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In this contribution, selected results from [1-3] are presented in a compact and simplified way. In addition, the variety of fiber
orientation tensors is used to determine a maximum deviation of the direction-dependent Young’s modulus, which can arise if
only second-order directional information is included in a specific meanfield homogenization. Focusing on the special case of
planar fiber distributions, the variety of fiber orientation tensors identified in [1] is considered as a design space. This design
space is completely explored for the orientation-averaging homogenization following [4], fixed material parameters and fixed
fiber volume content. The possible directional dependence of the resulting effective stiffnesses is graphically presented using
polar plots of the direction-dependent Young’s modulus. These polar plots are arranged on two-dimensional slices within the
parameter space of planar fourth-order fiber orientation tensors. This gives a complete representation of the influence of the
orientation tensor on the anisotropic stiffness tensor. Consequences of closure approximations, i.e., restriction to second-order
directional information, are demonstrated and motivate measurement of fourth-order fiber orientation tensors.
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1 Introduction and Motivation

The mechanical properties of discontinuous fiber-reinforced composites [5] highly depend on the microstructure, including
the amount and arrangement of the fibers. Information about the amount of fibers usually enters homogenization methods via
the fiber volume fraction. Quantification of the arrangement of fibers can by challenging. The fiber orientation distribution
function 1(n) quantifies the orientation of fibers in a given reference volume in terms of a one-point correlation function.
This distribution is an exact measure for the orientation of fibers, but being a one-point correlation function it, e.g., lacks
any information on the spatial arrangements of the fibers. For application in the three-dimensional real world, the orientation
distribution function ¢ : S — R maps any direction, i.e., any point on the surface of the unit sphere S? to a real number and
specifies the relative volume fraction dv/v of fibers in direction n, i.e.,

L n) = (m) as. M

Integrating Equation 1 over a directional surface element, e.g., visualized in Figure 1, yields the relative volume fraction of
fibers pointing into directions contained in this surface element. For practical applications, the distribution function is usually
not available. An exception is given by direct fiber simulations [6], i.e., mold filling simulations, which directly resolve
individual fibers or fiber groups instead of describing them on average using fiber orientation tensors. However, direct fiber
simulations are computational expensive and averages of the distribution in terms of fiber orientation tensors of order k

Ny = [ o (m)n® dn @)
52
are an established averaged measure for the direction of fibers inside a local reference volume and can be directly obtained by
flow simulations or computer tomography scans. Tensor orders two and four are commonly used
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Several homogenization methods take the fiber orientation into account either directly in the case of, e.g., orientation-averaging
meanfield homogenization [4,7, 8] or indirectly via artificially generated microstructures [9-12] utilized in full-field homoge-
nization [13, 14].

This work is motivated by the analysis of sheet molding compound (SMC), a discontinuous fiber-reinforced composite with
fibers being significantly longer than the typical thickness of manufactured specimen. A microstructure of SMC, identified by
computer tomography scans in [15], is repeated in Figure 2. This microstructure is influenced by the two-step manufacturing
process of SMC depicted in Figure 6 and Figure 7. Although several fibers in Figure 2 are bent, we assume fibers in SMC to
be straight. This assumption has also been made by [10] generating artificial SMC microstructures of which one is repeated
in Figure 3. In consequence, the orientation of the fibers can be described by fiber orientation tensors.
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Fig. 2: Measured microstruc-
ture of sheet molding com-
pound (SMC) [15]

Fig. 1: Sphere surface in 3D
and surface element

Fig. 3: Artificial microstructure
of SMC [10]

2 Design space fiber orientation tensors

Fiber orientation tensors are usually seen as a directional measure representing averaged information of a given microstructure
following Figure 4. From a simulation point of view, fiber orientation tensors also represent a design space for orientation-
averaging homogenization methods. The space of admissible fiber orientation tensors A/, schematically depicted in Figure 5,
can be represented by parameterizations of fiber orientation tensors combined with admissible parameter ranges. For several
subspaces, motivated by material symmetry, admissible parameter ranges are identified in [1].

Microstructure Measurement —>{ N, N
Fig. 5: Fiber orientation tensors as design space,
Schematic representation of an admissible parameter
Fig. 4: Fiber orientation tensors as directional measure space

The design space given by second-order fiber orientation tensors is known in literature [17-19]. Based on the eigensystem-
based parameterization

A0 0
N = ¢(n)n®ndn= A O Vi Q@ V; withQ =v; ® e; ESO(3>, 4
s2 sym A3
the space of admissible second-order fiber orientation tensors is given by
1 1
AN = {NOw ) [3 €A1 50 M) € Smin (A, 1- ) | )

and visualized in Figure 8. This visualization is known as the orientation triangle [19]. The variety of generic fourth-order
fiber orientation tensors has not yet been expressed in closed form. However, following [1] a generic parameterization is given
by

