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Linear and nonlinear thermoviscoelastic behavior of polyamide 6

Johannes Keursten1,∗, Loredana Kehrer1, and Thomas Böhlke1

1 Institute of Engineering Mechanics, Chair for Continuum Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany

Thermoplastic polyamides are used in many industrial areas due to their potential in lightweight applications. Polyamides
serve as matrix material in fiber reinforced thermoplastics, for instance. The mechanical behavior of polyamides is character-
ized by pronounced viscoelastic effects that are strongly affected by environmental conditions like temperature or humidity.
In this work, linear thermoviscoelastic behavior of polyamide 6 is considered. Viscoelastic behavior is modeled by the
generalized Maxwell model while extended time-temperature superposition is used to model temperature dependency. A
temperature-frequency sweep conducted by dynamic mechanical analysis serves as input for the model. By horizontal and
vertical shifting, master curves of the loss factor, storage modulus, and loss modulus are obtained. Based on this, limitations
of time-temperature superposition and linear thermoviscoelastic modeling are discussed. Furthermore, it is shown that the
horizontal shifts can be well approximated by the Williams-Landel-Ferry equation for temperatures above and below the glass
transition temperature.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Polymer-based materials are used in a broad range of industrial applications as they enable for cost-efficient production. As
matrix material in fiber reinforced composites, polymers can be applied in high load-bearing components. In particular, ther-
moplastic polyamides are suited as matrix material in lightweight components due to high specific strengths and stiffnesses [1].
From mechanical perspective, polyamides exhibit pronounced viscoelastic behavior [2]. This behavior is strongly influenced
by environmental conditions like temperature or humidity [3]. To describe linear viscoelastic behavior, rheological models
are often used. In a strain-driven setup, for instance, the generalized Maxwell model (GMM) is commonly used [4, 5]. The
GMM combines linear spring and dashpot elements that represent the stiffness and viscosity properties of the material. The
resulting linear viscoelastic properties like relaxation modulus or storage and loss modulus depend on these stiffnesses and
viscosities. A common approach to model temperature dependency of linear viscoelastic properties is based on thermorhe-
ological simplicity [4, 6]. In terms of a GMM, the viscosities are temperature-dependent properties while the stiffnesses are
temperature-independent. The temperature dependency of all viscosities is given by a common shift function a(θ). On a
logarithmic scale, this leads to a shift of the viscoelastic properties in the frequency or time domain (horizontal shift). This
principle is called time-temperature superposition (TTS). TTS allows to combine experimental measurements at various tem-
perature levels to master curves with larger frequency or time ranges. In literature, the shift function a(θ) is often described
by the Williams-Landel-Ferry (WLF) equation or an Arrhenius equation [7, 8]. The WLF equation is mainly applicable for
temperatures above the glass transition temperature θg. In contrast, the Arrhenius equation is used for temperatures lower
than θg. In terms of temperature-dependent stiffnesses, horizontal shifting is not sufficient to obtain smooth master curves [9].
Then, TTS can be extended by introducing a vertical shift function b(θ) for the stiffnesses [10, 11]. On a logarithmic scale,
this leads to an additional vertical shift. The neglection of vertical shifts can cause large errors in the master curves [4].
In this work, the thermoviscoelastic behavior of polyamide 6 (PA 6) is considered. The main objective is to identify limitations
of linear thermoviscoelastic modeling of PA 6. Precisely, the focus is on modeling temperature dependency by extended TTS.
An experimental temperature-frequency sweep conducted by dynamic mechanical analysis serves as input. The procedure of
constructing master curves by horizontal and vertical shifting of frequency-dependent properties is described. The limitations
of the temperature and frequency ranges for the TTS application are addressed. Additionally, a parameter identification for
the WLF equation and the GMM is conducted. The work is seen as prework for a nonlinear thermoviscoelastic model.

2 Methods and Fundamentals

Linear viscoelasticity. In this work, a one-dimensional formulation of the GMM is considered as the experimental characteri-
zation is performed by uniaxial testing. The GMM is a parallel connection of an elastic spring element and an arbitrary number
N of Maxwell elements. Each Maxwell element consists of a spring element and a dashpot element in series. Spring elements
are given by stiffnesses Ei, i = 0, . . . , N , and dashpot elements are given by viscosities ηi, i = 1, . . . , N . Relaxation times
of the Maxwell elements are defined by τi := ηi/Ei, i = 1, . . . , N. The general stress response of a GMM to a strain load is
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given by the Boltzmann superposition integral [4], reading

σ(t) = E0ε(t) +

∫ t

0

N∑

i=1

Ei exp

(
− t− s

τi

)
ε̇(s)ds. (1)

In dynamic tests, samples are loaded by a cyclic strain with oscillation frequency ω, mean strain ε0, and amplitude ∆ε

ε(t) = ε0 +∆ε sin(ωt), ε̇(t) = ∆ε ω cos(ωt). (2)

