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Solving phase-field fracture problems in the tensor train format
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Phase-field models for the quasi-static simulation of brittle fracture where the crack is approximated by a damage phase-field
are limited by the necessary memory and computation time. In this contribution, we study the applicability of low-rank
methods to phase-field fracture models, specifically the tensor train (TT) format. To this end, we investigate the low-rank
structure of the crack phase-field. Additionally, we present an implementation of an alternating minimization scheme to solve
the coupled displacement and damage problem in the TT format. We show the evolution of the TT ranks of the displacement
and damage fields for a specific example.
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1 Introduction

1.1 State of the art

Based on the fundamental work of Griffith [1] and Francfort-Marigo [2], phase-field damage models [3, 4] approximate the
nucleation and evolution of a crack in each time step by minimizing a functional consisting of the sum of the stored elastic
energy and the crack surface energy. In phase-field damage models, the crack surface in a domain Y = [0, L] × [0, L] is
approximated by a continuous phase-field variable d : Y → R≥0. The width of the approximated crack is characterized by
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Fig. 1: Mode I crack with displacement boundary con-
dition.

the length scale parameter η. For η → 0, sharp cracks are recovered [4].
Besides finite elements, the elastic problem can be discretized using finite
volumes [5] or finite differences [6]. For both approaches, sufficiently
many degrees of freedom must be distributed across the crack, render-
ing a fine resolution imperative. Alas, the computational effort increases
significantly for higher resolutions. As a potential remedy, we inves-
tigate the use of a low-rank method, specifically the tensor train (TT)
format, an approach that has been shown to be efficient for other phase
field problems [7], allowing for a finer resolution of the domain. The
TT format was introduced by Oseledets [8, 9] to allow for the approx-
imation of high-dimensional arrays by representing the array as a train
of three-dimensional so-called TT cores. The TT format comes with a
numerically stable algorithm for approximating full arrays and allows for
algebraic operations without going back to the full representation. How-
ever, these algebraic operations increase the TT ranks. Therefore, spe-
cific linear solvers were proposed [10, 11] by optimizing the TT cores
individually. An extension of the TT format, called the quantics ten-
sor train (QTT) format was proposed by Khoromskij [12] to apply the
TT format to low-dimensional problems. Using the QTT format, finite
difference operators like the gradient or Laplacian admit efficient repre-
sentations [13]. Vondřejc et al. [14] report an application of the tensor train format to linear elastic homogenization [14].

1.2 Contributions

We study the TT-rank structure of the damage phase-field approach by solving the problem in the QTT format. In sections 2
and 3, we provide necessary material concerning the theory of phase-field damage and the tensor train format, respectively. In
section 4, we investigate the TT-ranks of the approximation of a perfect crack.

Then, in section 5, we investigate our approach to solving a phase-field fracture problem using an alternating minimization
scheme [15] and the formulation of the damage and displacement sub-problems in the QTT format. We show that the damage
field for the perfect crack possesses low QTT rank, whereas the damage field for a progressing crack does not. Additionally,
we show that the displacement fields do not have low QTT ranks.
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2 Phase-field fracture

The phase-field fracture approach is based on the coupled minimization of a specific energy functional ψ w.r.t. the displace-
ment u and the damage field d. In a two-dimensional setting, for a displacement field u : Y → R2 and an associated strain
ε = ∇su : Y → Sym(2) we split the elastic energy into two parts

ψ(ε, d) = g(d)ψ+(ε) + ψ−(ε). (1)

More precisely, we use the energy split by Amor et al. [16]

ψ+(ε) =
κ0
2
⟨tr(ε)⟩2+ + µ0

(
ε− 1

2
tr(ε)I

)2

and (2)

ψ−(ε) =
κ0
2
⟨tr(ε)⟩2−, (3)

where the negative part ψ−(ε, d) corresponds to the compression part of the deformation. The degradation function

g(d) = (1− κ)d2 + κ (4)

– using the residual stiffness factor 0 < κ≪ 1 to ensure numerical stability [4] – controls the reduction of the stiffness by the
damage d. We apply a pseudo-time-dependent displacement loading on the boundary u0 : [t0, t1] × ∂YD → R2, see Fig 1.
The quasi-static evolution of the damage field d is governed by the equation

(1 + fψ)d− 4η2∆d = fψ, (5)

where the term fψ at time τ is determined by

fψ =
4η

Gc
(1− κ) sup

t0≤τ≤t1
ψ+(ε) (6)

with the critical energy release rate Gc, leading to a non-variational problem [4]. By taking the supremum of the energy
ψ+(ε), we ensure the entire history of the elastic energy is accounted for and ensure a irreversibility of the crack opening [4].
Notice that only the positive (non-compression) part ψ+(ε) of the elastic energy drives the progress of the crack.

