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Mathematical modeling of electro-elastic dislocations in piezoelectric
materials
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In this work, based on the theory of linear incompatible piezoelectricity with eigendistortion and eigenelectric field, the
concept of electro-elastic dislocations is presented. Both field variables, the displacement vector u and the electrostatic
potential ϕ, possess a jump discontinuity at the dislocation surface. Electro-elastic dislocations are described not only by
the dislocation density tensor but also by a new introduced field, the so-called electric dislocation density vector. In addition
to electro-elastic dislocations, inhomogeneities, body forces and body charges are also considered. Within this framework,
material balance laws that correspond to the symmetries of translation, scaling and rotation are derived. All fundamental fields
of configurational mechanics like the Eshelby stress tensor, the electro-elastic Peach-Koehler force, the Cherepanov force, the
Eshelby force among others, which take place in the broken (translational, scaling and rotational) conservation laws anymore
are given.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Dislocations in piezoelectric materials can strongly influence the performance and properties of electronic devices. In this
work, we use the terminology of an electro-elastic dislocation to refer to a dislocation in a piezoelectric material, that is
characterized by the jump of the displacement vector and the jump of the electric potential along the dislocation surface.
Studying dislocations in piezoelectric materials, Barnett and Lothe [1] were the first to mention that the jump in the electric
potential corresponds to an electric dipole layer along the cut plane. Using the concept of the electric dislocation density
vector, Agiasofitou and Lazar [2] have proven that an electric dislocation loop represents an electric dipole layer.

The derivation of material balance laws corresponding to the symmetries of translations, scaling and rotation is essential,
since these laws provide all primary quantities such as the configurational forces, configurational work and configurational
vector moments which are respectively represented by the J -, M - and L-integrals, which are powerful tools in the study of
problems of piezoelectric materials suffering by dislocations. It is well-known that the J -integral of dislocations is equivalent
to the Peach-Koehler force. In the framework of three-dimensional incompatible linear elasticity, Agiasofitou and Lazar [3]
have given the physical interpretation of the M - and L-integrals of dislocations. The M -integral of two straight dislocations
represents the interaction energy (depending on the distance and on the angle) between the two dislocations and the L-integral
represents the configurational vector moment or rotational moment (torque) caused by the interaction of the two dislocations.
Furthermore, Lazar and Agiasofitou [4] showed that the M -integral (per unit length) of a single dislocation represents the
total energy of the dislocation which is the sum of the self energy (per unit length) of the dislocation and the dislocation core
energy (per unit length). The latter can be identified with the work produced by the Peach-Koehler force and equals twice
the corresponding pre-logarithmic energy factor. Moreover, through the comparison of the J -, M - and L-integrals of body
charges and point charges in electrostatics and the J -, M - and L-integrals of body forces and point forces in elasticity in [5],
a deeper insight has been achieved showing that the J -, M - and L-integrals are fundamental concepts which can be applied
in any field theory.

2 The concept of electro-elastic dislocations

The theory of linear incompatible piezoelectricity with eigendistortion and eigenelectric field is considered. The notion of
the eigenelectric field vector concerning problems of dislocations in piezoelectric materials has been used by Nowacki [6]
but described as “external” source field. The first one who used the terminology of the eigenelectric field in dislocations is
Wang [7]. Based on this notion, we proceed to define an additional defect measure, the electric dislocation density vector,
necessary for the description of the jump of the electrostatic potential.

The total distortion tensor βT
ij , which is defined as the spatial gradient of the displacement vector ui, is decomposed into

elastic and plastic parts

βT
ij := ui,j = βij + β∗

ij , (1)
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Fig. 1: Electro-elastic dislocation loop.

where βij is the elastic distortion tensor and β∗
ij is the eigendistortion or plastic distortion tensor. The subscript comma

denotes partial differentiation with respect to the spatial coordinates xj . Moreover, the Maxwell-Faraday electric field vector
EM

i , which is defined as the negative gradient of the electrostatic potential ϕ, is decomposed into the electric field strength
vector Ei and the eigenelectric field vector E∗

i as follows

EM
i := −ϕ,i = Ei − E∗

i . (2)

