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We consider a Cahn–Hilliard-type phase-field model for phase separation and large deformations in battery electrode par-
ticles. For the numerical solution we employ an hp-adaptive finite element solution algorithm coupled to a variable-step,
variable-order time stepping scheme. Numerical experiments show the adaptive meshing and distribution of the locally vary-
ing polynomial degrees of the finite element method. In particular, for a sufficient large range of polynomial degrees we
achieve significant computational savings compared to an h-adaptive algorithm.
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1 Introduction

Nowadays, battery research is one of the key competences of a sustainably developing society. In particular, performance
optimizations of lithium-ion and next generation batteries are active research [1, 2]. For example, mechanical degradation
induced by phase transformation and large deformation is one crucial aging mechanism. High occurring stresses can ultimately
lead to particle fracture and thus to capacity loss [3]. To evaluate stress hotspots, numerical simulations are valuable tools, see
for example [4, 5].

For our chemo-mechanically coupled Cahn–Hilliard-type phase-field model from [5] we recently developed and applied
an hp-adaptive finite element solution algorithm in [6]. We performed a first study of the presented algorithm applied to the
chemo-mechanical model and pointed out the general-purpose character of the algorithm. In this work, which is mainly based
on our previous work [6], we continue the investigation of our hp-adaptive algorithm. In particular, we further investigate the
dependence of computational complexity on the range of polynomial degrees. Due to its similarity with the previous study, this
article has the same structure and may contain similar wording. In contrast, here, we consider an adapted chemo-mechanically
coupled particle model from [7]. A comparison of the models, we recently discussed in [8].

The rest of this article is organized as follows: Next, in Section 2 we recall the model equations for a chemo-mechanical
particle model. In Section 3 we summarize the key points of the numerical solution procedure and the hp-adaptive algorithm.
Then, in Section 4 we present and discuss the numerical experiments. In the end, we conclude this article in Section 5.

2 Model Equations

In the same manner as in [6], we briefly introduce the dimensionless model equations for an adapted version of a chemo-
mechanically coupled particle model for chemistry, phase separation and large deformations derived in [7]. We give two types
of deformations and explain the phase-field model. For further details on the modeling we refer to [7] and the references cited
therein. The normalization follows [5].

2.1 Deformation

Let Ω ⊂ R3 be a bounded domain representing an electrode particle in the stress-free reference configuration and let Tend > 0
be a final simulation time.

We describe the total deformation of an electrode particle by the deformation gradient

F(∇u) = Id+∇u, (1)

where Id ∈ R3,3 is the three-dimensional unit tensor and u : [0, Tend]× Ω → R3 represents the unknown displacement. One
key of the chemo-mechanically coupled particle model is the multiplicative decomposition of the deformation gradient into a
chemical and an elastic part

F = FchFel. (2)
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Here, the chemical deformation is caused by species intercalation and is specified by

Fch(c) = λch(c)Id = 3
√
1 + V c Id, (3)

where V > 0 is the partial molar volume and c : [0, Tend] × Ω → R the unknown normalized concentration. The elastic
deformation gradient remains unspecified and is determined by Fel = F−1

ch F.
Throughout this article we assume that all equations are stated in the reference configuration.

2.2 Phase-Field Model

The phase-field model is based on a free energy density ψ : [0, 1]×R3 ×R3,3 → R. It consists of three components: the first
part represents the chemistry ψch : [0, 1] → R, the second part accounts for the interfacial energy ψint : R3 → R and the third
part describes the mechanical coupling ψel : [0, 1]× R3,3 → R. These parts are given as

ψ(c,∇c,∇u) = ψch(c) + ψint(∇c) + ψel(c,∇u), (4)

ψch(c) = α1c+
α2

2
c2 + c log(c) + (1− c) log(1− c), (5)

ψint(∇c) =
1

2
κ|∇c|2, (6)

ψel(c,∇u) =
1

2
Eel(c,∇u) : CEel(c,∇u). (7)

The parameters α1, α2 ∈ R of the chemical free energy density (5) determine the shape of the double-well and thus the
equilibrium concentrations of the bulk phases. The parameter κ > 0 of the interfacial energy density (6) determines the
thickness of the phase transition zone, see [5, Eq. (7)] for example. The third part for the elastic free energy density (7) is
modeled by an elastic approach with the symmetric fourth-order elasticity tensor C defined by

CEel = λ tr(Eel)Id+ 2GEel, (8)

with λ = 2Gν/(1−2ν) andG = EH/
(
2(1+ν)

