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Abstract
An influential step in weather forecasting was the introduction of ensemble fore-
casts in operational use owing to their capability to account for the uncertainties
in the future state of the atmosphere. However, ensemble weather forecasts are
often underdispersive and might also contain bias, which calls for some form
of post-processing. A popular approach to calibration is the ensemble model
output statistics approach resulting in a full predictive distribution for a given
weather variable. However, this form of univariate post-processing may ignore
the prevailing spatial and/or temporal correlation structures among different
dimensions. Since many applications call for spatially and/or temporally coher-
ent forecasts, multivariate post-processing aims to capture these possibly lost
dependencies. We compare the forecast skill of different non-parametric mul-
tivariate approaches to modeling temporal dependence of ensemble weather
forecasts with different forecast horizons. The focus is on two-step methods,
where, after univariate post-processing, the ensemble model output statistics
predictive distributions corresponding to different forecast horizons are com-
bined to a multivariate calibrated prediction using an empirical copula. Based
on global ensemble predictions of temperature, wind speed, and precipitation
accumulation of the European Centre for Medium-Range Weather Forecasts
from January 2002 to March 2014, we investigate the forecast skill of dif-
ferent versions of ensemble copula coupling (ECC) and Schaake shuffle. In
general, compared with the raw and independently calibrated forecasts, multi-
variate post-processing substantially improves the forecast skill. Although even
the simplest ECC approach with low computational cost provides a powerful
benchmark method, recently proposed advanced extensions of the ECC and the
Schaake shuffle are found to not provide any significant improvements over their
basic counterparts.
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1 INTRODUCTION

In many cases, ensemble forecasts generated by numerical
weather prediction (NWP) models suffer from system-
atic biases and underdispersion. In order to correct for
these issues, over the last two decades a plethora of dif-
ferent post-processing approaches have been developed.
They range from classical regression-type approaches,
like ensemble model output statistics (EMOS; Gneiting
et al., 2005) or Bayesian model averaging (BMA; Raftery
et al., 2005), to sophisticated machine-learning-based
approaches, such as, for instance, applied in Schulz and
Lerch (2022), Vannitsem et al. (2021) provide a compre-
hensive summary of statistical post-processing.

Most post-processing approaches implicitly assume
statistical independence between different forecast mar-
gins, like lead times, locations, or weather variables.
Apparently, this assumption does not allow for provid-
ing realistic forecast scenarios. However, end-users may
be interested in scenarios like total precipitation over
an entire hydrological catchment, the temporal evolution
of precipitation, or the interaction of precipitation and
temperature, in particular when temperature is close to
0◦C. Therefore, for many use cases, dependence struc-
tures need to be re-established explicitly in a second
post-processing step after univariate calibration. To this
end, different copula-based approaches have been pro-
posed. Most state-of-the-art multivariate post-processing
applications employ an empirical copula based on a depen-
dence template stemming either from an NWP ensemble
or historical observations. The former and the latter are
referred to as ensemble copula coupling (ECC; Schefzik
et al., 2013) and Schaake shuffle (SSh; Clark et al., 2004)
respectively. We refer to Schefzik and Möller (2018) for a
detailed discussion of copula-based methods to incorpo-
rate dependence structures.

Lerch et al. (2020a) performed an extensive simula-
tion study comparing several variants of ECC with SSh
and the parametric Gaussian copula approach (GCA;
Möller et al., 2013), and they concluded that the bench-
mark methods, ECC with equidistant quantile sampling
(ECC-Q; Schefzik et al., 2013) and SSh, generally per-
formed well. Moreover, their results suggest that more
sophisticated approaches like, for instance, dual ECC
(dECC; Ben Bouallègue et al., 2016) or the Gaussian copula
approach provide substantial benefits to predictive per-
formance only in very specific conditions. In this study,
we assess whether these findings can be confirmed by
using real NWP ensemble forecasts and observations. To
this end, we apply univariate EMOS combined with a
whole range of ECC and SSh variants to NWP ensem-
ble forecasts of temperature, wind speed, and precipita-
tion provided by the European Centre for Medium-Range

Weather Forecasts (ECMWF). Observations from SYNOP
stations are used for verification. To the best of our
knowledge, our work is the first to compare a large
variety of state-of-the-art two-step methods for mul-
tivariate post-processing including recently proposed
similarity-based SSh approaches and dECC.

Since we focus on the multivariate post-processing
step, for the univariate calibration we follow simply the
EMOS implementations by Hemri et al. (2014). How-
ever, for the multivariate step we compare three naive
approaches, which are derived more or less directly from
univariate EMOS, with four variants of ECC and five vari-
ants of the SSh. For the sake of simplicity and comprehen-
sibility, we focus on temporal dependence.

After a short description of the data in Section 2, we
provide a detailed summary of both univariate EMOS and
all approaches we apply to re-establish the multivariate
dependence structure in Section 3. In Section 4 we present
our results, followed by a brief discussion and conclusions
in Section 5.

2 DATA

We compare the various multivariate post-processing
methods with the help of global ECMWF ensemble fore-
casts of 2 m temperature (T2M), 10 m wind speed (V10),
and 24 hr precipitation accumulation (PPT24) for the
period between January 1, 2002, and March 20, 2014.
The datasets at hand are identical to the ones inves-
tigated in Hemri et al. (2014). containing the ECMWF
high-resolution forecasts, the 50-member operational
ensemble generated using random perturbations, and the
control run initialized at 1200 UTC with forecast hori-
zons ranging from 1 to 10 days, together with the cor-
responding observations. After an initial quality control
removing SYNOP stations with missing or irregular data,
4,160, 4,388, and 2,917 stations covering the entire globe
remained for T2M, V10, and PPT24 respectively. For more
details about the data investigated and the quality control
procedure applied, see Hemri et al. (2014).

3 METHODS

As mentioned in Section 1, we restrict our attention
to two-step approaches to multivariate post-processing,
where, after an initial univariate calibration, multivari-
ate predictions are obtained by combining the individual
post-processed forecasts with the help of an empirical
copula.

In what follows, let f(𝓁) = (f (𝓁)1 , f (𝓁)2 , … , f (𝓁)52 ) denote
a 52-member ECMWF ensemble forecast with a lead
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LAKATOS et al. 3

time of 𝓁 days (𝓁 = 1, 2, … , 10) initialized at a given
time point, where f (𝓁)1 = f (𝓁)HRES and f (𝓁)2 = f (𝓁)CTRL are the
high-resolution and the control member respectively,
whereas f (𝓁)3 , f (𝓁)4 , … , f (𝓁)52 correspond to the 50 sta-
tistically indistinguishable (and thus exchangeable)
ensemble members, which are generated using ran-
dom perturbations and which we will be denoted by
f (𝓁)ENS,1, f

(𝓁)
ENS,2, … , f (𝓁)ENS,50.

