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— Background Study Objective
 Fusion power plants are still not considered in European long-term energy system | [« The goal of the present work is to specify and energetically represent the operation and
studies [1,2]. Yet, they could represent an abundant and reliable local energy resource. dynamics of fusion power plants from an energy system perspective.

« The operating performance of power plants significantly affects the unit commitment and | |* Special focus is given on time and operation mode dependent self-consumption of the plant.
dispatch. Since fusion reactor design is under ongoing development, the parametrization The basis of the parametrization is a 1GW net electrical power output plant.
of fusion power plants is an active area of research.

— Fusion Reactor Operational Characterization
Modelling System Power Requirements
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2 ; — Conclusion
/Hot. All subsystems from the\ /Production. All subsystems from the hot state are\ * Five operating states with their respective power requirements from an energy system
warm state are energized. energized. Plasma and burn control are active. The perspective are defined and elaborated, based on the fusion reactor operation and the
Additionally, the tritium plant | heating and current drive systems (HCD) are different auxiliary subsystems which are active during the time.
Is activated as well as the | working with nominal load. The reactor generates « Self-consumption of fusion devices accounts for about 13 % in contrast to 2-7 % in

neat transfer system (HTS) in | thermal energy from the burning plasma.

part load with a reduced | At the beginning of this state HCD systems are

Qower consumption. - operating with increased power demand for a few
@inutes during the plasma start-up. /

conventional power plants. Fusion power balance considers however also the fuel
production cycle. From the energy system modeling aspect, operational dynamics shows no
tremendous differences to conventional devices when an appropriate thermal energy
storage is used together with the flexibility of the power conversion system.

« Future work will include modelling fusion power plants in energy systems as well as

Figure 2: Tokamak (above) and stellarator (below) operation states and their transitions investigation of use cases which support their expansion and utilization.
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