∂s

∂t
+ grad(s) · v̄ = 6CI ˙̄γ (1 − s) + β�s. (24)

Please note that the derivation of Eq. (24) requiresN[I] = N
to be fulfilled by the closure in use. Since always physical
initial conditions for the orientation state are usedwith s = 1,
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the right-hand side of Eq. (24) vanishes. As a consequence,
s = 1 is preserved.

In addition to stabilizing the Folgar–Tucker equation, non-
physical orientation tensor results can be corrected. The
correction schemes refer to eigenvalues or diagonal compo-
nents of N violating the physical interval [0, 1]. Verweyst and
Tucker [84] developed a procedure to correct the eigenvalues
of N after solving the Folgar–Tucker equation and before the
orientation state is used for flow–fiber coupling. For a trace-
preserving correction based on setting non-physical negative
eigenvalues to zero, the reader is referred to Kuzmin [72] and
the references therein for further correction schemes.

3.4.6 Remarks on the mesh and time discretization

Within this study, it is observed that homogeneous and
orthogonal mesh cells are the most suitable for the two-phase
mold-filling simulations in view of computation time. This is
due to the fact that non-orthogonal cells require a smaller time
step to obtain the sameCourant number for similarmesh fine-
ness. Furthermore, with respect to the coupling term, coarse
grids lead to stable solution behavior for spatially strongly
inhomogeneous fields. This is due to the fact that gradients
are smoothed in this way and numerically unfavorable local
peaks in the coupling term are thus prevented. Despite the
stability, coarse meshes are not recommended for improving
stability due to spatial inaccuracy.

As already described in Sect. 3.1 the second-order implicit
backward scheme is used for time discretization. Although
this is an unbounded scheme [54,85], no instabilities in the
context of time discretization are observed in this study. In
case of stability issues, the bounded implicit Euler scheme
[54] may be applied to stabilize the time integration. For pro-
gressive waves the numerical damping of the Euler scheme
is addressed by Larsen et al. [58]. It should be noted that this
first-order accurate method may only be applied if sufficient
temporal resolution is ensured or if the integration leads to a
steady state solution.

3.5 Solid solver stabilizationmethods

In order to make the manuscript self-contained, the stan-
dard implementation of Eq. (11) in solids4foam is explained
below, which is extended by the Mori–Tanaka model for the
simulation of anisotropic fiber-reinforced composites. In its
most compact form, the linear momentum balance reads

0 = div(C̄[grad(ū)]). (25)

In order to improve convergence, Laplacian terms are added
toEq. (25) as followswith both implicit and explicit treatment

[74,75]

0 = k(�ū
impl.

− �ū
expl.

) + div(C̄[grad(ū)])
explicit

. (26)

As described byShayegh [75], the first two terms do not influ-
ence the converged solution. The prefactor k = 4GF/3 + KF

is used [74,86,87] with the elastic properties of the fiber
phase. During the study it is observed that a smaller cho-
sen k, for example calculated with the elastic constants of
the matrix, may have a negative effect on the convergence.
In order to damp non-physical oscillations, the Rhie–Chow
stabilization method [74,76,87–89] already implemented in
solids4foam is applied. As a consequence, the linear momen-
tum balance reads with the explicitly treated Rhie–Chow
stabilization term [75,76]

0 = k
(
�ū
impl.

− �ū
expl.

) + div(C̄[grad(ū)])
explicit

+ ak
(
�ū − div grad(ū)

)
explicit (Rhie–Chow)

, (27)

with a representing a scaling factor. A parameter study shows
that the solids4foam default value a = 0.1 is sufficient to
damp the occurring numerical oscillations to an acceptable
magnitude. It should be noted that both �ū and div grad(ū)

represent Laplacians, but div grad(ū) is used to express a
different discretization compared to �ū.

In addition, the Laplacian term GM�ū being part of
div(C̄[grad(ū)]) as given in Eq. (11) can be treated implic-
itly to further stabilize Eq. (27). Based on a comparison of a
purely explicit treatment, no advantage is observed in terms
of stability and computational time. Therefore, the explicit
discretization of div(C̄[grad(ū)]) shown in Eq. (27) is imple-
mented.