3.1 Univariate post-processing

For calibrating ensemble forecasts for a given location and
time point with a given forecasts horizon, one can choose
from a multitude of state-of-the-art approaches, as men-
tioned in Section 1. Here, we consider the computationally
simple and efficient EMOS method, where post-processed
forecasts are obtained in the form of parametric predictive
distributions with parameters depending on the corre-
sponding ensemble predictions. EMOS models for various
weather quantities differ in the parametric distribution
family to be used and in link functions relating the param-
eters of the predictive distribution to the raw ensemble
forecasts. For univariate calibration of T2M, V10, and
PPT24 ensemble forecasts, we make use of the specific
EMOS approaches of Hemri et al. (2014) described briefly
in Sections 3.1.1,3.1.2, and 3.1.3 respectively. To simplify
notation we omit the indication of the forecast horizon and
use notation fk = f (𝓁)k , k = 1, 2, … , 52, in these sections.

3.1.1 Temperature

The normal distribution and its generalizations (skewed
normal, mixture of normals, etc.) are widely used to
model temperature (see e.g. Gneiting et al., 2005; Raftery
et al., 2005; Rasp and Lerch, 2018; Taillardat, 2021).
The EMOS predictive distribution suggested by Gneit-
ing (2014) specifically for the 52-member T2M ECMWF
ensemble is Gaussian with mean 𝜇 and variance 𝜎2, given
as

𝜇 = a0 + a2
1fHRES + a2

2fCTRL + a2
3f ENS and

𝜎

2 = b2
0 + b2

1S2
ENS,

where f ENS and S2
ENS respectively denote the mean and the

variance of the 50 exchangeable ensemble members; that
is,

f ENS ≔
1

50

50∑

k=1
fENS,k and S2

ENS ≔
1

50

50∑

k=1
(fENS,k − f ENS)2.

Model parameters a0, a1, a2, a3, b0, b1 ∈ R are estimated
according to the optimum score principle of Gneiting and
Raftery (2007); that is, by optimizing the mean value of
an appropriate verification metric (see Section 3.3) over
the training data consisting of past forecast–observation
pairs.

To account for seasonal variations in temperature,
inspired by Scheuerer and Büermann (2014), Hemri
et al. (2014) suggest a more complex model for the mean
of the predictive distribution in the form of

yt = c0 + c1 sin
( 2πt

365

)
+ c2 cos

( 2πt
365

)
+ 𝜀t,

t ∈ 1, 2, … ,n, (1)

where the dependent variables yt are either temperature
observations for a given location or functionals of the
corresponding ECMWF ensemble forecast with a given
lead time 𝓁; namely, the high-resolution member fHRES,
the control run fCTRL, and the mean of the exchangeable
forecasts f ENS from a training period of length n. With
the help of the model in Equation (1) one can calculate
the 𝓁-step-ahead predictions ŷ and ̂f HRES, ̂f CTRL, ̂f ENS of
the observations and the corresponding functionals of the
ensemble and obtain a Gaussian predictive distribution
with parameters

𝜇 = ŷ + a2
1(fHRES − ̂f HRES)

+ a2
2(fCTRL − ̂f CTRL) + a2

3(f ENS − ̂f ENS) and
𝜎

2 = b2
0 + b2

1S2
, (2)

where

S2
≔

1
52

52∑

k=1
(fk − f )2 with f ≔ 1

52

52∑

k=1
fk.

3.1.2 Wind speed

To model wind speed one requires non-negative and
skewed distributions. Here, we consider a normal law


∞
0 (𝜇, 𝜎

2) with location 𝜇 and scale 𝜎 > 0, left-truncated
at zero, which is applied in the EMOS model of Tho-
rarinsdottir and Gneiting (2010). As a natural transforma-
tion (see e.g. Haslett and Raftery, 1989), Hemri et al. (2014)
model the square root of V10 as


∞
0

(
a0 + a2

1

√
fHRES + a2

2

√
fCTRL

+a2
3

√
f ENS, b2

0 + b2
1MD√

f

)
, (3)
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4 LAKATOS et al.

where

MD√
f ≔

1
522

52∑

k,𝓁=1

|||
√

fk −
√

f𝓁
||| .

The model parameters a0, a1, a2, a3, b0, b1 ∈ R, can
again be estimated using the optimum score estimation
principle.

3.1.3 Precipitation

Statistical calibration of precipitation forecasts is more
challenging than the post-processing of temperature or
wind speed due to the discrete-continuous nature with a
positive probability of observing zero precipitation. Fol-
lowing Hemri et al. (2014), to model PPT24 we consider
the EMOS model of Scheuerer (2014), where the predictive
distribution is a generalized extreme-value distribution
left-censored at zero. Location 𝜇 and scale 𝜎 are linked to
the raw forecasts via

𝜇 = a0 + a2
1fHRES + a2

2fCTRL + a2
3f ENS + a2

4𝜋0 and
𝜎

2 = b2
0 + b2

1MDf , (4)

where a0, a1, a2, a3, a4, b0, b1 ∈ R, and where

𝜋0 ≔
1

52

52∑

k=1
I{fk=0} and MDf ≔

1
522

52∑

k,𝓁=1
|fk − f𝓁|,

are respectively the proportion of ensemble members pre-
dicting zero precipitation and the ensemble mean differ-
ence, whereas shape 𝜉 is kept fixed (𝜉 = 0.2).

3.2 Multivariate methods

Independent univariate calibration of ensemble forecasts
f(𝓁) for each forecast horizon 𝓁 does not take into account
the temporal dependencies between predictions initial-
ized at the same time point. These dependencies are
restored in a second step with the help of the approaches
described in the following, which are based on empirical
copulas.

In general, a copula is a multivariate cumulative
distribution function (CDF) with standard uniform
marginals. According to Sklar’s theorem (Sklar, 1959),
any L-dimensional CDF H with marginal CDFs
F(𝓁),𝓁 = 1, 2, … ,L, can be decomposed as

H(x1, x2, … , xL) = C(F(1)(x1),F(2)(x2), … ,F(L)(xL)),
x1, x2, … , xL ∈ R,

where C is an L-dimensional copula representing the
dependencies between the marginals. In our case F(𝓁) is
the predictive distribution corresponding to lead time 𝓁 =
1, … , 10 obtained after univariate post-processing, and we
would like to combine calibrated predictions initialized
at the same time point into a temporally consistent cali-
brated forecast trajectory represented by a 10-dimensional
predictive CDF H.

Here, we focus on non-parametric methods where
marginals are represented by empirical CDFs ̂F(𝓁) of
samples drawn independently from the corresponding
predictive distributions, and C is an empirical copula
(Rüschendorf, 2009) providing a “dependence template”
derived from a given discrete dataset. The learned depen-
dence structure is then imposed on the post-processed
forecasts by rearranging the marginal samples according
to the specified template (see e.g. Wilks, 2019, Sect. 8.4.2).

