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The development of multiple metal–organic framework (MOF) thin films with high lattice mismatch is still

a challenging task. Herein we report a series of single and multiple (bi-varietal and tri-varietal) pillar-

layered MOF thin films (surface-coordinated MOF thin films, SURMOFs) [Cu2L2dabco]n (L = bdc, bpc and

tpdc) with preferred [001]-orientation on the substrate surfaces using a liquid-phase epitaxial (LPE) layer

by layer pump method. The single SURMOFs with the same c-lattice parameters but different a- and

b-lattice parameters result in the successful growth of oriented multiple SURMOFs with high lattice mis-

match (up to 77.8%). The vapor adsorption results show that the representative bi-varietal SURMOF with

large lattice mismatch has different adsorption behavior from single SURMOFs, providing a new strategy

to achieve tuning of the adsorption kinetics performance in sensing applications.

Metal–organic frameworks are constructed from metal nodes
and organic linkers, which are a kind of crystalline porous
material and are attracting great interest due to their diverse
topological structures and attractive functionalities.1–3 To date,
MOFs have been promising candidates for guest adsorption
and separation,4–6 catalysis,7–9 energy,10–12 optoelectronic
sensors and devices,13–15 and biological applications.16,17

Compared to single MOFs, multiple MOFs assembled from the
conjugation of two or more MOF units have been emerging as
hybrid materials for extending their functionalities and
applications.18–24 The different lattice parameters and strong
chemical bondings between the heterostructured interface
lead to the difficult growth of such multiple MOFs. Such het-
erostructured materials with high lattice mismatch will greatly
expand the types of material candidates and improve their
functionalities. Therefore, rational design of new multiple
MOFs with high lattice mismatch is of great importance for
their fundamental research and practical applications in
various fields.

In the last decade, MOF thin films have been greatly pre-
pared due to their large surface active sites, conveniently acces-
sible in sensing and device applications.25–32 Among the

preparation methods of MOF thin films, the liquid-phase epi-
taxial (LPE) layer by layer method is realized for use in growth
of MOF thin films (also called surface-coordinated MOF thin
films, SURMOFs) on functionalized substrates, displaying
unique features including high degree of controlled growth
orientation, tunable thickness, and good homogeneity.23,33–36

Recently, although some multiple MOF thin films have been
reported,34 obtaining multiple MOF thin films with high
lattice mismatch is still a challenging task.

For preparing multiple MOF thin films with high lattice
mismatch, in this work, a liquid phase epitaxy (LPE) layer by
layer pump procedure (Scheme S1†) was used to yield oriented
MOF thin films (referred to as SURMOFs). A series of multiple
3D MOF thin films are constructed from three isoreticular
pillar-layered MOFs [Cu2L2dabco]n,

38,39 [Cu2bdc2dabco]n
(SURMOF-a) (bdc = 1,4-benzenedicarboxylate and dabco = dia-
zabicyclo[2,2,2]octane), [Cu2bpdc2dabco]n (SURMOF-b) (bpdc =
biphenyl-4,4′-dicarboxylate), and [Cu2tpdc2dabco]n (SURMOF-
c) (tpdc = terphenyl-4,4-dicarboxylate). These MOFs are con-
structed from classic Cu2+ “paddle-wheel” units connected
with three linear dicarboxylic acid ligands (H2bdc, H2bpdc,
and H2tpdc) to form layers along the [001] plane pillared by
bitopic N-containing linkers as shown in Scheme 1. SURMOF-
a and SURMOF-b have the same c-lattice parameters but
38.6% lattice mismatch in a- and b-lattice parameters while
SURMOF-a and SURMOF-c have 77.8% lattice mismatch. They
were selected to prepare the heterostructural SURMOFs on
11-mercapto-1-undecanol (MUD) SAM modified Au surfaces.40