4 Results and discussion

4.1 Coupling effects on the fiber orientation

In Fig. 3 the fiber orientation field N is shown in the area
of interest defined in Fig. 1. For simplicity, only the results
regarding the non-Newtonian case are shownwith the decou-
pled approach in the left column and the coupled approach
in the right column, respectively. The plots in Fig. 3 serve to
clarify the orientation state as a basis for the solid composite
simulations of Sect. 4.2, which are based on the fiber-induced
anisotropic stiffness. This is important because the coupling
effects will be analyzed in form of difference fields. By com-
paring both columns in Fig. 3 against each other one can see
that the coupling effects (see Sect. 1.1) are reproduced, e.g.,
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Fig. 3 Fiber orientation field N
in the area of interest with
respect to non-Newtonian
matrix behavior during mold
filling (left column: decoupled
approach, right column: coupled
approach)

Fig. 4 Temporal evolution of
orientation tensor components
N11, N22, N33 and phase
parameter ψ at the beginning of
the left rib in a and of the right
rib in b (non-Newtonian
coupled, points marked in top
right plot of Fig. 3)

the distinct isotropic orientation in the horizontal channel
center region caused by the flattening of the velocity profile.
In the considered 2Dflow,mainly N11 and N22 are influenced
by the kinematics, whereas N33 evolves due to trace preser-
vation. The component N12 provides information about the
eigensystem of N with N12 = 0 referring to an eigensystem
coinciding with the spatial axes. Regarding the 2D flow con-
sideration, N13 = N23 = 0 holds. The area of interest shown
in Fig. 3 can be divided into two main parts, the lower hori-
zontal area and the vertical ribs. Both parts can be simplified
as a simple channel flow, in which the fibers align in the main
shear direction. For the horizontal part, this direction is e1
represented by large values of N11. For the vertical ribs, this
direction is e2 leading to large values of N22.

By comparing the final fiber orientation states below and
inside both ribs at the filling level of 99.999%, the influence
of the different filling behavior is clearly visible: The left rib

is completely filled first, while the right rib and the horizontal
channel are not completely filled at this particular time step.
Once the left rib is filled, no fiber orientation evolution is
present inside and the kinematics in the area below change
into a shear-dominated one leading to an alignment in e1-
direction. This horizontal shear is not present in the area
below the right rib since the horizontal channel is filled before
the right rib. Therefore, N22 is the favored fiber orientation
below the right rib caused by vertical shear and a deflection
of the flow. In the following, the filling behavior of the two
ribs is investigated further in a comparative manner.

In the top-right plot of Fig. 3 two points are marked for
which the temporal fiber orientation evolution is investigated.
For the point in the left rib, the diagonal components of N are
plotted over time in Fig. 4a and for the right rib in Fig. 4b,
respectively. The analysis is restricted to the coupled non-
Newtonian approach. Starting from the isotropic initial state
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Fig. 5 Viscosity measure eV in
a and the corresponding viscous
anisotropy measure in b
regarding the left rib and the
difference between two different
filling states, both for the
coupled non-Newtonian case

Fig. 6 Fiber orientation difference �N and ranges of values with
respect to the different mold-filling approaches

marked with 1© the fiber orientation begins to evolve once
the phase front (represented byψ) passed the two considered
points. In time interval 2© shortly behind the phase front, a
transient orientation state is shown for both points. Subse-
quently, the orientation evolves towards an asymptotic state
at 3©, which describes the mold-filling process of both ribs
and the horizontal channel without any part of the cavity
being completely filled. It should be noted that the asymp-
totic state only depends on the given kinematics, the aspect
ratio of the fibers and the fiber-fiber interaction strength [31].
Since the kinematics are different at the two points during
time interval 3©, also the orientation state differs. Note that
the orientation state observed during time interval 3© corre-
sponds to the state that would occur if the flow through the
cavity at the two points were stationary, or in other words,
if no two-phase simulation of the actual mold-filling process
is carried out. At approximately t = 0.58 s the left rib is
completely filled with suspension and, as already described
above, the kinematics change into a shear-dominated one in
the area around the considered point. This also affects the
orientation evolution in the right rib at this time step since
the flow is accelerating in the horizontal channel. Already
a short time later at approximately t = 0.62 s the horizon-