3.2.1 Ensemble copula coupling

In the ECC approach, the dependence template is obtained
from the corresponding raw ensemble forecasts. The
method, introduced by Schefzik et al. (2013), consists of the
following two simple steps.

1 For each dimension 𝓁 = 1, 2, … ,L, generate a sample
̂f
(𝓁)
1 ,

̂f
(𝓁)
2 , … ,

̂f
(𝓁)
K of the same size as the raw ensemble

(K = 52 here) from the calibrated marginal predictive
distribution F(𝓁), which is assumed to be arranged in
ascending order.

2 Consider permutations 𝝅𝓁 = (𝜋𝓁(1), 𝜋𝓁(2), … , 𝜋𝓁(K))
of {1, 2, … ,K} induced by the rank order structure
of the raw ensemble f (𝓁)1 , f (𝓁)2 , … , f (𝓁)K ; that is, 𝜋𝓁(k) ≔
rank(f (𝓁)k ) with ties resolved at random. The ECC cal-
ibrated sample ̃f (𝓁)1 ,

̃f (𝓁)2 , … ,
̃f (𝓁)K for dimension 𝓁 is

obtained by rearranging the sample generated in step 1
according to permutation 𝝅𝓁; that is:

̃f (𝓁)k ≔
̂f
(𝓁)
𝜋𝓁 (k), k = 1, 2, … ,K, 𝓁 = 1, 2, … ,L.

Similar to Lerch et al. (2020b), we consider three dif-
ferent ECC variants depending on the sampling method in
step 1: ECC-R, ECC-Q, and ECC-S. ECC-R refers to random
sampling from the predictive distribution F(𝓁) and arrang-
ing the sample in ascending order, whereas in ECC-Q one
considers equidistant quantiles of F(𝓁); that is:

̂f
(𝓁)
k ≔ (F(𝓁))−1

(
k

K + 1

)
,

k = 1, 2, … ,K, 𝓁 = 1, 2, … ,L.
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LAKATOS et al. 5

Finally, with the ECC-S variant we also apply the stratified
sampling approach of Hu et al. (2016). In this approach

̂f
(𝓁)
k ≔ (F(𝓁))−1(uk), k = 1, 2, … ,K, 𝓁 = 1, 2, … ,L,

where uk is a random draw from a uniform distribution on
]

k − 1
K

,

k
K

]
, k = 1, 2, … ,K.

Note that in Section 4.2 we also investigate the forecast skill
of three naive multivariate forecasts obtained from the uni-
variate post-processing methods without accounting for
temporal dependencies. This means that forecasts ̂f

(𝓁)
k , k =

1, 2, … ,K,𝓁 = 1, 2, … ,L, drawn from the correspond-
ing predictive distributions F(𝓁) are simply combined into
L-dimensional ensemble forecasts ̂𝔣1, ̂𝔣2, … ,

̂𝔣K with ̂𝔣k =
(̂f
(1)
k ,

̂f
(2)
k , … ,

̂f
(L)
k )T, k = 1, 2, … K. These “independent”

forecasts derived using random sampling from the uni-
variate predictive distributions, considering equidistant
quantiles and stratified sampling are denoted by EMOS-R,
EMOS-Q, and EMOS-S respectively.

We remark that, in the case of EMOS-Q, the simple
use of equidistant quantiles along each margin results
in a positive dependence between each pair of coordi-
nates that might lead to misleading results. To avoid
the possibly unrealistic dependence structure one can
randomly rearrange the assignments of the member
indices of the equidistant quantiles obtained by EMOS
post-processing (Schefzik, 2017), or even consider a num-
ber of such random shuffles and average the scores
obtained (Schefzik, 2016). However, to be consistent with
the methods of Lerch et al. (2020a), none of the aforemen-
tioned techniques is used in the present study.

3.2.2 Dual ensemble copula coupling

The dECC method of Ben Bouallègue et al. (2016) com-
bines the structure of the raw ensemble forecast with the
estimated forecast error autocorrelation and proceeds as
follows.

1 Apply ECC-Q to generate an initial post-processed
multivariate ensemble forecast ̃𝔣1, ̃𝔣2, … ,

̃𝔣K with ̃𝔣k =(
̃f (1)k ,

̃f (2)k , … ,
̃f (L)k

)T
, k = 1, 2, … K.

2 With the help of the estimated L × L autocorrelation
matrix ̂𝚺e of the forecast error of the ensemble mean
generate a correction term

𝔠k ≔ ̂𝚺1∕2
e

(
̃𝔣k − 𝔣k

)
, k = 1, 2, … ,K,

where 𝔣k =
(

f (1)k , f (2)k , … , f (L)k

)T
denotes the kth raw

multivariate forecast. The estimates of the error corre-
lations can be obtained, for example, from the training
data for the univariate post-processing at the different
forecast horizons.

3 Derive the adjusted multivariate ensemble
̆𝔣1, ̆𝔣2, … ,

̆𝔣K , where ̆𝔣k ≔ 𝔣k + 𝔠k, k = 1, 2, … ,K.
4 Apply ECC-Q again; however, this time using the rank

order structure of the adjusted ensemble of step 3 for
rearranging the samples generated from the calibrated
univariate predictive distributions.

3.2.3 Schaake shuffle

In contrast to ECC, the SSh (SSh; Clark et al., 2004) deter-
mines a dependence template based on past observations
rather than the raw ensemble predictions. Samples drawn
from the calibrated univariate predictive distributions are
thus rearranged in the rank order structure of randomly
selected historical observation trajectories of length L.
Again, as historical data, one can consider the training
data for the univariate post-processing. The SSh approach
allows for generating post-processed forecasts of any size,
provided one has a long enough historical climatologi-
cal record. However, to ensure a fair comparison with
the (d)ECC methods, we restrict the sample size to the
size of the raw ensemble. Similar to the ECC described in
Section 3.2.1, three different sampling methods from the
predictive distributions are considered; the corresponding
SSh variants are referred to as SSh-R (random sample),
SSh-Q (equidistant quantiles), and SSh-S (stratified sam-
ple). In addition to the standard SSh, we further apply
two more recently proposed variants that utilize more
advanced procedures to select past observations for deter-
mining the dependence template, the minimum diver-
gence SSh (mdSSh) and the similarity-based SSh (simSSh),
which are discussed next.

3.2.4 Minimum divergence Schaake shuffle

The mdSSh (Scheuerer et al., 2017) provides a more sophis-
ticated method for selecting historical observation trajec-
tories used as a dependence template. The basic selection
algorithm applied for T2M and V10 ensemble forecasts is
as follows.

1 For each lead time 𝓁, calculate the 99% central predic-
tion interval of the corresponding marginal predictive
distribution F(𝓁),𝓁 = 1, 2, … ,L.
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6 LAKATOS et al.

2 From the historical climatological record, keep those
observation trajectories of length L where the corre-
sponding central prediction intervals of step 1 contain
at least m observations. Threshold m is chosen to retain
at least M ≥ K forecast trajectories.

