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Abstract: We report the synthesis and characterization of two types of new mixed-ligand rare
earth complexes: tetracoordinate (NacNacMes)Ln(BIANdipp) (Ln = Dy (1), Er (2) and Y (3)) and
pentacoordinate (NacNacMes)Ln(APdipp)(THF) (Ln = Dy (4), Er (5) and Y (6)). The first three com-
pounds were prepared by the reaction of [(BIANDipp)LnI] with potassium β-diketiminate. The
salt metathesis of β-diketiminato-supported rare earth dichlorides (NacNacMes)LnCl2(THF)2 with
sodium o-amidophenolate results in compounds 4–6. The crystal structures of complexes 1–6 were
determined by single-crystal analysis. The combination of bulky monoanionic N-mesityl-substituted
β-diketiminates with sterically hindered redox-active ligands led to the very low coordination num-
bers of rare earths and strong distortion of the chelate ligands.
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1. Introduction

The combination of spectator ligands with different types of redox-active ligands
constitutes a growing area of research in the coordination chemistry of rare earths over
the past decades. The bulky N-aryl-substituted β-diketiminates or “NacNac” ligands
with a general formula {ArNC(R)CHC(R)NAr}− are one of the most widely used ancillary
ligands of post-metallocene series used for stabilizing rare earth complexes [1,2]. They
readily form strong Ln-N (Ln = rare earth metal) bonds within six-membered chelating
rings with bonding modes ranging from purely σ to a combination of σ and π donation.
The easy-tunability of steric and electronic properties which can be implemented by an
appropriate choice of starting β-diketones and anilines complete the utility of such ligands.
Besides the classical role of spectator ligands, β-diketiminates behave like non-innocent
ligands and may be involved in different transformations including redox reactions and
metal-ligand cooperative activation of substrates [3].

The development of coordination chemistry of redox-active ligands with rare earths
is of undoubted interest from the point of view of both fundamental science and applied
research. The combination of a rare earth element with organic ligands which have extended
redox properties and several reduction states will make it possible to obtain compounds
possessing a number of useful chemical properties [4–10] as well as properties essential for
the development of new magnetic materials [11–14]. In general, among such properties
are the presence of different paramagnetic centers, several redox transitions, anisotropy of
magnetic properties at the rare earth metal center, and modulating the magnetic behavior
due to both the metal center and the organic redox-active ligand.

The most distinctive feature of redox active ligands (e.g., o-iminoquinones and alpha-
diimines) is the possibility of their redox transformations in the metal coordination sphere,
which extends their reactivity to a great extent [15–22]. For a long time, o-iminoquinonato
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ligands have been used in the coordination chemistry of transition metals and a wide range
of complexes have been synthesized to date [23–25]. As for main-group metals, a fair
number of them are also known [26–28]. Notably, the combination “redox-active ligand—
main group element” allows for the modeling of the reaction abilities of transition metals.
For example, it has been shown that antimony(V) o-amidophenolates bind molecular
oxygen in a reversible manner in mild conditions [29–32]. To the best of our knowledge, it is
the first example of the main group metal complexes involved in reversible oxygen fixation.
BIANdipp, 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene, is a redox-active diimine
ligand possessing the conformational rigidity of the diimine moiety and pronounced
steric hindrances around nitrogen atoms. The unique reactivity of the main-group metal
complexes with BIANdipp ligand was shown by Fedushkin et al. in the examples of
addition (in some cases, reversible) and activation of substituted alkynes, alkenes [33–38]. It
would be very interesting to combine sterically hindered NacNac ligands with redox-active
sterically hindered o-iminobenzoquinones and bis-iminoacenaphthenes in a coordination
sphere of rare earth.