3 The tensor train format

To reduce the memory footprint of the numerical computations of phase-field fracture, we use a compression method called the
tensor train (TT) format [8]. The TT format is employed to handle high-dimensional array-like structures T ∈ Rn1×n2×···×np

with nk entries on the k-th dimension. Provided n1 = n2 = · · · = np = n holds, exactly np array entries need to be stored. If
the entries of the tensor T are not independent and the TT ranks are low, a significant reduction in memory use can be obtained
by a compression using the TT format. A tensor T in the TT format consists of a chain of so-called TT cores Gi which are
three-dimensional arrays and which are linked by the auxiliary indices αi, each ranging from 1 to the individual TT ranks ri.
The individual entries of the array T can be retrieved via a contraction over the auxiliary indices

Ti1,i2,...,ip ≈
r1,r2,...,rp+1∑

α1,α2,...,αp+1=1

G1(α1, i1, α2)G2(α2, i2, α3) . . . Gp(αp, ip, αp+1), (7)

where r1 = rp+1 = 1. A quasi-optimal approximation in the Frobenius norm with a-priori accuracy of the array T can be
found using an algorithm based on the Singular Value Decomposition [8]. Linear algebra operations, like addition, matrix-
vector multiplication as well as the Kronecker product can be performed directly on arrays in the TT format, with the drawback
that these operations, in general, increase the QTT rank of the result. Linear solvers are available that minimize each TT core
individually [10, 11]. The TT format performs best for the compression of rather high-dimensional arrays, but evidently the
dimension of fields for phase-field fracture is three at most. Therefore, we use an adaptation of the TT format, the quantics
tensor train (QTT) format [12], where low-dimensional arrays are first reinterpreted as a high-dimensional array with two
entries per dimension and are subsequently compressed using the TT decomposition. For a fixed QTT rank, the memory
required grows only logarithmically in the number of entries N of the original array. Using the QTT format, certain finite-
difference operators, like the Laplace operator with a maximum QTT rank of four, can be represented with low QTT rank [13].
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4 Cracks on the tensor train

4.1 The perfect crack

d

x

y

0 1

∝ e|y|

Fig. 2: An analytically constructed crack through a two-dimensional domain with
a maximum QTT rank of two.

For an efficient evaluation of phase-field fracture
using a tensor train approach, the QTT ranks of
the underlying discretized damage field must re-
main reasonably low. The approximation of a fully
developed crack through the two-dimensional do-
main Y is expressed analytically [4] as

d(x, y) = e−|y−L/2|.

This crack field is shown in Fig. 2. Discretized
values of the exponential function admit an exact
representation by a rank-2 QTT field [12]. Us-
ing a series of Kronecker products, we construct
a fully developed, straight crack through a two-
dimensional domain on a discrete grid of edge
length N = 2p manually and analyze its QTT
ranks. Fix the vectors e1 = [1, 0]T and l = [1, 1]T .
The vector

ktop = e1 ⊗ l ⊗ l ⊗ · · · ⊗ l︸ ︷︷ ︸
p−1 times

∈ R4p (8)

represents a field where the top half is one and the bottom half is zero when reshaped into a 2p×2p array. Employing the same
approach, the complementary field kbottom (where the bottom half is one) is constructed by exchanging e1 for e2 = [0, 1]T .
The field ka with all ones is constructed by switching e1 for l.

The Kronecker product for two QTT tensors equals a chaining of the two groups of QTT cores. The QTT representation of
the vectors ei and l by construction consists of a single core which is a reshape of the vectors themselves to the shape [1, 2, 1].
The (two) QTT ranks of this vector are one. Therefore, the (p+ 1) QTT ranks of both fields ktop and kbottom are all one.