3 Select randomly K observation trajectories from the M
remaining after step 2.

For the discrete-continuous marginal predictive distri-
butions of PPT24 (see Section 3.1.3), Scheuerer et al. (2017)
suggests to replace step 3 by a more complex method to
reduce the number of selected forecast trajectories from
M to the required K. This approach is based on selec-
tion of a K-subset of the set of forecast trajectories of
step 2, which minimizes the total divergence of the EMOS
predictive CDFs and the empirical CDFs of the corre-
sponding observations (see e.g. Thorarinsdottir et al., 2013)
for all lead times and forecast cases. For more details
and a computationally feasible algorithm, see Scheuerer
et al. (2017).

3.2.5 Similarity-based Schaake shuffle

In contrast to the mdSSh, where observation trajectories
used as dependence templates are selected on the basis
of their consistency with the corresponding EMOS pre-
dictive distributions, the simSSh (Schefzik, 2016) looks
for historical forecast trajectories where the correspond-
ing ensemble forecasts are the most similar to the actual
ones.

1 For a given initialization time in the verification period,
calculate the mean f

(𝓁)
and variance S2(𝓁) of the ensem-

ble forecast f(𝓁) initialized at this time point for each
forecast horizon 𝓁 = 1, 2, … ,L.

2 For each initialization time 𝜏 in the historical dataset,
compute similarity

Δ𝜏 ≔

√√√√
L∑

𝓁=1
(f
(𝓁)
− f

(𝓁)
𝜏

)2 + 1
L

L∑

𝓁=1
(S2(𝓁) − S2

𝜏

(𝓁))2,

where f
(𝓁)
𝜏

and S2
𝜏

(𝓁) respectively denote the mean and
variance of the ensemble forecast f(𝓁)

𝜏

with lead time 𝓁
initialized at time point 𝜏.

3 Chose initialization times 𝜏1, 𝜏2, … , 𝜏K resulting in the
highest similarity to the actual forecasts; that is, where
Δ𝜏1

,Δ𝜏2
, … ,Δ𝜏K are the smallest among all similarities

computed in step 2. The dependence template is given
by historic observations y(𝓁)

𝜏k
corresponding to ensemble

forecasts f(𝓁)
𝜏k

, k = 1, 2, … ,K, 𝓁 = 1, 2, … ,L.

3.3 Forecast evaluation methods

As argued in Gneiting et al. (2007), the main goal in prob-
abilistic forecasting is to maximize the sharpness of the
predictive distribution subject to calibration. Calibration
measures the statistical consistency between the predic-
tions and the corresponding observations, whereas sharp-
ness refers to the concentration of the predictive distri-
bution. Predictive performance is usually quantified with
the help of proper scoring rules, which are loss functions
(F, y) assigning numerical values to forecast–observation
pairs (F, y). One of the most popular proper scoring rules
in the atmospheric sciences assessing simultaneously both
calibration and sharpness is the continuous ranked prob-
ability score (CRPS; Wilks, 2019, Sect. 9.5.1). For a pre-
dictive CDF F(x) and an observation y ∈ R, the CRPS is
defined as

CRPS(F, y) ≔
∫

∞

−∞
(F(x) − I{x≥y})2 dx

= E|X − y| − 1
2

E|X − X ′|, (5)

where IH denotes the indicator of a set H, whereas X and X ′

are independent random variables with CDF F and finite
first moment. The CRPS is a negatively oriented score (i.e.,
the smaller the better), and this scoring rule serves as a
loss function in parameter estimation of normal, truncated
normal, and censored generalized extreme-value EMOS
models for calibration of T2M, V10, and PPT24 ensemble
forecasts respectively. For these distributions the CRPS can
be obtained in closed form (for the corresponding formu-
lae see e.g. Jordan et al., 2019), allowing a computationally
efficient estimation process.

A multivariate extension of the CRPS is the energy
score (ES; Gneiting and Raftery, 2007). Given an
L-dimensional CDF F and vector y =

(
y(1), y(2), … , y(L)

)T,
the ES is defined as

ES(F, y) ≔ E||X − y|| − 1
2

E||X − X′||, (6)

where || ⋅ || denotes the Euclidean distance and, similar to
the univariate case in Equation (5), X and X′ are indepen-
dent random vectors having distribution F. For a forecast
ensemble 𝔣1, 𝔣2, … , 𝔣K one should consider the empirical
CDF FK (Gneiting et al., 2008), which reduces Equation (6)
to the ensemble energy score

ES(FK , y) =
1
K

K∑

𝑗=1
||𝔣
𝑗
− y|| − 1

2K2

K∑

𝑗=1

K∑

k=1
||𝔣
𝑗
− 𝔣k||. (7)

Note that the same definition applies for reordered cali-
brated samples discussed in Section 3.2.
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LAKATOS et al. 7

A more recently introduced multivariate proper scor-
ing rule is the (ensemble) variogram score of order p (VSp;
Scheuerer and Hamill, 2015). For an ensemble forecast
𝔣k = (f (1)k , f (2)k , … , f (L)k )T, k = 1, 2, … ,K, it is defined as

VSp(FK , y) =
L∑

i=1

L∑

𝑗=1
𝜔i𝑗

(
|y(i) − y(𝑗)|p

− 1
K

K∑

k=1
|f (i)k − f (𝑗)k |p

)2

,

where 𝜔i𝑗 ≥ 0 is the weight for coordinate pair (i, 𝑗).
Compared with the ES, the VSp is more sensitive to the
errors in the specification of correlations. Following Lerch
et al. (2020b), we consider here p = 1 and use the notation
VS for VS1.

Further, in the case studies of Section 4, for a given
forecast F the improvement in terms of a score F with
respect to a reference forecast Fref is quantified using the
corresponding skill score (Gneiting and Raftery, 2007)


skill
F ≔ 1 − F

Fref

,

where F and Fref denote the mean score values over all
forecast cases in the verification period for forecasts F and
Fref respectively. Thus, besides the ES and the VS, we inves-
tigate the energy skill score ESS and the variogram skill
score VSS, which are positively oriented (i.e., the larger the
better).

Calibration of univariate ensemble forecasts can also
be diagnosed with the help of verification rank histograms
displaying the ranks of observations with respect to the
ensemble forecasts (see e.g. Wilks, 2019, Sect. 9.7.1). For a
properly calibrated K-member ensemble the ranks follow
a uniform distribution on {1, 2, … ,K + 1}, and the devi-
ation from uniformity can be quantified by the reliability
index

RI ≔
K+1∑

r=1

||||
𝜌r −

1
K + 1

||||
, (8)

where 𝜌r is the relative frequency of rank r (Delle Monache
et al., 2006). There are several options to generalize the
verification rank histogram to multivariate ensemble fore-
casts depending on the definition of the ranks in higher
dimensions. Here, we consider the average ranking given
by the average of the univariate ranks of the different coor-
dinates. The resulting histogram has properties and inter-
pretation that are similar to the univariate rank histogram
(Thorarinsdottir et al., 2016).