Huge potential for obtaining mixed-ligand complexes is hidden in the dihalide com-
plexes with a common formula [(NacNac)LnX2] (X = Cl [39–47], I [48]) via further metathe-
sis of Ln-halide bonds. For example, [(NacNacMes)YCl2(THF)2] supported by N-mesityl
substituted β-diketiminato ligand (NacNacMes = 2,4,6-Me3C6H2-NC(Me)CHC(Me)N-2,4,6-
Me3C6H2) was used for the synthesis of mixed-ligand complexes β-diketiminato cate-
cholate derivatives [49]. The salt metathesis reactions of [(NacNacMes)ErCl2(THF)2] with
potassium salt of doubly reduced diazabutadiene (DADMes)K2 (DADMes = 2,4,6-Me3C6H2-
NC(Me)-C(Me)N-2,4,6-Me3C6H2) prepared in situ, afforded a new mixed-ligand erbium
complex [LEr(CH2-DADMes)(THF)] containing dianionic DAD ligand with an unusual
double bond and hydrogen redistribution (CH2-DADMes = 2,4,6-Me3C6H2-NC(H)(Me)-
C(=CH2)N-2,4,6-Me3C6H2) [50]. Recently, a series of 2,6-diisopropylphenyl-substituted β-
diketiminato-diiodides [(NacNacdipp)LnI2(THF)n] (NacNacdipp = 2,6-iPr2C6H3-NC(Me)CH
C(Me)N-2,6-iPr2C6H3); Ln = Dy, Gd, Tb [51], Nd, Sm [52]) was involved in the salt metathe-
sis reactions with potassium phenyl- and 2-pyridylthiolates resulting in β-diketiminato-
thiolato complexes. A comprehensive study of divalent samariumβ-diketiminato-supported
iodides [(NacNacdipp)SmI(THF)n] revealed a series of polynuclear compounds with differ-
ent structures depending on the THF content [53].

Here we report two types of mixed-ligand rare earth complexes with spectator monoan-
ionic β-diketiminate ligands and sterically hindered dianionic diamides or o-amidophenolates.
Two different synthetic routes were elaborated which are essentially based on the salt metathe-
sis reactions. The first one includes a direct reduction of BIANdipp with metallic rare earth
excess in the presence of iodine to obtain in situ rare earth precursors [(BIANdipp)LnI]
(Ln = Dy, Er, Y), allowing further reaction with potassium salt ofβ-diketiminate (NacNacMes)K
affording four-coordinate complexes [(NacNacMes)Ln(BIANdipp)] (1–3). In contrast to this,
five-coordinate complexes [(NacNacMes)Ln(APdipp)(THF)] (4–6) were obtained by the salt
metathesis of disodium o-amodophenolate with β-diketiminate rare earth precursors
[(NacNacMes)LnCl2]. Compounds 1–6 were characterized by standard analytic methods in-
cluding single-crystal X-ray diffraction analysis which reveals unusually low coordination
numbers of rare earths.

2. Results and Discussion
2.1. Synthesis and Characterization

Heteroligand erbium(III), dysprosium(III), and yttrium(III) NacNac-BIAN complexes
1–3 were prepared by the metathesis reaction from the corresponding (BIANdipp)LnI precur-
sors with potassium salt (NacNacMes)K (Scheme 1). Complexes represent a rare type of true
tetrahedral heteroligand lanthanide complexes with redox-active ligands. To the best of our
knowledge, the tetracoordinate BIAN lanthanide complexes are represented only by ho-
moligand ionic La(III) and Yb(III) derivatives [(BIANdipp)2LnIII]+[(BIANdipp)Ln(DME)2]−,
and neutral Sm(III) complex (BIANdipp)2Sm [54]. However, there are no corresponding
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tetracoordinate lanthanide heteroleptic NacNac-BIAN complexes in the literature to date.
A few examples of low-coordinate lanthanide complexes are represented by extremely
sterically shielded dipp-1,4-disubstituted diazabutadiene (DADdipp) derivatives of Sm, Yb,
Dy, Er [55–57].
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Scheme 1. Synthesis of complexes (NacNacMes)Ln(BIANdipp) 1–3.

The related erbium(III), dysprosium(III) and yttrium(III) NacNac-AP complexes 4–6 have
been synthesized by the metathesis reaction between lanthanide β-diketoiminate dichloride
(NacNacMes)LnCl2(THF)2 with sodium o-amidophenolate (APdipp)Na2 (Scheme 2).
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Scheme 2. Synthesis of complexes (NacNacMes)Ln(APdipp)(THF) 4–6.

We have to note that the same metathesis reaction of lanthanide dichloride complexes
supported by dipp-substituted diketoiminate (NacNacdipp)LnCl2(THF)2 with sodium 3,5-
di-tert-butyl-catecholate (3,5-Cat)Na2 in THF afforded dimeric mixed-ligand complexes
{(NacNacdipp)Ln(m-3,5-Cat)}2 with two bridging catecholate ligands (via one m-oxygen
atom of each catecholate) between two lanthanide atoms [49]. Thus, the increase of steric
shielding with o-amidophenolate ligand as compared with 3,5-di-tert-butyl-catecholate
results in the formation of mononuclear derivatives 4–6 with a coordinated THF molecule.
The five-coordinate mononuclear rare earth o-amidophenolates were not known. There
were only binuclear rare earth complexes of these ligands with coordination number 5, or
mononuclear complexes with coordination numbers 6 to 8, represented in the literature.