The linear viscoelastic stress response is given by

σ(t) = σ0 +∆ε (E′ sin(ωt) + E′′ cos(ωt)) = σ0 +∆ε|E∗| sin(ωt+ δ). (3)

Storage modulus E′ and loss modulus E′′ describe the elastic and the viscous part of the dynamic response, respectively. The
absolute value of the dynamic modulus |E∗| and the loss factor tan δ are given by

|E∗| =
√

E′2 + E′′2, tan δ =
E′′

E′ . (4)

Inserting Eq. (2) into Eq. (1), solving the integral by partial integration, and comparing the coefficients yields

E′(ω) = E0 +
N∑

i=1

Ei
(ωτi)

2

1 + (ωτi)2
, E′′(ω) =

N∑

i=1

Ei
ωτi

1 + (ωτi)2
. (5)

Temperature dependency. The temperature dependency of linear viscoelastic properties is often modeled by assuming
thermorheological simplicity [4]. This implicates that the stiffnesses do not depend on temperature, whereas the viscosities
and relaxation times depend on temperature by the shift function a(θ) with prescribed reference temperature θref

τi(θ) = a(θ)τ refi , τi(θref) = τ refi , i = 1, . . . , N. (6)

On a logarithmic frequency scale, a temperature change leads to a horizontal shift of viscoelastic properties. This principle
is called TTS. The reference temperature can be arbitrarely chosen. By TTS, experimental measurements of viscoelastic
properties at a limited frequency range but various temperatures can be combined to master curves. This master curves
describe the material’s behavior for a broader frequency range. The WLF equation [12] is often used to describe the shift
function

log a(θ) = −c1
θ − θref

c2 + θ − θref
, (7)

with the parameters {c1, c2} that need to be fitted to experimental data. By adding a vertical shift, thermorheological simplicity
can be extended. In this case, the stiffnesses depend on temperature by an additional shift function b(θ)

Ei(θ) = b(θ)Eref
i , Ei(θref) = Eref

i , i = 0, . . . , N. (8)

All in all, the temperature-dependent storage and loss modulus are then given by

E′(ω, θ) = b(θ)

(
E0 +

N∑

i=1

Ei
(a(θ)ωτi)

2

1 + (a(θ)ωτi)2

)
, E′′(ω, θ) = b(θ)

N∑

i=1

Ei
a(θ)ωτi

1 + (a(θ)ωτi)2
. (9)

Experimental testing. A temperature-frequency sweep is performed by dynamic mechanical analysis (DMA) to obtain
frequency- and temperature-dependent viscoelastic properties of PA 6. The testing device GABO Eplexor®500N is used. A
dry-as-molded (DAM) sample is tested under varying frequency and temperature load (0.5Hz− 50Hz, 0◦C− 200◦C). Mean
strain and strain amplitude are set to ε0 = 0.1% and ∆ε = 0.05%, respectively. Amplitude and phase shift δ of the stress
response are measured. Then, storage modulus, loss modulus, and loss factor can be determined by Eq. (3) and Eq. (4).

Determination of shift factors. The DMA measurements of the viscoelastic properties are used as input for the construction
of master curves. Horizontal and vertical shifts are determined by a sequential method based on the work of [13]. Relative
shifts between curves of neighbouring temperature levels are calculated by an arc length minimization. First, the horizontal
shift is determined based on the loss factor. Then, vertical shifts are calculated based on the storage modulus if needed.
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Fig. 1: Horizontal shifting is applied to the loss factor data. The unshifted data is depicted by the dotted curves (initial state). These curves
are horizontally shifted to the solid lines (step I). From the blue to the red lines, temperature is increasing from 0◦C to 200◦C. The reference
temperature is set to θref = 50◦C.

Parameter identification. Based on the resulting master curves of storage and loss modulus, parameters of a GMM can
be identified. To avoid an ill-posed problem, the relaxation times are prescribed logarithmically distributed [14]. Then, N +1
stiffnesses are identified by minimizing the least squares residual

r2(PN ) =

nω∑

i=1

(
E′

i − E′(ωi,PN )

E′
i

)2

+

nω∑

i=1

(
E′′

i − E′′(ωi,PN )

E′′
i

)2

, Pn = {E0, E1, . . . , EN} (10)

The number of data points of each master curve is denoted by nω . Storage modulus E′(ωi,PN ) and loss modulus E′′(ωi,PN )
are given by Eq. (5). A gradient-based optimization method is used to solve the problem.