Further, we also investigate the mean Euclidean dis-
tance EE of the median vectors of the forecasts from the

corresponding validating observations, where the multi-
variate L1 ensemble median can be obtained with, for
example, the algorithm of Vardi and Zhang (2000).

Finally, following Gneiting and Ranjan (2011), statis-
tical significance of score differences between forecasts
are assessed with the help of the Diebold–Mariano (DM;
Diebold and Mariano, 1995) test, which is able to account
for temporal dependencies in the forecast errors. Given a
scoring rule  and two competing probabilistic forecasts F
and G, the test statistic of the DM test is given by

tN =
√

NF − G

�̂�N
, (9)

where F and G are the mean scores over a test set
corresponding to forecasts F and G respectively, and �̂�N
is a suitable estimator of the asymptotic standard devia-
tion of the sequence of individual score differences. Under
standard regularity conditions, tN asymptotically follows
a standard Gaussian distribution under the null hypothe-
sis of equal predictive performance. Negative values of tN
indicate a better predictive performance of F, whereas G is
preferred in the case of positive values of tN .

4 RESULTS

The predictive performance of the different multivari-
ate post-processing methods is investigated in three case
studies based on global ECMWF T2M, V10, and PPT24
ensemble forecasts. To assess calibration of probabilistic
forecasts we use the energy score ES and the variogram
score of order 1 (VS), and we also investigate the multi-
variate rank histograms together with the corresponding
reliability indices (Δ), whereas multivariate point fore-
casts are evaluated with the help of the mean Euclidean
error EE. Note that, in addition, we studied the regular-
ized Dawid–Sebastiani scores (RDSS; Wilks, 2020) of the
raw ensemble and multivariate forecasts addressing tem-
poral dependence. However, for our datasets, the RDSS
results in a ranking of the various post-processing meth-
ods that is similar to the ES. In the interest of brevity, we
restrict our attention to the ES and VS here, and we pro-
vide more detailed results for the RDSS in the Supporting
Information.

Though our focus is on the multivariate predictive per-
formance, the first step in each of the multivariate methods
described in Section 3.2 is the independent calibration
of ensemble forecasts with different forecast horizons.
Hence, we start with a brief description of the details of
univariate post-processing, followed by the results for the
multivariate models.
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8 LAKATOS et al.

4.1 Univariate post-processing

For a given initialization time, the corresponding ensem-
ble forecasts with different forecast horizons are calibrated
with the help of the EMOS approaches of Section 3.1. Esti-
mates of the EMOS model parameters minimize the mean
CRPS of the predictive distribution over locally selected
training data using a rolling training period. This means
that, for each observation station, the training dataset
consists of ensemble forecasts and corresponding validat-
ing observations of the given station for the preceding n
calendar days. To avoid numerical problems in the min-
imization of the loss function, local models require long
training periods; here, we consider the optimal training
period lengths determined by Hemri et al. (2014).

4.1.1 Temperature

The 𝓁-day ahead ECMWF T2M ensemble forecasts (𝓁 =
1, 2, … 10) are calibrated with the help of the normal

EMOS model specifued by Equation (2) with a training
period length of 720 days. For verification we consider the
time interval between January 1, 2004, and March 20, 2014
(3,732 calendar days). Figure 1a shows the boxplots of the
continuous ranked probability skill score (CRPSS) of the
EMOS models over the verification period with respect
to the raw ensemble forecasts. Compared with the raw
ECMWF T2M forecasts, univariate post-processing sub-
stantially decreases the mean CRPS for the vast majority of
stations for all lead times; however, the gain decreases with
the increase of the forecast horizon (see also Feldmann
et al., 2019).

4.1.2 Wind speed

The optimal training period length for the truncated nor-
mal EMOS model of Equation (3) for post-processing
ECMWF V10 ensemble forecasts is 365 calendar days. This
allows an almost 1-year longer verification period than in
the case of T2M; however, to keep the results consistent,
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F I G U R E 1 Boxplots of the continuous ranked probability skill score (CRPSS) of the ensemble model output statistics models for (a)
2 m temperature (T2M), (b) 10 m wind speed (V10), and (c) 24 hr precipitation accumulation (PPT24) over the verification period with
respect to the corresponding raw ensemble forecasts
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LAKATOS et al. 9

we verify both models on the same time interval starting
at January 1, 2004. The forecast skill of the EMOS mod-
els for various lead times in terms of the mean CRPS over
the verification period is depicted in Figure 1b. Compared
with the T2M ensemble forecasts, EMOS post-processing
results in a positive skill score for all stations considered,
and the improvement in the mean CRPS is a bit higher,
especially for longer lead times.

4.1.3 Precipitation

Precipitation records usually contain a large number of
zero observations; hence, reliable parameter estimation
in EMOS modelling requires much longer training peri-
ods than for temperature or wind speed. Following Hemri
et al. (2014), to calibrate ECMWF PPT24 forecasts with
lead times of 1, 2, … , 10 days, we make use of the EMOS
model of Equation (4) with a 1,816-day rolling training
period, leaving the time interval from January 1, 2007, to
March 20, 2014, for model verification. Again, in Figure 1c
we provide the CRPSS values for various forecast hori-
zons, where, similar to the other two weather quantities,
the reference forecast is the raw ensemble. The general
behaviour of the skill scores is the same as before. For
almost all stations the EMOS forecasts outperform the raw
PPT24 ensemble for all lead times, and the improvement
decreases with the increase of the forecast horizon. How-
ever, compared with T2M and V10, the boxplots of the
CRPSS values of the EMOS models for PPT24 have much
shorter interquartile ranges and display far more outliers.

4.2 Multivariate performance

We now continue with the comparison of the forecast skill
of the multivariate approaches described in Section 3.2
using calibrated samples of size 52, which is the size of the
raw ECMWF ensemble (see Section 2). In methods requir-
ing historical data for providing the dependence template
(estimation of the autocorrelation matrix for dECC; obser-
vation trajectories for the SSh and for its variants), we
consider forecast-observation pairs from the rolling train-
ing window applied in univariate calibration. In the case
of T2M, in standard SSh variants seasonality is addressed
by considering historical data only within 30 calendar days
before and after the actual forecast date. For T2M and V10
ensemble forecasts, in mdSSh we select dependence tem-
plate from observation trajectories of the training data set
where at least m = 6 from the L = 10 observations falls into
the corresponding central prediction interval, whereas in
the case of PPT24, due to the high computational costs
(see also Scheuerer et al., 2017), this method is excluded

from the analysis. Further, in the case of T2M, tests are
performed also with SSh approaches based on the whole
available (and in this way extending) past; however, as
the corresponding results of Section 4.2.1 show, in most
cases these forecasts do not significantly outperform the
corresponding ones using shorter rolling periods.