Complexes were found to be extremely sensitive to the traces of air oxygen and
moisture. The compositions of compounds 1–6 were confirmed by elemental analysis
and IR spectroscopy (Figures S1–S6), and NMR spectroscopy (for yttrium complexes 3,
6) (Figures S7–S9). The strong absorptions in the range of 1550–1570 cm−1 in the IR
spectra confirm the partial C=N double-bond character of β-diketiminato NacNac ligand
in complexes [39–48,58]; the well-distinguishable absorptions at 1190–1260 cm−1 are due to
the valence vibrations of ordinary C–N or C–O bonds typical for doubly reduced forms of
redox-active ligands (dianion BIAN in complexes 1–3 and dianion AP in complexes 4–6,
respectively). In addition, the medium absorption bands near 1640–1650 cm−1 correspond
to the stretch vibrations of conjugated C=C double bonds in the doubly reduced BIAN
ligand (in 1–3) [33–38].
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2.2. X-ray Structures

The molecular structures of complexes 1–6 in crystal state were determined by single
crystal X-ray diffraction analysis (Figures 1 and 2, Figures S10–S15 of ESI). The dysprosium
complex 1 crystallizes from n-hexane solution in the monoclinic space group P 21/n, while
the isostructural erbium 2 and yttrium 3 compounds crystallize from toluene in the triclinic
space group P-1, and the unit cells contain one molecule of toluene per complex molecule.
All complexes have a monomeric mononuclear structure in the solid state. The small
differences in the structures of complexes are concerned with a weak variety of ligand
conformations, distances, and angle values. The molecular structures of complexes 1–3 are
shown in Figure 1 with the selected bond lengths and angles given in Table 1.
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Figure 2. The molecular structures of dysprosium (4), erbium (5), and yttrium (6) complexes of
the type (NacNacMes)Ln(APdipp)(THF). The ellipsoids of 50% probability. The hydrogen atoms
are hidden.

The coordination sphere of rare earth atoms in complexes 1–3 consists of two biden-
tate chelating ligands—monoanionic β-diketiminate and dianionic BIANdipp providing a
coordination number of four. The Continuous Symmetry Measures (CSM) analysis [59,60]
gave the description of the polyhedron as a tetrahedron as the best fit (Table S2). The
index t4 proposed by L. Yang, D.R. Powell, and R.P. Houser [61] for the description of
four-coordinate geometry was calculated to be 0.68 for complex 1, 0.69 for complex 2, and
0.72 for complex 3 (t4 = 1.00 for a perfect tetrahedral geometry, and t4 = 0.00 for a perfect
square planar geometry).
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Table 1. The selected bond lengths and angles in complexes 1–3 in crystals according to X-ray diffraction.

Complex 1 (Ln = Dy) 2 (Ln = Er) 3 (Ln = Y)

Bond, Å

Ln1–N1 2.204(2) 2.250(3) 2.184(2)
Ln1–N2 2.208(2) 2.309(3) 2.235(2)
Ln1–N3 2.303(2) 2.385(3) 2.289(2)
Ln1–N4 2.321(2) 2.421(3) 2.334(2)
N1–C1 1.399(2) 1.399(5) 1.409(3)
N2–C2 1.407(2) 1.400(5) 1.401(3)
N3–C3 1.320(2) 1.332(5) 1.340(3)
N4–C5 1.340(2) 1.325(6) 1.343(3)
C1–C2 1.411(2) 1.407(5) 1.400(3)
C3–C4 1.427(2) 1.421(6) 1.403(4)
C4–C5 1.411(2) 1.416(6) 1.413(4)

