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• Fusion power plants are still not considered in European long-term energy system

studies [1,2]. Yet, they could represent an abundant and reliable local energy resource.

• The operating performance of power plants significantly affects the unit commitment and

dispatch. Since fusion reactor design is under ongoing development, the parametrization

of fusion power plants is an active area of research.
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Background

References

Modelling System

Figure 2: Tokamak (above) and stellarator (below) operation states and their transitions

Figure 3: Power requirements of operating states

• The goal of the present work is to specify and energetically represent the operation and

dynamics of fusion power plants from an energy system perspective.

• Special focus is given on time and operation mode dependent self-consumption of the plant.

The basis of the parametrization is a 1GW net electrical power output plant.

Study Objective

Identified Operating States

Power Requirements

• Five operating states with their respective power requirements from an energy system

perspective are defined and elaborated, based on the fusion reactor operation and the

different auxiliary subsystems which are active during the time.

• Self-consumption of fusion devices accounts for about 13 % in contrast to 2-7 % in

conventional power plants. Fusion power balance considers however also the fuel

production cycle. From the energy system modeling aspect, operational dynamics shows no

tremendous differences to conventional devices when an appropriate thermal energy

storage is used together with the flexibility of the power conversion system.

• Future work will include modelling fusion power plants in energy systems as well as

investigation of use cases which support their expansion and utilization.

Conclusion

Fusion Reactor Operational Characterization

Resulting Power Balance

Figure 4: Sankey diagram of stellarator device power balance

Figure 1: Main fusion power plant components from an energy system perspective 
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Production. All subsystems from the hot state are

energized. Plasma and burn control are active. The

heating and current drive systems (HCD) are

working with nominal load. The reactor generates

thermal energy from the burning plasma.

At the beginning of this state HCD systems are

operating with increased power demand for a few

minutes during the plasma start-up.

Hot. All subsystems from the

warm state are energized.

Additionally, the tritium plant

is activated as well as the

heat transfer system (HTS) in

part load with a reduced

power consumption.

Cold. All systems are shut

down, as e.g. during a

prolonged downtime. No

energy production or

consumption.

Warm. Magnetic fields are generated by super-

conducting coils which require the operation of a

cryogenic plant for their cooling. In the plasma

chamber high vacuum conditions are created and

maintained. Facilities for maintenance and

monitoring of the plant are assumed to actively

consume electricity.

CS charging. In case of the

tokamak, magnets for the

generation of the central

solenoid (CS) field are being

charged. All subsystems

from the hot state are

energized.
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