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Abstract
We revisit the problem of computing optimal spline approximations for univariate
least-squares splines from a combinatorial optimization perspective. In contrast to
most approaches from the literature we aim at globally optimal coefficients as well as
a globally optimal placement of a fixed number of knots for a discrete variant of this
problem. To achieve this, two different possibilities are developed. The first approach
that we present is the formulation of the problem as a mixed-integer quadratically
constrained problem, which can be solved using commercial optimization solvers. The
second method that we propose is a branch-and-bound algorithm tailored specifically
to the combinatorial formulation.We compare our algorithmic approaches empirically
on both, real and synthetic curve fitting data sets from the literature. The numerical
experiments show that our approach to tackle the least-squares spline approximation
problem with free knots is able to compute solutions to problems of realistic sizes
within reasonable computing times.
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1 Introduction

In the univariate data approximation problem we are given n data points (xi , yi ) ∈ R
2

and a family of functions h(·, w) : R → R parametrized with a vector w ∈ R
m . The

goal is to find a parameter w̄ such that h(xi , w̄) ≈ yi for all i ∈ {1, . . . , n}. Thus, one
aims to compute ideally a global minimizer of the finite-sum problem

min
w∈Rm

n∑

i=1

�(h(xi , w), yi ),

where � : R
2 → R is an error function that quantifies the discrepancy between

h(xi , w) and the actual value yi corresponding to xi .
In many applications it is clear from the context which family of functions h(·, w)

should be used and the parameters w might even have a physical meaning. However,
there are alsomany caseswhere no specific family of functionsh(·, w) is dictated by the
application. In those cases spline functions are a popular tool for data approximation,
see [9].

A spline function consists of several polynomial functions of degree m ∈ N each
defined on a segment of the approximation interval [x1, xm]. The joint points of those
segments are called knots. Depending on the application, the polynomials may have
to satisfy certain continuity restrictions at the knots where they join, e.g., continuity
and smoothness up to the second derivative.

Another important choice concerns the type of error function. In this article, we
focus on the least-squares criterion, i.e., �(z, y) = (z− y)2, which is arguably themost
widely-used error function in practice. Depending on the application, other choices
can be more appropriate, e.g., �(z, y) = |z − y|. However, these alternative error
functions and their implications for the solution of the spline approximation problem
are for the most part beyond the scope of this paper.

The earliest algorithmic approach to determine an optimal knot placement with
respect to the least-square error for a fixed given number of knots is a discrete Newton
method proposed in [6], which can be used to approximate locally optimal solutions.
Other local approaches include the use of Gauss-Newton-type methods, see, e.g., [11,
17, 30], as well as the Fletcher-Reeves nonlinear conjugate gradient (FR) method, see
[9]. However, by applying these approaches it is only possible to determine locally
optimal solutions, and commonly their quality is highly dependent on the initial solu-
tion provided to the algorithm.

In contrast, genetic algorithms as described, for instance, in [23, 27, 32], can escape
low-quality locally optimal solutions, but the solution that is returned by these algo-
rithmsmight be neither locally nor globally optimal, since these approaches are purely
heuristic and cannot provide any certificate of optimality.

In [1] the so-called cutting anglemethod is used in order to compute globally optimal
knot placements of the least-squares spline approximation problem with free knots.
To the best of our knowledge, it is the only deterministic global optimization approach
that was proposed specifically for the solution of such a problem. Furthermore, knots
are treated as continuous variables here, which allows for great flexibility and makes
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the problem even more challenging. However, as noted in the section on numerical
experiments in [1], the computing time is prohibitive even for small problems.

In contrast to the methods reviewed so far, there exist many approaches in the
literature which neither seek a locally nor a globally optimal solution with respect
to the least-squares criterion. Instead, it is proposed to determine a knot placement
that satisfies other quality measuring criteria. Some suggest looking at the data and
place the knots according to some rule of thumbs, such as placing them near points
of inflection or at specific quantiles, see [29, 36]. Other approaches are based on
forward knot addition and/or backward knot deletion, see, e.g, [31, 34]. Moreover,
Bayesian approaches are proposed in [8, 10], which employ a continuous random
search methodology via reversible-jumpMarkov chainMonte Carlo methods. Amore
detailed review and comparison of these approaches can be found in [19, 35].

In this article, we propose to solve a combinatorial formulation of the least-squares
spline approximationproblemwith free knots and showhow this problemcanbe solved
to global optimality in a reasonable amount of time. We assume the number k of free
knots to be fixed and are only concerned with the optimal placement of the knots. The
first approach that we present is the formulation of the combinatorial least-squares
spline approximation problem as a mixed-integer quadratically constrained problem
(MIQCP). Problems of this type can be solved using commercial optimization solvers
such as Gurobi or CPLEX. Our second method is a branch-and-bound algorithm
tailored specifically to the combinatorial least-squares spline approximation problem
with free knots. Branch-and-bound methods have been successfully applied to a range
of statistical problems like variable selection and clustering, see, for example, [3, 15].

This article is structured as follows. In the next section we formally introduce the
relevant optimization problems.Moreover, we show that local optimization algorithms
cannot be expected to yield satisfactory solutions for this problem if the initial point is
not chosen sufficiently close to a globally optimal solution. However, since in typical
applications, neither the dimension of the decision variable nor the number of data
points is particularly large, it is possible to make use of the specific problem structure
in order to devise algorithmic approaches to approximate the globally optimal solution
of problem instances of relevant sizes. We suggest placing knots always exactly in the
middle between two data points. Note, however, that there is no universal approach
for this choice in the literature. In Sect. 3, as a first algorithmic approach for the
solution of the latter, we present a convexmixed-integer formulation that can be solved
using commercial optimization solvers. As an alternative algorithmic approach, we
propose a new branch-and-bound method in Sect. 4, which is tailored specifically to
the combinatorial formulation. In Sect. 5we present numerical experiments on real and
synthetic data which show that the combinatorial approach to the least-squares spline
approximation problem with free knots makes it possible to compute high-quality
solutions to problems of realistic sizes within reasonable computing times. Section6
concludes the paper with some final remarks. The supplementary information of this
article comprise a discussion on alternative error functions (Section A), a list of the
used test functions (Section B), and more detailed numerical results (Sections C, D,
E).
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2 Least-squares spline regression

In this section, we start by formulating the least-squares spline approximation problem
with fixed knots and describe how to efficiently compute its optimal solutions. Based
on this we extend our consideration to problems with free knots and explain why the
computation of globally optimal solutions is challenging. Finally, we describe how
the least-squares spline approximation problem with free knots can be reformulated
as a combinatorial optimization problem.

2.1 Least-squares spline regression with fixed knots

In order to simplify the exposition, we only consider cubic spline functions in this
article, i.e, m = 3. The formal definition of a cubic spline function with k knots is

s(x, β(0), . . . , β(k), ξ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(x, β(0)), for x1 ≤ x ≤ ξ1

p(x, β(1)), for ξ1 < x ≤ ξ2,

...

p(x, β(k)), for ξk < x ≤ xn,

with the ordered knot vector ξ ∈ R
k , x1 < ξ1 < ξ2 < · · · < ξk < xn , and k + 1 cubic

polynomials

p(x, β( j)) := β
( j)
0 + β

( j)
1 x + β

( j)
2 x2 + β

( j)
3 x3

for j ∈ {0, . . . , k}.Note thatwe limit our exposition to cubic splineswith themaximum
number of three continuity restrictions (up to the second derivative) only for ease of
presentation. It is straightforward to generalize our approach to piecewise polynomials
of arbitrary degree and different continuity restrictions.