Angle, ◦

N1–Ln1–N2 84.47(5) 81.26(12) 83.65(7)
N3–Ln1–N4 81.67(5) 78.98(11) 82.21(7)

torsion
N1–C1–C2–N2 −0.06 1.14 1.71

torsion
N3–C3–C5–N4 −7.34 0.32 0.96

<(Ln1N1N2,
N1C1C2N2) 50.49 49.95 47.13

<(Ln1N3N4,
N3C3C5N4) 59.76 60.81 56.11

The angles between planes Ln1N1N2 and Ln1N3N4 are 82.42◦, 89.26◦, and 89.18◦

in complexes 1–3, respectively. Both N,N′-ligands are asymmetrically coordinated to the
rare earth metals with the acute N-Ln-N angles and slight differences of Ln1–N1/Ln1–N2
and Ln1–N3/Ln1–N4 bond lengths (Table 1), which are well comparable with other lan-
thanide compounds bearing such ligands [39–49]. The bond distances in the N3C3C4C5N4
backbone confirm the delocalization within the π-system of monoanionic β-diketiminato
ligands. The bond lengths in BIANdipp indicate unambiguously a dianionic state of the
ligand [33–38] with the characteristic N–C bond lengths lying in the range of 1.399–1.409 Å
for complexes 1–3 (Table 1). The chelate rings are strongly bent almost along the nitrogen-
nitrogen lines: The angles between Ln1N1N2 and N1C1C2N2planes in the fragment
Ln(BIANdipp) in complexes 1, 2, and 3 are 50.49, 49.95, and 47.13◦, respectively. Between
Ln1N3N4 and N3C3C5N4 planes in the fragment Ln(NacNacMes), the angles are 59.76,
60.81, and 56.11◦, respectively. Such distortion of the chelate rings in complexes 1–3 is one of
the biggest in the BIANdipp or NacNacMes lanthanide complexes that is caused by the large
degree of steric saturation with bulky BIANdipp or NacNacMes ligands. The closest values
for such a distortion of the BIANdipp chelate ring were found in very sterically shielded
bis-BIANdipp complexes of tetracoordinate Yb(III), La(III), Sm(III) [54], where this bent
angle is in the range of 50–55◦, or in heptacoordinate (BIANdipp)La(DME)2I (46.8◦) as well
as in mixed-ligand [(BIANdipp)LaCp*I]− and (BIANdipp)LaCp*(THF) (48.2 and 51.5◦) [62]
or (BIANdipp)SmCp*(THF) (47.54◦) [63]. In addition, to minimize steric repulsion between
the bulky ligands, the N-aryl rings lie close to perpendicular to the NCCN planes of both lig-
ands, and rare earth metal atoms occupy the positions out of these planes. The deviation of
rare earth metals from the corresponding plane N1C1C2N2 of BIANdipp is equal to 1.26(1),
1.32(1), and 1.21(1) Å, while the deviation from the N3C3C5N4 plane of β-diketiminato
ligand amounts to 1.51(1), 1.62(1), and 1.45(1) Å for complexes 1–3, respectively. The
observed deviation is even more pronounced than in the mixed-ligand erbium complex
with NacNacMes and DAD ligands [50]. Due to such deviation, short contacts between
the central metal and carbons C1 and C2 of BIAN ligand are observed in all complexes
(1–3): the distances Ln1–C1 and Ln1–C2 are 2.640(2) and 2.636(2) Å for complex 1, 2.708(3)
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and 2.741(3) Å for complex 2, and 2.672(2) and 2.696(2) Å for complex 3. The same short
contacts were found by A.H. Cowley et al. in (BIANdipp)SmCp*(THF) [63].

In contrast to 1–3, the coordination environment of lanthanides in o-iminoquinonato
complexes 4–6 includes NacNac anionic ligand, dianion o-amidophenolate, and a coordi-
nated THF molecule. According to the CSM analysis, the coordination polyhedron of 4–6
can be described either as a spherical square pyramid or a trigonal bipyramid (Table S3). In
the former case, two N atoms and two O atoms lie in the square basal plane (Figure S16a),
while in the latter, three N atoms lie in the trigonal basal plane (Figure S16b). For compound
4·Hexane, one can also reasonably describe the polyhedron as a vacant octahedron. The
molecular structures of complexes 4–6 are shown in Figure 2. The selected bond lengths
and angles are given in Table 2.

Table 2. The selected bond lengths and angles in 4–6 in crystals according to X-ray diffraction.