In the following analysis, the ECC-Q forecast is
used as a reference for the computation of skill scores
and in DM tests for equal predictive performance (see
Section 3.3). Further, in the interest of improving the
visual presentation of the results, in the boxplots presented
in Sections 4.2.1–4.2.3 the extreme values (further than
three times the interquartile range from the box) are not
indicated.

4.2.1 Temperature

In Figure 2, the various multivariate post-processing
approaches and the raw T2M forecasts are compared in
terms of the mean ES given by Equation (7) of the differ-
ent observation stations over the verification period (Jan-
uary 1, 2004–March 20, 2014). According to Figure 2a, each
calibration method improves the ES of the raw ensemble;
however, the differences between the various approaches
are hardly visible. A better insight can be obtained from
Figure 2b displaying the ESS values with respect to the
reference ECC-Q forecast. The raw ensemble forecasts
resulting in very low skill scores are excluded here.
All post-processing methods accounting for multivariate
dependencies provide clear improvements in terms of the
ES over the independent EMOS models: ECC-S shows the
best predictive performance, closely followed by ECC-Q
and dECC. Perhaps surprisingly, even the advanced vari-
ants of the SSh (mdSSh and simSSh) fail to outperform the
reference ECC-Q method, and SSh-S is not behind mdSSh
in skill. Finally, according to the results of the DM tests
for equal predictive performance (Figure 2c), the differ-
ences in ES from the reference model are significant for all
approaches but dECC.

A similar ranking of the multivariate post-processing
methods can be observed in Figure 3, though the perfor-
mance in terms of the VS of the standard SSh variants are
closer to each other than in terms of the ES. ECC-Q results
in the lowest mean VS; however, its advantage over dECC,
ECC-S, and simSSh is often not significant (see Figure 3c).
Further, in contrast to the ES, none of the independent
EMOS forecasts outperforms the raw ECMWF ensemble
in terms of VS.

As mentioned, SSh approaches with dependence tem-
plates selected from the whole available past meaning 721
days for the first and 4443 days for the last day of the
verification period have also been tested. As before, in
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10 LAKATOS et al.
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F I G U R E 2 Boxplots of the (a) mean energy score (ES) over the verification period of the calibrated and raw 2 m temperature (T2M)
forecasts, (b) energy skill score (ESS) with respect to the ECC-Q approach, and (c) Diebold–Mariano (DM) test statistic investigating the
significance of the difference from the reference ECC-Q method. Grey lines indicate the acceptance region of the two-tailed DM test for equal
predictive performance at a 5% level of significance. ECC: ensemble copula coupling; EMOS: ensemble model output statistics; SSh: Schaake
shuffle; d: dual; md: minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour
figure can be viewed at wileyonlinelibrary.com]

the case of the simple SSh variants historical data only
within 30 calendar days around the actual forecast date
have been used. However, according to the boxplots of
Figure 4, the use of the whole available past results in
just minor improvements in ES and even smaller in VS,
which are not significant. Hence, in the following analysis

including case studies with V10 and PPT24 forecasts as
well (Sections 4.2.2 and 4.2.3, respectively), we proceed
with SSh approaches based on historical observations
from the rolling training period used in EMOS mod-
elling. This has the potential advantage of accounting
more rapidly to substantial changes in the NWP model
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F I G U R E 3 Boxplots of the (a) mean variogram score (VS) over the verification period of the calibrated and raw 2 m temperature
(T2M) forecasts, (b) variogram skill score (VSS) with respect to the ECC-Q approach, and (c) Diebold–Mariano (DM) test statistic
investigating the significance of the difference from the reference ECC-Q method. Grey lines indicate the acceptance region of the two-tailed
DM test for equal predictive performance at a 5% level of significance. ECC: ensemble copula coupling; EMOS: ensemble model output
statistics; SSh: Schaake shuffle; d: dual; md: minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S:
stratified sample [Colour figure can be viewed at wileyonlinelibrary.com]

setup that may influence the forecast error characteris-
tics. For related considerations in the context of univariate
post-processing, see Lang et al. (2020).

Boxplots of the reliability indices corresponding to
average ranks over the verification period of the cali-
brated and raw T2M forecasts are displayed in Figure 5.

ECC-S and all three independent predictions (EMOS-Q,
EMOS-R, EMOS-S) underperform the raw ensemble by
a wide margin, which is a consequence of the highly
overdispersive character of these forecasts resulting in
hump-shaped rank histograms (not shown). SSh-Q, SSh-R,
and SSh-S still show some overdispersion, whereas the

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4436 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [20/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


12 LAKATOS et al.
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F I G U R E 4 Boxplots of the Diebold–Mariano (DM) test statistic investigating the significance of the difference in the (a) mean energy
score (ES) and (b) mean variogram score (VS) of Schaake shuffle (SSh) methods based on historical observations from the rolling training
period used in ensemble model output statistics modelling with respect to the corresponding forecasts selecting dependence templates from
the whole available past. Grey lines indicate the acceptance region of the two-tailed DM test for equal predictive performance at a 5% level of
significance. md: minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour figure
can be viewed at wileyonlinelibrary.com]
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F I G U R E 5 Boxplots of the reliability indices corresponding to average ranks over the verification period of the calibrated and raw 2 m
temperature (T2M) forecasts. ECC: ensemble copula coupling; EMOS: ensemble model output statistics; SSh: Schaake shuffle; d: dual; md:
minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour figure can be viewed at
wileyonlinelibrary.com]

other forecasts, including the raw ensemble, are under-
dispersive. The average ranks of the dECC and simSSh
are the closest to the uniform distribution (the corre-
sponding mean/median reliability indices are 0.357/0.271
for both forecasts), followed by the ECC-R (0.438/0.360)
and ECC-Q (0.442/0.365); however, the rank histograms
of the latter two forecasts (not shown) are just slightly
less underdispersive than that of the ECMWF ensemble
(0.451/0.375), whereas the histogram of the mdSSh is even
more U-shaped (0.493/0.451).

Finally, Figure 6 shows the boxplots of the DM test
statistic investigating the significance of the difference
from the reference ECC-Q method in terms of the mean EE

of the L1 median vectors. Compared with the raw ensem-
ble, post-processing substantially improves the accuracy
of the L1 median forecast and the empirical copula-based
models clearly outperform the independent approaches.
The lowest mean EE correspond to the SSh-Q and SSh-S,
followed by the mdSSh; however, the differences between
these methods and the dECC, ECC-Q, ECC-S and simSSh
are not significant.

Note that our ranking of the different post-processing
methods differs from recent results of Heinrich et al. (2021)
on multivariate calibration of sea-surface temperature
forecasts, where SSh significantly outperforms ECC.
However, this disagreement might be explained by the
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F I G U R E 6 Boxplots of the Diebold–Mariano (DM) test statistic investigating the significance of the difference from the reference
ECC-Q method in terms of the mean Euclidean error (EE) of the L1 median vectors of calibrated and raw 2 m temperature (T2M) forecasts.
Grey lines indicate the acceptance region of the two-tailed DM test for equal predictive performance at a 5% level of significance. ECC:
ensemble copula coupling; EMOS: ensemble model output statistics; SSh: Schaake shuffle; d: dual; md: minimum divergence; sim:
similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour figure can be viewed at wileyonlinelibrary.com]

difference in the weather quantity studied and the specific
properties of spatial dependencies of gridded sea-surface
forecasts compared with the temporal dependencies con-
sidered here.