)
the first and second Lamé constants depending on the elastic modulus EH > 0

and the Poisson’s ratio ν ∈ (0, 1/2). According to [7], the elastic strain tensor is defined different from [5] and is given by

Eel(c,∇u) =
1

2

(
FT

elFel − Id
)
=

1

2

(
λ−2

ch FTF− Id
)
. (9)

As an additional solution variable, one introduces the chemical potential µ : [0, Tend] × Ω → R, which is defined as the
variational derivative of the free energy

µ = ∂cψ(c,∇c,∇u)−∇·∂∇cψ(c,∇c,∇u). (10)

The mass flux N additionally couples chemistry and mechanics by the nonlinear mobility, which depends on the diffusion
coefficient D > 0 and the inverse of the derivative of the chemical potential by the first argument

m(c,∇u) = D
(
∂cµ

)−1
(11)

The mass flux is then again driven by a gradient in the chemical potential multiplied with the nonlinear mobility

N(c,∇µ,∇u) = −m(c,∇u)∇µ. (12)

A momentum balance law governs the first Piola–Kirchhoff stress tensor, which is defined as

P(c,∇u) = ∂Fψ(c,∇c,∇u) = λ−2
ch FCEel. (13)

Finally, we obtain a similar Cahn–Hilliard-type phase-field model as considered in our previous work [6]. We look for the
normalized concentration c : [0, Tend]×Ω → [0, 1], the chemical potential µ : [0, Tend]×Ω → R and the displacement u : Ω →
R3 up to rigid body motions, satisfying





∂tc = −∇·N(c,∇µ,∇u) in (0, Tend)× Ω,

µ = ∂cψ(c,∇c,∇u)−∇·∂∇cψ(c,∇c,∇u) in (0, Tend)× Ω,

0 = ∇·P(c,∇u) in (0, Tend)× Ω.

(14)

The boundary and initial conditions remain the same as in [6]: a vanishing concentration gradient in normal direction ∇c ·
n = 0, a predefined particle surface flux Next ∈ R modeling insertion or extraction N · n = Next and a stress-free condition
in radial direction P · n = 0. At initial time we use a given constant concentration profile c(0, · ) = c0 ∈ (0, 1), which we
assume to be consistent with the boundary conditions.
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3 The Numerical Solution Procedure

The development and explanation of the numerical solution procedure for the resulting set of PDEs (14) are part of our
previous works [5, 6, 9–11]. Thus, we only summarize and recall the major points of the finite element solver and the hp-
marking algorithm here and refer for further details to these works and the references cited therein.

3.1 Discretization

We consider the normalized concentration c, the chemical potential µ and the displacement u as solution variables. Note, that
the stresses are not part of the primarily solution variables, as we recover them in a postprocessing step. With the usage of the
mixed formulation of the Cahn–Hilliard equation we avoid the C1-regularity requirement on the finite element discretization
due to the fourth-order derivative [10].

In order to derive the fully discrete problem, we start with the weak problem formulation. Let t ∈ (0, Tend] be a fixed time
and c, µ ∈ V , u ∈ W be the solutions of the model equations (14) in appropriate function spaces [12], where the space W
already includes the constraints to neglect rigid body motions. Multiplication of the PDEs (14) with smooth test functions φ,
χ ∈ V , ξ ∈W and integration by parts yield the weak formulation





(
φ, ∂tc

)
= −

(
∇φ,m(c,∇u)∇µ

)
−
(
φ,Next

)
∂Ω
,

0 = −
(
χ, µ

)
+

(
χ, ∂cψch(c) + ∂cψel(c,∇u)

)
+ κ

(
∇χ,∇c

)
,

0 = −
(
∇ξ,P(c,∇u)

)
.

(15)

Here, we use the standard notation (f, g) =
∫
Ω
f g dx for the L2-inner product of two functions f , g and analogously for two

vectors or tensors. The boundary integral we indicate with the subscript ∂Ω.
For the space discretization with finite elements we discretize the particle domain Ω by an admissible mesh K and distribute

the degrees of freedom (DOFs) according to the isoparametric Lagrangian finite element method [12]. We choose appropriate
finite dimensional subspaces Vh ⊂ V , Wh ⊂W and substitute the continuous functions by finite element approximations ch,
µh ∈ Vh, uh ∈Wh.