Using a home-made LPE layer by layer pump instrument,41,42

mono-varietal SURMOFs (SURMOF-a, SURMOF-b, and
SURMOF-c), bi-varietal SURMOFs (SURMOF-b on a, SURMOF-c
on a, SURMOF-a on b, SURMOF-c on b, SURMOF-a on c, and
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SURMOFs [Cu2L2dabco]n grown on substrate surfaces can be
tuned by choosing appropriate dicarboxylate ligands. It’s
noted that a well-known binuclear “paddle-wheel” copper car-
boxylate complex [Cu2(COO)4N2] is in this series of SURMOFs,
resulting in the formation of a 2D [Cu2L2]n layer.37 The linear
N-donor ligand dabco is coordinated to the Cu empty axial
centers, forming a pillar that is perpendicular to [Cu2L2]n
layers (Fig. 1a, b and c). The 3D pillar-layered isostructural
SURMOFs possessed different lattice cells with the same
c-lattice parameter. The lattice cell parameters are 10.8 × 10.8 ×
9.5 Å3 for [Cu2bdc2dabco]n, 14.9 × 14.9 × 9.5 Å3 for
[Cu2bpdc2dabco]n, and 19.2 × 19.2 × 9.5 Å3 for
[Cu2tpdc2dabco]n. The growth orientation of isostructural
SURMOFs is along [001], which is shown in the XRD data in
Fig. 1d, e and f.

It has been demonstrated that self-assembled monolayers
(SAMs) containing functional groups are specially used as
nucleation sites for epitaxial growth of MOF thin films.43,44

The pillar-layered SURMOFs [Cu2L2dabco]n can be easily grown
on the SAM surfaces by using the LPE layer by layer
approach.45–48 Since the preparation procedures of isoreticular
SURMOFs (Fig. 2a, b and c) are similar, the preparation of
SURMOF-a is described in detail. The OH-group functionalized
Au substrate (Fig. S1†) was subsequently filled with Cu(OAc)2
and H2L/dabco (L = bdc, bpc and tpdc) ethanolic solutions in
the sample cell of the pump system for 30 min at 50 °C. There
was 2 min ethanol washing in each step. Then 30 repeated
cycles of preparation process resulted in the formation of
homogeneous SURMOF-a, -b, -c. Out-of-plane XRD patterns
(Fig. 1d) showed two clear diffraction peaks located at 9.26°
and 18.52°, corresponding to the (001) and (002) diffraction
peaks in the XRD patterns simulated. The in-plane XRD pat-
terns showed distinct peaks at 8.18°, 11.58°, 16.36°, and
18.34°, which are related to the (100), (1–10), (200), and (210)
peaks. The high-quality out-of-plane and in-plane XRD pat-
terns as well as the small width of the diffraction peaks clearly
revealed the successful growth of highly crystalline SURMOF-a
with its [001]-direction perpendicular to the substrate surface.
Similarly, two clear peaks are located at the (001) and (002)
diffraction peaks in the out-of-plane XRD patterns of
SURMOF-b and SURMOF-c, respectively. The in-plane XRD
peaks at 5.92°, 11.84°, 15.16°, and 17.78° are related to the
(100), (001), (020), and (210) peaks (Fig. 1e) of SURMOF-b,
while the distinct peaks at 4.62°, 9.24°, 13.78°, and 18.48° are
related to the (100), (200), (300), and (400) peaks (Fig. 1f) of
SURMOF-c, which clearly revealed the successful growth of
highly crystalline SURMOF-b and SURMOF-c with their [001]-
orientation. The IR spectra (Fig. S2†) of SURMOF-a exhibited
two characteristic bands centred at 1628 cm 1, which can be
assigned to the COO vibrations of the carboxylate groups of
the bdc linker, and provide additional evidence of the success-
ful growth of SURMOF-a. Similarly, the IR spectra (Fig. S3 and
4†) of SURMOF-b (1624 and 1420 cm 1) and SURMOF-c (1590
and 1425 cm 1) revealed the symmetric and asymmetric –COO
vibrations of the carboxylate groups from bpdc and tpdc
linkers, and provide additional evidence of the successful

Scheme 1 Schematic illustration for the preparation of mono-varietal
SURMOFs [Cu2L2dabco]n (L = bdc, bpdc, and tpdc) and their multiple
(bi-varietal and tri-varietal) SURMOFs on substrate surfaces by using a
LPE layer by layer method.