We consider a variational problem with the Lagrangian density L depending on the field variables u and ϕ for prescribed
body forces and body charges as well as for prescribed eigendistortion and eigenelectric field, which is defined by

L = L(ui, ui,j , ϕ, ϕ,i) = −H(βij , Ei)− V(ui, ϕ) (3)

with H being the electric enthalpy density

H(βij , Ei) =
1

2
σijβij −

1

2
DiEi , (4)

where σij is the Cauchy stress tensor and Di is the electric displacement vector and V being the electro-elastic potential of
the body force density fi and the body charge density q

V(ui, ϕ) = −fiui + qϕ . (5)

For a linear piezoelectric material, the electric enthalpy density is given by [8]

H =
1

2
Cijklβijβkl − eijkEiβjk − 1

2
εijEiEj , (6)

where Cijkl is the tensor of the elastic moduli measured in a constant electric field, eijk is the tensor of the piezoelectric
moduli and εij is the tensor of the dielectric moduli measured at constant strain possessing the symmetries

Cijkl = Cklij = Cijlk = Cjikl , ekij = ekji , εij = εji . (7)

The Euler-Lagrange equations associated to the Lagrangian density (3) provide the force equilibrium condition

σij,j + fi = 0 (8)

and the Gauss law of electrostatics

Dj,j = q , (9)

accompanied by the following constitutive relations

σij =
∂H
∂βij

= Cijklβkl − elijEl , (10)

Dj = − ∂H
∂Ej

= ejklβkl + εjlEl . (11)

An electro-elastic dislocation is a line defect C, which is the boundary of the dislocation surface S where both fields, the
displacement vector u and the electrostatic potential ϕ possess a jump. The jump of the displacement vector is the Burgers
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vector b, and the jump of the electrostatic potential ∆ϕ corresponds to the potential discontinuity of an electric dipole layer
along the surface S as it has been shown in [2] (see also Figure 1).

The dislocation density tensor is defined by

αij = −ǫjklβ
∗
il,k or αij = ǫjklβil,k . (12)

The Burgers vector bi is given by

bi =

∫

σ

αij dSj = −
∮

γ

β∗
ij dlj =

∮

γ

βij dlj , (13)

where γ is the Burgers circuit, σ is the Burgers surface bounded by γ, dSj is the area element and dlj is the corresponding
line element. The electric dislocation density vector is given by

Aj = −ǫjklE
∗
l,k or Aj = −ǫjklEl,k . (14)

Analogous to Eq. (13), the jump of the electrostatic potential ∆ϕ can be written as the surface integral of the electric dislocation
density vector

∆ϕ =

∫

σ

Aj dSj = −
∮

γ

E∗
j dlj = −

∮

γ

Ej dlj . (15)

It can be seen that the above definitions of the electro-elastic dislocation and of the electric dislocation density vector are not
restricted to piezoelectric materials.

3 Configurational fields: forces, work and vector moments

Based on the calculus of variations (see, e.g., [9, 10]), we consider an arbitrary infinitesimal functional derivative δH of the
electric enthalpy

H =

∫

V

H dV , (16)

where V is the volume of the three-dimensional body. The material balance laws which correspond to translation, scaling and
rotation groups of transformations for a piezoelectric material with electro-elastic dislocations are derived. For the detailed
derivation, the reader is addressed to [2].

3.1 Configurational forces and J -integral

We specify the functional derivative to be translational

δ = (δxk)∂k , (17)

where (δxk) is an infinitesimal translation in the xk-direction and ∂k = ∂/∂xk.
The global translational balance law for incompatible piezoelectricity reads as

∫

V

∂j
[
Hδjk − σijβik +DjEk

]
dV

=

∫

V

{
ǫkjlσijαil + ǫkjlDjAl + fiβik + qEk

+
1

2
βij [∂kCijmn]βmn − Ej [∂kejmn]βmn − 1

2
Ei[∂kεij ]Ej

}
dV . (18)

The quantity in the divergence in the first integral of Eq. (18) is the so-called Eshelby stress tensor of piezoelectricity

Pkj = Hδjk − σijβik +DjEk . (19)

