
Citation: Schmid, E.; Rondeau, S.;

Rudszuck, T.; Nirschl, H.; Guthausen,

G. Inline NMR via a Dedicated

V-Shaped Sensor. Sensors 2023, 23,

2388. https://doi.org/10.3390/

s23052388

Received: 23 January 2023

Revised: 13 February 2023

Accepted: 20 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Inline NMR via a Dedicated V-Shaped Sensor
Eric Schmid 1, Simon Rondeau 1, Thomas Rudszuck 1, Hermann Nirschl 1 and Gisela Guthausen 1,2,*

1 Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany

2 Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany

* Correspondence: gisela.guthausen@kit.edu

Abstract: Process monitoring and control require dedicated and reliable measures which reflect
the status of the process under investigation. Although nuclear magnetic resonance is known to
be a versatile analytical technique, it is only seldomly found in process monitoring. Single-sided
nuclear magnetic resonance is one well known approach for being applied in process monitoring.
The dedicated V-sensor is a recent approach that allows the inline investigation of materials in a
pipe non-destructively and non-invasively. An open geometry of the radiofrequency unit is realized
using a tailored coil, enabling the sensor to be applied for manifold mobile applications in in-line
process monitoring. Stationary liquids were measured, and their properties were integrally quantified
as the basis for successful process monitoring. The sensor, in its inline version, is presented along
with its characteristics. An exemplary field of application is battery production in terms of anode
slurries; thus, the first results on graphite slurries will demonstrate the added value of the sensor in
process monitoring.
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1. Introduction

Nuclear Magnetic Resonance (NMR) is well known in academia and industrial re-
search in different experimental and instrumental designs. Two prominent examples are
NMR spectroscopy, revealing information about chemical structures, and magnetic reso-
nance tomography (MRT) in medical diagnostics. In industrial production with usually
harsher environmental conditions, it is often used as at-line analytics in the form of low
field (LF-)NMR, in the food and pharmaceutical industry, for example [1,2]. LF-NMR
relies on permanent magnets and is therefore restricted by the magnetic remanence leading
to magnetic fields/1H Larmor frequencies, currently up to roughly 2.5 T/100 MHz [3].
Compared to high field NMR with 1H Larmor frequencies commercially up to currently
1.2 GHz, the signals and the sensitivity are low as the population difference given by the
Boltzmann law is significantly smaller. However, the instruments are much smaller and
significantly more robust, which is essential for inline process monitoring.

Diverse parameters are known in NMR and also in LF-NMR. A multitude of contribu-
tions by a large number of researchers is known in the literature, and on development and
applications of LF-NMR. A short and incomplete overview gives an impression about the
diversity of the applied NMR methods: spectroscopy in chemical reaction monitoring and
references therein [4–8]. Apart from spectroscopy, NMR relaxation reveals an insight into
the materials studied as the measures rely on molecular dynamics. This kind of low-field
NMR is prominently known in polymer research and applications, irrespective of whether
it is measured integrally or spatially resolved, e.g., [9,10]. As the transverse relaxation rate,
R2, is sensitive to low frequency fluctuations mainly within molecules, and as these fluctua-
tions change upon chemical reaction and aging of macro-molecules, LF-NMR, relying on
relaxation properties, was often applied in this context. Remarkable inventions were made
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on the basis of permanent magnets regarding the applicability of NMR in the processes in
biological context [11], as well as in process monitoring in harsher industrial environments
and quality control, namely by the use of single-sided NMR [12–14]. In the present context,
questions are addressed as to whether an open structure of an NMR sensor can be realized
for process monitoring: Can material-characterizing properties be measured during flow,
and is the sensitivity large enough to reliably control a process? What are the constraints
concerning the pipe, its geometry and the flow rates? How can NMR sensitivity be op-
timized? An important prerequisite is that the sensor works completely non-invasively
and non-destructively. Second, the pipe must not be opened for mounting the sensor.
These prerequisites require dedicated hardware, which was addressed by simulation and
technical realization. Finally, an example will be given which shows the usability of the
sensor in a current application to batteries anode slurries.