For the discretization in time, we gather the time-dependent coefficients of the finite element approximations in a vector-
valued function

y(t) =
[(
ci(t)

)
i
,
(
µi(t)

)
i
,
(
ui(t)

)
i

]T
. (16)

Then, we employ the NDF family of linear multistep methods of order k = 1, . . . , 5 [13–15] for the time integration and obtain
the fully discrete problem as in [5, 6, 10]. The fully discrete problem for the computation at a subsequent time step tn+1 =
tn + τn, with the time step size τn > 0, reads as: find the discrete solution yn+1 ≈ y(tn+1) satisfying

M(yn+1 −Φn
k ) = ξkf(tn+1,y

n+1), (17)

with the Φn depending on the solutions at previous time steps yn, . . . , yn−k and a generalized time step size ξk > 0 depending
on the time step size and the chosen order k, see also [10, Sect. 4.1.2]. For the definition of the singular mass matrix M and
the right hand side function f according to the weak formulation (15) we refer to [5, 10].

3.2 Adaptive Algorithm

Based on the work by Melenk and Wohlmuth [16] we give in Algorithm 1 the pseudo-code of the hp-marking algorithm as we
presented in [6]. We incorporated this marking algorithm in our general-purpose space and time adaptive solution algorithm
from [5, 9, 10].

Given the control parameters θr, γh, γp and γn, we start computing the spatial error estimates ηK with a gradient recovery
estimator, like in [10]. In addition we set the error predictions ηK,pred initially to infinity to enforce p-refinement in the first
adaptive cycle.

In a loop over all elements of the mesh, we decide with a maximum criterion whether an element should be considered for
hp-refinement or not. The decision between h- or p-refinement is made by a comparison of the computed error estimate ηK and
the predicted estimate ηK,pred, as in [16]. We follow [16] for the explanation: if the estimate is smaller than the prediction ηK <
ηK,pred, we assume a smooth solution and thus use p-refinement. In the other case, we assume a non-smooth solution and use h-
refinement. After each decision for an element, the predictions are recomputed. In case of a h-refinement step for an element
with local degree pK , the prediction is computed under the assumption of optimal convergence according to ηKs,pred :=
1/2γh(0.5)

pKηK . Beside the constant part 1/2γh, the formula results from the expectation of algebraic convergence. In
case of p-refinement, exponential convergence is expected and thus we use as new prediction ηK,pred := γpηK , where the
estimate ηK is reduced by a factor γp ∈ (0, 1).
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4 of 6 Section 22: Scientific computing

Algorithm 1 Marking algorithm for hp-refinement from [6].

1: Let θr = 0.5, γh = 2, γp =
√
0.4, γn = 1.0;

2: Given ηK , ηK,pred for all K ∈ K;
3: Compute maximal estimate ηmax := maxK∈K ηK ;
4: for all K ∈ K do
5: if ηK ≥ θrηmax then
6: if ηK > ηK,pred then
7: % h-refine element K;
8: Subdivide K into Ks children, s = 1, . . . , 2d;
9: Set ηKs,pred := 1/2γh(0.5)

pKηK
10: for all children Ks, s = 1, . . . , 2d;
11: else
12: if pK < pmax then
13: % p-refine element K;
14: pK := pK + 1;
15: Set ηK,pred := γpηK ;
16: else
17: % h-refine element K;
18: Subdivide K into Ks children, s = 1, . . . , 2d;
19: Set ηKs,pred := 1/2γh(0.5)

pKηK
20: for all children Ks, s = 1, . . . , 2d;
21: end if
22: end if
23: else
24: % No refinement of element K;
25: Set ηK,pred := γnηK,pred;
26: end if
27: end for

Note, that we allow p-refinement only in a predefined range of degrees p ∈ {pmin, . . . , pmax}. If the algorithm would decide
for p-refinement but the maximum degree is already reached, h-refinement is performed instead. This hp-marking algorithm
replaces the h-marking procedure in our space and time adaptive algorithm from [5, 9, 10] used after every time step, if the
computed solution does not fulfill the spatial tolerances.

The hp-coarsening is decoupled from the refinement step. If a certain number of time steps were computed on the same
mesh, we check for coarsening with the criterion ηK ≤ θcηmax, with θc = 0.05, a strategy also used by Baňas and Nürn-
berg [17]. If an element is marked for coarsening, we performed both an h- and p-coarsening step.

4 Numerical Experiments

We investigate our hp-adaptive solution algorithm at the example of a spherical electrode particle, as in [6]. However, in
contrast to our previous work, the chemo-mechanical model presented in Section 2 is different. We assume the spherical
symmetry and reduce the computational domain to the one-dimensional unit interval Ω = (0, 1) representing the radial line
form the particle center Γ0 = {0} to the surface Γext = {1}. The geometry is then hidden in the adapted quadrature weight.