SURMOF-b on c), and tri-varietal SURMOFs (SURMOF-a on b 
on c, and SURMOF-c on b on a) with preferred [001]-orien-
tation can be successfully prepared on the substrate surfaces. 
Since the length of a-lattice parameter (a2) in SURMOF-b is 
close to that of √2a1 (a-lattice parameter in SURMOF-a), the 
a3 (a-lattice parameter in SURMOF-c) is close to that of √2a2, 
and they have similar c-lattice parameters, and the MOF-on-
MOF showed diagonal growth (see Scheme 1, bottom), leading 
to large lattice mismatch (38.6% and 77.8%). The quartz 
crystal microbalance (QCM) uptakes of ethoxyethane and mesi-

tylene show that the multiple SURMOF has different adsorp-
tion behavior from single SURMOFs, demonstrating that the 
synergistic effect of the multiple SURMOF with large lattice 
mismatch has the advantage of tuning the adsorption kinetics 
performance, which provides new platforms to combine mul-
tiple functional MOF thin films for extending their sensing 
applications.

Pillar-layered SURMOFs [Cu2L2dabco]n (L = bdc, bpc and 
tpdc) consist of dicarboxylic acids, H2bdc, H2bpdc and H2tpdc 
as layers and dabco as the pillar. The pore size of 3D



XRD, SEM and IR data (see Fig. S6–11†). Furthermore, the tri-
varietal SURMOF (SURMOF-c on b on a) was also prepared by
using the LPE layer by layer pump method (Fig. 3a). The pre-
prepared SURMOF-a was used as the growth substrate, and
then the Cu(OAc)2 and organic linker H2bpdc were separately
deposited on the SURMOF-a (30 cycles) to form SURMOF-b on
a. Finally, Cu(OAc)2 and organic linker H2tpdc were separately
deposited on the top of SURMOF-b on a to further form
SURMOF-c on b on a. The successful growth was demonstrated
by out-of-plane XRD patterns (Fig. 3b and c). The XRD pattern
data clearly revealed that SURMOF-c on b on a possessed high
[001] growth orientation. Meanwhile, the tri-varietal SURMOF
SURMOF-a on b on c was successfully prepared using the
same strategy as shown in Fig. S12 and 13.† The related IR
spectra (Fig. S14†) of tri-varietal SURMOFs revealed their sym-
metric and asymmetric –COO vibrations from the carboxylate
groups of the organic linkers.

To better understand the mismatched lattice of the hetero-
structural SURMOFs, we calculated the lattice mismatch by
using the unit cell parameters of the mono-varietal SURMOFs.
The a1, a2 and a3 are the lattice distances of SURMOF-a,
SURMOF-b and SURMOF-c, respectively. Interestingly, the
length of a2 is close to that of √2a1, while the length of a3 is

Fig. 1 The structure of mono-varietal SURMOFs: (a) SURMOF-a; (b) SURMOF-b; (c) SURMOF-c; the out-of-plane and in-plane XRD pattern of
SURMOFs: (d) SURMOF-a; (e) SURMOF-b; (f ) SURMOF-c.

growth of SURMOF-b and SURMOF-c. In addition, the surface 
SEM images (Fig. 2d and e) of the single (mono-varietal) 
SURMOFs prepared with 30 cycles clearly revealed homo-
geneous thin films.

For further preparation of heterostructural (bi-varietal and 
tri-varietal) MOF thin films, the LPE layer by layer pump 
method was still used to prepare multiple SURMOFs. Briefly, 
the pre-prepared SURMOF-a was used as the growth substrate, 
and then this layer by layer pump process allows us to separ-
ately control the Cu(OAc)2 and organic linker H2tpdc depo-
sition on the SURMOF-a to form SURMOF-c on a (Fig. 2a). The 
out-of-plane XRD patterns (Fig. S6b†) of SURMOF-c on a 
showed a strong diffraction peak at 9.36° and weak peak at 
18.80° corresponding to (001) and (002) diffraction peaks in 
the simulated XRD patterns (Fig. 2c). In addition, the related 
in-plane XRD patterns (Fig. 2c) contained both in-plane XRD 
peaks of SURMOF-a and SURMOF-c. These XRD patterns 
clearly displayed the successful growth of SURMOF-c on a with 
high crystallization along [001]-orientation on the functiona-
lized substrate surface. The other bi-varietal SURMOFs 
(SURMOF-a on b, SURMOF-a on b, SURMOF-c on a, SURMOF-
a on c, and SURMOF-b on c) can be prepared successfully 
using the same process, which can be demonstrated by the



b-lattice parameters. It’s noted that the lattice mismatch [(a3 −
a1)/a1] between SURMOF-a and SURMOF-c was calculated to
be 77.8%, which was much higher than that of the reported
hetero-MOF materials.