2. Materials and Methods

The radio frequency (rf) probe was reconstructed for the V-shaped NMR-sensor [15]
to allow for a mobile application in the context of monitoring the properties of a highly
viscous, but flowing material. So far, the rf probe of the V-shaped sensor was realized in the
conventional closed shape: the rf tank circuit was constructed by two trimmable capacitors
and a solenoidal coil. Two regions of the magnet were used for NMR, one small cylindrical vol-
ume with moderate magnetic field gradient G of 0.35 T/m with a sample diameter of 12 mm,
and the other larger volume in the outer part of the magnet with a sample diameter of
42 mm and a much larger magnetic field gradient up to 7 T/m, where the distribution
of G within the sample volume is not negligible. Please note that the NMR signal is thus
inherently sensitive to relaxation phenomena in the sample as well as to diffusion and
convection, i.e., motional displacements. These facts were and are explored in single-sided
NMR and other dedicated NMR sensors, e.g., [16]. The two places within the magnet were
motivated by the application in lubricant quality control, requiring the compatibility with
other established analytics concerning sample handling. The NMR-relevant properties of
the two cylindrical regions in the V-shaped magnet needed to be considered in addition
to the mentioned static magnetic field and its gradient, the rf field amplitude, its homo-
geneity, and the quality factor of the tank circuit which determines sensitivity and receiver
dead time.

The off-line version, which was mainly used for lubricant quality control, is so far
not well suited for inline process monitoring when postulating that the sensor should be
removable and mobile without touching the process’ material stream. Thus and primarily,
the rf circuit needed a reconstruction and adaptation to these special requirements, which
is the main topic of this paper (Sections 3 and 4), whereby the rf circuit provides the rf field
for spin manipulation according to the NMR sequences.

The coil geometries (Sections 3 and 4) were simulated and characterized regarding
their NMR properties: Larmor frequency νL(r) and the NMR-intensity I(r) as function
of the spatial coordinates within the sensitive area. The distance of the sample to be
measured from the surface coil along y (Figure 1) must be mentioned. These parameters
were measured using dedicated samples: A reference sample consisting of 20%w/w H2O,
80%w/w D2O and 0.1%w/w CuSO4, and a graphite slurry for the production of anodes for
lithium ion batteries (48.5%w/w graphite, 1%w/w carboxy methyl cellulose (CMC) and
0.5%w/w carbon black).

Methodical aspects are well known from single-sided NMR [17–23] and are applicable
in the present form of the NMR V-sensor. Relaxation and diffusion/fluidic flow need to be
considered in the magnetic field with its inherent static field gradients. These static magnetic
field gradients provide the sensitivity towards molecular displacements, irrespective of
whether they are due to statistical Brownian motion, of turbulent or coherent flow. Most
often, multi echo sequences, also in the two-dimensional version of correlated experiments,
are explored in which they allow the detection of mainly, but not exclusively, transverse
magnetization decays [12,21,23–25].
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distributions are complicated and by no means monomodal. A mathematical-analytical 
approach is also suitable. The Gamma distribution function was applied in previous 
works, e.g., on oils, and shows highly reproducible and physically interpretable results 
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Figure 1. (Left): V-shaped NMR sensor (V-magnet with coordinate system and rf probe for off-line
measurements) [15] and, on the (Right), the inline-capable rf probe. The probe is positioned in the mag-
nets ”V“ so that the sample is aligned along x ((Left): typical 10 mm sample as used in low-field NMR).
Since the inline probe ((Right) picture) has a slit, it can be easily mounted on tubes without
opening the fluidic flow system. The rf connectors and the trim capacitors are also shown ((left):
Reprinted/adapted with permission from Ref. [15]).

In a first approach, transverse magnetization decays are modelled by an exponential
decay function, which is motivated by the basic Bloch equations of NMR, e.g., [26,27]. In
the present case, neither the substances are simple liquids nor the technical equipment is
ideal in the sense of NMR theory. Often the numerical approach of the inverse Laplace
transform is applied in the literature, leading to an effective transverse relaxation time
distribution [28–30]. It is well known that this approach is limited by the unavoidable
experimental noise in the data, and further quantification is hampered by the fact that the
distributions are complicated and by no means monomodal. A mathematical-analytical
approach is also suitable. The Gamma distribution function was applied in previous works,
e.g., on oils, and shows highly reproducible and physically interpretable results [31]. This
approach considers that the magnetization relaxation is influenced by the distributions of
material properties (disperse systems) and of technical parameters such as the magnetic
field gradient, and the spatially varying flip angle of the rf pulses.