tal channel is also completely filled leading to a complete
deflection of theflow into the right rib.Until the cavity is com-
pletely filled at t = 0.69 s, this change in kinematics leads
to a new orientation state at 4© defining the anisotropy of the
manufactured part after fluid–solid transition. Since level 4©
is clearly different from 3©, the necessity of simulating the
actual mold-filling becomes apparent. A simulation based
purely on the steady-state flow through the geometry cannot
represent this change in kinematics due to the filling process
and predicts the fiber orientation differently. Therefore, the
filling of individual areas of the cavity must necessarily be
taken into account in order to correctly predict the evolution
of the fiber orientation and the associated anisotropy.

In order to further quantify the mentioned differences
between 3© and 4© in view of fiber orientation, the local
anisotropic viscosity is investigated in the coupled approach.
For this purpose, the following two measures eV and eV,aniso
are defined,which quantify the difference between 3© (left rib
fills quasi-stationary at t = 0.5 s) and 4© (shear-dominated
flow below left rib at t = 0.69 s)

eV = ‖V̄0.5 − V̄0.69‖
‖V̄0.5‖

· 100%,

eV,aniso = ‖V̄0.5,aniso − V̄0.69,aniso‖
‖V̄0.5,aniso‖

· 100%. (28)

The total viscosity difference is represented by eV, whereas
eV,aniso addresses the change of anisotropy, both as a scalar
measure for simplicity. The anisotropic part of V̄ is defined
as follows

V̄aniso = V̄ − (V̄ · P1)P1 − 1

5
(V̄ · P2)P2, (29)

with P1 representing the identity on spherical second-order
tensors. In Fig. 5 the viscosity measures defined in Eq. (28)
are shown for the left rib. The results indicate that the differ-
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Fig. 7 Difference field
�N = Ncoupled

Newtonian − Ndecoupled
Newtonian

in the area of interest

Fig. 8 Difference field
�N = Ncoupled

nonNewtonian − Ndecoupled
nonNewtonian

in the area of interest

Fig. 9 Non-dimensional stress difference �σ ∗ and ranges of values
with respect to the different mold-filling approaches

ence in orientation between 3© and 4© significantly affects
the local effective viscosity and also significantly changes
the degree of anisotropy.

In the following, the analysis is restricted to the compar-
isons shown in Fig. 6 with the fiber orientation differences
defined by Karl et al. [24]. In Fig. 6, vertical differences
address the effects of flow–fiber coupling for both viscos-
ity models, whereas horizontal differences account for the
effect of the viscosity models for both decoupled and flow–
fiber coupled approach. For all four cases, the range of values
is given with respect to the area of interest.

Based on Fig. 15 in Appendix B.1, where additional fiber
orientation results are provided, the local orientation differ-
enceswith respect to different viscositymodels in the coupled
approach range from − 40 to 41%, regarding the possible
interval [0, 1] of N11, N22 and N33. In addition, Fig. 14 in
Appendix B.1 shows the effect of the viscosity model for the
decoupled approach with local orientation differences − 27
to 30%. Therefore, one can state that for both the decoupled
and the coupled approach, the viscosity model has a great
influence on the local fiber orientation state. Furthermore,
the relevance of the viscosity model changes with the flow–
fiber coupling, as the range of values increases compared to
the decoupled case. Please note that the latter statement only
holds for flow cases in which the shear rate is sufficiently
large to cause significant shear-thinning in the matrix fluid.
This is given under the selected process conditions and is
addressed in Appendix B.1 in the context of Fig. 16.