Complex 4 (Ln = Dy) 5 (Ln = Er) 6 (Ln = Y)

Bond, Å

Ln1–N1 2.301(3) 2.279(3) 2.284(2)
Ln1–O1 2.110(3) 2.090(2) 2.091(2)
Ln1–N2 2.329(4) 2.273(3) 2.290(3)
Ln1–N3 2.278(3) 2.274(3) 2.285(3)
Ln1–O2 2.411(4) 2.367(3) 2.383(2)
O1–C1 1.352(5) 1.350(4) 1.343(3)
N1–C2 1.386(6) 1.395(4) 1.404(4)
N2–C3 1.331(6) 1.321(5) 1.324(4)
N3–C5 1.338(6) 1.326(5) 1.332(4)
C1–C2 1.435(6) 1.417(5) 1.432(4)
C3–C4 1.410(7) 1.405(6) 1.411(5)
C4–C5 1.404(8) 1.409(6) 1.401(5)

Angle, ◦

N1–Ln1–O1 71.54(12) 72.85(10) 72.57(8)
N2–Ln1–N3 79.09(14) 81.69(11) 80.77(10)
O1–Ln1–O2 162.07(13) 160.06(9) 159.70(8)

torsion
O1–C1–C2–N1 0.19 2.23 −2.26

torsion
N2–C3–C5–N3 1.87 2.19 −2.39

<(Ln1O1N1,
O1C1C2N1) 2.45 1.16 1.00

<(Ln1N2N3,
N2C3C5N3) 34.45 36.17 36.07

The redox-active O,N-coordinated ligand is obviously in a dianionic state, which is
confirmed by the single O–C (1.343–1.352 Å) and N–C (1.386–1.404 Å) bonds typical for dif-
ferent o-amidophenolate complexes (1.34–1.36 and 1.38–1.41 Å, respectively) [30–32,63–67],
as well as by aromatic C–C bonds in six-membered carbon cycles (with the average dis-
tances of 1.400, 1.406 and 1.401 Å for 4–6, respectively). The NacNac ligands in 4–6 have the
same structural features as those in 1–3. However, the metallocycles Ln1N2C3C4C5N3 in
4–6 are not bent as dramatically as in 1–3: the angles between the Ln1N1N3 and N2C2C4N3
planes in the fragments Ln(NacNacMes) are equal to 34.45◦, 36.17◦ and 36.07◦, respectively
(in contrast to 59.76, 60.81, and 56.11◦ in 1–3). At the same time, the chelate metallocy-
cles Ln1O1C1C2N1 in 4–6 are very close to planar (the corresponding bent angles along
O1···N1 line are 2.45◦, 1.16◦ and 1.00◦ only). This observation confirms the decrease of
steric saturation caused by NacNacMes, APdipp and THF in 4–6 as compared to the steric
hindrances from NacNacMes and BIANdipp in 1–3. The deviations of rare earth metals
from the corresponding plane O1C1C2N2 of APdipp in 4–6 are very small (0.076, 0.036, and
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0.030 Å), and the deviation of Ln1 from the N2C3C5N3 plane of β-diketiminato ligand are
1.005(1), 1.015(1) and 1.026(1) Å, only.

In the unit cells, molecules of BIAN complexes 1–3 (Figures S10–S12), as well as AP
complexes 4–6 (Figures S13–S15), are isolated with only the usual intermolecular van der
Waals interactions observed in crystal. Therefore, no dimeric particles are observed in the
crystal state.

3. Materials and Methods
3.1. General

All manipulations of air- and moisture-sensitive materials were performed with the
rigorous exclusion of oxygen and moisture in flame-dried Schlenk-type glassware either
on a dual-manifold Schlenk-line, interfaced to a high vacuum (10−3 mbar) line, or in
an argon-filled MBraun or Korea Kiyon KK-021AS glovebox. THF and toluene were
distilled under nitrogen from potassium benzophenone ketyl prior to use. n-Hexane
was distilled under nitrogen over Na/K alloy prior to use. All solvents for vacuum line
manipulations were stored in vacuo over Na/K alloy in resealable flasks. IR spectra were
obtained in KBr pellet by means of a FT-801 Fourier spectrometer (Simex, Saint Petersburg,
Russia) (complexes 1–3) and a Bruker FTIR Tensor 37 instrument by the attenuated total
reflection method (ATR) (complexes 4–6) (Billerica, MA, USA). NMR spectra for 3 and 6
were recorded with a Bruker Avance 500 in benzene-d6. Chemical shifts were referenced
to internal solvent resonances and were reported relative to tetramethylsilane (1H and
13C{1H} NMR spectroscopy). Elemental analysis (C,H,N) was carried out with a Euro EA
3000 analyzer (Eurovector, Pavia, Italy). Starting materials [(NacNacMes)LnCl2(THF)2] [1],
(NacNacMes)K [40], [BianLnI] [62], IQ [68] and Biandipp [69] were prepared according to
literature procedures.

