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Material-informed training of viscoelastic deep material networks
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Deep material networks (DMN) are a data-driven homogenization approach that show great promise for accelerating concur-
rent two-scale simulations. As a salient feature, DMNs are solely identified by linear elastic precomputations on representative
volume elements. After parameter identification, DMNs act as surrogates for full-field simulations of such volume elements
with inelastic constituents.

In this work, we investigate how the training on linear elastic data, i.e., how the choice of the loss function and the sampling
of the training data, affects the accuracy of DMNs for inelastic constituents. We investigate linear viscoelasticity and derive
a material-informed sampling procedure for generating the training data and a loss function tailored to the problem at hand.
These ideas improve the accuracy of an identified DMN and allow for significantly reducing the number of samples to be
generated and labeled.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Fig. 1: Short-fiber reinforced polymer microstruc-
ture [1]

To harness the full lightweight potential of composite materials, the rich
microstructure information needs to be accounted for in mechanical sim-
ulations. Concurrent multiscale methods couple simulations on the mi-
croscopic and macroscopic scale to include microstructure information
into component scale simulations. However, approaches such as the
FE2 [2] or the FE-FFT [3] method are typically too computational de-
manding for problems of industrial complexity.

Deep material networks [4–6] are a data-driven and micromechanics-
inspired homogenization approach. DMNs seek to approximate a fixed
microstructure by means of hierarchical laminates. The volume fractions
of the individual laminates and their lamination directions serve as fit-
ting parameters of the approach. DMNs are inversely identified by ap-
proximating the effective linear elastic material behavior of a fixed mi-
crostructure, which is considered as a function of the input stiffnesses
of the phases. Thus, the parameter identification is exclusively based
on linear elastic precomputations and independent of the nonlinear and
inelastic material behavior which the model is later evaluated for. After
parameter identification, the DMN acts as a surrogate for the microscopic
problem. Solving the (implicit) DMN in every Gauss point of a macro-
scopic simulation gives rise to the FE-DMN method [7, 8], which allows
for incorporating microstructure information into a macroscopic simulation. Most notably, DMNs predict the effective prop-
erties for arbitrarily nonlinear constituents and complex three-dimensional microstructures with high accuracy and provide
speed-ups of up to five orders of magnitude [8, 9], allowing for conducting DMN-accelerated large-scale component simula-
tions on commodity hardware. Extensions to treat thermomechanically coupled problems [1] and problems with fluctuating
microstructure characteristics [8, 10] are possible.

However, besides their apparent success in practice, there is still a lack of understanding the underlying mechanisms of
DMNs. Indeed, Gajek et al. [6] showed that the effective stress of a microstructure with arbitrarily nonlinear constituents is
determined to first order in the strain rate by linear elastic localization. However, an in-depth understanding of how training
on linear elastic data influences the accuracy of the DMN for arbitrarily nonlinear constituents is still missing. For instance,
open questions are: Might there be a way to tailor data sampling to the underlying material behavior of the phases in order
to improve the inelastic result? As we know from supervised machine learning, there is a plethora of possible loss functions
which typically excel in a specific task and fall behind for others. Is there a specific form the loss function should have in
order to improve the inelastic results? Are sampling and loss possibly linked and should not be considered separately?

In this work, we investigate these questions, at least for simple material behavior. We restrict to linear viscoelasticity and
derive a material-informed sampling procedure of the training data and a novel loss function which directly links the linear
training to the DMN’s accuracy for inelastic constituents.
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2 Deep material networks

Let Y ⊆ R3 denote a two-phase periodic rectangular microstructure in three spatial dimensions. The microstructure at
hand [1], which is depicted in Fig. 1, comprises 16 vol% of straight fibers with an aspect ratio of 20 and features a volume
element to fiber length ratio of around two and a second-order fiber orientation tensor of

A2 =




0.8 0 0
0 0.1 0
0 0 0.1


 ei ⊗ ej . (1)

Let GSM denote the set of all generalized standard materials (GSMs) [11]. It is well known that GSMs are closed under
homogenization. More precisely, periodic homogenization gives rise to the generally nonlinear homogenization function [6]

M : GSM× GSM → GSM, (GF,GM) 7→ Ḡ,

which maps the material behavior of the fibers GF ∈ GSM and the material behavior of the matrix GM ∈ GSM to the effective
material behavior Ḡ ∈ GSM of the composite. The purpose of homogenization theories is to find M for arbitrarily nonlinear
phases GF and GM. However, for practical reasons, only an approximation of M might be provided whose error needs to be
balanced with the effort of obtaining the approximation.