We first assume that the knot vector ξ ∈ R
k is fixed and the goal is to determine

parameters optimal with respect to the least-squares criterion, i.e., we aim to solve the
optimization problem

min
β∈R4(k+1)

n∑

i=1

(s(xi , β, ξ) − yi )
2, (1)

where β ∈ R
4(k+1) denotes the concatenation of the vectors β(0), . . . , β(k) ∈ R

4.
Since the spline function s is linear in the decision variable β, the problem is a linear
least-squares problem whose optimal solutions can be computed by solving a system
of linear equations. This even holds in presence of constraints that ensure smoothness
and continuity of the computed function s. The system of linear equations stems
directly from the Karush-Kuhn-Tucker conditions. For more details and a derivation
of this we refer to [11, 13, 28]. In this case, note that β can be directly obtained as
soon as the knots are fixed. We will use this observation again in problem (3) in the
next section.

123



Globally optimal univariate spline approximations

A remark on our use of the power functions-based spline representation is due.
In the spline literature there is also the B-spline representation, see, e.g., [7], which
transforms the least-squares spline approximation problem into a different function
space. Essentially, this reduces the number of parameters and offers a computational
performance gain. Mathematically, both formulations are equivalent. However, we
opted for the power functions-based spline representation for several reasons. Firstly,
we think that this representation offers an easier approach to the problem from an
optimization perspective. Secondly, the mixed-integer formulation in Sect. 3 can be
straightforwardly derived if the power functions-based spline representation is used,
and it is not clear whether an equally goodmixed-integer formulation could be derived
with a B-spline representation. Lastly, the computational gains from using the B-
spline representation when computing the optimal knot placement with the branch-
and-bound method we present in Sect. 4 turned out to be negligible.

2.2 Least-squares spline regression with free knots

In contrast to the aforementioned description, if the knot vector ξ ∈ R
k is not fixed

but enters the optimization problem as a decision variable, the problem is referred to
as the least squares spline approximation problem with free knots, which reads

min
β, ξ

∑

xi≤ξ1

(
p(xi , β

(0)) − yi
)2

+
k−1∑

j=1

∑

ξ j<xi≤ξ j+1

(
p(xi , β

( j)) − yi
)2

+
∑

xi>ξk

(
p(xi , β

(k)) − yi
)2

s.t. p(ξ j , β
( j−1)) = p(ξ j , β

( j)), j = 1, . . . , k,

p′(ξ j , β( j−1)) = p′(ξ j , β( j)), j = 1, . . . , k,

p′′(ξ j , β( j−1)) = p′′(ξ j , β( j)), j = 1, . . . , k,

ξ j ≤ ξ j+1, j = 1, . . . , k − 1,

x1 ≤ ξ1, ξk ≤ xn,

β ∈ R
4(k+1), ξ ∈ R

k .

(2)

Although, as already mentioned, it is not uncommon to restrict possible knot place-
ments to a finite number of possibilities, in this section we prefer to consider the purely
continuous version of this problem in order to illustrate some interesting aspects. Fur-
thermore, it is important to note that the number of knots k is still a fixed parameter,
despite the fact that the knot vector ξ enters the problem as a decision variable. More-
over, since the equality constraints are nonlinear in the decision variables ξ j , problem
(2) is, in fact, nonconvex. For this reason, there are typically many locally minimal
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solutions that prevent local optimization algorithms from converging to globally opti-
mal solutions.

In order to visualize this, we reformulate the problem such that the vector ξ is the
only decision variable. As discussed in the previous section, this is possible since we
can obtain the optimal parameters β(ξ) of a spline function with a fixed knot vector
ξ by solving a linear system of equations, which is uniquely solvable under mild
conditions. More details on this can be found in [11, 13, 28]. With this notation we
rewrite problem (2) equivalently as

min
ξ

∑

xi≤ξ1

(
p(xi , β

(0)(ξ)) − yi
)2

+
k−1∑

j=1

∑

ξ j<xi≤ξ j+1

(
p(xi , β

( j)(ξ)) − yi
)2

+
∑

xi>ξk

(
p(xi , β

(k)(ξ)) − yi
)2

s.t. ξ j ≤ ξ j+1, j = 1, . . . , k − 1,

x1 ≤ ξ1, ξk ≤ xn

ξ ∈ R
k .

(3)

Note that the nonlinear equality constraints are eliminated from the problem since
they are automatically satisfied due to the choice of the optimal parameter vector
β(ξ). However, the problem is still nonconvex since β(·) is nonlinear in the knot
vector ξ .

Suboptimal local solutions of problem (3) are already present when the dimension
k of the knot vector is small. We illustrate this for k = 1 and k = 2. The blue dots in
Fig. 1a show a synthetic data set with 200 data points for which a spline approximation
is computed. The objective function of problem (3) for this case and one free knot ξ1
is illustrated in Fig. 1b. We observe that there exists a global and a local minimum.
Moreover, a local optimization algorithm initialized with a random knot placement
might approximate either one of these two locally optimal points. The spline functions
corresponding to these solutions are shown in Fig. 1a in red and green. Based on these
plots one could argue that the spline function corresponding to the globally optimal
solution approximates the data set more accurately. Furthermore, it becomes apparent
that a cubic spline functionwith one free knot does not yield a satisfying approximation
of this data set at all.

The objective function of problem (3) for the same data set and two free knots
ξ1 and ξ2 is depicted in Fig. 2. The function has one globally minimal point ξ̄ =
(0.2632, 0.5166)ᵀ and two locally minimal points ξ̃ = (0.0939, 0.1003)ᵀ and ξ̂ =
(0.8191, 0.8422)ᵀ.Moreover, the spline functions corresponding to the local solutions
approximate the data set significantly worse than the spline function corresponding to
the globally optimal knot placement, as can be observed in Fig. 3.
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Fig. 1 Locally and globally optimal least-squares spline functions and the corresponding objective function
of problem (3) with one free knot

This demonstrates that local optimization algorithms are only useful for the solution
of the least-squares spline approximation problem with free knots if they start from an
initial solution sufficiently close to a globally optimal solution. Based on a set parti-
tioning reformulation in the following subsection, we propose two novel possibilities
in Sects. 3 and 4 to accomplish this.

2.3 Reformulation as a set partitioning problem

Since least-squares spline regressionwith free knots is an extraordinarily hard problem,
we reformulate it as a type of set partitioning problem. To achieve this, we now restrict
the possible knot locations to a finite set as already discussed. It will become clear
that our new solution methods allow to do this in a rather natural way as we shall
see in the following. Furthermore, globally optimal solutions of this combinatorial
formulation may serve as promising initial points for local optimization algorithms
and it might even be possible to further improve these approximations by relaxing the
original problem.
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Fig. 2 Objective function of problem (3) with two free knots

Fig. 3 Least-squares splines corresponding to the two locallyminimal knot placements and the least-squares
spline corresponding to the globally optimal knot placement ξ̄ . The red and blue curves correspond to the
knot placements ξ̃ and ξ̂ , respectively (Color figure online)
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Since we want to approximate a given dataset with a spline with k knots, every data
point needs to be assigned to exactly one of the k + 1 polynomials. Therefore, instead
of computing the optimal placement of the knots, we aim to find an optimal partition
{I j | j = 0, . . . , k} of the set of indices {1, . . . , n}.

Due to the assumed ordering of the design points x1 < · · · < xn , a partition
is only feasible if for all i, j ∈ {0, . . . , k} with i < j we also have that r < q
for all r ∈ Ii and q ∈ I j . Since the spline function corresponding to a feasible
partition {I j | j = 0, . . . , k} has to satisfy continuity conditions at the knots, the
exact location of these knots has to be fixed based solely on the partition. Clearly,
the knot ξ j has to be placed between the values maxi∈I j−1 xi and mini∈I j xi for all
j = 1, . . . , k. We propose to select the midpoint of these two values, i.e., we set
ξ j = (maxi∈I j−1 xi + mini∈I j xi )/2 for all j = 1, . . . , k. This simple and symmetric
choice worked well in our numerical experiments. Thus, in order to determine the
optimal feasible partition, we solve the combinatorial optimization problem

min
β,I0,...,Ik

k∑

j=0

∑

i∈I j

(
p(xi , β

( j)) − yi
)2

s.t.
k⋃

j=0

I j = {1, . . . , n},

I j �= ∅, j = 0, . . . , k,

s < i for all s ∈ Il and i ∈ I j with l < j,

p(ξ j , β
( j−1)) = p(ξ j , β

( j)), j = 1, . . . , k,

p′(ξ j , β( j−1)) = p′(ξ j , β( j)), j = 1, . . . , k,

p′′(ξ j , β( j−1)) = p′′(ξ j , β( j)), j = 1, . . . , k,

β ∈ R
4(k+1),

(4)

where

ξ j =
(
max
i∈I j−1

xi + min
i∈I j

xi

)
/2,

for all j ∈ {1, . . . , k}.
The total number of feasible set partitions in problem (4) is

(n−1
k

)
. Note that we do

not allow empty index sets in our feasible partitions since basically this reduces the
number of knots of the spline function.