For the sake of clarity, only the difference fields regard-
ing the pure effects of flow–fiber coupling for each viscosity
model are provided in the present section. In Fig. 7 the local
orientation difference between the decoupled and the cou-
pled approach is shown for the Newtonian case. The same
difference is given in Fig. 8 for the non-Newtonian matrix
fluid. Areas highlighted in red indicate an alignment which is
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larger in the coupled case and blue areas indicate a stronger
alignment in the decoupled case. By comparing Figs. 7 and 8
one can see that the differencefields show similar characteris-
tics for both considered matrix viscosity models. Regarding
the possible interval [0, 1] of N11, N22 and N33, the local
effect of flow–fiber coupling ranges from − 36 to 31% for
the Newtonian and from− 37 to 38% for the non-Newtonian
case and, therefore, can be evaluated as significant. It can
be seen that the flow–fiber coupling has approximately the
same effect for both viscosity models. In the non-Newtonian
case, the differences are slightly more distinct. However, this
does not mean that the fiber orientation in the coupled case
is almost identical for both viscosity models. In the coupled
case, for example, the choice of viscosity model has a larger
influence on the local fiber orientation than the flow–fiber
coupling. This can be seen in Fig. 6 in view of the given
ranges of values. Therefore, not only the coupling is crucial
for the local evolution of the fiber orientation, but also the
consideration of the shear-thinning behavior.

4.2 Coupling effects on the stress field

The fiber orientation states investigated above are now used
within finite element simulations for solid composites. Inde-
pendent of the fluid model during mold-filling, the solid
composite is modeled linear elastic with its anisotropy com-
pletely defined by N and N. Thus, this study docks directly
to the results of Karl et al. [24], which analyze the cou-
pling effects on the local elastic anisotropy, but not on the
stress field in the solid composite under load. Analogous to
the previous section, Fig. 9 addresses the four investigated
cases and the corresponding comparisons. In the following,
the non-dimensional stress difference field �σ̄ ∗ is consid-
ered with the respective definitions given in Fig. 9. Note that
these definitions must be applied for each stress component
i j = 11, 12, . . . individually. Again, horizontal differences
address the influence of the viscosity model during mold
filling for both decoupled and coupled approach, whereas
vertical differences consider the effect of coupling for both
viscosity models.

As a supplement, Fig. 17 in Appendix B.2 shows the
stress field both for the decoupled and the coupled approach
regarding the non-Newtonian case during mold filling. The
corresponding stress difference field is given in Fig. 11 with
the range of values from − 10.59 to 14.92%. Analogous to
the previous section, only the non-dimensional stress differ-
ence fields regarding the pure effects of flow–fiber coupling
for each viscosity model are considered in the section at
hand. For the Newtonian viscosity Fig. 10 addresses these
coupling effects with the range − 12 to 12.9%. All com-
ponents not shown are zero due to the plane strain state
and N13 = N23 = 0. Both ranges indicate, that the coupling
effect on the fiber orientation evolution during mold-filling

has a significant influence on the local stress of the solid com-
posite under loading after fluid–solid transition. Please note
that normalization is donewith eachmaximum stress compo-
nent, which emphasizes the importance of the coupling in the
context of the specified ranges. If stress peaks occur locally
due to the geometry, even small differences in fiber orienta-
tion caused by flow–fiber coupling during mold-filling can
lead to large differences in the stress field. This is the case
in the area of the left rib, in combination with large differ-
ences in fiber orientation. There, kinematically complex flow
conditions are additionally present,which lead to large differ-
ences in the fiber orientation, since viscous anisotropy effects
are fully present. Even a small load without stress peaks can
lead to significant differences in local stress in such areas, as
is the case, e.g., in the area under the right rib. In summary,
also against the background of the stress distribution, both the
necessity of coupling and the consideration of shear-thinning
matrix behavior are confirmed.

The difference fields regarding the influence of the viscos-
ity model can be found in Appendix B.2. For the decoupled
case the range of the local stress difference is− 6.04 to 4.61%
as shown in Fig. 18 and for the coupled case− 4.74 to 6.51%
as shown in Fig. 19. As a consequence, one can state that dif-
ferent viscosity models during mold-filling affect the local
stress significantly both for the decoupled and the coupled
approach. Compared to the previous section, the relevance
of the viscosity model does not change remarkably with the
flow–fiber coupling, as the range of values is comparable
to the decoupled case. However, the difference between the
stress fields based on the different viscosity models is not
negligible. More details can be found in Appendix B.2.