The integral on the right-hand side of Eq. (18) contains terms breaking the translational symmetry and defines a sum of the
so-called configurational or material force densities

f conf
k = ǫkjlσijαil + ǫkjlDjAl + fiβik + qEk +

1

2
βij [∂kCijmn]βmn − Ej [∂kejmn]βmn − 1

2
Ei[∂kεij ]Ej

= f eePK
k + fC

k + fL
k + f inh

k . (20)

These configurational or material force densities have different physical origin and interpretation as follows:
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4 of 6 Section 6: Material modelling in solid mechanics

• The electro-elastic Peach-Koehler force density

f eePK
k = ǫkjl (σijαil +DjAl) , (21)

which is the configurational force density on an electro-elastic dislocation with dislocation density tensor αil and electric
dislocation density vector Al in presence of a stress σij and an electric displacement Dj , respectively.

• The Cherepanov force density

fC
k = fiβik , (22)

which is the configurational force density on a body force density fi in presence of an elastic distortion βik. This means
that the existence of a body force density causes the existence of a configurational force density, namely the Cherepanov
force density.

• The electrostatic part of the Lorentz force density

fL
k = qEk , (23)

which is the electric configurational force density on a body charge density q in presence of an electric field Ek.

• The piezoelectric inhomogeneity force density or Eshelby force density for piezoelectric materials

f inh
k =

1

2
βij [∂kCijmn]βmn − Ej [∂kejmn]βmn − 1

2
Ei[∂kεij ]Ej , (24)

which appears due to the gradient of the constitutive tensors when the piezoelectric material is non-homogeneous.

The global translational balance law for incompatible piezoelectricity (18) with the definitions (19) and (20) is alternatively
written as

Jk =

∫

V

∂jPkj dV =

∫

V

f conf
k dV , (25)

representing the vectorial J -integral for incompatible piezoelectricity for a non-homogeneous piezoelectric medium with
electro-elastic dislocations in presence of body forces and body charges. It possesses contributions due to electro-elastic
dislocations, body forces, body charges and inhomogeneities.

3.2 Configurational work and M -integral

Let us consider scaling transformations here, specifying the functional derivative to be dilatational

δ = xk∂k . (26)

The global balance law for scaling transformations in incompatible piezoelectricity reads as
∫

V

∂j

[
xkPkj −

d− 2

2

(
ukσkj + ϕDj

)]
dV =

∫

V

{
xkf

conf
k +

d− 2

2

(
fiui − qϕ− β∗

ijσij − E∗
jDj

)}
dV ,

(27)

where d = δkk is the space dimension. The quantity in the divergence in the first integral of Eq. (27) is the dilatation or
scaling flux vector for incompatible piezoelectricity

Yj = xkPkj −
d− 2

2

(
ukσkj + ϕDj

)
. (28)

The integral on the right-hand side of Eq. (27) contains terms breaking the dilatation or scaling symmetry and form the total
configurational or material work density

wtot = wconf + wintr, (29)

containing the following two terms:

• the configurational work density produced by the configurational force density (20)

wconf = xkf
conf
k , (30)

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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• the intrinsic or field work density produced by the body force density, body charge density, eigendistortion and eigen-
electric fields

wintr =
d− 2

2

(
fiui − qϕ− β∗

ijσij − E∗
jDj

)
. (31)

The factor

du = dϕ = −d− 2

2
(32)

is the scaling or canonical dimension and it is the same for both fields, the displacement vector uk and the electrostatic
potential ϕ.

The global balance law for scaling transformations in incompatible piezoelectricity (27) via the definitions (28) and (29)
provides the M -integral for incompatible piezoelectricity

M =

∫

V

∂jYj dV =

∫

V

wtot dV (33)

for a non-homogeneous piezoelectric medium with electro-elastic dislocations in presence of body forces and body charges.
The M -integral (33) represents the total configurational or material work.