3.2. Synthesis and Characterization

3.2.1. Synthesis of (NacNacMes)Ln(Biandipp) (Complexes 1–3)

THF (15 mL) was condensed onto a mixture of BIANdipp (100 mg, 0.2 mmol), iodine
(26 mg, 0.1 mmol), and an excess of metallic rare earth (810 mg Dy; 840 mg Er; 450 mg Y,
5 mmol) with a continuous stirring. The mixture was stirred for 72 h at room temperature
in order to reach an exhaustive reduction of BIANdipp while the color was turning dark blue.
The obtained dark-blue solution was added with stirring to a solution of (NacNacMes)K
(75 mg, 0.2 mmol) in THF (10 mL) resulting in the dark-blue solution and the gradual precip-
itation of KI. The mixture was stirred for 24 h at room temperature and then KI was filtered
off. THF was evaporated under reduced pressure to dryness and the residue was dissolved
in toluene (15 mL). The toluene solution was stirred at 90 ◦C for 24 h with the subsequent
evaporation of the toluene to dryness. n-Hexane (10 mL) was condensed on the dark-blue
residue and allowed to stay for a couple of days. In the case of (NacNacMes)Dy(Biandipp)
(1), dark-blue cubic crystals of 1 (103 mg, yield 52%) suitable for single-crystal X-ray
diffraction were grown from this solution. In the case of (NacNacMes)Er(Biandipp) (2) and
(NacNacMes)Y(Biandipp) (3), no crystals were obtained from the n-hexane solutions. Thus,
n-hexane was evaporated to dryness and the residues were redissolved in toluene (10 mL).
The toluene solutions were concentrated to approximately half their volume and allowed
to stay for two weeks, affording dark-blue block-shaped crystals of 2·C7H8 (61 mg, yield
28%) and 3·C7H8 (55 mg, yield 27%) suitable for single-crystal X-ray diffraction.

1: Anal. calcd (%) for C59H69N4Dy (996.75): C 71.10, H 6.98, N 5.62; found C 70.74, H
6.91, N 5.47%. IR ν, cm−1: 568(w), 624(w), 715(w), 755(m), 768(m), 797(m), 817(m), 855(m),
919(w), 933(w), 956(w), 1013(m), 1035(m), 1058(w), 1103(w), 1143(m), 1193(m), 1223(w),
1256(m), 1307(m), 1331(m), 1362(s), 1380(s), 1395(s), 1441(s), 1456(s), 1478(s), 1527(s), 1552(s),
1570(s), 1622(m), 2866(s), 2919(s), 2961(s).

2·C7H8: Anal. calcd (%) for C66H77N4Er (1093.60): C 72.49, H 7.10, N 5.12; found C
72.14, H 6.95, N 4.98%. IR ν, cm−1: 564(w), 624(w), 695(w), 728(m), 755(m), 767(m), 796(m),
816(m), 853(m), 919(w), 933(w), 956(w), 1011(m), 1035(m), 1058(w), 1108(w), 1143(m),
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1191(m), 1223(w), 1256(m), 1305(m), 1331(m), 1362(s), 1382(s), 1395(s), 1443(s), 1457(s),
1476(s), 1522(m), 1554(s), 1570(s), 1624(m), 2866(s), 2919(s), 2961(s).

3·C7H8: Anal. calcd (%) for C66H77N4Y (1015.25): C 78.08, H 7.65, N 5.52; found C
77.51, H 7.38, N 5.34%. IR ν, cm−1: 564(w), 625(w), 695(w), 728(w), 755(m), 767(m), 797(m),
817(m), 854(m), 915(w), 934(w), 958(w), 1013(m), 1035(m), 1058(w), 1107(w), 1143(m),
1193(m), 1221(w), 1256(m), 1305(m), 1331(m), 1362(s), 1382(s), 1395(s), 1442(s), 1456(s),
1478(s), 1520(m), 1554(s), 1570(s), 1624(m), 2866(s), 2919(s), 2961(s). 1H NMR (500 MHz,
C6D6, δ, ppm): 0.68 (br. s., 3H, CH3 of Mes), 0.95–1.15 (br. m., 12H, 4CH3 of iPr), 1.26–1.55
(br. m., 9H, 3CH3 of iPr), 1.56–1.68 (br. m., 9H, 2CH3 of Mes and 1CH3 of iPr), 1.90 (s., 6H,
2CH3 of NacNac), 2.00 (s., 6H, 2CH3 of Mes), 2.33 (br.s., 3H, CH3 of Mes), 2.87 (br.m., 1H,
CH of iPr), 3.65–3.80 (br. m., 3H, 3CH of iPr), 5.62 (s, 1H, CH of NacNac), 6.02 (br.s., 1H,
arom.), 6.17 (br.d., 3J(H,H) = 6.4 Hz, 1H, arom.), 6.42 (br.d., 3J(H,H) = 6.4 Hz, 1H, arom.),
6.50–6.65 (br. m., 3H, arom.), 6.80–6.85 (br.s., 1H, arom.), 6.95–7.07 (m., 4H, arom.), 7.10–7.17
(m., 2H, arom.), 7.25–7.37 (br.m., 3H, arom.).