4.3 Abaqus® vs. OpenFOAM® for solid composite
simulation

In this section the stress predictions based on the extended
finite volume solver OpenFOAM® (FVM in the following)
are presented. Furthermore, a comparison is made with the
results based on finite element simulations with Abaqus®

(FEM in the following). The analysis is limited to the cou-
pled approach for non-Newtonian matrix viscosity since
both flow–fiber coupling and shear-thinning behavior sig-
nificantly affect the orientation and the stress field. In Fig. 12
the components of the effective stress tensor are shown for
both FVM (left column) and FEM (right column). The results
show that both fields look similar with variable differences
in the peak values. In general, the component values show
comparable magnitudes with the largest differences between
FVM and FEM for σ̄12 and σ̄33. The largest differences of the
respective stress components are present at the corners of the
geometrywhere the peakvalues occur.Numerical differences
are amplified there and especially the stability terms of the
FVMdescribed in Sect. 3.5 are effective there, since spatially
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Fig. 10 Difference field �σ̄ ∗ =
(σ̄

coupled
Newtonian − σ̄

decoupled
Newtonian) ·

100%/max(σ̄ decoupled
Newtonian) in the

area of interest

Fig. 11 Difference field �σ̄ ∗ =
(σ̄

coupled
nonNewtonian− σ̄

decoupled
nonNewtonian) ·

100%/max(σ̄ decoupled
nonNewtonian) in

the area of interest

Fig. 12 Effective stress field σ̄

in the area of interest with
respect to the coupled
non-Newtonian case (left
column: finite volume results,
right column: finite element
results)
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Fig. 13 Effective stress field σ̄ along paths through the area of interest with respect to the coupled non-Newtonian case for both finite volume and
finite element simulations (top: along x2 = h/2, bottom: along x1 = 5h, paths marked in Fig. 12)

large and strongly inhomogeneous gradients are present. To
investigate the differences between FVM and FEM in more
detail, Fig. 13 shows the components of the effective stress
tensor along two paths. The two paths are shown in the upper
left plot in Fig. 12 representing a cut through the horizon-
tal channel at x2 = h/2 and through the left rib at x1 = 5h,
respectively. In the considered area of interest, the results of
FVM and FEM show an overall good agreement.

For the problem given in this study, the results show that
compared to the FEM, the extended FVM solids4foam tool-
box is suitable for calculating the stress field in the solid
composite. This makes it possible to carry out the simulation
chain starting with the mold-filling up to the loading of the
solid composite in the open-source code OpenFOAM®. Fur-
ther advantages are the uniform environment, which enables
standardized workflows, and the high flexibility, i.e. the pos-
sibility to expand the contained basic solvers. A disadvantage
is that, depending on the problem and the code extension,
suitable stabilization methods must be found and any param-
eters must generally be selected depending on the given
problem. This goes hand in hand with a larger implemen-
tation effort compared to the implementation of an Abaqus®

user-material subroutine.
As any further comparison between FVM and FEM is not

the focus of the study, the reader is referred to the review arti-
cle of Cardiff and Demirdžić [76] and the references therein.
The work of Demirdz̆ić [90], taken as an example, compares
FVM with FEM and evaluates FVM as outperforming FEM
and as an equal alternative, depending on the problem. How-
ever, the disadvantage is listed that solid mechanics based on
FVM is not widely used.

5 Summary and conclusion

In this study the effects of flow–fiber coupling during mold-
filling are investigated in view of the stress field in the
manufactured solid composite after fluid–solid transition.
The two-phase mold-filling simulation of the fiber suspen-
sion is carried outwith the finite volume solverOpenFOAM®

based on an extendedVOF solver interIsoFoam [54]. Various
methods for numerical stabilization are implemented. The
fiber orientation taken from mold-filling simulations is used
for the solid composite defining its local anisotropic elastic
behavior. The fiber orientation itself during mold-filling is
simulated both with Newtonian and non-Newtonian matrix
behavior and also with and without flow–fiber coupling.
Both the viscous fiber suspension and the solid fiber rein-
forced composite are modeled micromechanically unified
with the Mori–Tanaka mean-field model [26,27,38–40,49].
The simulation of the solid composite is carried out with the
finite element solver Abaqus® using an implemented sub-
routine for the anisotropic elastic behavior. In addition, the
OpenFOAM® solids4foam toolbox [73–75] is extended for
simulating the solid composite and the differences to the
results from Abaqus® are discussed briefly.