4.2.2 Wind speed

The predictive performance of the post-processed and
raw V10 ensemble forecast vectors in terms of the mean
ensemble ES over the verification period can be inves-
tigated with the help of Figure 7. Compared with the
raw ensemble, each of the post-processing approaches
investigated substantially reduces the mean ES (see
Figure 7a). According to the skill scores with respect to
the ECC-Q model depicted in Figure 7b (the raw ensem-
ble is again excluded), the best-performing methods are
ECC-S and SSh-S, followed by ECC-Q, mdSSh, simSSh,
and SSh-Q. However, as the DM test statistics provided
in Figure 7c indicate, the forecast skill of the latter four
approaches does not differ significantly. Finally, in con-
trast to the case of T2M ensemble forecast vectors, all
empirical copula-based methods outperform the indepen-
dent EMOS-Q, EMOS-R, and EMOS-S forecasts by a wide
margin.

Figure 8, summarizing the results for the mean
VS, is similar to Figure 3, in the sense that indepen-
dent post-processing of raw V10 forecasts with different
lead times (EMOS-Q, EMOS-R, EMOS-S) increases the
score values. In general, the predictive performance of
the empirical copula-based methods is almost identical
(see Figure 8b), with only ECC-R, ECC-S, and SSh-R

performing slightly worse. However, according to the
results of the DM tests given in Figure 8c, the difference
in skill of these three methods from the reference ECC-Q
approach is significant.

In contrast to temperature, in the case of wind speed,
any form of post-processing improves the multivariate cal-
ibration, in the sense that the corresponding average rank
histogram is closer to the uniform distribution than the
rank histogram of the raw V10 ensemble. This improve-
ment is quantified in the reliability indices displayed in
Figure 9, where the highest values again correspond to the
independently calibrated EMOS-Q, EMOS-R, and EMOS-S
forecasts. These approaches result in hump-shaped rank
histograms (not shown) indicating overdispersion, the
corresponding mean/median RI values are 0.936/0.957,
0.939/0.961, and 0.947/0.968 respectively. All other fore-
casts (including the raw ensemble) are underdispersive,
where the least U-shaped rank histograms correspond
to the three versions of the standard SSh, followed by
the simSSh. The mean/median reliability indices of these
forecasts are 0.639/0.441 (SSh-Q), 0.637/0.439 (SSh-R),
0.637/0.438 (SSh-S), and 0.671/0.470 (simSSh), which
are substantially better than the corresponding scores of
1.029/0.952 of the raw ensemble vector.

Finally, Figure 10, showing boxplots of the DM test
statistic investigating the significance of the difference
from the reference ECC-Q method in terms of the mean
EE of the L1 median vectors, is almost identical to
Figure 6. All post-processing methods result in more accu-
rate median forecasts than the raw ensemble, and all
empirical copula-based methods but ECC-R and SSh-R
perform almost identically well.
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F I G U R E 7 Boxplots of the (a) mean energy score (ES) over the verification period of the calibrated and raw 10 m wind speed (V10)
forecasts, (b) energy skill score (ESS) with respect to the ECC-Q approach, and (c) Diebold–Mariano (DM) test statistic investigating the
significance of the difference from the reference ECC-Q method. Grey lines indicate the acceptance region of the two-tailed DM test for equal
predictive performance at a 5% level of significance. ECC: ensemble copula coupling; EMOS: ensemble model output statistics; SSh: Schaake
shuffle; d: dual; md: minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour
figure can be viewed at wileyonlinelibrary.com]

4.2.3 Precipitation accumulation

Figure 11a, displaying the boxplots of the mean ES over
the verification period of the calibrated and raw PPT24
forecasts, does not reveal a clearly visible difference
between the various predictions. The raw ensemble and

the independent EMOS-Q, EMOS-R, and EMOS-S meth-
ods seem to be slightly behind the other forecasts, which
is confirmed by the skill scores of Figure 11b. From the
empirical copula-based approaches, ECC-S again shows
the best forecast skill, followed by ECC-Q, dECC, simSSh,
and SSh-S. However, as indicated by the values of the DM
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F I G U R E 8 Boxplots of the (a) mean variogram skill (VS) over the verification period of the calibrated and raw 10 m wind speed (V10)
forecasts, (b) variogram skill score (VSS) with respect to the ECC-Q approach, and (c) Diebold–Mariano (DM) test statistic investigating the
significance of the difference from the reference ECC-Q method. Grey lines indicate the acceptance region of the two-tailed DM test for equal
predictive performance at a 5% level of significance. ECC: ensemble copula coupling; EMOS: ensemble model output statistics; SSh: Schaake
shuffle; d: dual; md: minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour
figure can be viewed at wileyonlinelibrary.com]

test statistics summarized in Figure 11c, the differences
between the latter four forecasts in terms of the ES are not
significant.

In contrast to the other two weather quantities,
Figures 11 and 12 result in the same conclusions; that
is, the rankings of the forecasts in terms of the ES and

the VS are identical. Further, investigating the boxplots
of Figure 13, one can again observe the positive effect
of post-processing on multivariate calibration quantified
in lower reliability indices. The average ranks of dECC
and simSSh fit the uniform distribution best, followed
by the independent EMOS-Q, EMOS-R, and EMOS-S
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F I G U R E 9 Boxplots of the reliability indices corresponding to average ranks over the verification period of the calibrated and raw
10 m wind speed (V10) forecasts. ECC: ensemble copula coupling; EMOS: ensemble model output statistics; SSh: Schaake shuffle; d: dual;
md: minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 10 Boxplots of the Diebold–Mariano (DM) test statistic investigating the significance of the difference from the reference
ECC-Q method in terms of the mean Euclidean error (EE) of the L1 median vectors of calibrated and raw 10 m wind speed (V10) forecasts.
Grey lines indicate the acceptance region of the two-tailed DM test for equal predictive performance at a 5% level of significance. ECC:
ensemble copula coupling; EMOS: ensemble model output statistics; SSh: Schaake shuffle; d: dual; md: minimum divergence; sim:
similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour figure can be viewed at wileyonlinelibrary.com]

approaches. Note that, despite their overdispersive char-
acter resulting in hump-shaped rank histograms (not
shown), these independent forecasts outperform all ver-
sions of the standard SSh and ECC, which are highly
underdispersive.