Deep material networks seek to approximate the nonlinear homogenization function M, associated to microstructure Y ,
by the homogenization function

MDMN
p : GSM× GSM → GSM, (GF,GM) 7→ ḠDMN,

where the underlying microstructure is chosen as a hierarchical laminate [4–6]. More precicely, MDMN
p is given by a binary tree

of two-phase rank-one laminates of predefined depthK, see Gajek et al. [6] for a schematic illustration. The fitting parameters
of the approach are given by the laminates’ volume fractions and directions of lamination and are collected in the parameter
vector p ∈ P .

Using that two-phase linear elastic homogenization determines nonlinear homogenization to first order in the strain rate [6],
DMNs seek to approximate M′ by M′DMN

p , where

M′ : C × C → C, (CF,CM) 7→ C̄ and M′DMN
p : C × C → C, (CF,CM) 7→ C̄DMN

denote the linear elastic homogenization functions associated to M and MDMN
p , respectively. The former and latter map the

two stiffness tensors of fibers and matrix CF,CM ∈ C to the effective stiffness C̄ ∈ C. For parameter identification, M′DMN
p is

determined by computing an approximate minimizer of the regression problem [4]

J(p) =

Ns∑

s=1

Js(p) + ψ(p) −→ min
p∈P

, (2)

where

Js(p) =
1

Ns

∥M′DMN
p (Cs

F,Cs
M)−M′(Cs

F,Cs
M)∥

∥M′(Cs
F,Cs

M)∥ (3)

measures the proximity of M′ and M′DMN
p for specific stiffness samples (Cs

F,Cs
M), which might be sampled as axis-aligned

orthotropic stiffness tensors [4–6]. The second contribution ψ(p) in Eq. (3) denotes a regularization term, which enforces that
the DMN’s volume fractions are consistent w.r.t. the underlying microstructure Y . After parameter identification, the DMN’s
nonlinear homogenization function MDMN

p may then be used as an approximation of the nonlinear homogenization function M
for arbitrarily nonlinear constituents GF and GM, see Gajek et al. [6]. The specific structure of the DMN allows for computing
the effective properties (effective stress and algorithmic tangent) with excellent efficiency.

3 Considering linear viscoelastic composites

We seek to investigate if we might improve upon the aforementioned sampling of orthotropic stiffnesses and the specified
form of the loss function. Therefore, we consider a setup where the relationship between linear and nonlinear homogenization
is completely understood, namely linear viscoelasticity. We assume the fibers to be isotropic and linear elastic

σF(t) = CF : ε(t) with CF = 3KF P1 + 2GF P2, (4)

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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where P1 : Sym2(3) → Sym2(3) and P2 : Sym2(3) → Sym2(3) project onto the spherical and deviator subspaces of
Sym2(3), the set of symmetric second order tensors in three dimensions. For an initially stress-free material, i.e., σM(0) = 0,
the stress-strain rate relationship of a viscoelastic matrix material reads

σM(t) =

∫ ∞

0

CM(τ) : ε̇(t− τ) dτ. (5)

Thus, the effective stress of microstructure Y homogenizes to

σ̄(t) =

∫ ∞

0

M′(CF,CM(τ)) : ˙̄ε(t− τ) dτ, (6)

whereas the effective stress of the DMN computes to

σ̄DMN(t) =

∫ ∞

0

M′DMN
p (CF,CM(τ)) : ˙̄ε(t− τ) dτ. (7)

In particular, we obtain the exact representation

σ̄DMN(t)− σ̄(t) =

∫ ∞

0

[
M′DMN

p (CF,CM(τ))−M′(CF,CM(τ))
]
: ˙̄ε(t− τ) dτ (8)

for the error in the effective stress. By Hölder’s inequality [12], we deduce

sup
t

∥σ̄DMN(t)− σ̄(t)∥ ≤
∫ ∞

0

∥M′DMN
p (CF,CM(τ))−M′(CF,CM(τ))∥ dτ sup

t
∥ ˙̄ε(t)∥. (9)

Let us define the auxilary function f : GSM× GSM → R,

(CF,CM(τ)) 7→ ∥M′DMN
p (CF,CM(τ))−M′(CF,CM(τ))∥, (10)

and let us consider a Maxwell model

CM(τ) = CM,0 +

NM∑

i=1

CM,i e−
τ
λi with CM,0 = 3KK P1 + 2GM P2 and CM,i = 2GM,i P2, (11)

comprisingNM dashpots with relaxation times λi ∈ R>0. Using the substitution y = 1−e−
τ
λ in terms of the positive constant

λ ∈ R>0, the integral
∫ ∞

0

∥M′DMN
p (CF,CM(τ))−M′(CF,CM(τ))∥dτ (12)

transforms into the expression

∫ ∞

0

f

(
CF,CM,0 +

NM∑

i=1

CM,i e−
τ
λi

)
dτ =

∫ 1

0

λ

1− y
f

(
CF,CM,0 +

NM∑

i=1

(1− y)
λ
λi CM,i

)
dy. (13)

Thus, the accuracy of the DMN for this specific setup is determined by a non-finite distribution on a line segment connecting
CM,0 and CM,0 +

∑NM
i=1 CM,i e

− τ
λi in stiffness space.