3.2.2. Synthesis of (NacNacMes)Ln(APdipp) (4–6)

A solution of (APdipp)Na2 in THF (15 mL) (obtained by the exhaustive reduction of IQ
(114 mg, 0.3 mmol) with the sodium excess) was added to a solution of [(NacNacMes)LnCl2(T
HF)2] (213 mg Dy; 215 mg Er; 191 Y, 0.5 mmol) in THF (20 mL) resulting in the orange
solution and the gradual precipitation of NaCl. The mixture was stirred for 48 h at room
temperature and then NaCl was removed by filtration. Then THF was evaporated to
dryness, and the orange residue was treated with two portions of n-hexane (2× 10 mL) and
subsequent evaporation to afford an orange solid. The solid was extracted with n-hexane
in the two-section sealed ampoule. The concentration of the orange n-hexane extract by
slow evaporation for two days afforded orange crystals of 4 0.5Hexane (185 mg, yield 62%),
5 (145 mg, yield 51%) and 6 (85 mg, yield 32%) suitable for single-crystal X-ray diffraction.

4·0.5Hexane: Anal. calcd (%) for C56H81N3O2Dy (990.76): C 67.89, H 8.24, N 4.24;
found C 67.73, H 8.11, N 4.27%. IR ν, cm−1: 567(w), 625(w), 652(w), 698(w), 762(w), 797(w),
854(s), 916(w), 976(w), 1015(m), 1144(m), 1192(s), 1219(w), 1250(s), 1310(w), 1327(m), 1379(s),
1439(s), 1466(s), 1514(s), 1551(s), 1624(w), 1659(w), 2866(s), 2918 (s), 2959(s).

5: Anal. calcd (%) for C53H74N3O2Er (952.43): C 66.84, H 7.83, N 4.41; found C 66.64,
H 7.91, N 4.47%. IR ν, cm−1: 569(w), 629(w), 650(w), 704(w), 766(w), 797(w), 854(s), 916(w),
978(w), 1020(m), 11,442(m), 1191(s), 1256(s), 1310(w), 1329(w), 1383(s), 1431(s), 1438(s),
1474(s), 1516(w), 1552(s), 1622(m), 1666(w), 2868(s), 2912 (s), 2960(s).

6: Anal. calcd (%) for C53H74N3O2Y (874.08): C 72.83, H 8.53, N 4.81; found C 72.69,
H 8.37, N 4.71%. IR ν, cm−1: 534(w), 651(w), 698(w), 760(w), 794(w), 852(s), 916(w),
979(w), 1019(m), 1142(m), 1190(s), 1255(s), 1327(w), 1382(s), 1439(s), 1472(s), 1518(w),
1553(s), 1624(m), 1662(w), 2865(s), 2919 (s), 2956(s). 1H NMR (500 MHz, C6D6, δ, ppm):
0.76 (br. s., 3H, 1CH3 of Mes), 0.98 (br.d., 3J(H,H) = 6.2 Hz, 6H, 2CH3 of iPr), 1.33 (br.d.,
3J(H,H) = 6.5 Hz, 6H, 2CH3 of iPr), 1.42 (s., 9H, tBu), 1.68 (s., 6H, 2CH3 of NacNac), 1.89
(br.s., 9H, tBu), 1.80–1.90 (br.m., 4H, THF), 2.09 (s., 6H, 2CH3 of Mes), 2.60 (br.s., 6H, 2CH3
of Mes), 2.81 (br. m., 4H, THF), 3.29 (br.m., 2H, 2CH of iPr), 5.27 (s., 1H, CH of NacNac),
6.01 (d., 4J(H,H) = 2.3 Hz, 1H, arom. C6H4), 6.60–6.88 (m., 4H, arom. Mes), 6.90 (d.,
4J(H,H) = 2.3 Hz, 1H, arom. C6H4), 7.04 (t., 3J(H,H) = 7.5 Hz, 1H, arom. C6H3), 7.14 (d.,
3J(H,H) = 7.5 Hz, 2H, arom. C6H3). 13C{1H} NMR (125 MHz, C6D6, δ, ppm): 17.93, 19.95,
20.79, 23.66, 24.53, 24.78, 26.04, 29.18, 30.82, 32.60, 34.75, 35.37, 69.62, 97.02, 108.25, 109.22,
122.67, 123.56, 128.35, 129.46, 130.37, 131.21, 134.09, 137.34, 143.50, 145.01, 150.04, 152.27,
153.86, 166.98.