3. Results
3.1. Enabling Inline NMR-Measurements via the V-Shaped Sensor

A solenoidal coil geometry is most commonly used in LF-NMR devices because of the
high signal-to-noise ratios compared to other coil geometries, and its suitability regarding
the orientation of the magnetic fields. Further advantages concern the beneficial filling
factor and the rf homogeneity. Despite this performance, a solenoidal coil is not well-
suited for the inline-capable, mobile probe. These special requirements make a surface coil
necessary to be mounted into the V-shaped magnet, which can then be flexibly positioned
on an existing closed pipe. The loss of the signal-to-noise ratio using a surface coil leads to
the motivation to optimize the coil geometry and its position.

Examples for the use of surface coils in low field NMR applications can be found
in the literature. For example, McDonald et al. [32] developed the GARField magnet for
sub-surface measurements in cement-based materials. Blümich et al. [12] used a surface
coil for single-sided NMR with the MOUSE.

The approach in this work is to design a dedicated surface coil that fits the prerequisites
of the addressed application. The coil is adapted to the geometry of a cylindrical pipe with
a diameter of 10 mm. A bent figure-8 coil was developed and adapted to the intended
application. It was compared to a spirally wound, bent surface coil.

3.1.1. Reconstruction of the RF Probe

The V-shaped magnet unit described in [12] was equipped with a closed probe for
samples with a diameter up to 12 mm, measuring the samples volumetrically (Figure 1, left).
The inline-capable probe now exhibits a characteristic slit (Figure 1, right), through which
a tube can be placed near the surface coil without touching the process stream in any
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form. The cover plate, made of aluminum, provides holes for the two match and tune trim
capacitors and the rf connection to a commercial electronics unit (Bruker “the minispec”
NF series). There are four holes to fix the probe to the magnet unit on a very defined
position. The measuring volume is in the front area in analogy to the offline probe [12]. A
conductive box is mounted directly under the cover plate, in which the match and tune
trim capacitors and the wirings are placed. The purpose of the box is an efficient shielding
of the environmental electromagnetic noise from the rf circuit and to decouple the magnet
from the rf circuit. The magnet unit with the inserted probe has the following geometric
dimensions: length: 11 cm; width: 13 cm; and height: 8 cm.

The rf circuit consists of two trim capacitors (Voltronics NMTM120CE) and the rf coil.
The same capacitors were used for a comparison of the different coil geometries, and only
the coil was exchanged. The different surface coils were mounted on a half-shell of the
outer housing with rubber spacers for a defined and fixed positioning. The whole probe is
designed for easy, subsequent adjustments and optimizations, including a change of the
surface coil.

3.1.2. From Volume Coil to Surface Coil: Simulation of the RF Magnetic Field

Simulations of the RF fields, more specific to its magnetic part B1, of the two different
coil geometries, were carried out in order to define an optimized coil geometry concerning
the signal intensity and measuring depth. A spiral wound, bent surface coil was compared
to a bent figure-8 coil. The software COMSOL Multiphysics, Version 6.0, was used for the
simulations. The coil geometries were set as homogeneous multiturn coils to reduce the
simulation’s computational costs. Thus, the current distribution within each winding of
the inductor was neglected. The calculated absolute values of the amplitudes of magnetic
flux density |B1(r)| are physically not exact, but its spatial profile and distribution are
nevertheless relevant and reliable. The modelling of each and every turn of the coils could
thus be avoided; nevertheless, the number of turns is considered by a specific parameter.
To increase the reliability of the results related to the spatial distribution of the magnetic
flux density, the actual value of the current through the coil was not implemented. Instead,
the excitation current was set to an arbitrary value of 4 A.