It is of great importance the fact that the global balance law for scaling transformations (27) depends on the space dimen-
sion. In the case of study of two-dimensional problems, the second parts of the appearing integrals vanish and the contribution
of the eigenfields (plastic fields) is lost. A fact that has caused many misunderstandings in the past about the M -integral and
its physical interpretation having as a result less applications (see related discussion in [2]). A dislocation is a line defect in
a three-dimensional crystal, hence d = 3. Therefore, for studying dislocations as well as other three-dimensional problems
in Engineering Science, the appropriate formula of the M -integral is the one with d = 3. Therefore, for the problem under
study, the scaling flux vector and the M -integral are given by the following formulas

Yj = xkPkj −
1

2

(
ukσkj + ϕDj

)
(34)

and

M =

∫

V

∂j

[
xkPkj −

1

2

(
ukσkj + ϕDj

)]
dV =

∫

V

{
xkf

conf
k +

1

2

(
fiui − qϕ− β∗

ijσij − E∗
jDj

)}
dV . (35)

3.3 Configurational vector moments and L-integral

We specify here the functional derivative to be rotational

δ = (δxk)ǫkjixj∂i , (36)

where (δxk) denotes the xk-direction of the axis of rotation.
The global rotational balance law for incompatible piezoelectricity reads as

∫

V

ǫkji∂l
[
xjPil + ujσil

]
dV =

∫

V

ǫkji

[
xjf

conf
i − ujfi + β∗

jlσil + βjlσil + βljσli − EjDi

]
dV . (37)

In the integral on the left-hand side of Eq. (37) appears the divergence of the angular momentum tensor for incompatible
piezoelectricity

Mkl = ǫkji
[
xjPil + ujσil

]
= M

(o)
kl +M

(i)
kl (38)

consisting of two parts:

• the orbital angular momentum tensor given in terms of the Eshelby stress tensor (19)

M
(o)
kl = ǫkjixjPil , (39)

• the intrinsic or spin angular momentum tensor given in terms of the displacement vector and the Cauchy stress tensor

M
(i)
kl = ǫkjiujσil . (40)

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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6 of 6 Section 6: Material modelling in solid mechanics

The integrand of the integral on the right-hand side of Eq. (37) is the total configurational or material vector moment density

mtot
k = mconf

k +mintr
k +manis

k (41)

containing terms breaking the rotational symmetry, which are:

• the configurational vector moment density produced by the configurational force density f conf
i given in Eq. (20)

mconf
k = ǫkjixjf

conf
i , (42)

• the intrinsic or field vector moment density due to the body force density vector and the eigendistortion tensor

mintr
k = −ǫkji(ujfi − β∗

jlσil) , (43)

• the configurational vector moment density due to the material anisotropy

manis
k = ǫkji(βjlσil + βljσli − EjDi) . (44)

The global rotational balance law for incompatible piezoelectricity (37) with the definitions (38) and (41), is written as

Lk =

∫

V

∂jMkj dV =

∫

V

mtot
k dV , (45)

representing the vectorial L-integral for incompatible piezoelectricity for a non-homogeneous piezoelectric medium with
electro-elastic dislocations in presence of body forces and body charges.

It is important to notice that in piezoelectricity, even if the material is dislocation-free, homogeneous and body forces and
body charges are absent, the “isotropy condition” is not fulfilled

manis
k = ǫkji

[
βjlσil + βljσli − EjDi

]
6= 0 , (46)

due to the anisotropic character of the constitutive relations (10) and (11). Hence, the L-integral cannot be zero or a conserved
integral (see also [2]).

4 Conclusion

In the presenting mathematical modeling of electro-elastic dislocations in piezoelectric materials, two eigenfields are consid-
ered: the eigendistortion tensor and the eigenelectric field vector. The curl of these two eigenfields defines two “dislocation
densities”: the dislocation density tensor and the electric dislocation density vector, respectively. The last serves as an addi-
tional defect measure necessary for the description of the jump of the electrostatic potential at the dislocation surface. This
framework enables to capture the “full” force with elastic and electric contributions acting on an electro-elastic dislocation,
that is the so-called electro-elastic Peach-Kohler force. The J -, M - and L-integrals of piezoelectric materials with electro-
elastic dislocations in presence of body forces, body charges and inhomogeneities have been derived. The vectorial J -integral
represents the total configurational or material force, the M -integral represents the total configurational or material work and
the vectorial L-integral represents the total configurational or material vector moment. The explicit expressions of the above
integrals for straight dislocations as well as for dislocation loops are given in [2].
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