The present study is based on the following main assump-
tions. The fiber geometry is assumed to be constant and the
fibers are treated as rigid bodies duringmold-filling.Based on
the Folgar–Tucker equation with isotropic fiber-fiber interac-
tion [9,10], the fiber orientation tensor of the first kind and
of second order [30] is assumed to be a sufficient measure of
anisotropy. The closure problem is treated by using the IBOF
closure [34] both for the Folgar–Tucker equation and for
the orientation average procedure. The mold-filling process
is modeled incompressible, isothermal and without fluid–
solid transition. To account for two different polymer matrix
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behaviors duringmold-filling, the polymermatrix ismodeled
as a generalized Newtonian fluid with rigid fibers, whereas
the solid composite and the fibers within are modeled linear
elastic. Both the fiber suspension and the solid composite
are homogenized on the scale of a grid cell, which is seen
as a representative volume element. Voids and cracks are
excluded and the Hill-Mandel condition [50,51] is assumed
to be fulfilled on the grid cells. The present study is based on
a double-rib geometry as a generic injection molding geom-
etry.

Regarding the implemented methods for numerical stabi-
lization the implicit-explicit splitting is concluded as impor-
tant. If it is possible in a solver to treat the coupling term
completely implicitly in the linear momentum balance, the
greatest possible stabilitywill be obtained. But this is not pos-
sible in OpenFOAM®, which is why further methods have
to be implemented to enable suspension simulations with
large fiber volume fractions and aspect ratios. The under-
relaxation of the explicit part of the coupling term is observed
to be a powerful method for flows in which low relaxation
factors can be used without negatively influencing the solu-
tion behavior. If only relatively large relaxation factors are
allowed to be used, a combination with the method of spatial
restriction of the coupling term is recommended. Further-
more, the described treatment of the viscous stress can be
used to improve the convergence of the pressure solver. It
can be concluded that stabilizing the code strongly depends
on the given problem and that a coordination of the meth-
ods is necessary. Within this study, the combination of all
described stabilization methods leads to a robust numeri-
cal behavior, provided that the adaptation of the methods
is problem-specific. Since this is difficult a priori, extensive
preliminary studies are recommended.

The simulation results can be summarized as follows and
the associated conclusions can be drawn:

• For both the decoupled and the coupled case, the choice
of the viscosity model has a non-negligible influence on
the fiber orientation (decoupled: − 27 to 30%, coupled:
− 40 to 41%) and on the stress field in the solid composite
(decoupled: − 6 to 4.6%, coupled: − 4.7 to 6.5%). Since
real polymer melts show a shear-thinning behavior, the
necessity of this modeling can be quantifiably justified.

• The differences in fiber orientation between the viscosity
models are larger in the coupled case than in the decou-
pled case. In this context, differences in the stress field in
the decoupled and coupled case are comparable. Thus, it
can be concluded that the relevance of the shear-thinning
behavior increases with coupling.

• For both viscosity models considered, it is shown that
the coupling has a significant influence on the fiber ori-
entation (Newtonian:− 36 to 31%, non-Newtonian:− 37
to 38%) and on the stress field (Newtonian: − 12 to

12.9%, non-Newtonian: − 10.6 to 14.9%). Based on the
fact that the anisotropic viscosity model describes the
real fiber suspension more physically than the neglect of
fiber-induced viscous anisotropy, the implementation of
flow–fiber coupling is recommended.

• The influence of flow–fiber coupling is quite comparable
for both viscosity models. Only the comparison between
the two viscosity models reveals the necessity of the
shear-thinning behavior.

• The two-phase simulation approach leads to distinct
differences in the local fiber orientation compared to
the steady-state flow through the geometry. Therefore,
changes in kinematics due to the actual filling process
have to be predicted by the simulation setup in order to
estimate the local anisotropic properties.