3 Results

Horizontal shifting. In this section, the construction of the master curves is discussed. In the first iteration, horizontal shifts
are determined for the whole set of experimental data for the loss factor to identify limitations of TTS. The reference tempera-
ture θref is set to 50◦C. In Fig. 1, the dotted lines represent the measured tan δ(ω) curves at various temperature levels (initial
state). The solid lines depict the horizontally shifted curves (step I) where the temperature is increasing from right to left. A
smooth master curve should be obtained in domains where TTS is applicable. In general, all partial curves deviate from the
master curve at higher physical frequencies (at the right) due to an increase of the loss factor. Thus, the measurements for
f > 20 Hz are not considered in the second iteration. Furthermore, for the highest and lowest temperatures, TTS is also not
applicable, see Fig. 2. The domains of the highest and lowest temperatures are magnified on the left and on the right, respec-
tively. For the highest temperatures, no smooth master curve can be obtained by the shift method. By neglecting the highest
frequencies of the partial curves for θ ≤ 130◦C, a smooth curve is expected in the second iteration. The curves at θ > 130◦C
will not be considered in the second iteration. For the four lowest temperatures, the partial curves are nearly constant if the
highest frequencies are neglected. Thus, horizontal shifting does not result in a smooth master curve. The measurements for
θ < 20◦C will not be considered in the second iteration. In Fig. 3, the result of the second iteration is depicted. A smooth
master curve is obtained for the loss factor.
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Fig. 2: Magnification of the domains from Fig. 1, where TTS is not applicable. For the highest temperatures on the left plot and the lowest
temperatures on the right plot, no smooth master curve of the loss factor is obtained.
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Fig. 3: Master curve of the loss factor obtained by horizontal shifting after restricting to f < 20 Hz and 20◦C ≤ θ ≤ 130◦C. The reference
temperature is set to θref = 50◦C. The color scheme used here coincides with the scheme used in Fig. 1

.

WLF equation. In Fig. 4, the horizontal shifts from Fig. 3 are depicted in black. These data points are considered for a fit of
the WLF equation with the parameters {c1, c2}. The parameter identification is conducted by least squares optimization. For
the considered temperature range, the resulting curve is shown in red. The behavior of the horizontal shifts is captured well
by the parameter fit. This includes temperatures above and below the glass transition temperature of 75◦C. Thus, a piecewise
distinction between a WLF equation and an Arrhenius equation is not necessary here.

Vertical shfiting. Next, the horizontal shift is applied to storage modulus and loss modulus. The result is depicted by the
dashed lines in Fig. 5 and Fig. 6. Especially for lower temperatures, the partial curves do not form a smooth master curve.
Therefore, vertical shifts are necessary. The vertical shifts are determined based on the storage modulus resulting to the solid
lines. In Fig. 6, the calculated shifts are applied to the loss modulus. Both storage and loss modulus show smooth master
curves after horizontal and vertical shifting. The loss factor is not affected by a vertical shift, as it is defined as ratio of loss
modulus to storage modulus, see Eq. (4) and Eq. (9).

Parameter identification. The master curves from Fig. 5 and Fig. 6 are used as input for a parameter identification of the
GMM, see Eq. (10). A number of 40 Maxwell elements is used which are two elements per frequency decade. In Fig. 7, the
predicted behavior based on the parameter identification is shown by the blue and the red curve for E′ and E′′, respectively.
Both master curves are well approximated.
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Fig. 4: The horizontal shift factors depicted by black points are fitted to the WLF equation (7). The fit is accurate within the considered
temperature range.
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Fig. 5: Horizontal and vertical shifting is applied to the storage modulus data. Unshifted data is depicted by the dotted curves. The dashed
curves result after horizontal shifting (step I). The solid lines show the final state after adding vertical shifts (step II).
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Fig. 6: Horizontal and vertical shifts determined by loss factor and storage modulus data, respectively, is applied to the loss modulus data.
Unshifted data is depicted by the dotted curves. The dashed curves result after horizontal shifting (step I). The solid lines show the final
state after adding vertical shifts (step II).
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Fig. 7: The black points depict the experimentally determined master curves of storage and loss modulus. By least squares optimization,
parameters are identified for a GMM with 40 Maxwell elements. The result is depicted by the blue and the red curve, respectively, showing
good agreement between simulation results and experimental data.

4 Summary and conclusion

In this work, temperature dependency in the linear viscoelastic regime was modeled by extended TTS. In this context, fre-
quency sweeps conducted at various temperatures by dynamic mechanical analysis were combined to master curves by hori-
zontal and vertical shifting. First, horizontal shifts were determined based on the loss factor. In the first iteration, limitations of
TTS were identified: f < 20 Hz, 20◦C ≤ θ ≤ 130◦C. In a second iteration, the master curve for the reduced set of data was
constructed. The corresponding horizontal shifts can be described by the WLF equation for temperatures above and below
the glass transition temperature. Second, smooth master curves were obtained for the storage modulus and the loss modulus
by adding vertical shifts. The resulting master curves of the storage modulus and the loss modulus were used as input for
a parameter identification. A linear GMM with two Maxwell element per frequency decade approximates the master curves
of both storage and loss modulus well. Outside the range where TTS is applicable, nonlinear thermoviscoelastic models are
needed. This is part of future scope of research.
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