Furthermore, let us stress that if the goal is to compute a piecewise polynomial, i.e.,
a spline function without any continuity restrictions, only the first three constraints
in problem (4) are needed and the resulting combinatorial problem is an equivalent
reformulation of the least-squares piecewise polynomial approximation problem with
free knots.
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3 Formulation as a convexmixed-integer quadratically constrained
problem

A first possibility towards the solution of the combinatorial problem (4) is to refor-
mulate it as a type of mixed-integer optimization problem that can be solved using
commercial optimization solvers such as Gurobi or CPLEX. As will be explained in
detail in the rest of this section, problem (4) can be equivalently reformulated as the
following convex mixed-integer quadratically constrained problem (MIQCP):

min
α,β,z,q,w

n∑

i=1

αi

s.t.[zi j = 1] 	⇒ [qi j = p(xi , β
( j)) − yi ], ∀(i, j) ∈ J1 × J2,

q2i j ≤ αi , ∀(i, j) ∈ J1 × J2,

k∑

j=0

zi j = 1, ∀i ∈ J1,

n∑

i=1

zi j ≥ 1, ∀ j ∈ J2,

n∑

q=i+1

j−1∑

r=0

(1 − zqr ) ≥ (n − i) · j · zi j , ∀i ∈ J1 \ {n}, j ∈ J2 \ {0},

wi j ≤ zi j , ∀(i, j) ∈ J̄ ,

wi j ≤ zi+1, j+1, ∀(i, j) ∈ J̄ ,

wi j ≥ zi j + zi+1, j+1 − 1, ∀(i, j) ∈ J̄ ,

[wi j = 1] 	⇒ [p(γi , β( j)) − p(γi , β
( j+1)) = 0], ∀(i, j) ∈ J̄ ,

[wi j = 1] 	⇒ [p′(γi , β( j)) − p′(γi , β( j+1)) = 0], ∀(i, j) ∈ J̄ ,

[wi j = 1] 	⇒ [p′′(γi , β( j)) − p′′(γi , β( j+1)) = 0], ∀(i, j) ∈ J̄ ,

α ∈ R
n, β ∈ R

4(k+1), z ∈ {0, 1}n(k+1), q ∈ R
n(k+1), w ∈ {0, 1}(n−1)k

(5)

where J1 := {1, . . . , n}, J2 := {0, . . . , k}, J̄ := (J1 \ {n}) × (J2 \ {k}) and γi :=
(xi + xi+1)/2, for all i ∈ J1 \ {n}. In total, the problem contains (n + 4) · (k + 1) + n
continuous variables, 2nk + n− k binary variables and 9n(k + 1) constraints. Among
those constraints are n(k + 1) convex quadratic inequality constraints and 4n(k + 1)
so-called indicator constraints. This type of constraints have the general structure

[c = δ] 	⇒ aᵀx ≤ b, (6)

where x ∈ R
n and c ∈ {0, 1} are variables whereas δ ∈ {0, 1}, a ∈ R

n and b ∈ R

are fixed parameters. The interpretation is that the inequality is only enforced if the
condition c = δ is true. Otherwise, the inequality may be ignored by the solver.
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Indicator constraints are an alternative to big-M formulations and can be handled
directly by commercial optimization solvers such as Gurobi or CPLEX [4, 14]. The
big-M formulation corresponding to (6) that could be used instead reads

d · M ≤ aᵀx − b ≤ d · M, (7)

where M > 0 is sufficiently large and d is a binary variable that satisfies

d =
{
0, if c = δ,

1, otherwise.

In general, the existence of a sufficiently large value M , such that (6) can be equiv-
alently replaced with (7), is dependent on the objective function as well as other
constraints of the optimization problem. If M is chosen too small, the optimal solution
might be excluded from the problem. On the other hand, large big-M constants can
lead to numerical difficulties and excessively long run times due to weak relaxations
in branch-and-cut algorithms. In contrast, indicator constraints are handled internally
by the solvers and usually do not lead to numerical difficulties. However, they can
lead to longer run times compared to well chosen big-M constants in some cases [4].
In Sect. 3.2, we will discuss whether a big-M formulation could be an appropriate
alternative to the indicator constraints in problem (5).

The constraints in problem (5) can be grouped into three blocks. The first two con-
straints are needed to shift the least-squares objective function of the aforementioned
problems into the constraints, thus, leading to a linear objective function. The next
three constraints ensure that the partition of the data points encoded in the variables
zi j is feasible, and the remaining constraints enforce the continuity restrictions at the
knots. In the following subsections we explain each of these blocks in detail.

3.1 Feasible partitions

For every index tuple (i, j) ∈ J1 × J2 the binary variable zi j encodes whether the
i th design point xi is assigned to the j th polynomial, or, equivalently, if the index i is
contained in the index set I j , i.e., for all (i, j) ∈ J1 × J2 it holds

zi j =
{
1, if i ∈ I j ,

0, if i /∈ I j .
(8)

The constraints

k∑

j=0

zi j = 1, ∀i ∈ J1, (9)

n∑

i=1

zi j ≥ 1, ∀ j ∈ J2, (10)
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n∑

q=i+1

j−1∑

r=0

(1 − zqr ) ≥ (n − i) · j · zi j , ∀i ∈ J1 \ {n}, j ∈ J2 \ {0}, (11)

ensure that each design point is assigned to exactly one polynomial, and that at least
one design point is assigned to each polynomial. Moreover, constraint (11) states that
a design point xi can only be assigned to the j th polynomial if all the following design
points are not assigned to prior polynomials.

Constraints (9), (10) and (11) represent

k⋃

j=0

I j = {1, . . . , n}, (12)

I j �= ∅, j = 0, . . . , k, (13)

s < i for all s ∈ Il and i ∈ I j with l < j, (14)

in problem (4). Clearly, conditions (10) and (13) are equivalent. The equivalence of
the remaining conditions is shown in the following lemma.

Lemma 3.1 If the binary vector z ∈ {0, 1}n(k+1) is defined as in (8), then conditions
(9) and (11) are equivalent to conditions (12) and (14).

Proof We first show that if conditions (12) and (14) are satisfied, then conditions (9)
and (11) are satisfied as well. Condition (12) implies that

∑k
j=0 zi j ≥ 1 holds for all

i ∈ J1 and since condition (14) implies that every index is assigned to at most one
index set, i.e.,

∑k
j=0 zi j ≤ 1 for all i ∈ J1, we arrive at condition (9).

Next, we choose some i ∈ J1 \ {n} and j ∈ J2\{0}. If zi j = 0 then the inequality in
condition (11) is satisfied trivially. On the other hand, if zi j = 1, then i ∈ I j holds. We
define the set K := {i +1, . . . , n}×{0, . . . , j −1} and suppose there exist (q, r) ∈ K
with zqr = 1. This would imply q ∈ Ir , r < j and q > i , in contradiction to condition
(14). Thus, zqr = 0 and (1 − zqr ) = 1 holds for all (q, r) ∈ K . Consequently, we
obtain

n∑

q=i+1

j−1∑

r=0

(1 − zqr ) =
∑

(q,r)∈K
(1 − zqr ) = |K | = (n − i) · j = (n − i) · j · zi j

and condition (11) is satisfied.
For the other direction, we assume that condition (12) or (14) is violated and show

that this implies that condition (9) or (11) is violated. If condition (12) is violated, then
there exists an index i ∈ {1, . . . , n} which is not assigned to any index set. Therefore,
we have

∑k
j=0 zi j = 0 and condition (9) is violated. On the other hand, if (14) is

violated, then there exist l, j ∈ {1, . . . , k} with l < j and indices s ∈ Il and i ∈ I j
such that s ≥ i . Consequently, we have that zsl = 1 and zi j = 1. Thus, either condition
(9) is violated, or it follows that s �= i and therefore s > i must be true. Now, since
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(s, l) ∈ K and zsl = 1 we obtain the equality

n∑

q=i+1

j−1∑

r=0

(1 − zqr ) = |K \ {(s, l)}| = |K | − 1 = (n − i) · j − 1.