Using a Taylor series, we approximate the QTT cores gk of the one-dimensional exponential function mα,s = exp(αx−s)
on a 2p grid [12]. Let the k-th core

gk =





[
0

exp
(
α · 2p−k−1

)
]
, k = p− 1

[
exp

(
α · s · 2p−k−1

)

exp
(
α · (1 + s) · 2p−k−1

)
]
, otherwise,

(9)

which is reshaped to [1, 2, 1] to obtain the standard format of a rank-1 TT core. This results in a series of cores with rank one.
For QTT vectors of the same length, the pointwise (or Hadamard) product translates into a multiplication of the respective

QTT ranks with the same index. Accordingly, taking the Hadamard product of either the top field ktop or the bottom field
kbottom with the exponential function mα,s retains QTT ranks of all one. This product represents the projection of the
exponential function to either half of the one-dimensional domain. When adding two QTT tensors, the respective QTT ranks
with the same index sum up. We approximate the initial function u(x, y) = exp(−|y −N/2|) by

u1D = ktop ⊗m1,−N/2+1 + kbottom ⊗m1,−N/2. (10)

As we noted previously, this sum raises the maximum QTT ranks of the field to two. Finally, to obtain the crack as a two-
dimensional discrete field u2D, we perform a final Kronecker product as follows:

u2D = u1D ⊗ ka. (11)

Ultimately, as the QTT ranks of the field ka are all one, the perfect crack field has maximum QTT ranks of two. The maximum
rank of the field is independent of the parameter p. Therefore, as the maximum rank is independent of d, the memory required
for handling the field is only affected by the increase of QTT cores, which scales logarithmically with the edge length N .
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4 of 6 Section 8: Multiscales and homogenization

4.2 Applying boundary conditions in the tensor train format

Accessing single entries of fields in the tensor train format increases the QTT ranks and is therefore costly. To solve the
mechanical sub-problem, we use a projector-based application of the boundary conditions allowing us to access single entries
once and then use TT matrix-vector products to apply the projectors. Accordingly, when using the degradation function (4)
for the displacement sub-problem, the balance of linear momentum

0 = ∇ · σ (12)

may be transformed successively

0 = ∇ · [g(d)µ0∇su+ g(d)λ0(∇ · u)I] , (13)

0 = ∇ · [g(d)µ0∇s + g(d)λ0(∇·)I]u, (14)

0 = ∇ · (C(d)∇s)︸ ︷︷ ︸
A

u, (15)

0 = Au. (16)

where C(d) denotes the damage-dependent stiffness tensor. By employing a projector-based split

u = ũ+ uD + uN = PuSu+ PuDu+ PuNu (17)

of the solution vector u into the values ũ on the interior points Y \ ∂Y , the values uD on the Dirichlet boundary ∂YD and the
points uN on the Neumann boundary ∂YN , we set up our system of equations. The projectors are related by

PuS = 1− PuD − PuN . (18)

Then, the system of equations is

[PuSA+ PuD + PuN (∇ · n)]u = uD, (19)

which we then solve for u. This approach – even though we also solve for the "known unknowns" uD – allows to bypass
odd sizes for tensor fields which could occur otherwise (depending on the prescribed boundary conditions) as the QTT format
works best with arrays with sizes multiples of two.

Analogously, for the damage field d = d̃+ dD + dN , we employ a similar approach to handle the boundary conditions of
the damage sub-problem

(1 + fψ)d− 4η2∆d = fψ (20)

as follows:
[
(1− PdD)

[
(1− PdN ) (1 + diag(fψ))− 4η2∆

]
+ PdD

]
d = (1− PdD)

[
(1− PdN )fψ

]
+ dD. (21)

Defining PdS = (1− PdD)(1− PdN ) = 1− PdN − PdD, the system of equation for the damage field d becomes
[
PdS (1 + diag(fψ))− (1− PdD)4η2∆+ PdD

]
d = PdSfψ + dD. (22)

Empirically, all these projectors P possess a QTT rank of one, therefore they do not increase the ranks of the investigated
fields.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com

 16177061, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202200098 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [27/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PAMM · Proc. Appl. Math. Mech. 22:1 (2022) 5 of 6

5 Results

5.1 Setup

To solve the phase-field fracture problem in a QTT framework, we implemented a custom tensor train Python library [7]
to use a finite difference discretization with all damage, displacement, strain, and stress fields as well as the operators in
the QTT format. All simulations were performed on an Intel Core i7 octa-core processor with 64GB of RAM. We used a
Young’s modulus of E = 210GPa and Poisson’s ratio of ν = 0.3 for the linear elastic simulations. An energy release rate of
Gc = 2.7MPa/mm and residual stiffness factor κ = 10−6 were used for evaluating the phase-field. We investigate a mode I
crack on a square geometry with a displacement boundary condition on the top of the geometry as shown in Fig. 1.