Applying a Monte Carlo integration, the integral (12) transforms via Eq. (13) into

∫ ∞

0

∥M′DMN
p (CF,CM(τ))−M′(CF,CM(τ))∥ dτ ≈ 1

Ns

Ns∑

s=1

λ

1− ys
f

(
CF,CM +

NM∑

i=1

(1− ys)
λ
λi Ci

)
(14)

which suggests that we should rather consider a loss function of the form

J(p) =

Ns∑

s=1

Js(p) + ψ(p) with Js(p) =
λ

Ns

∥M′DMN
p (Cs

F,Cs
M)−M′(Cs

F,Cs
M)∥

1− ys
(15)

with stiffness samples

Cs
F = 3KF P1 + 2GF P2 and Cs

M = 3KM P1 + 2

(
GM +

NM∑

i=1

GM,i (1− ys)
λ
λi

)
P2 (16)

where we draw ys ∈ [0, 1).
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4 Numerical results

For the numerical investigations, we use the material parameters for the linear elastic fibers [13] and the viscoelastic matrix [14]
with NM = 9 Maxwell elements as reported in Table 1.

Fibers [13] KF = 50.0GPa GF = 28.6GPa

Matrix [14] KM,0 = 4.93GPa GM,0 = 415.6MPa
GM,1 = 154.8MPa τ1 = 10−4 s GM,4 = 72.3MPa τ4 = 10−1 s GM,7 = 36.7MPa τ7 = 102 s
GM,2 = 127.0MPa τ2 = 10−3 s GM,5 = 50.9MPa τ5 = 100 s GM,8 = 31.5MPa τ8 = 103 s
GM,3 = 97.6MPa τ3 = 10−2 s GM,6 = 38.4MPa τ6 = 101 s GM,9 = 30.6MPa τ9 = 104 s

Table 1: Material parameters for the linear elastic fibers and the viscoelastic polymer matrix

We start with the identification of a DMN surrogate model using the conventional loss

JC(p) =
1

Ns

Ns∑

s=1

∥M′DMN
p (Cs

F,Cs
M)−M′(Cs

F,Cs
M)∥1

∥M′(Cs
F,Cs

M)∥1
+ ψ(p). (17)

To generate the training data, we sample tuples of orthotropic stiffnesses {(Cs
F,Cs

M)}Ns
s=1, see Gajek et al. [6] for details.

Furthermore, we identify a DMNs using the Maxwell-informed loss

JM(p) =
λ

Ns

Ns∑

s=1

∥M′DMN
p (Cs

F,Cs
M)−M′(Cs

F,Cs
M)∥1

1− ys
+ ψ(p), (18)

sample {ys}Ns
i=1 using the Sobol sequence [15] and assemble the corresponding stiffness samples {(Cs

F,Cs
M)}Ns

s=1 by evaluating
relations (16). The positive constant λ is set to λ = mini(λi). For both procedures, we sample Ns = 1024 stiffness tuples.
For efficiently labeling the training data, we precompute the effective stiffnesses C̄s = M′(Cs

F,Cs
s ) by means of an FFT-based

micromechanics code [16] using the conjugate gradient solver [17].
For both aforementioned losses, sampled and labeled training data, we train a DMN with K = 8 layers for 1000 epochs

using minibatches of size 8 and using the Adam optimizer [18]. The initial fitting parameters p0 ∈ P , i.e., volume fractions
and lamination directions, are initialized as explained in Gajek et al. [6]. The learning rate, i.e., step size of stochastic gradient
descent, is set to 0.015. The learning rate is halved every 100 epochs to improve convergence.

Fig. 2a illustrates the training progression. For better comparability, both losses JC(p) and JM(p) are normalized with
their initial values JC(p0) and JM(p0), respectively. We observe that the Maxwell-informed loss drops by up to four orders of
magnitude, whereas the conventional approach shows an improvement of two orders of magnitude.

Conventional Maxwell

1 100 200 300 400 500 600 700 800 900 1000
10−4

10−3

10−2

10−1

100

Epoch

N
or
m
al
iz
ed

lo
ss
J
(p
)/
J
(p

0
)

(a) Normalized loss vs. epochs
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(b) Maximum inelastic error vs. epochs

Fig. 2: Loss and maximum inelastic error during model identification

To quantify the performance of the two surrogate models for the viscoelastic case, we define the following inelastic error

η(t) =
∥σ̄DMN(t)− σ̄(t)∥1
maxτ ∥σ̄(τ)∥1

. (19)
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The full-field solutions σ̄(t), which serve as reference, are computed by an FFT-based micromechanics code [16] using an
inexact Newton-CG solver [19]. At every tenth epoch during training, we compute 24 tensile tests and six relaxation tests. For
tensile and relaxation tests, we use mixed boundary conditions [20] and apply the load in the following six loading directions
separately