However, if condition (11) was satisfied, the inequality

n∑

q=i+1

j−1∑

r=0

(1 − zqr ) ≥ (n − i) · j

would have to be satisfied as well. Since this is not the case, condition (11) is violated.

�

To summarize the above, a feasible binary vector z in problem (5) corresponds to
a feasible partition of the data points, in the sense that conditions (12) to (14) are
satisfied.

3.2 Continuity restrictions

The interpretation of the variable wi j is that wi j = 1 holds if and only if i ∈ I j and
i + 1 ∈ I j+1, i.e., two successive indices are assigned to different (successive) index
sets. In other words, wi j = 1 holds if and only if there is a knot between the data
points xi and xi+1. Consequently, the constraints

[wi j = 1] 	⇒ [p(γi , β( j)) − p(γi , β
( j+1)) = 0], ∀(i, j) ∈ J̄ , (15)

[wi j = 1] 	⇒ [p′(γi , β( j)) − p′(γi , β( j+1)) = 0], ∀(i, j) ∈ J̄ , (16)

[wi j = 1] 	⇒ [p′′(γi , β( j)) − p′′(γi , β( j+1)) = 0], ∀(i, j) ∈ J̄ (17)

from problem (5) enforce the continuity conditions at a value γi = (xi + xi+1)/2 only
if xi and xi+1 belong to different polynomials. Note that, as in problem (4), knots
are midpoints between two consecutive design points that are assigned to different
polynomials.

An intuitive way to model the variable w is via the nonlinear constraints

wi j = zi j · zi+1, j+1, ∀(i, j) ∈ J̄ . (18)

Fortunately, non-linear constraints of this type can be replaced by linear ones due
to the fact that w and z both are binary decision variables in problem (5). Thus, (18)
is rewritten equivalently by

wi j ≤ zi j , ∀(i, j) ∈ J̄ ,

wi j ≤ zi+1, j+1, ∀(i, j) ∈ J̄ ,

wi j ≥ zi j + zi+1, j+1 − 1, ∀(i, j) ∈ J̄ .
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As mentioned previously, an alternative to model restrictions of type (15) to (17)
is the widely used big-M reformulation. However, in this case it is not clear how
to obtain a reasonable value for the constant M without knowledge of the optimal
solution. The numerical tests that we conducted showed that constantsM that are large
enough so that the optimal solution is not excluded from the feasible set often lead
to numerical difficulties and long run times. In contrast to that, indicator constraints
neither increased the computation time nor lead to numerical issues on the problem
instances that we tested. Moreover, the aforementioned state-of-the-art solvers allow
to incorporate this type of constraints conveniently.

3.3 Generalized epigraph reformulation

In this subsection we explain how the nonlinear objective function of problem (4) can
be rewritten by a linear one in problem (5). This reformulation technique is sometimes
called epigraph reformulation in the literature, see, e.g., [33]. To this end, first of all
note that the objective function of problem (4) can be rewritten as

k∑

j=0

∑

i∈I j

(
p(xi , β

( j)) − yi
)2 =

n∑

i=0

k∑

j=0

zi j
(
p(xi , β

( j)) − yi
)2

.

In combination with the results from the previous subsections, it is clear that problem
(4) is equivalent to

min
β,z,w

n∑

i=0

k∑

j=0

zi j
(
p(xi , β

( j)) − yi
)2

s.t.
k∑

j=0

zi j = 1, ∀i ∈ J1,

n∑

i=1

zi j ≥ 1, ∀ j ∈ J2,

n∑

q=i+1

j−1∑

r=0

(1 − zqr ) ≥ (n − i) · j · zi j , ∀i ∈ J1 \ {n}, j ∈ J2 \ {0},

wi j ≤ zi j , ∀(i, j) ∈ J̄ ,

wi j ≤ zi+1, j+1, ∀(i, j) ∈ J̄ ,

wi j ≥ zi j + zi+1, j+1 − 1, ∀(i, j) ∈ J̄ ,

[wi j = 1] 	⇒ [p(γi , β( j)) − p(γi , β
( j+1)) = 0], ∀(i, j) ∈ J̄ ,

[wi j = 1] 	⇒ [p′(γi , β( j)) − p′(γi , β( j+1)) = 0], ∀(i, j) ∈ J̄ ,

[wi j = 1] 	⇒ [p′′(γi , β( j)) − p′′(γi , β( j+1)) = 0], ∀(i, j) ∈ J̄ ,

β ∈ R
4(k+1), z ∈ {0, 1}n(k+1), w ∈ {0, 1}(n−1)k .

(19)
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This objective function, however, has a difficult nonlinear and nonconvex structure. In
order to improve upon this formulation, we introduce the additional decision variables
α ∈ R

n , replace the objective function with
∑n

i=0 αi and add the constraints

k∑

j=0

zi j
(
p(xi , β

( j)) − yi
)2 ≤ αi , ∀i ∈ J1. (20)

Due to the first constraint in problem (19), we have that for each i ∈ J1 there only
exists a single index j ∈ J2 such that zi j = 1. Thus, the constraints (20) are equivalent
to the quadratic indicator constraints

[zi j = 1] 	⇒
(
p(xi , β

( j)) − yi
)2 ≤ αi , ∀i ∈ J1.

Since the quadratic functions are convex in the decisionvariables, the resultingproblem
is a convex MIQCP. However, so far common optimization solvers can only handle
linear indicator constraints [4, 14]. By introducing an additional decision variable
q ∈ R

n(k+1) we arrive at the first two constraints of problem (5)

[zi j = 1] 	⇒ [qi j = p(xi , β
( j)) − yi ], ∀(i, j) ∈ J1 × J2, (21)

q2i j ≤ αi , ∀(i, j) ∈ J1 × J2, (22)

and thus at the convex MIQCP (5), which can be solved with standard solvers.
In our numerical experiments, the computing time decreased significantly when

bounds were added to the decision variable q, i.e., when the additional constraints
−q̄ ≤ q ≤ q̄ were imposed for some q̄ > 0. However, this offers the risk of excluding
optimal solutions from the feasible set if the optimal solution is not known.Yet, bounds
on q only lead to the exclusion of the optimal solution of problem (5) if in this optimal
solution there exist (i, j) ∈ J1 × J2 with zi j = 1 such that |p(xi , β( j)) − yi | > q̄ .
This means that the y component of a data point (xi , yi ) that is assigned to the j th
polynomial in the optimal solution has to have a distance to the polynomial function
evaluated at xi that is larger than q̄ . So, by setting q̄ := maxi yi −mini yi , these bounds
should not affect the optimal solution in typical applications. Indeed, if the optimal
solution does not satisfy these bounds, this might indicate that outliers are present
in the data or that the spline function with the chosen number of free knots is not
appropriate to approximate the given data set. Note that this reasoning is invalid for
the bounds imposed by big-M constants since they have to hold for all (i, j) ∈ J1× J2,
and not only for those that satisfy zi j = 1.

Furthermore, we mention that, due to the convexity of the quadratic constraints, it
is straightforward to linearize these constraints and approximate the convex MIQCP
with an mixed-integer linear problem (MILP). Since we already impose bounds on q
in our MIQCP formulation, we can simply choosem points rt ∈ [−q̄, q̄], compute for
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t = 1, . . . ,m − 1, the parameters

at = r2t+1 − r2t
rt+1 − rt

,

bt = r2t − at · rt ,

of the secants passing through the points (rt , r2t ), t = 1, . . . ,m, and replace the
quadratic constraints

q2i j ≤ αi , ∀(i, j) ∈ J1 × J2,

with the linear constraints

atqi j + bk ≤ αi , ∀(i, j) ∈ J1 × J2, t = 1, . . . ,m − 1.