Finally, Figure 14, showing the boxplots of the DM
test statistic investigating the significance of the differ-
ence from the reference ECC-Q method in terms of the
mean EE of the L1 median vectors, suggests the same
ranking of the various post-processing approaches as
Figures 11 and 12. However, in contrast to the ES and VS,
with regard to this score even the independent EMOS-Q,
EMOS-R, and EMOS-S methods outperform the raw
ensemble.

5 DISCUSSION AND
CONCLUSIONS

We compared a wide variety of state-of-the-art methods
for multivariate ensemble post-processing with a focus
on dependencies over lead times from 1 to 10 days, using
three case studies of global ECMWF ensemble forecasts
of temperature, wind speed, and precipitation accumu-
lation. Across all of the three settings, all multivariate
post-processing methods substantially improve all aspects
of multivariate forecast quality investigated over both
the raw ensemble predictions and a simple application
of univariate post-processing models without account-
ing for multivariate dependencies. Among the basic ECC
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F I G U R E 11 Boxplots of the (a) mean energy score (ES) over the verification period of the calibrated and raw 24 hr precipitation
accumulation (PPT24) forecasts, (b) energy skill score (ESS) with respect to the ECC-Q approach, and (c) Diebold–Mariano (DM) test statistic
investigating the significance of the difference from the reference ECC-Q method. Grey lines indicate the acceptance region of the two-tailed
DM test for equal predictive performance at a 5% level of significance. ECC: ensemble copula coupling; EMOS: ensemble model output
statistics; SSh: Schaake shuffle; d: dual; md: minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S:
stratified sample [Colour figure can be viewed at wileyonlinelibrary.com]

and SSh variants, the different sampling strategies only
showed minor differences in the predictive performance.
In particular, random sampling (ECC-R and SSh-R) gen-
erally performed worse than quantile-based (ECC-Q and
SSh-Q) or stratified sampling (ECC-S and SSh-S), whereas
no significant differences could be detected between the

latter two approaches. Comparing the more advanced
dECC, mdSSh, and simSSh approaches with their basic
counterparts, we generally did not observe any bene-
fits of these more complex methods, and we did not
find a single case where they significantly outperform
ECC-Q.
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F I G U R E 12 Boxplots of the (a) mean variogram skill (VS) over the verification period of the calibrated and raw 24 hr precipitation
accumulation (PPT24) forecasts, (b) variogram skill score (VSS) with respect to the ECC-Q approach, and (c) Diebold–Mariano (DM) test
statistic investigating the significance of the difference from the reference ECC-Q method (c). Grey lines indicate the acceptance region of the
two-tailed DM test for equal predictive performance at a 5% level of significance. ECC: ensemble copula coupling; EMOS: ensemble model
output statistics; SSh: Schaake shuffle; d: dual; md: minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample;
S: stratified sample [Colour figure can be viewed at wileyonlinelibrary.com]

In a nutshell, our overall findings indicate that there
are generally only minor differences in the predictive
performance of the various multivariate post-processing
methods and that the widely used ECC-Q approach con-
stitutes a powerful benchmark method. Its straightforward
applicability and very low computational costs make it a

natural first choice to apply in future comparative studies
of multivariate post-processing methods. Subject to differ-
ences in the set of methods investigated, our findings are in
line with the results of the simulation studies performed in
Lerch et al. (2020a), who also did not observe a single con-
sistently best method across all potential misspecifications
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F I G U R E 13 Boxplots of the reliability indices corresponding to average ranks over the verification period of the calibrated and raw
24 hr precipitation accumulation (PPT24) forecasts. ECC: ensemble copula coupling; EMOS: ensemble model output statistics; SSh: Schaake
shuffle; d: dual; md: minimum divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 14 Boxplots of the Diebold–Mariano (DM) test statistic investigating the significance of the difference from the reference
ECC-Q method in terms of the mean Euclidean error (EE) of the L1 median vectors of calibrated and raw 24 hr precipitation accumulation
(PPT24) forecasts. Grey lines indicate the acceptance region of the two-tailed DM test for equal predictive performance at a 5% level of
significance. ECC: ensemble copula coupling; EMOS: ensemble model output statistics; SSh: Schaake shuffle; d: dual; md: minimum
divergence; sim: similarity-based; Q: equidistant quantiles; R: random sample; S: stratified sample [Colour figure can be viewed at
wileyonlinelibrary.com]

considered. In the interest of ensuring the direct compa-
rability of the methods, we restricted all approaches to
the fixed sample size of the raw ensemble. That said, one
advantage of the SSh variants is that they, in principle,
allow for generating post-processed ensemble forecasts of
arbitrary size, which might be advantageous for better
modelling extreme events (Lerch et al., 2017) and offers a
natural starting point for future research; for example, by
investigating the effect of the sample size on the perfor-
mance in terms of recently proposed weighted multivari-
ate proper scoring rules (Allen et al., 2022).

The case studies considered here provide several
avenues for further generalization and analysis. Though

we have restricted our attention to temporal dependen-
cies between lead times from 1 to 10 days, it would be
interesting to also systematically compare the predictive
performance in terms of spatial or intervariable depen-
dencies. Further, our focus was on copula-based two-step
approaches to multivariate post-processing. Alternative
methods based on parametric models for the full joint dis-
tribution (Baran and Möller, 2015; Feldmann et al., 2019)
or quantile mapping (Whan et al., 2021) have been
proposed and offer a natural starting point for further
comparisons.

Recent research in post-processing has demonstrated
the benefits of incorporating additional predictors on
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the forecasting performance of univariate methods; for
example, see Rasp and Lerch (2018). Though these
advanced post-processing methods can serve as building
blocks of multivariate post-processing schemes, incorpo-
rating additional predictor information in the second,
copula-based step is challenging, calling for the develop-
ment of tailored approaches to machine-learning meth-
ods for multivariate post-processing. There have been
first studies in this direction focusing on obtaining spa-
tially coherent forecast fields via generative adversar-
ial networks (Dai and Hemri, 2021) and multivariate
post-processing using scoring-rule-based generative mod-
els that allow for incorporating additional predictors
(Chen et al., 2022).

Finally, the evaluation of multivariate predictive per-
formance remains a challenging problem, and different
multivariate evaluation metrics result in different rankings
of the approaches considered. For example, disentangling
the various contributions to multivariate forecast perfor-
mance (univariate performance, multivariate dependen-
cies, quantification of forecast uncertainty, etc.) and better
understanding their effect on, for example, the differ-
ences in variability of the ES and VS observed in our
case studies is difficult. Though there has been recent
progress on the methodological aspects of multivariate
evaluation (Ziel and Berk, 2019; Alexander et al., 2022;
Allen et al., 2022), the need for systematic compar-
isons of the discrimination ability of multivariate proper
scoring rules, ideally based on standardized benchmark
datasets, constitutes an important pathway towards a
better understanding of advantages and disadvantages
of individual metrics. As noted in Lerch et al. (2020b),
post-processing studies based on large datasets, such as the
one investigated here, might provide helpful insights in
this regard.
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