ε̄ =
ε̄

2
(ei ⊗ ej + ej ⊗ ei) with (i, j) ∈ {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} . (20)

For every loading direction, we load to a macroscopic strain of ε̄ = 4% with four different strain rates, i.e., 24 tensile loadings
in total, which are logarithmically spaced from ˙̄ε = 5 · 10−4 s−1 to ˙̄ε = 5 · 10−1 s−1. For the relaxation tests, we ramp the
macroscopic strain to ε̄ = 4% in one millisecond and hold the load for twenty more seconds.

Fig. 2b shows the progression of the maximum inelastic error ηmax, i.e., the maximum over all times steps, loadings and
loading directions vs. the epochs. We observe that for both approaches, the maximum inelastic error decreases rapidly during
training and no further improvement is observed above 400 epochs. At the end of training, the conventional approach leads
to a maximum inelastic error of around 3.5%, whereas the Maxwell-informed loss provides a model that exhibits an inelastic
error of around 2%.

To get a better impression of how a maximum inelastic error of 2% translates into actual stress-strain curves, Fig. 3a
summarizes four uniaxial extensions in the 11-direction. We focus on the effective stress in principal fiber direction since this
case is typically rather challenging, i.e., strong morphological anisotropy and strain and stress peaks at the fiber ends, even for
such simple material models as viscoelasticity. Indeed, the rate dependence of the material is clearly seen and the agreement
between full-field solutions and DMN predictions is excellent with inelastic errors well below 2%. In Fig. 3b, the result for
the relaxation test in principal fiber directions is shown. We observe that the surrogate model also reproduces the relaxation
behavior with high accuracy.

FFT DMN ˙̄ε = 5 · 10−4s−1 ˙̄ε = 5 · 10−3s−1 ˙̄ε = 5 · 10−2s−1 ˙̄ε = 5 · 10−1s−1
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(a) Uniaxial extension in principal fiber direction
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(b) Relaxation test in principal fiber direction

Fig. 3: Comparing the effective stresses computed by an FFT-based micromechanics solver and predicted by the DMN, trained with the
Maxwell-informed loss, for a uniaxial extension in principal fiber direction and a relaxation test in principal fiber direction

Having demonstrated that the Maxwell-informed loss leads to lower inelastic errors, we next investigate the influence of
the number of samples on the inelastic error. For this purpose, we train DMNs with a different number of samples. We train
in each case eight DMNs with 16, 32, 64, 128, 256, 512 and 1024 samples to assess mean and standard deviation of the
maximum inelastic error ηmax. Note that the batch size is set to eight and the learning rate is scaled inversely with the number
of samples to obtain comparable results.

The results are shown in Fig. 4. For the conventional approach, the inelastic error depends on the number of samples.
If DMNs are trained with only 16 samples, inelastic errors of around 7% will be attained. With an increasing number of
samples, the mean and standard deviation of the maximum inelastic error decrease. Only for 512 samples and above, no
significant improvement can be observed. Considering the Maxwell-informed approach, we observe a completely different
behavior. Already for 16 samples, a maximum inelastic error of 2% may be attained. Increasing the number of samples does
not improve the results any further. Indeed, a closer look at the models trained with 512 and 1024 samples reveals a slight
increase of the mean and standard deviation of the inelastic error.

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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5 Conclusion
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Fig. 4: Mean and standard deviation of the maximum inelastic error
for DMNs trained with a varying number of samples

In the article at hand, we were concerned with further shed-
ding light on the linear elastic training of deep material net-
works and its influence on the inelastic performance of the
surrogate model.

To derive exact expressions for the inelastic model er-
ror, we restricted to linear viscoelasticity. We showed that
data sampling and loss function should not be chosen inde-
pendently, as has been the case so far for training DMNs.
We derived a novel material-informed sampling procedure
and loss, which allowed for reducing the inelastic error by
a factor of almost two compared to a conventionally trained
DMN. Furthermore, we demonstrated that the novel sam-
pling allows for further reducing the computational costs for
data labeling, i.e., computing the effective stiffnesses. The
inelastic results proved to be almost independent of the num-
ber of samples. For the special case of viscoelasticity, it
was sufficient to train with only 16 samples, representing
a speed-up factor of 64. Especially in combination with the
superconvergence properties [21] of modern computational
micromechanics solvers, the effort of labeling the training date may be drastically reduced.

Summing up, our results indicate that it is essential to take into account the inelastic and nonlinear material behavior of
the phases for training data sampling and formulating a suitable loss. In a next step, we seek to extend our approach to other
material classes, such as plasticity or damage [22].
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