• A brief comparison between FVM and FEM shows that
a uniform simulation environment in OpenFOAM® is
suitable for bothmold-filling and for solid composite sim-
ulations. The stress field predicted by the two numerical
methods shows an overall good agreement in the consid-
ered area of interest.

Finally, it should be noted that the assumptions described
above are aimed at considering only the effects of flow–fiber
coupling on the fiber orientation and thus on the stress field in
the solid. Influences that are more complex than the viscous
behavior of the matrix are therefore not taken into account,
such as the effects of temperature, fiber-induced anisotropic
heat conduction and fluid–solid transition. In this context,
the recent publication of Dietemann and Bierwisch [91] indi-
cates that accurate rheological modeling has a larger impact
on fiber orientation (and thus on the resulting stress field)
than complex modeling of orientation dynamics. In addition,
the anisotropic behavior is estimated based on mean-field
homogenization which has advantages in terms of computa-
tional effort. In particular themold-filling simulation requires
a computational effective estimation of the anisotropic vis-
cosity on each grid cell. On the other hand, critical stress
peaks within the highly heterogeneous microstructure are
not resolved by mean-field methods. As a consequence, the
conclusions listed above have to be interpreted against this
background.Moreover, it is noted that injectionmolding pro-
cesses are often modeled as flows through narrow gaps, as
discussed by, e.g., Tucker [92]. In the present work, this so-
called Hele-Shaw simplification (see, e.g., Spurk and Aksel
[93]) is deliberately omitted because the geometry under
consideration is complex. Another point is that the fiber ori-
entation dynamics can be influenced by small wall distance
in such a way that the movement of the fibers is restricted.
In the literature this is referred to as confined flow, for which
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the modeling of fiber orientation evolution was adapted in
the studies of, e.g., Perez et al. [94] and Scheuer et al. [95].

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00466-023-02277-
z.
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Appendix A: Implicit-explicit splitting of the
Folgar–Tucker equation

In this supplementary section, the implicit-explicit splitting
of the Folgar–Tucker equation is addressed. The implicit-
explicit splittingof the IBOFclosure terms [34] is givenbased
on the work of Heinen [96] with respect to the symmetry-
preserving representation of Karl et al. [24]. It should be
noted that the incompressibility condition tr( D̄) = 0 is used
within the closure terms. The Folgar–Tucker equation is
solved for cells withψ > 0.99 avoiding anisotropic effects in
cells, which could neither be clearly assigned to the air phase
nor to the suspension. In addition, the Folgar–Tucker equa-

tion is solved in every time step before solving the system of
governing equations (5) with the following splitting

∂N
∂t

+ div(N⊗v̄) + 2ξN[ D̄]impl + 6CI ˙̄γ N

implicit

= W̄ N − NW̄ + ξ
(
D̄N + N D̄ − 2N[ D̄]expl

)

explicit

+ 2CI ˙̄γ I
explicit

. (A1)

The splitting of the IBOF closure terms reads

N[ D̄]impl = β3

3
(N · D̄)N + β5

6
(S · D̄)N,

N[ D̄]expl = 2β1

3
D̄ + β3

3
2N D̄N

+ β2

6

(
(N · D̄)I + 2 D̄N + 2N D̄

)

+ β4

6

(
(S · D̄)I + 2 D̄S + 2SD̄

)

+ β5

6

(
(N · D̄)S + 2N D̄S + 2SD̄N

)

+ β6

3

(
(S · D̄)S + 2SD̄S

)
, (A2)

with the coefficients β1, . . . , β6 depending on the invariants
of N as given in Chung and Kwon [34] and the abbrevi-
ation S = N2 or equivalently Si j = Nik Nkj . Both terms of
N[ D̄]impl were linearized (Nn · D̄n

)Nn+1 and (Sn · D̄n
)Nn+1

as suggested byHeinen [96],withn representing the time step
index.