3.3. X-ray Diffraction

X-ray suitable crystals of 1, 2·Toluene, 3·Toluene, 4·0.5Hexane, 5, and 6 were covered
with mineral oil (Aldrich, St. Louis, MO, USA), selected under a microscope, and mounted
on the tips of thin glass fibers. The crystals were transferred directly to the cold stream of
a Bruker X8 Apex diffractometer (at 150(2) K for 1, 2, 3) or a STOE IPDS 2 diffractometer
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(at 200(2) K for 4, 293(2) K for 5 and 150(2) K for 6). X-ray intensity data were collected
using graphite monochromated Mo Kα radiation (λ = 0.71073 Å). The standard technique
was used (ϕ- and ω-scans of 0.5◦ frames). The crystal structures were solved using the
SHELXT [70] and were refined using the SHELXL [71] programs with OLEX2 GUI [72].
Atomic displacement parameters for non-hydrogen atoms were refined anisotropically,
with the exception of some disordered solvent molecules which were refined with DFIX,
DANG, ISOR and RIGU restraints. Hydrogen atoms of organic ligands were placed in
geometrically idealized positions and refined as riding on their parent C atoms.

The main crystallographic data and structure refinement details for all complexes are
presented in Table S1. CCDC 2226117 (1), 2236420 (2·Toluene), 2236421 (3·Toluene), 2236417
(4·0.5Hexane), 2236419 (5), 2236418 (6) contain the supplementary crystallographic data.
These data can also be obtained free of charge at ccdc.cam.ac.uk/structures/ (accessed on
12 February 2023) from the Cambridge Crystallographic Data Centre.

4. Conclusions

We have prepared a series of low coordinate rare earth complexes (NacNacMes)Ln(BIAN
dipp) (1–3) and (NacNacMes)Ln(APdipp)(THF) (4–6) (Ln = Dy, Er, Y) and shown a dependence
of coordination environment of rare earth central metals on the bulkiness of the ligands. The
salt metathesis reaction starting from either Ln-Cl or Ln-I derivatives proved to be a very
prospective route to access the desired mixed-ligand complexes with various mono- and
dianionic ligands. The neutral BIANDipp is able to be reduced with rare earth metals excess
in the presence of iodine and further utilized in the reaction with potassium β-diketiminate,
thus affording the unique four-fold coordinated complexes 1–3. The central rare earth
atoms are coordinated only with two bidentate N,N-ligands without any solvate molecule.
The less sterically hindered o-amidophenolate APDipp, formally with one oxygen atom
instead of N-aryl group, enables a formation of five-fold coordinated complexes 4–6 by
the reaction of β-diketiminato supported rare earth dichlorides (NacNacMes)LnCl2(THF)2
with sodium o-amidophenolate. Along with three nitrogen and one oxygen atom of two
chelating ligands, the fifth position in the coordination sphere of rare earth atoms in 4–6 is
occupied by a coordinated THF molecule.

Firstly, it should be noted that such a strong steric hindrance both of monoanionic
N-mesityl substituted β-diketiminates and redox-active diimine or iminoquinone ligands
leads to very low coordination and, in particular, extremely rare complexes of rare earths
with severely distorted tetrahedral (non-solvate) and trigonal-bipyramidal geometry.

Secondly, the presence of two such bulky ligands in the coordination sphere of rare
earths leads to the strong distortion of the ligands chelate cycles, which reduces the steric
tension in the complexes as a whole.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28041994/s1, Figures S1–S6 with IR data; Figures S7–S9
with NMR spectroscopic data; Figures S10–S15 with crystal cells; Table S1 with the main crystal-
lographic data and structure refinement details; Tables S2 and S3 with results of the geometry
analysis (SHAPE); and Figure S16 showing the overlay of the coordination polyhedrons and regular
spherical square pyramid and trigonal bipyramid according to Continuous Shape Measures routine
implemented in SHAPE program.
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