The simulation of the spirally wound, bent surface coil (Figure 2) shows a condensation
of the field lines along x above and below the opening of the coil. Two condensation areas
of the field lines appear for the figure-8 coil (Figure 3) at both openings of the coil. The
simulated y-profile (Figure 4) shows that |B1| is considerably larger for the figure-8 coil
than for the spirally wound, bent coil, up to a distance from the coil’s surface of 9 mm.
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Figure 2. (Left): Simulation of the absolute value of the RF-field |B1(r)| of the homogenized version
of the spirally wound, bent surface coil. The coils’ geometry is indicated by the inner black lines, while
|B1(r)| is color encoded along the scale from blue (low values) to red (high values) and shown along
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the three spatial coordinates. (Right): A picture of the coil with the coordinate system. The sample is
aligned along x and positioned cantric to the coil.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 13 
 

 

 

 
 

 

Figure 2. Left: Simulation of the absolute value of the RF-field |B1(r)| of the homogenized version 
of the spirally wound, bent surface coil. The coils’ geometry is indicated by the inner black lines, 
while |B1(r)| is color encoded along the scale from blue (low values) to red (high values) and shown 
along the three spatial coordinates. Right: A picture of the coil with the coordinate system. The 
sample is aligned along x and positioned cantric to the coil. 

 

 
 

 

Figure 3. Left: Simulation of |B1(r)| of the homogenized bent figure-8 coil. The coils geometry is 
indicated by the inner black lines, while |B1(r)| again is color encoded. The field plot shows two 
condensation areas at both openings of the coil. Right: A picture of the figure-8 coil with the coor-
dinates x and z. The sample is positioned along z, centric to the middle of the coil. The long axis of 
the cylindrical samples or tubes is aligned along x. 

x 

z 

x 

y 

Figure 3. (Left): Simulation of |B1(r)| of the homogenized bent figure-8 coil. The coils geometry
is indicated by the inner black lines, while |B1(r)| again is color encoded. The field plot shows
two condensation areas at both openings of the coil. (Right): A picture of the figure-8 coil with the
coordinates x and z. The sample is positioned along z, centric to the middle of the coil. The long axis
of the cylindrical samples or tubes is aligned along x.
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Figure 4. Simulated |B1| along y for the two coil geometries (�: figure-8 coil, •: spirally wound,
bent surface coil). |B1| of the figure-8 coil is larger than for the spirally wound, bent surface coil up
to a distance of 9 mm, leading to an improved NMR sensitivity.

3.1.3. From Volume Coil to Surface Coil: Technical Realization of the Bent Surface Coils

During the manufacturing of a bent surface coil, the wire cannot be wound around
a cylindrical carrier similar to how it is performed for solenoidal volume coils. Thus,
the insulated copper wire was positioned on an adhesive film, and the wire was wound
turn-by-turn as a flat geometry. Two-component, thermo-reversible epoxy glue, which
does not lead to a significant background signal, was applied to permanently connect the
windings. The glued coil was then bent to the desired shape after heat-softening the epoxy
film. After cooling, the bent coil retains its geometry permanently which is then adapted
to the cylindrical shape of a 10 mm tube containing a material stream. The motivation for
bending was the expected larger filling factor and a more homogeneous B1 field.
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3.1.4. Comparison of the Coils: Technical Parameters and NMR Properties

Technical and NMR parameters are summarized for three different types of rf coils
(Table 1). The solenoidal volume coil was previously used [12]. A spirally wound, bent surface
coil is thus compared to the solenoidal volume coil and the bent figure-8 surface coil.

Table 1. Comparison of the technical and NMR parameters for the three types of rf coils.

Parameter Solenoidal Volume Coil Spirally Wound,
Bent Surface Coil

Bent Figure-8
Surface Coil

Diameter/Size along x 13 mm 39 mm 24 mm
Number of turns 19 11 8

Diameter of the insulated copper wire 0.45 mm 0.8 mm 0.45 mm
Quality factor of rf circuit 318 168 147

90◦ pulse duration (16 dB attenuation) 13 µs 30 µs 9 µs
Receiver dead time (RDT) 25 µs 10.9 µs 11 µs

Typical receiver gain for a 10 mm water sample 68 dB 86 dB 70 dB
Profile width along x (left and right points at

10% from maximum)
4.3 mm;
21.2 mm 3.8 mm; 23.8 mm 0.4 mm; 19.6 mm

Distance at half signal along y n.a. 2.5 mm 3.5 mm

Picture of the coil

Sensors 2023, 23, x FOR PEER REVIEW 7 of 13 
 

 

Picture of the coil 
   

The NMR characteristics (Table 1: pulse duration, receiver gain, profile, etc.) were 
measured via the Hahn-echo sequence at a small echo time without an increment of τe 

[33]. Thus, the signal intensity was measured step-by-step to determine the profile along 
x and y. Care was taken to use samples with sufficiently small dimensions along the 
coordinates, along which the profiles were investigated. The different coil geometries 
influence parameters such as the flip angle, the receiver dead time (RDT), or the necessary 
receiver gain. RDT plays a significant role in selecting the planned application area of the 
sensor. Graphite slurries already exhibit short transverse relaxation times. 