However, some preliminary numerical tests for different choices of m and points
rt ∈ [−q̄, q̄] indicate that it is not possible to decrease the computing time without
significantly worsening the quality of the obtained solution. Therefore, we will not
consider these linearization technique further.

Finally, alternative error functions can be used. A discussion of the impact of this on
the considered problem can be found in Section A of the supplementary information.

4 A branch-and-bound algorithm for the combinatorial formulation

In this section, we describe a branch-and-bound algorithm for the solution of the
combinatorial formulation (4) of the least-squares spline approximation problem with
free knots.We start by sketching themain idea of branch-and-bound algorithms before
going into the details our algorithm. A general description of branch-and-bound meth-
ods in combinatorial optimization can be found, e.g., in the monographs [2, 24, 25].

The main idea of branch-and-bound algorithms is to subsequently divide the prob-
lem into subproblems (branching) and compute lower bounds of the minimal values
of those subproblems. All problems are stored in a list together with the corresponding
lower bound. In case there are subproblems in the list whose lower bound exceeds
a known upper bound for the optimal value of problem (4), these can be excluded
from the list without further consideration as none of these subproblems can contain
a globally minimal point. This is also known as fathoming or pruning. The algorithm
terminates with the optimal solution after a finite number of steps.

4.1 Branching strategy

As a first step in describing our branching strategy, we define the subproblems into
which the problem is subsequently divided in our branch-and-bound algorithm. To
this end, for given index sets �0, . . . , �k ⊆ {1, . . . , n} we consider the optimization
problem
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S(�0, . . . , �k) : min
β,I0,...,Ik

k∑

j=0

∑

i∈I j

(
p(xi , β

( j)) − yi
)2

s.t. � j ⊆ I j , j = 0, . . . , k,

k⋃

j=0

I j = {1, . . . , n},

I j �= ∅, j = 0, . . . , k,

r < q for all r ∈ Ii and q ∈ I j with i < j,

p(ξ j , β
( j−1)) = p(ξ j , β

( j)), j = 1, . . . , k,

p′(ξ j , β( j−1)) = p′(ξ j , β( j)), j = 1, . . . , k,

p′′(ξ j , β( j−1)) = p′′(ξ j , β( j)), j = 1, . . . , k,

β ∈ R
4(k+1),

where

ξ j =
(
max
i∈I j−1

xi + min
i∈I j

xi

)
/2,

for all j ∈ {1, . . . , k}. We call the index sets �0, . . . , �k restriction sets, since
by adding indices to these sets we restrict the set of feasible partitions in problem
S(�0, . . . , �k).

Definition 4.1 Restriction sets �0, . . . , �k ⊆ {1, . . . , n} are called valid, if there
exists a partition I0, . . . , Ik of the set {1, . . . , n} such that the conditions

� j ⊆ I j , j = 0, . . . , k, (23)

I j �= ∅, j = 0, . . . , k, (24)

r < q for all r ∈ Ii and q ∈ I j with i < j, (25)

are satisfied.

The basic idea of our branch-and-bound algorithm is to subsequently assign indices
to the restriction sets in order to split problem (4) into subproblems S(�0, . . . , �k) that
allow the efficient computation of nontrivial lower bounds. Without loss of generality,
we assume that the first point x1 is assigned to the first polynomial, i.e., 1 ∈ I0, and
the last point xn is assigned to the last polynomial, i.e., n ∈ Ik . Thus, we can start
the branch-and-bound algorithm with the initial restriction sets �0 := {1}, �1 :=
∅, . . . , �k−1 := ∅,�k := {n} and the set of unassigned indices I = {2, . . . , n − 1}.

In order to divide a subproblem S(�0, . . . , �k) further into subproblems,we choose
an index i ∈ I and assign it to one of the restriction sets �0,. . .,�k . In case we add
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an index i to a restriction set � j for which i < min(� j ) holds, then we also add
the indices {i + 1, . . . ,min(� j ) − 1} to � j , since those indices cannot be assigned
to another restriction set without making S(�0, . . . , �k) infeasible. Analogously, if
i > max(� j ), then we add the indices {max(� j )+1, . . . , i −1} to � j . Note that this
implies that an index which is added to a restriction set always becomes the smallest
or largest index in this restriction set. The following lemma gives simple conditions
that ensure that the resulting restriction sets are valid, i.e., the new subproblem still
permits feasible partitions.

Lemma 4.2 Let �0, . . . , �k ⊂ {1, . . . , n} be valid restriction sets, 1 ∈ �0, n ∈ �k

and j ∈ {0, . . . , k}. In addition, let i ∈ {1, . . . , n} be an index such that i /∈ �m for
all m ∈ {0, . . . , k}. Then the sets �̄ j := � j ∪ {i}, �̄m := �m, ∀m �= j , are valid
restriction sets if and only if the following conditions are satisfied:

i < min(� j ) 	⇒ max(��) ≤ i + � − j, (26)

i > max(� j ) 	⇒ min(�r ) ≥ i + r − j, (27)

where � := max{m | �m �= ∅, m ∈ {0, . . . , j −1}} and r := min{m | �m �= ∅, m ∈
{ j + 1, . . . , k}}.
Proof Since the sets �0, . . . , �k are valid restriction sets, there exists a partition
I0, . . . , Ik of the set {1, . . . , n} such that the conditions (23) to (25) are satisfied.

We show that if i < min(� j ), then condition (26) is satisfied if and only if the
sets �̄0, . . . , �̄k are valid restriction sets. The line of argument that if i > max(� j )

condition (27) is satisfied if and only if the sets �̄0, . . . , �̄k are valid restriction sets
is analogous and, therefore, omitted.

Thus, we assume that i < min(� j ) is true. Since i < min(� j ) and 1 ∈ �0 it
follows that j ≥ 1 and the set { m | �m �= ∅, m ∈ {0, . . . , j − 1}} is nonempty, i.e.,
the index � is well defined.

If we assume that condition (26) is satisfied, we can define the sets

Īm :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{min(��), . . . , i + � − j}, if m = �,

{i + m − j}, if � < m < j,

{i, . . . ,max(� j )}, if m = j,

Im, if m < � or j < m,

for all m ∈ {0, . . . , k}. The sets Ī0, . . . , Īk form a partition of the set {1, . . . , n}
such that the conditions (23) to (25) are satisfied for the restriction sets �̄0, . . . , �̄k .
Consequently, these restriction sets are valid.

On the other hand, assume that condition (26) is violated, i.e.,max(��) ≥ i+�− j+
1. Ifmax(��) > i , it is clear that there exists no partition I0, . . . , Ik of the set {1, . . . , n}
such that condition (25) is satisfied. If max(��) < i , then i+�− j+1 ≤ max(��) < i
and thus there are j − �−1 > 0 empty restriction sets between the sets �� and � j . In
every partition I0, . . . , Ik of the set {1, . . . , n} that satisfies conditions (23) and (25)
the j − � − 1 index sets Im with � < m < j cannot all be nonempty, since there are
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Algorithm 4.1 Branching strategy
1: Input: Restriction sets �0, . . . , �k ;

2: Choose an unassigned index i ∈ {1, . . . , n} (i.e., an index which is not yet contained in one of the
restriction sets �0, . . . , �k );

3: for j = 0, . . . , k do
4: if i and j satisfy conditions (26) and (27) then
5: if i < min(� j ) then
6: Set �̃ j := � j ∪ {i, . . . ,min(� j ) − 1};
7: else
8: Set �̃ j := � j ∪ {max(� j ) + 1, . . . , i};
9: end if
10: Add S(�0, . . . , � j−1, �̃ j ,� j+1, . . . , �k ) to list of subproblems P ;
11: end if
12: end for

13: Output: List of new subproblems P ;

only i − max(��) − 1 ≤ j − l − 2 unassigned indices that can be assigned to these
sets without violating condition (23) or (25). However, then condition (24) is violated
and the restriction sets �̄0, . . . , �̄k are not valid. 
�

Our branching strategy is describedmore formally in Algorithm 4.1. Note that there
are different possibilities to choose an unassigned index in Step 2 of Algorithm 4.1.
We propose to take the midpoint of the (ordered) set of currently unassigned indices.