Appendix B: Supplementary results

B.1 Fiber orientation

In addition to Sect. 4.1, Figs. 14 and 15 address the local fiber
orientation difference with respect to viscosity modeling.
Figure14 shows the difference between the non-Newtonian
and Newtonian matrix fluid for the decoupled case, whereas
Fig. 15 address the same difference for the coupled case.
The fields in both figures look similar. This is because for
the decoupled case, the non-Newtonian fluid has a flatter
velocity profile than the Newtonian fluid. This phenomenon
is exactly the same in the coupled case, in which the flow–
fiber coupling flattens the velocity profile (see, e.g., [5,24]).
In the coupled case, however, the non-Newtonian velocity
profile flattens more than in the Newtonian case, which is
why the characteristics of the difference field correspond to
the decoupled approach.
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Fig. 14 Difference field
�N = Ndecoupled

nonNewtonian − Ndecoupled
Newtonian

in the area of interest

Fig. 15 Difference field
�N = Ncoupled

nonNewtonian − Ncoupled
Newtonian

in the area of interest

Fig. 16 Non-dimensional
viscosity μ( ˙̄γM)/μ0 based on
the Cross-model in a and
effective matrix shear rate ˙̄γM
for the coupled non-Newtonian
simulation during mold-filling
(t = 0.5 s) in b

The differences regarding the two matrix fluid behaviors
are caused by different shear rates. Especially in the channel
center region, flattening causes less shear leading to less fiber
alignment in the main shear direction. This phenomenon can
be seen for N11 in the horizontal channel, where the Newto-
nian fluid results in larger values for N11 close to the center
line compared to the non-Newtonian case (blue color). The
same can be seen for N22 in inside the right rib. Furthermore,
the difference fields vanish close to the channel walls, since
the asymptotic orientation state being dominant there only
depends on the kinematics, fiber aspect ratio α and the fiber-
fiber interaction strength CI and not on the fluid model of the
matrix. For further information regarding asymptotic states

of the Folgar–Tucker equation, the reader is referred to Karl
et al. [31].

The differences between the viscosity models addressed
above depend on the shear-thinning behavior of the matrix
fluid in the non-Newtonian case. In order quantify this,
Fig. 16a shows the non-dimensional viscosity μ( ˙̄γM)/μ0

based on the Cross-model given in Eq. (9). In addition, the
field of the effectivematrix shear rate ˙̄γM is shown in Fig. 16b
with respect to the coupled non-Newtonian simulation dur-
ing mold-filling (t = 0.5 s). It can be seen that the shear rate
is locally so large that significant shear-thinning is present.
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B.2 Stress field

In addition to the results of Sect. 4.2 the local effective
stress field is given in Fig. 17. The left column refers to the
stress analysis for the decoupled simulation and the right col-
umn refers to the coupled approach, both for non-Newtonian
matrix behavior during mold filling. Since the elastic limit
of the material in use (PA-GF40) is 60.2–87.9 MPa [97], the
deformation is purely elastic.

Thenon-dimensional stress differencefield regardingboth
viscosity models for the decoupled approach is given in
Fig. 18. For the coupled approach, this difference field is
shown in Fig. 19. Due to the prescribed boundary conditions

(see Sect. 3.1), effects of the viscosity model mainly can be
limited to �σ̄ ∗

11 inside the horizontal channel and to �σ̄ ∗
22

inside the ribs. These differences are directly linked to the
previous section and caused by the flattening of the velocity
profile. This flatting affects the fiber alignment by a decreased
shear rate in the center region of the channels which influ-
ences the local stiffness. These local stiffness differences are
represented by the local stress differences regarding the pre-
scribed displacement boundary conditions.

Fig. 17 Effective stress field σ̄

in the area of interest with
respect to non-Newtonian
matrix behavior during mold
filling (left column: decoupled
approach, right column: coupled
approach)

Fig. 18 Difference field �σ̄ ∗ =
(σ̄

decoupled
nonNewtonian − σ̄

decoupled
Newtonian) ·

100%/max(σ̄ decoupled
Newtonian) in the

area of interest
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Fig. 19 Difference field �σ̄ ∗ =
(σ̄

coupled
nonNewtonian − σ̄

coupled
Newtonian) ·

100%/max(σ̄ coupled
Newtonian) in the

area of interest
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