An important characteristic of an NMR probe is its sensitive volume. The normalized 
intensity I/Imax, x is therefore compared for the three types of coils. The Hahn-echo 
sequence was used at νL = 22.18 MHz to determine the signal intensity as a function of x 
(Figure 5). Imax, x is the maximal signal intensity over x observed for each specific coil. 

These x-intensity profiles (Figure 5) were measured with a 5 mm NMR tube (filling 
level 2 mm) with globally determined pulse durations. The sample, with its small filling 
level, was stepped through the magnet along x while the NMR signal intensity of a Hahn 
echo was measured at the indicated positions. Concerning the y and z positions: the 
sample was positioned directly on the surface of the surface coils without touching them 
and in the center of the volume coil, respectively. Two regions of maximal signal intensity 
were found near the two openings of the figure-8 coil (Figure 5). B0 of the permanent 
magnet depends on x, due to the design of the V-shaped magnet, as does νL(r), 
consequently. In the realized optimal coil position, the same Larmor frequency is 
observed at the lower and the upper half of the figure-8 coil, which is reflected in the 
almost identical signal intensities at x = 6 mm, and x = 16 mm (Figure 5) at νL = 22.18 MHz. 
The two maxima in Figure 5, however, are unique for the figure-8 coil, and correspond to 
the two maxima in |B1(r)|, as evident from the simulation (Figure 3). 

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

I/I
m

ax
,x
 [-

]

x [mm]
 

Figure 5. Measured normalized signal intensity profiles along x with a small water sample for the 
three different coil geometries (■: figure-8 coil, νL = 22.18 MHz; : spirally wound, bent surface coil, 
νL = 21.99 MHz; : solenoidal coil, νL = 22.0 MHz). The sample was moved in 2 mm incremental 
steps along x (coordinate system of Figure 1). Pulse duration and frequency were kept constant for 
each coil. The geometries exhibit different intensity profiles along x. The solenoidal coils and the 
spirally wound, bent surface coils show a single intensity maximum, while two maxima were 
measured for the bent figure-8 coil, with approximately the same normalized signal intensity. 
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Figure 5. Measured normalized signal intensity profiles along x with a small water sample for the 
three different coil geometries (■: figure-8 coil, νL = 22.18 MHz; : spirally wound, bent surface coil, 
νL = 21.99 MHz; : solenoidal coil, νL = 22.0 MHz). The sample was moved in 2 mm incremental 
steps along x (coordinate system of Figure 1). Pulse duration and frequency were kept constant for 
each coil. The geometries exhibit different intensity profiles along x. The solenoidal coils and the 
spirally wound, bent surface coils show a single intensity maximum, while two maxima were 
measured for the bent figure-8 coil, with approximately the same normalized signal intensity. 
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Figure 5. Measured normalized signal intensity profiles along x with a small water sample for the 
three different coil geometries (■: figure-8 coil, νL = 22.18 MHz; : spirally wound, bent surface coil, 
νL = 21.99 MHz; : solenoidal coil, νL = 22.0 MHz). The sample was moved in 2 mm incremental 
steps along x (coordinate system of Figure 1). Pulse duration and frequency were kept constant for 
each coil. The geometries exhibit different intensity profiles along x. The solenoidal coils and the 
spirally wound, bent surface coils show a single intensity maximum, while two maxima were 
measured for the bent figure-8 coil, with approximately the same normalized signal intensity. 

The NMR characteristics (Table 1: pulse duration, receiver gain, profile, etc.) were
measured via the Hahn-echo sequence at a small echo time without an increment of τe [33].
Thus, the signal intensity was measured step-by-step to determine the profile along x and y.
Care was taken to use samples with sufficiently small dimensions along the coordinates,
along which the profiles were investigated. The different coil geometries influence parame-
ters such as the flip angle, the receiver dead time (RDT), or the necessary receiver gain. RDT
plays a significant role in selecting the planned application area of the sensor. Graphite
slurries already exhibit short transverse relaxation times.