If one obtains restriction sets �0, . . . , �k with Algorithm 4.1 such that between
two nonempty sets �� and �r there are min(�r ) − max(��) − 1 > 0 empty sets
�m = ∅with � < m < r , then one can set�m := {max(��)+m−�} for � < m < r ,
since this is the only way to assign these indices such that one obtains valid restriction
sets. Although this is used in our implementation, it is not explicitly mentioned in
Algorithm 4.1.

Example 4.3 Suppose we are given the restriction sets �0 = {1, 2},�1 = ∅,�2 = ∅
and �3 = {9}. Assume that in Algorithm 4.1 the so far unassigned index i = 5
is assigned to �3. The restriction sets obtained with Algorithm 4.1 are then �0 =
{1, 2},�1 = ∅,�2 = ∅ and �̃3 = {5, 6, 7, 8, 9}. In addition to that, the empty index
sets �1 and �2 can be filled and we obtain the restriction sets �0 = {1, 2}, �̃1 =
{3}, �̃2 = {4} and �̃3 = {5, 6, 7, 8, 9}.

4.2 Computation of lower bounds

In order to obtain a nontrivial lower bound of the optimal value of problem
S(�0, . . . , �k) for given restriction sets �0, . . . , �k , we compute the optimal value
of the optimization problem
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L(�0, . . . , �k) : min
β

k∑

j=0

∑

i∈� j

(
p(xi , β

( j)) − yi
)2

s.t. p(ξ j , β
( j−1)) = p(ξ j , β

( j)), j ∈ J (�0, . . . , �k),

p′(ξ j , β( j−1)) = p′(ξ j , β( j)), j ∈ J (�0, . . . , �k),

p′′(ξ j , β( j−1)) = p′′(ξ j , β( j)), j ∈ J (�0, . . . , �k),

β ∈ R
4(k+1),

where

ξ j :=
(
max
i∈I j−1

xi + min
i∈I j

xi

)
/2,

for all j ∈ J (�0, . . . , �k) and

J (�0, . . . , �k) := { j ∈ {1, . . . , k} | 1 + max(I j−1) = min(I j )}.

Note that L(�0, . . . , �k) is a least-squares spline approximation problem with fixed
knots, and can be solved via a linear system of equations. The only difference is that
only knots ξ j with j ∈ J (�0, . . . , �k) and the corresponding continuity restrictions
are included in the problem. Note that the index set J (�0, . . . , �k) contains only those
indices of knots which are not subject to change when the problem S(�0, . . . , �k) is
further divided into subproblems in subsequent branching steps.

Lemma 4.4 Let vL be the optimal value of problem L(�0, . . . , �k) and vS the optimal
value of problem S(�0, . . . , �k). Then the inequality vL ≤ vS holds.

Proof Let β	 and I 	
0 , . . . , I 	

k denote an optimal solution of S(�0, . . . , �k). Since the
partition I 	

0 , . . . , I 	
k is feasible for problem S(�0, . . . , �k), it must hold that � j ⊆ I 	

j
for all j ∈ {0, . . . , k}. Therefore the inequality

k∑

j=0

∑

i∈� j

(
p(xi , β

( j),	) − yi
)2 ≤

k∑

j=0

∑

i∈I 	
j

(
p(xi , β

( j),	) − yi
)2

is satisfied. Due to J (�0, . . . , �k) ⊆ {1, . . . , k} we have that every vector β that
is feasible for problem S(�0, . . . , �k) is also feasible for problem L(�0, . . . , �k).
Consequently, the optimal solution β	 is feasible for problem L(�0, . . . , �k) and we
obtain

vL ≤
k∑

j=0

∑

i∈� j

(
p(xi , β

( j),	) − yi
)2 ≤

k∑

j=0

∑

i∈I 	
j

(
p(xi , β

( j),	) − yi
)2 = vS .


�
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Algorithm 4.2 Branch-and-bound algorithm for problem (4)

1: Input: n data points (xi , yi ) ∈ R
2, number of free knots k;

2: Initialize list of subproblems as L := {(lS , S(�0, . . . , �k )
)}, where lS := 0 and �0 := {1},�1 :=

∅, . . . , �k−1 := ∅, �k := {n};
3: Use a heuristic method to determine initial partition (I 	0 , . . . , I 	k ) and initial upper bound u ∈ [0, ∞);
4: while L �= ∅ do
5: Select

(
lS , S(�0, . . . , �k )

) ∈ L with smallest lower bound lS ;
6: Create set P of new subproblems using Algorithm 4.1;
7: for S(�0, . . . , �k ) ∈ P do
8: Compute the optimal value lS of problem L(�0, . . . , �k );
9: if lS < u then
10: Add

(
lS , S(�0, . . . , �k )

)
to L;

11: if
⋃k

j=0 � j = {1, . . . , n} then
12: Set u := lS and I 	0 := �0, . . . , I

	
k := �k ;

13: end if
14: end if
15: end for
16: for

(
lS , S(�0, . . . , �k )

) ∈ L with lS ≥ u do
17: Remove

(
lS , S(�0, . . . , �k )

)
from L;

18: end for
19: end while

20: Output: Globally optimal partition (I 	0 , . . . , I 	k ) for problem (4);

The optimal value of L(�0, . . . , �k) is increasing as more indices are added to
the restriction sets �0, . . . , �k . When the set of unassigned indices is empty, then
the optimal value of L(�0, . . . , �k) coincides with the optimal value of the subprob-
lem S(�0, . . . , �k). Consequently, we can use this technique to efficiently compute
lower bounds for the subproblems and we obtain a branch-and-bound algorithm that
terminates with an optimal solution after a finite number of steps.

4.3 Outline of the branch-and-bound algorithm

InAlgorithm4.2 our branch-and-boundmethod to solve the combinatorial formulation
(4) of the least-squares spline problem with free knots is described formally.

The initial partition and initial upper bound can be determined by any heuristic
method, or one could simply choose equally spaced knots. Moreover, in addition to
the upper bounds obtained in Algorithm 4.2 when the set of unassigned indices is
empty, every subproblem S(�0, . . . , �k) can be used to compute an upper bound for
the globally minimal value of problem (4). To achieve this, one may simply generate
new restriction sets �̄0, . . . , �̄k such that all remaining indices are assigned, i.e.,⋃k

j=0 �̄ j = {1, . . . , n}, and � j ⊆ �̄ j holds for all j ∈ {0, . . . , k}. Then the optimal

value of problem L(�̄0, . . . , �̄k) serves as an upper bound for the globally minimal
value of problem (4).

In our numerical tests those upper bounds only had aminor influence on the runtime
of the algorithm. Therefore, we did not compute additional upper bounds during the
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Table 1 Least-squares errors of
the solutions obtained with the
FR, CF and CF+FR methods
when applied to the titanium
heat data set

Number of knots FR CF CF+FR

2 2.1157 2.0741 2.0703

3 1.9209 0.5006 0.4651

4 0.0904 0.0681 0.0654

5 0.0962 0.0093 0.0088

Lowest errors are marked in bold

optimization process. However, upper bounds can help to keep the list of subproblems
L short and ensure that the main memory does not become a limiting factor.

5 Numerical experiments

This section comprises numerical experiments for the algorithms developed. First,
we compare our combinatorial formulation of Sect. 2.3 that can be solved to global
optimality by using our new approaches with a purely local method applied to problem
(2). Furthermore, we propose the combination of both approaches. Here we are mainly
concernedwith the quality of the solution, since, in fact, two slightly different problems
are considered. In Sect. 5.2 we compare our new methods for the global solution of
the spline approximation problem in order to see, which of these methods performs
better.