The highly oriented, well-defined multiple SURMOFs can
offer unique adsorption properties toward guest molecules. In
this work, a quartz crystal microbalance (QCM) with a sensing
chip is a promising option for this adsorption kinetic
study.49–51 Herein the representative mono-varietal (SURMOF-a
and SURMOF-c) and multiple SURMOFs (SURMOF-c on a)
were prepared on MUD modified Au QCM electrodes for 30
cycles using the same process. Two kinds of guest molecules
ethoxyethane (chain-shape with a size of ∼1.0 × 7.0 Å2) and
mesitylene (diameter of ∼7.0 Å) with different sizes were
selected as the probe molecules since both of them hardly
have interactions with SURMOFs and their sizes are largely
different. As shown in Fig. 4a, both SURMOFs had high mass
uptakes of ethoxyethane, which were calculated to be ∼177 µg
cm 2 for SURMOF-a and ∼144 µg cm 2 for SURMOF-c, respect-
ively. To further evaluate the adsorption kinetics, the uptake
amount m(t ) can be described by an exponential decay
equation: m(t ) = meq(1 − exp(−t/τ), where τ denotes the time
constant, meq is the equilibrium adsorption and t is the
adsorption time. After fitting the uptake curves with the non-
linear exponential equation, the time constant (τ) of ethox-
yethane adsorption in SURMOF-a was 1146 s, which was much
slower than the adsorption time (404 s) in SURMOF-c. Using
the same uptake testing process in the mesitylene adsorption
(Fig. 4b) of SURMOF-a and SURMOF-c, the mass uptake in
SURMOF-a was calculated to be ∼330 µg cm 2, while that in
SURMOF-c was very low (∼26 µg cm 2), which can be attribu-
ted to that the pore size (square shape with a size of ∼6.7 ×
6.7 Å2 calculated from the space filling model) of SURMOF-a is
close to the size of mesitylene. In order to study the adsorption
kinetic performance of multiple SURMOFs, the representative
bi-varietal SURMOF-c on a (15 cycles SURMOF-c on 15 cycles
SURMOF-a) was studied. Interestingly, the kinetics adsorption
curve of mixed ethoxyethane and mesitylene (1 : 1 v/v%) on
SURMOF-c on a is not like that of any of the mono-varietal
SURMOFs (Fig. 4c); two distinct stages in terms of kinetic
adsorption rate can be divided. The first uptake stage is
mainly caused by the chain-shaped ethoxyethane with small
size, which reached the adsorption capacity of ∼86 µg cm 2

with fast diffusion (∼3 s). In the second stage, the adsorption
rate was much slower than that in the first stage, which can be
attributed to the main adsorption of large size mesitylene on
the SURMOF-c layer, causing slow pore diffusion of guest
molecules. Finally the total amount of the uptake reached
∼245 µg cm 2. To understand the adsorption mechanism, the
diffusion models of guest molecules in the SURMOFs are
shown in Fig. 4d. Since the pore size of SURMOF-a is smaller
than that (square shape with a size of ∼11.0 × 11.0 Å2 calcu-
lated from the space filling model) of SURMOF-c, the small
size ethoxyethane has a faster diffusion in SURMOF-c than in
SURMOF-c. The size of mesitylene is close to the pore size of
SURMOF-a but smaller than that of SURMOF-c, resulting in a

Fig. 2 (a) Preparation process of SURMOF-c on a; out-of-plane (b) and
in-plane XRD patterns (c) and SEM images (d and e) of SURMOF-c on a.

Fig. 3 (a) Preparation process of SURMOF-c on b on a; out-of-plane
(b) and in-plane XRD patterns (c) of SURMOF-c on b on a.

close to that of √2a2 (Fig. S15†). Since SURMOF-a and 
SURMOF-b have the same c-lattice parameter, the lattice mis-
match [(a2 − a1)/a1] is calculated to be 38.6% in a- and
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