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ABSTRACT 

Geothermometry is constituted one of the most 

important geochemical tools for reservoir exploration 

and development. Solute geothermometers are used to 

estimate the temperature in the subsurface. Therefore, 

the chemical composition of a discharging geothermal 

fluid is used to infer the temperature of the reservoir. 

Changes in the chemical composition because of 

boiling, degassing, and dilution are disturbing the 

equilibrium state within the fluid leading to 

uncertainties in the temperature estimation. Especially, 

the pH value, the aluminium concentration, as well as 

boiling and dilution are parameters prone to changes. 

These parameters are elaborated in the geochemical 

modelling process to optimise these values to fit their 

in-situ reservoir conditions again. This geochemical 

modelling method can be used for multicomponent 

geothermometers leading to more robust and precise 

temperature estimations. However, this process is time-

consuming, and geochemical as well as mineralogical 

knowledge is beneficial. Consequently, the field of 

artificial intelligence offers powerful methods to solve 

complex issues, even considering multiple unknowns. 

Therefore, a new solute geothermometer based on a 

deep learning algorithm is developed. This neural 

solute geothermometer is tested and compared to the 

optimised multicomponent geothermometer and in-situ 

temperature measurements concluding in a new 

generation of solute geothermometer as precise as an 

optimised multicomponent geothermometer but much 

easier and faster in its applicability. 

1. INTRODUCTION 

The temperature determination of the reservoir is a 

major factor in the assessment of geothermal reservoirs, 

especially during the exploration phase. Solute 

geothermometry can provide such temperature 

estimations assuming temperature-dependent 

equilibrium reactions between the geothermal fluid and 

the host rock minerals. Originally, conventional 

geothermometers were introduced using cation ratios or 

single mineral phases for temperature estimation 

(Fournier and Truesdell 1973, Giggenbach 1988, 

Arnórsson 2000). Followed by a more robust method 

introduced by Reed and Spycher (1984) using 

temperature-dependent saturation indices of multiple 

mineral phases for reservoir temperature estimation. 

This led to the development of multicomponent 

geothermometers such as MulT_predict, GeoT, and 

RTEst (Ystroem et al. 2020, Palmer 2014, Spycher et 

al. 2014). In an ongoing development, optimisation 

processes are implemented to improve the accuracy of 

these multicomponent geothermometers (Spycher et al. 

2016, Ystroem et al. 2021). Especially, steam loss and 

dilution, as well as trace element concentrations (e.g. 

Al, Fe, or Mg), and pH value (e.g. degassing) are prone 

to perturbation of the in-situ equilibrium state, which 

therefore is back-calculated within the different 

multicomponent geothermometers. In some cases, 

these optimisation processes are computationally 

intensive, when applied interdependently while there 

are unknowns like the mineralogy of the reservoir 

(Ystroem et al. 2022). Thus, a new solute neural 

geothermometer is developed. Artificial neural 

networks (ANN) are designed to solve complex issues 

incorporating unknowns (Goodfellow et al. 2016). In 

addition, a trained network is able to handle a large 

amount of data efficiently conducting reservoir 

temperatures estimations. Further, both methodologies 

are compared to evaluate the temperature estimations. 

Therefore, a case study of temperature estimations is 

conducted based on high-quality data from Iceland. The 

dataset consists of fluid samples from geothermal wells 

and their in-situ temperature measurements are given 

by Arnórsson et al. (1983), Guðmundsson and 

Arnórsson (2002), and Óskarsson et al. (2015). 

2. METHOD & DATA 

Solute geothermometry is based on the temperature-

dependent solubility of mineral phases with the 

surrounding fluid. Under unperturbed conditions, an 

equilibrium state between the dissolved element 

concentration of the fluid and the reservoir rock is 

reached (Fournier and Truesdell 1974). Therefore, 

element ratios, as well as individual solute mineral 

phases can be used to determine the temperature of the 

reservoir. 
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2.1 Multicomponent geothermometry 

To increase the robustness and the precision of 

geothermometry the solubility of multiple mineral 

phases can be evaluated simultaneously. In this 

approach, the saturation indices SI of the mineral 

phases are evaluated over a predefined temperature 

range (Reed and Spycher 1984). The geochemical 

equilibrium is reached when the measured ion activity 

product IAP is equal to the temperature-dependent 

thermodynamic constant K(T) [1]. In this case, the SI of 

the mineral phase equals zero (SI = 0). 

𝑆𝐼(𝑇) =  log
𝐼𝐴𝑃

𝐾(𝑇)
  [1] 

SI saturation index; T temperature; IAP ion activity 

product; K thermodynamic equilibrium constant 

Immature fluids or secondary processes shift the fluid 

from its equilibrium state. Especially, secondary 

processes like phase segregation, boiling, mixing, 

dilution, as well as precipitation of mineral phases and 

complex building lead to perturbation and thus to 

uncertainties in the reservoir temperature prediction 

(Arnórsson et al. 1990, Cooper et al. 2013, Peiffer et al. 

2014, Nitschke et al. 2017). Optimisation processes are 

able to reconstruct equilibrium state conditions 

assuming the individual mineral equilibrium 

temperatures converge to an equal overall reservoir 

temperature. This is achieved by varying sensitive 

parameters (pH value, aluminium concentration, and 

the fluid fraction) interdependently around the initial 

conditions until a global minimum between the 

equilibrium states of the mineral phases is reached 

(Ystroem et al. 2022). Figure 1 illustrates the output of 

MulT_predict. In a), the saturation indices of the 

reservoir mineralogy are plotted against temperature. 