5.1 Combination with a local aproach

We consider three different approaches in this section. First, we consider a variant of
the Fletcher-Reeves nonlinear conjugate gradientmethod (FR) presented in [9] in order
to solve problem (2) locally. Second, the combinatorial formulation (CF) presented
in Sect. 2.3 is solved to global optimality by using our newly developed approaches.
Finally, a combination of the combinatorial formulation with the Fletcher-Reeves
nonlinear conjugate gradient method (CF+FR) is used, which means that we try to
improve the solution of our global approach by using it as a starting point for the local
solver for the relaxed problem (2) where the knots can be placed continuously.

We use two real data sets from the literature to empirically compare the quality
of the solutions obtained with each of these approaches. The FR method is always
initialized with the equidistant knot placement.

5.1.1 Titanium heat data

The titanium heat data set is introduced in [6] as an example of a data set that is
difficult to approximatewith classicalmethods. It is actual data that expresses a thermal
property of titanium. It consists of 49 data points and contains a significant amount of
noise.

Table 1 shows the least-squares errors of the spline functions corresponding to
the knot placements computed with the three approaches for different numbers of
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Fig. 4 Spline functions with three free knots corresponding to the solutions obtained with the FR, CF and
CF+FR methods when applied to the titanium heat data set

free knots. We can observe that the combination of the CF and FR methods leads to
substantially better solutions than the FRmethod alone. Compared to the improvement
of the CF over the FR method, the local improvement of the CF method with the FR
method seems marginal.

Clearly, any heuristic method could be combined with the FRmethod in order to try
to find high-quality local solutions. However, there is a theoretically and practically
relevant difference.Whereas there is no optimality guarantee except local optimality if
we use a heuristic knot placement as an initial solution of the FR method, the CF+FR
approach guarantees that the approximated local solution is at least as good as the
optimal solution of the combinatorial formulation.

In Fig. 4 the spline functions corresponding to the knot placements computed with
the three methods are depicted for the case of three free knots. Clearly, the solution
obtained by the FR method is not satisfactory. The other two methods yield similarly
good approximations with the only visible difference being the approximation quality
near the peak in the data set.

5.1.2 Angular displacement data

The angular displacement data set is introduced in [26] for the evaluation of differ-
entiation methods of film data of human motion. We use the modification of this data
set proposed in [18], which contains larger errors and is supposed to be more realistic
than the original data set. It consists of 142 data points.

In Table 2 the least-squares errors of the spline functions corresponding to the knot
placements computed with the three approaches for different numbers of free knots
are presented. The overall picture is similar to the one obtained from the titanium heat
data set. The FR method seems to approximate the globally minimal point for two
and three free knots, even when it is initialized with the equidistant knot placement.
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Table 2 Least-squares errors of
the solutions obtained with the
FR, CF and CF+FR methods
when applied to the angular
displacement data set

Number of knots FR CF CF+FR

2 11.4483 11.4496 11.4483

3 1.5298 1.5384 1.5297

4 1.5266 0.1493 0.1465

5 1.3663 0.0552 0.0545

Lowest errors are marked in bold

Fig. 5 Spline functions with five free knots corresponding to the solutions obtained with the FR, CF and
CF+FR methods when applied to the angular displacement data set

However, the least-squares error of the locally minimal point approximated in case of
four and five free knots is much higher than the result obtained with the other methods.
Again, the CF method is only slightly inferior to the combined CF+FR approach.

The similarity of the results obtained with the CF and CF+FR approaches is also
visible in Fig. 5, where only two curves can be distinguished, i.e. the suboptimal fit
obtained with the FR method initialized with the equidistant knot placement, and the
high quality approximation obtained with the other methods.

5.2 Comparison of MIQCP and Branch-and-Bound Approaches

In the previous section, it already became clear that it is possible to obtain high-quality
solutions of the least-squares spline approximation problem with free knots by using
our global optimization approach and this can even be improved using local solvers
if we aim at a solution with continuous knot placement as done in the formulation
of problem (2). In this section we investigate whether the MIQCP or the branch-and-
bound approach is more efficient for the solution of the combinatorial formulation.
To this end, once again we consider the two real data sets from the previous section
to gain some preliminary insights into the relative performance of the approaches.
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Table 3 Solve times (in
seconds) and least-squares errors
of the solutions obtained with
the branch-and-bound and
MIQCP approaches for the
titanium heat data set

Number of knots Branch-and-bound MIQCP
Time Error Time Error

2 0.07 2.0741 0.88 2.0741

3 0.40 0.5006 2.00 0.5006

4 1.99 0.0681 9.31 0.0681

5 5.55 0.0093 12.09 0.0093

Lowest errors and computation times are marked in bold

In addition, we use a larger testbed of synthetic data sets in order to decide which
approach should be preferred in practice.

The branch-and-bound algorithm is implemented in Python 3.6. We use the com-
mercial optimization solver Gurobi (version 8.1.1) and its Python API to model and
solve the MIQCPs. The computations are performed on an Intel Core i7-9700K with
32 GB of main memory. The time limit for each algorithm is set to 3600s.

5.2.1 Titanium heat and angular displacement data sets

Tables 3 and 4 show the least-squares errors of the knot placements computed via
the branch-and-bound and MIQCP approaches for the titanium heat and angular dis-
placement data sets and the corresponding solve times. As expected, both algorithms
are able to determine the globally optimal value, except for the case of five free knots
and the displacement data set, where the MIQCP approach does not terminate within
the given time limit. The main observation is that the branch-and-bound algorithm
needs significantly less time than the MIQCP approach. It is consistently faster by an
order of magnitude.

We can also make some preliminary observations concerning the growth in com-
putation time when the number of data points or free knots is increased. The angular
displacement data set contains almost exactly three times as many data points as the
titaniumheat data set. This leads to about a tenfold increase in computation time for the
branch-and-bound method. In contrast to that, the computation time of the MIQCP
method increases a hundredfold. However, increasing the number of free knots by
one leads to an increase in the computing time of the branch-and-bound algorithm
by a factor between 5 and 10, whereas the computing time of the MIQCP approach
increases only by a factor between 1.5 and 5. We further investigate the dependency
of the computation time on the number of data points and knots in the next section.

5.2.2 Synthetic data sets

In this section, we present the results of more extensive numerical experiments with
synthetic data sets. The functions used to generate the synthetic data sets are listed in
Table 8 in SectionB of the supplementary information, alongwith further details on the
nature and magnitude of the added noise and the sources that first used these synthetic
data sets in the literature on free knot spline approximation. Each of these functions is
used to generate five synthetic data sets of different sizes. In combination with varying
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Table 4 Solve times (in seconds) and least-squares errors of the solutions obtained with the branch-and-
bound and MIQCP approaches for the angular displacement data set

Number of knots Branch-and-bound MIQCP
Time Error Time Error

2 0.61 11.4496 78.77 11.4496

3 8.14 1.5384 379.31 1.5384

4 44.95 0.1493 1250.79 0.1493

5 446.37 0.0552 3600.00 0.0563

Lowest errors and computation times are marked in bold

Table 5 Combinations of data
set sizes and number of free
knots that are considered for
generating instances of the
spline approximation problem
with the functions in Table 8 in
Section B of the supplementary
information

Number of data points Number of free knots

50 {2, 3, 4, 5, 6, 7}
100 {2, 3, 4, 5, 6}
200 {2, 3, 4, 5}
400 {2, 3, 4}
800 {2, 3}

numbers of free knots, we obtained 20 problem instances for each of the 12 functions,
yielding 240 problem instances in total. Table 5 shows all the combinations of data
set sizes and number of free knots that are considered.

The detailed results of the experiments are listed in Section C of the supplementary
information of this paper. However, in the following we briefly comment on the main
observations. Concerning the solve times required by the approaches, the branch-and-
bound algorithm is faster than theMIQCP approach on all but three problem instances.
Of the 240 problem instances, the branch-and-bound approach is able to solve 218
(90.8%) within the specified time limit of 3600s. In contrast to that, the MIQCP
approach is only able to solve 141 (58.8%) of the problem instances in the given time
limit.