An important characteristic of an NMR probe is its sensitive volume. The normal-
ized intensity I/Imax, x is therefore compared for the three types of coils. The Hahn-echo
sequence was used at νL = 22.18 MHz to determine the signal intensity as a function of x
(Figure 5). Imax, x is the maximal signal intensity over x observed for each specific coil.
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three different coil geometries (■: figure-8 coil, νL = 22.18 MHz; ●: spirally wound, bent surface coil, 
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along x (coordinate system of Figure 1). Pulse duration and frequency were kept constant for each 
coil. The geometries exhibit different intensity profiles along x. The solenoidal coils and the spirally 
wound, bent surface coils show a single intensity maximum, while two maxima were measured for 
the bent figure-8 coil, with approximately the same normalized signal intensity. 
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Figure 5. Measured normalized signal intensity profiles along x with a small water sample for the
three different coil geometries (�: figure-8 coil, νL = 22.18 MHz; •: spirally wound, bent surface coil,
νL = 21.99 MHz; N: solenoidal coil, νL = 22.0 MHz). The sample was moved in 2 mm incremental steps
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along x (coordinate system of Figure 1). Pulse duration and frequency were kept constant for each
coil. The geometries exhibit different intensity profiles along x. The solenoidal coils and the spirally
wound, bent surface coils show a single intensity maximum, while two maxima were measured for
the bent figure-8 coil, with approximately the same normalized signal intensity.

These x-intensity profiles (Figure 5) were measured with a 5 mm NMR tube (filling
level 2 mm) with globally determined pulse durations. The sample, with its small filling
level, was stepped through the magnet along x while the NMR signal intensity of a Hahn
echo was measured at the indicated positions. Concerning the y and z positions: the sample
was positioned directly on the surface of the surface coils without touching them and in the
center of the volume coil, respectively. Two regions of maximal signal intensity were found
near the two openings of the figure-8 coil (Figure 5). B0 of the permanent magnet depends
on x, due to the design of the V-shaped magnet, as does νL(r), consequently. In the realized
optimal coil position, the same Larmor frequency is observed at the lower and the upper
half of the figure-8 coil, which is reflected in the almost identical signal intensities at x = 6 mm,
and x = 16 mm (Figure 5) at νL = 22.18 MHz. The two maxima in Figure 5, however, are
unique for the figure-8 coil, and correspond to the two maxima in |B1(r)|, as evident from
the simulation (Figure 3).

The y-profile of signal intensity was measured with rubber on a 10 mm NMR tube. On
its outside, a rubber sheet (thickness 1 mm) was glued to provide a relatively thin sample
for measuring the distance profile (Figure 6). y = 0 mm is therefore defined directly on
the surface of the coils. The measurements show that the maximal signal intensity is not
directly at the surface of the bent figure-8 coil, but at a distance of 2 mm, in agreement with
the B1 simulation (Figure 4). The sample was detectable up to a distance of y = 7 mm. This
implies that not the entire volume of a sample with a diameter of 10 mm is detected. The
position of the maximal signal intensity at a distance of 2 mm from the coil surface means
that the most sensitive area of the inline-capable probe is in the sample itself when using
tubes with a wall thickness smaller than 2 mm. For comparison, the realized sample tube
for inline measurements has a wall thickness of 1 mm.
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Figure 6. y-profiles of the normalized signal intensity for the bent figure-8 coil (�) and the spirally
wound, bent surface coil (•), measured with a thin rubber sample. The maximal signal intensity for
the spirally wound, bent surface coil is near the surface of the coil, whereas the maximum for the
bent figure-8 coil is shifted by around 2 mm in the y-direction.