5.2 The crack tip position
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Fig. 3: Maximum QTT ranks of the damage field for various positions of the
crack tip on a 256× 256 grid and respective damage fields at selected positions.

By minimizing the crack surface density function
of a crack at prescribed positions of the crack tip
[4], we solve for the damage field using the QTT
framework. This procedure enables us to analyze
the QTT ranks of the damage field for cracks that
have not yet fully developed.

On a regular square grid with Neumann bound-
ary conditions on the edges of the grid, we solve
the equation

d− η2∆d = 0

for the damage d to minimize the surface en-
ergy, where ∆ denotes the Laplace operator and
η stands for the crack length scale [4]. In Fig. 3,
the maximum QTT ranks of the regularized crack
field are displayed for various crack tip positions.
The QTT ranks of the damage field remain consis-
tently higher for all crack tip positions that do no lie in the vicinity of the domain boundary. Varying the crack length scale
η does not significantly alter the maximum QTT ranks. When the crack tip is on the boundary of the domain and the fully
developed crack state is reached, the QTT ranks are significantly lower – a result that is in accordance with the results from
the previous section. As the ranks of the damage field are reasonably low, we want to turn our focus to the evaluation of the
displacement field and strain field in the tensor train format.

5.3 The mechanical sub-problem
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Fig. 4: Maximum QTT ranks of the displacement field for various positions of
the crack tip on a 64× 64 grid of edge length L and respective displacement
fields in y-direction at selected positions for the uncoupled problem

To get a first insight to the QTT ranks of the dis-
placement and strain fields during the evaluation
of phase-field fracture, we evaluate the regularized
damage field as elaborated in section 4 and use this
damage field to apply the degradation function (4)
to the mechanical problem, where we use Dirichlet
boundary conditions on the top and bottom bound-
ary to prescribe a displacement and use Neumann
boundary condition on the left and right boundary.
The prescribed displacement u0, applied at the top
edge is scaled linearly with the crack tip position
from 0 to 0.07L. The resulting maximum QTT
ranks as well as the respective displacement fields
are shown in Fig. 4. We see that for the unloaded
state, the QTT ranks of the displacement field are
rather low, which is a result of the homogeneous
nature of the unloaded displacement field. With
the onset of loading, the maximum QTT ranks im-
mediately rise to 64, the maximum value possible
on a 64× 64-grid.
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6 of 6 Section 8: Multiscales and homogenization

5.4 Evaluation of the coupled phase-field fracture problem
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Fig. 5: Maximum QTT ranks for the ranks field for a fully coupled solution on
a 64× 64-grid as well as damage and displacement fields after 80 computation
steps.

Eventually, we evaluate a fully coupled alternat-
ing minimization [3, 15] of the elastic (1) and the
phase-field (5) problem using the coupling out-
lined in section 2. After a total of 137 computation
steps with a displacement increment of 7 · 10−4

each, the crack tip has reached the right boundary
of the domain. As we see on Fig. 5, after a single
computation step, the maximum QTT ranks of the
damage field reach a value of 64. After this first
computation step, the ranks of the displacement
field also reach the maximum value of 64. During
the course of the crack progression, the maximum
QTT ranks do not decrease anymore. In contrast to
the uncoupled solution in Fig. 4, the damage field
is less ordered. For a two-dimensional field, this
means the field has full rank [8] suggesting that
this problem appears not well suited for approxi-
mation using the TT format.
Compressing the displacement field to a lower
maximum QTT rank leads to no convergence.

6 Conclusion

In this work, we introduced a novel TT low-rank approach to solve phase-field fracture problems. We showed that the perfect
crack has low QTT ranks. In constrast, the displacement field has elevated ranks, diminishing the memory savings for storing
the displacement field in the TT format and the ranks scaling with the resolution, negating the advantages of using the (Q)TT
format. On the other hand, we showed that the operators in fact always possess low rank. The applicability of this approach
to the fully coupled solution of phase-field fracture is further bottlenecked by the multiplication by the elastic energy, which
does not have low QTT rank, and the complex application of material laws.
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