In particular, when the size of the data set is large, the MIQCP approach fre-
quently fails to compute the optimal solution within the time limit. Among 24 problem
instances with data sets containing 800 points, only one could be solved to optimality
with the MIQCP approach, whereas the branch-and-bound algorithm computed the
optimal solution for 23 of these problem instances. These findings support the pre-
liminary observations made in the previous section that the computing time required
by the branch-and-bound algorithm grows slower in the size of the data set than the
computing time of the MIQCP approach.

In order to further investigate the dependency of the computing time on the size
of the data set, we consider problem instances with three free knots and compare
the solve times required by each method for different data set sizes. Figure6 depicts
the solve times as box plots on a log scale. From this figure one can observe that
the required solve times of the branch-and-bound and MIQCP approaches increase
exponentially in the number of data points, but the growth constant is smaller for the
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Fig. 6 Solve times (in seconds) required by the branch-and-bound and MIQCP approaches in order to
compute the optimal spline functions with three free knots. There are 12 synthetic data sets for each data
set size and the time limit for each algorithm is set to 3600s

Table 6 Percentage of solved instances and average times (in seconds) required by the branch-and-bound
and MIQCP approaches to compute the optimal spline functions with three free knots

Number of data points Branch-and-bound MIQCP
Time Solved (%) Time Solved (%)

50 0.71 100 7.89 100

100 4.06 100 152.13 100

200 27.18 100 2425.97 66.7

400 222.81 100 3591.73 8.3

800 1927.69 91.7 3600.00 0

There are 12 synthetic data sets for each data set size and the time limit for each algorithm is set to 3600s

branch-and-bound algorithm. For most problems, the times needed by the branch-
and-bound algorithm are an order of magnitude smaller than the times required by
the MIQCP approach. This can also be observed in Table 6, which shows the average
times and the percentages of solved problem instances. Note that unsolved problem
instances enter the average times with the maximal computing time of 3600s. Thus,
if there are many unsolved instances, the average time shown in the table do not give
an accurate value for the average time in absence of any time limit, which should be
expected to be much higher.

Next, we investigate the dependence of the computing time on the number of free
knots. In order to visualize this, we fix the size of the data set to 50 and compare the
solve times required by each method for problem instances with different numbers of
free knots. From the box plots in Fig. 7 we conclude that the time required by both
methods grows exponentially in the number of free knots, and the growth constants
seem to be roughly similar. This can also be observed in Table 7, where the average
time required by the MIQCP approach is consistently 8–10 times larger then the time
required by the branch-and-bound algorithm, as long as bothmethods solve all problem
instances in the given time limit, which is the case for up to five knots.
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Fig. 7 Solve times (in seconds) required by the branch-and-bound and MIQCP approaches in order to
compute the optimal spline functions for 50 data points. There are 12 synthetic data sets for each data set
size and the time limit for each algorithm is set to 3600s

Table 7 Percentage of solved instances and average times (in seconds) required by the branch-and-bound
and MIQCP approaches to compute the optimal spline functions for 50 data points

Number of free knots Branch-and-bound MIQCP
Time Solved (%) Time Solved (%)

2 0.08 100 0.85 100

3 0.71 100 7.88 100

4 4.79 100 42.08 100

5 37.76 100 307.34 100

6 283.99 100 1222.19 75.0

7 1287.84 83.3 2265.58 58.3

There are 12 synthetic data sets for each data set size and the time limit for each algorithm is set to 3600s

In summary, both approaches enable the computation of globally optimal solutions
to least-squares spline approximation problems with free knots of practically relevant
sizes. Yet, the branch-and-bound algorithm is superior to the MIQCP approach in
terms of computing time.

Finally, we want to point out that we ran the experiments also for spline functions
with no continuity restrictions, which corresponds to fitting piecewise polynomials to
the data. The results for this can be found in Sections D and E of the supplementary
information of this paper.

6 Conclusions

We propose two different possibilities for the computation of globally optimal least-
squares spline approximations with free knots. Although we assume possible knot
placements to be discrete, we demonstrate that solutions computed by using our
approach commonly do not differ much from the continuous case and can, therefore,
serve as starting points for local optimization algorithms. Our numerical experiments
confirm that both approaches, the MIQCP formulation and a tailored branch-and-
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bound method, enable the solution of problems of practically relevant sizes. Although
both methods work well, the branch-and-bound algorithm is even superior in terms of
the required time.

There are several possible directions for future research. One idea is to accelerate
the solution of the linear systems of equations in the branch-and-bound approach by
observing that the linear systems, which are solved in order to determine lower bounds
for the subproblems, become banded and therefore themethod of Cholesky for positive
band matrices could be used, see [22]. Going even further, one could make use of the
fact that the restriction sets �̄0, . . . , �̄k obtained with Algorithm 4.1 are oftentimes
very similar to the sets �0, . . . , �k that were provided as input to the algorithm. In
many cases, only a single index is added to one of the restriction sets. Thus, in order
to compute a lower bound for the subproblem S(�̄0, . . . , �̄k) one typically has to
solve a linear system of equations that is rather similar to the linear system that is
solved in a prior iteration when a lower bound of the subproblem S(�0, . . . , �k)

is computed. Thus, we expect that the efficiency of the branch-and-bound algorithm
could be improved significantly by employing the orthogonalizationmethod described
in [5], saving the QR decomposition for each subproblem and solving the modified
linear systems with Givens rotations, see, e.g., [12].

Another idea for further research is an extension to themultivariate case, i.e., having
data (xi1, . . . , xid , yi ) ∈ R

d+1 for d > 1. In this case, computing globally optimal
approximations is expected to be much more challenging for several reasons. For
instance, there are several possibilities to partition the search domain into elements
such as a triangulation or a grid. The idea of placing knots to represent boundaries
as done in this article naturally leads to a certain kind of grid. However, there are
different possibilities to define such a grid. For instance, we may allow for different
hyperrectangles, on which the spline functions live, which can be of any form and
different from each other. Another possibility is to restrict the number of knots in
each dimension, e.g. k1 knots partitioning the x1 line, k2 knots partitioning the x2
line, etc., such that the splines live on the intersections of these knot placements.
This immediately leads to k = ∑

i ki knots and to
∏

i (ki + 1) splines that have to
be estimated. Unfortunately, the number of partition elements is likely to increase
exponentially in the number of dimensions, which holds for different forms of the
elements. We suspect that this can easily lead to prohibitve computation times.

In addition, it is not entirely clear how such a situation can be tackled in a feasi-
ble way using our approaches. Depending on the specific statement of the problem,
we think that is is possible to derive an analogous MIQCP formulation that can be
solved using state-of-the-art solvers. Moreover, especially if the search domain is
supposed to be partitioned into hyperrectangles, we think that a similar branch-and-
bound algorithm tailored to this problem can be developed. At least, the concept of
valid restriction sets can be transferred to this case.Moreover, a similar lower bounding
procedure might be possible by omitting data points that are not assigned to specific
partition elements yet.

A natural idea to create a suitable partitionmight be to start with a coarse tesselation
that is subsequently refined by further subdividing elements on which there are large
approximation errors. Although this idea is similar to what is done in so-called spatial
branch-and-bound algorithms in global optimization, we think that such an approach
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will at most lead to locally optimal solutions of the spline approximation problem
and, actually, we do not see a possibility to drive such a procedure towards globally
optimal points.

Another topic for future research could be the development of a branch-and-bound
algorithm that is able to compute a global solution of the continuous problem with
free knots. However, we suspect that such an algorithm might only be able to solve
smaller problem instances. Furthermore, our numerical results presented in this article
indicate that there might be at most small improvements on most instances so that it
is in question whether such an algorithm is of practical interest at all and whether the
additional time needed to solve such problems is worth the effort.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10589-023-00462-7.
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