We choose the model parameters according to lithium iron phosphate, as in [5]. The dimensionless parameters are D =
1.6 × 102, α1 = 4.5, α2 = −9, κ = 3.91 × 10−4, EH = 2.19 × 103, ν = 0.26, V = 6.64 × 10−2, Next = −1/3. In the
particle center Γ0 we set the artificial boundary conditions ∇c · n = N · n = 0 and u = 0. At the initial time we use the
constant normalized concentration c0 = 0.01.

We reuse the implemented hp-adaptive algorithm from [6], which is a C++-code based on the functionalities of the open-
source finite element library deal.II [18–20] and the direct LU-decomposition from [21]. For the simulations we allocated 20
Intel Xeon Gold 6230 CPUs with 2.1GHz and 1GB RAM on a single node of the HPC system bwUniCluster 2.0.

4.1 hp-Refinement Profile

In a first simulation, we solve the model equations with our hp-adaptive solution algorithm and visualize the concentration
profile together with the refinement level n, which is related to the mesh width by h = 2−n, and the polynomial degree of the
finite element method p per element in Figure 1 at three characteristic state of charges (SOC). According to [5, Eq. (13)] we
have the relation SOC(t) = c0 + t between the SOC and the simulation time t ∈ [0, Tend]. We employ our adaptive solution
algorithm with p ∈ {2, . . . , 6}, which starts from a uniform discretization with h0 = 2−7, p0 = 6, τ0 = 10−6 and choose the
tolerances AbsTol = 10−4 and RelTol = 10−6 for both, space and time estimates.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 1: Concentration profile at three characteristic state of charges (SOC) with refinement level and polynomial degree of the finite element
method per element. The SOC is related to the simulation time t ∈ [0, Tend] by SOC(t) = c0 + t.
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Fig. 2: Number of DOFs over time for different h- and hp-adaptive cases.

The concentration profile over time is in qualitative accordance with the results from our previous work [5]. However, the
refinement profile is slightly different to our previous study [6], which may be caused by the adapted model equations. We
still observe the fine resolution in h and p exactly in the phase transition zone.

4.2 Computational Complexity

In the second study, we measure the computational complexity in terms of the number of degrees of freedom (DOFs) over
time. In Figure 2, we plot the number of DOFs over time for the h-adaptive algorithm with fixed polynomial degree p = pmax
together with the number of DOFs over time for the hp-adaptive algorithm allowing p ∈ {2, . . . , pmax}. Again we used the
same initialization and tolerances of the algorithm as above.

In the first row of Figure 2, we plotted the number of DOFs over time for the cases with a maximum polynomial de-
gree pmax ∈ {3, 4, 5, 6}. These cases we already studied in our previous work [6]. Again for fixed p = pmax we ob-
serve an increase of the number of DOFs in the single-phase diffusion stage (t ≲ 0.2) before the phase separation sets in.
In this stage, the hp-adaptive algorithm reduces the computational complexity. However, in the two-phase diffusion stage
(0.2 ≲ t ≲ 0.95) the number of DOFs with our hp-adaptive algorithm is still greater or approximately equal compared to the
case with fixed p = pmax. In the second row of Figure 2, we plotted the numbers of DOFs over time for the cases with a max-
imum polynomial degree pmax ∈ {7, 8, 9, 10}. Again we see an increase of the number of DOFs in the single-phase diffusion
stage. However, the number of DOFs in the two-phase diffusion stage stagnates. For pmax > 6, the hp-adaptive algorithm is
able to reduce the number of DOFs in the single-phase as well as in the two-phase diffusion stage. So we need a sufficient
large range of polynomial degrees to significantly reduce the computational complexity also in the two-phase diffusion stage.
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6 of 6 Section 22: Scientific computing

5 Conclusion

In this article we have employed our hp-adaptive finite element solver for the numerical solution of a thermodynamically
consistent electrode particle model coupling chemistry, phase separation and mechanical deformation. In the beginning we
have explained the model equations and afterwards have recalled the numerical solution algorithm. We have shown the
concentration profile over time for a lithium iron phosphate particle, which is in qualitative accordance to the previously
studied chemo-mechanical model. Furthermore, we pointed out the reduced computationally complexity in terms of the
number of DOFs for an increasing range of polynomial degrees. In sum, we have demonstrated the computational savings
using our hp-adaptive solution algorithm for an application example. In particular, we have observed that for the reduction of
complexity in the two-phase regime a sufficiently large range of polynomial degrees is necessary.

Our future research, we will review the coarsening procedure of the algorithm.
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