The intersection with the dashed line represents the 

equilibrium state in the reservoir. Part b) shows the 

optimisation process; sensitive parameters (pH-value, 

aluminium concentration, dilution, steam loss) are 

simultaneously optimised and evaluated. The in-situ 

reservoir conditions are assumed to be the global 

minimum of temperature differences between the 

mineral phases. Plot c) shows the statistical evaluation 

of the optimisation. The root mean square (RMES), 

standard deviations (SDEV), median (RMED), and the 

mean (MEAN) of the saturation indices are calculated 

and plotted against the temperature. In picture d), the 

result of the temperature estimation is shown. The box 

plot comprises the equilibrium temperatures of the best 

fitting reservoir conditions of the mineral set. 

Depending on the optimisation range, these 

optimisation processes can be computational time 

intensive. For each optimisation step, the calculations 

are computed interdependently increasing the time by 

the power of one for each sensitive parameter. 

 

 

Figure 1: Example of the output of MulT_predict: a) Saturation indices of the reservoir mineralogy against 

temperature. The intersection with the dashed line represents the equilibrium state in the reservoir. b) 

Interdependent optimisation process of pH-value, aluminium concentration, dilution, and steam loss, the 

global minimum represents reservoir conditions of the sensitive parameters. c) Statistical evaluation of the 

optimisation (root mean square, standard deviations, median, and the mean of the saturation indices). d) 

Result of the best fitting temperature estimation as a box plot. 
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2.2 Artificial neural network geothermometry 

Regarding the increasing computational time for 

interdependent optimisation processes of sensitive 

parameters in multicomponent geothermometry, 

artificial intelligence can perform calculations even for 

a large amount of data more efficiently (Goodfellow et 

al. 2016). Therefore, an artificial neural net (ANN) is 

trained with geochemical parameters of the fluid 

composition and in-situ temperature measurements of 

high-quality fluid data. A dataset of geothermal wells 

of Iceland given by Arnórsson et al. (1983), 

Guðmundsson and Arnórsson (2002), and Óskarsson et 

al. (2015) is compiled as input data for the network. 

After screening the input data, the selection of 

geochemical parameters as well as the network 

structure must be elaborated. Afterward, the network is 

trained with a majority (70%) of the data. The rest of 

the data is used for testing (20%) and validation (10%) 

of the ANN. The goal is to train the ANN to estimate 

the reservoir temperature without overfitting the 

algorithm. The result of the training of the ANN, as well 

as the performance of the trained geothermometer, are 

illustrated in Figure 2. On the left side of picture a), the 

mean square error is plotted over the epochs of the 

training phase. The even trend of the validation curve 

shows the adaption of the network, while not overfitting 

the ANN. On the right part of Figure 2 b), the predicted 

bottom hole temperature is plotted over the measured 

bottom hole temperature. The blue dots represent the 

data used for the validation, fitting the trained 

geothermometer tool with a coefficient of 

determination R² of 0.978. 

 

    

Figure 2: a) Mean square error against the epochs of the training. The early stopping function prevents the ANN 

from overfitting. b) Predicted versus measured bottom hole temperature. The testing data fits the ANN 

with a coefficient of determination R² = 0.978. 

 

3. RESULTS 

Both methods, the solute multicomponent 

geothermometer as well as the ANN geothermometer, 

are used to estimate the temperature of a known 

reservoir in Iceland. Therefore, four samples of Krafla 

and Reykjanes are computed. In Figure 3, the resulting 

temperature estimations are shown. The temperature 

estimation of the multicomponent geothermometer 

MulT_predict is visualised by blue box plots while the 

red line indicates the median temperature. The 

temperature estimation of the artificial neural network 

is illustrated by a green circle with an inner black dot. 

The measured in-situ temperatures of the wells are 

indicated by an orange box given by the inflow 

temperatures of the geothermal fluid at permeable 

horizons in the open hole section.  

In all cases, the median temperature of the 

multicomponent geothermometer is fitting the in-situ 

temperatures. For the ANN geothermometer, three of 

four temperature estimations are matching the 

measured temperature range. Only for well 28 at 

Krafla, the ANN is underestimating the temperature by 

a maximum of 15 Kelvin.   

 

Figure 3: Comparison of multicomponent 

geothermometer MulT_predict (box plots) 

and the ANN geothermometer (green circles). 

The in-situ temperature measurement is 

indicated by the orange box for the four wells 

in Krafla and Reykjanes, Iceland. 
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3. DISCUSSION & CONCLUSIONS 

Comparing both geothermometer approaches in 

Figure 3, the solute multicomponent geothermometer is 

statistically more robust than the artificial neural 

network. Nevertheless, MulT_predicts’ temperature 

estimations have to be optimised to obtain precise 

results. Therefore, a mineralogical pre-knowledge of 

the hosting reservoir rock would be beneficial. In 

addition, multiple interdependent optimisation 

processes increase the computational time of the 

calculations. Regarding this, the newly developed ANN 

geothermometer can compute temperature estimations 

more efficiently while handling large amounts of data. 

In addition, no pre-knowledge nor optimisation is 

necessary. Nevertheless, the ANN has to be trained 

with high-quality data containing accurate in-situ 

temperature measurements.  

While geochemical modelling of sensitive parameters 

in solute geothermometry is the key factor for accurate 

reservoir temperature estimation, a further improved 

and adequate ANN geothermometer is the next step in 

the evolution of solute geothermometry. 
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