3.2. NMR-Measurements on Disperse Suspensions

An aqueous, extruded anode slurry was analyzed with a solid content of 50%w/w
for the anode manufacturing of lithium-ion batteries (48.5%w/w graphite, 1%w/w CMC,
0.5%w/w carbon black). The sample temperature was 25 ◦C, and the long axis of the 10 mm
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sample tube parallel to x was along the gravity direction. The filling level was 10 cm to guar-
antee a good sample homogeneity in the sensitive volume. The results were obtained with
the figure-8 coil. The CPMG pulse sequence (Carr-Purcell-Meiboom-Gill) [34,35] was used
with 3000 echoes, while τe was incremented. The repetition time was 2 s. It is well known
that the transverse magnetization decay depends on the magnetic field gradient, leading to
a sensitivity towards diffusion phenomena [34,35]. Please note that the magnetic field B0 of
the V-shaped sensor shows magnetic field gradients in all spatial dimensions, similar to
the facts in other dedicated NMR sensors [32,36,37]. Therefore, only the average magnetic
field gradient contributes in the measurements, which depends on the sample volume
and the position of the RF coil. The signal decays were modeled by a mono-exponential
function with sufficient numerical accuracy, leading to the effective transverse relaxation
rate R2,eff. R2,eff depends on τe (Figure 7, [23]), as expected. However, an effective diffu-
sion coefficient in the slurry cannot be calculated via linear regression. The echo times τe
are relatively small, so that, among other factors, sample heating and consequently, con-
vection occur. Both relaxation and diffusion depend on the sample temperature. The
RF energy intake leads to an increase of the temperature for small τe, in particular. The
graphite particles in the slurry may additionally act as energy absorbers. In principle and
in summarizing, measurements at a larger τe would be required. Additional measurements
were performed with a reference sample to prove this data interpretation hypothesis.
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nanoscale Fe and Fe oxides in typical concentrations up to 50 ppm in the used graphite 
powder. 

Figure 7. R2,eff as a function of the squared echo time τe
2 for an anode slurry of 48.5%w/w graphite,

1%w/w CMC and 0.5%w/w carbon black. The red line evidently shows the deviation from pure
transverse relaxation and diffusion contributions.

The reference sample (20% H2O, 80% D2O and 0.1% CuSO4) was filled into a completely
filled 5 mm NMR tube. The average static gradient was determined via the Hahn echo se-
quence (increment factor for τe: 1.3; recycle delay: 10 s) to G = 1.05 T/m with D = 2.4·10−9 m2/s
at 27 ◦C and R2 = 2 s−1 (Figure 8 left). Deviations between the measured points and the
modeling are due to experimental noise (magnitude data) and the inherent distribution of G.

In a first CPMG measurement on the reference sample, τe was varied in the range
[0.05, 1.8] ms with a recycle delay of 4 s (Figure 8, right, black dots). A deviation from the
expected linear relation R2,eff (τe

2) was observed for a small τe, which was also in this case
of measurements on the reference sample. To further test the hypothesis of sample heating
and associated convection, the experiment was repeated. The repetition time was extended
to 40 s to ensure thermostating of the sample. The sample filling height was reduced to
1 cm, and τe was reduced, in addition to comparing to the first measurement (Figure 8,
right, red dots). As a result, the linear range is extended over a significantly larger range of τe,
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and the calculation of the diffusion coefficient with G = 1.14 T/m results in D = 2.9·10−9 m2/s,
which is within the expectation, considering the distribution of G and the sample heating.
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The findings are in agreement with the observations described above: R2,eff increases 
with τe for the top and the bottom position in the first measurement (20 h). R2,eff is smaller 
for all τe at the top of the tube compared to the values at the bottom. This indicates the 
beginning of sedimentation due to the relaxation rates of “pure” water and water in the 
graphite sediment, containing paramagnetic impurities. Again, the measured points de-
viate slightly from a straight line, indicating sample heating. After a waiting time of seven 
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Figure 8. (Left): Measurements on the reference sample. Hahn-echo decay was used to determine the
static gradient near the maximum sensitivity of the bent figure-8 coil (G = 1.14 T/m). Modelling of
the magnetization decays includes an offset. (Right): A deviation from the expected linear behavior
of R2,eff(τe

2) is found for a small τe due to sample heating. At large τe and a reduced sample filling
level (red dots), RF heating is less significant, and the range of linearity is larger.

Please note that the significant difference in R2,eff of the two samples, the reference
sample (Figure 8) and the graphite slurry (Figure 7). In contrast to the reference sample,
τe was one order of magnitude smaller (τe ε [0.05, 0.25] ms) in the case of the graphite
slurry, since R2,eff is much larger.

Diffusion is expected to be hindered in the slurry, leading to a reduction, i.e., a
flatter dependence on τe, while R2 is enhanced by paramagnetic relaxation enhancement
due to nanoscale Fe and Fe oxides in typical concentrations up to 50 ppm in the used
graphite powder.

Coming back to the potential application of the inline capable V-sensor, an important
question concerns sedimentation which would influence the subsequent processing steps
of coating, calendaring, and drying. The V-shaped sensor equipped with the figure-8
surface coil can be easily used to investigate the status of a slurry in a pipe. Positioning
the magnet such that the gravity axis is along y (Figure 1) allows the investigation of the
pipe’s interior, which is, with its long axis, also perpendicular to the gravity axis, i.e.,
along y. The sensor can be placed exemplarily on top or on bottom of the pipe (Figure 9).
In the case that significant sedimentation occurred in the optically opaque slurry, the
effective transverse relaxation will tend toward the values of water, while the bottom part
will show faster effective transverse relaxation due to, among other effects, paramagnetic
relaxation enhancement.
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Figure 9. Positioning of the surface coil on the bottom (left) and the top (right) of the horizontally
fixed 10 mm pipe.

Thus, the anode slurry in a 10 mm pipe was fixed horizontally for 20 h to show whether
sedimentation already occurs in the graphite slurry on that relatively short time scale. To
investigate long-term effects, the sample was stored at the same position for seven days for
a second measurement. CPMG measurements were carried out on the sedimented sample
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with the figure-8 coil at the bottom and on top of the sample tube, to analyze the specific
areas inside the tube (Figure 9). R2,eff for the two positions was measured for six values
of τe (Figure 10).
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4. Conclusions 
The inline-capable NMR sensor with its dedicated hardware configuration was char-

acterized. Different coil geometries were compared with the finding that the bent figure-
8 coil is the shape with optimal characteristics for the desired application from the per-
spective of quality control. Simulations were carried out and compared to the measure-
ment results. The V-shaped NMR sensor, equipped with the bent figure-8 surface coil, has 
the potential to be used in quality control, for example in battery anode production, based 
on the relaxation and diffusion properties of the used materials. The application is not 
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Figure 10. R2,eff(τe
2) for an anode slurry of 48.5%w/w graphite, 1%w/w CMC and 0.5%w/w carbon

black, measured with the bent figure-8 coil on top and on the bottom of the horizontally fixed sample
tube (�: bottom, 20 h; •: top, 20 h; N: bottom, 7 days; H: top, 7 days. R2,eff is larger at the bottom
than at the top of the tube for both waiting times. R2,eff is clearly larger at the bottom of the sample
with a 7 day waiting time (N), while value at the top (H) approaches the values for doped water.

The findings are in agreement with the observations described above: R2,eff increases
with τe for the top and the bottom position in the first measurement (20 h). R2,eff is smaller
for all τe at the top of the tube compared to the values at the bottom. This indicates
the beginning of sedimentation due to the relaxation rates of “pure” water and water in
the graphite sediment, containing paramagnetic impurities. Again, the measured points
deviate slightly from a straight line, indicating sample heating. After a waiting time
of seven days, the difference in relaxation between the position is even more evident:
R2,eff at the bottom position only slightly increased compared to the first measurement.
R2,eff lowered significantly at the top and is about constant with the small measured range
of τe. Sedimentation in the graphite slurry causes R2,eff to approximate values at the top,
similar to those measured on doped water. Please note again the small values of τe, as
significantly larger echo times would have to be measured to determine the diffusion
coefficient from the slope. The lower R2,eff results from a lower local concentration of
graphite particles because of the longer sedimentation time. Nevertheless, the value of
R2,eff is larger than that for pure water due to dissolved ions from the graphite parti-
cles. The results indicate that sedimentation is an issue even in the slurries of technically
relevant composition.

4. Conclusions

The inline-capable NMR sensor with its dedicated hardware configuration was charac-
terized. Different coil geometries were compared with the finding that the bent figure-8 coil
is the shape with optimal characteristics for the desired application from the perspective of
quality control. Simulations were carried out and compared to the measurement results.
The V-shaped NMR sensor, equipped with the bent figure-8 surface coil, has the potential to
be used in quality control, for example in battery anode production, based on the relaxation
and diffusion properties of the used materials. The application is not limited to graphite
slurries but can be extended to other mixtures and disperse systems and enables both
offline and mobile inline NMR measurements.
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