. 6 .
N(N, dy, ..., dg) = N*° 4 - sym (dev (N) ® I) + il (di, ..., dg) (6)
with an irreducible structure tensor
—(d1 +d3) dp d ‘ —V2(dg +d5) V2dg V2dg
—(dy +d3) dg V2dy —V2(dg +d7) V2dg
—V2(dg 4+ dg) BZ ®BZ’ (7)

completely

symmetric

[rtricl (dy,...,dy) = —(dy +d3) ‘ V2ds VZdy
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Fig. 7: Schematic compression molding process step of

Fig. 6: Manufacturing process of semi-finished SMC
adapted from [16]
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SMC, sequence evolving from left to right and top to bot-
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Fig. 9: Space of admissible and distinct planar
fourth-order fiber orientation tensors following
[3, Figure 2]. The bold bar in the plane A1 =
1/2 highlights the degeneration of this plane to
a line, see [2, Section 2.2] for details.

Fig. 8: Fiber orientation triangle representing the variety of second-
order fiber orientation tensors following [1, Figure 1b] including mate-
rial symmetries and other subspaces

given in Kelvin-Mandel notation [1,20-22].

3 Planar subspace

The subspace of planar fiber distributions and corresponding fiber orientation tensors is relevant, e.g., for microstructures of
plate-like long-fiber reinforced composites such as SMC. Planar second-order fiber orientation tensors are located on the upper
right edge of the orientation triangle in Figure 8. Based on the parameterization NP ()\; 'd; dg) in [2, Equation (15)], the
parameterization

—dl — R()\l) + A\ dAl:i- R(f\l) 0|0 O \/idg
—di—RA)+(1—=X) 0[]0 0 —V2ds
planar ()\17J1’ dS) _ 0|0 O O BZ Q BZ ®)
completely symmetric

with R(\)) = (A — A2)/2 and d; = d; — R(\;) + 4/35 following [3], combined with the algebraic requirement of
positive semi-definiteness of NP/ in the Kelvin-Mandel space, leads to the body of admissible and structurally distinct
planar fourth-order fiber orientation tensors visualized as the wire-frame body in Figure 9. Algebraic expression for this body
are given in [3, Equations (11) and (12)]. Two tensors are structurally distinct, if they differ by more than just a rotation, see
also [2, Equation (18)].

4 Orientation-Averaging Meanfield Homogenization

Knowing the variety of fiber orientation tensors offers the possibility to draw a complete picture of the dependence of effec-
tive mechanical properties obtained by a given homogenization method, on varying microstructure. For several established
meanfield homogenization methods the effective mechanical stiffness C depends on fiber orientation tensors up to fourth-
order, the mechanical properties of the single phases, e.g., matrix C,, and fibers Cy, as well as the volume fractions, e.g., fiber
volume fraction v¢. This dependence is schematically depicted in Figure 10. In the following solely one specific meanfield
homogenization method, Mori-Tanaka orientation averaging following Benveniste [4] is used. This homogenization method
is selected due to its popularity. Details on this method can be found in [3, 4] and an open-source implementation in [23].
The fiber volume content and material properties of fiber and matrix are fixed to SMC-specific values given in [3, Table 1],
originating from [8, Table 2].

S Directional Variety of Effective Stiffnesses

Each point in the body of admissible planar fourth-order fiber orientation tensors in Figure 9 with vanishing value parameter
dg represents an orthotropic fiber orientation tensor. In Figure 12, ten points in this orthotropic plane within the admissible
body are selected and highlighted following [3]. Each of these points represents a fourth-order fiber orientation tensor. For
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Fig. 10: Schematic representation of input and output
quantities of orientation-averaging meanfield homoge-
nization methods investigated in [3]

Fig. 11: Maximum relative deviation in Young’s modulus ()
in each direction among all eleven polar plots in Figure 18, i.e.,
selected NP™(\; = 2/3, d;, dg) defined in overview plot Fig-
ure 15 and denoted by N1 =3/4

each point, an effective stiffness C(N) is calculated with the Mori-Tanaka orientation averaging homogenization following
Benveniste [4]. The obtained effective stiffness is partly visualized by polar plots of the direction-dependent Young’s modulus
EPlanar(C(N), ) within the plane of planarity defined by

EP(C(N), n(y)) = E (C(N), n(p, 6 = 7/2)), ©
E(C, n(p, 0)) = m — [C' - n®Y(p, 0)] . (10)

The plane of planarity is spanned by vy and v and within the plane, the polar angle § measured from the z-axis is § = 7/2.
Details on this visualization are given in [3, Equation (61) and (63)].

Similar visualizations are given for additional points within the admissible parameters space of planar fourth-order fiber
orientation tensors in Figures 14 to 19. Polar plots corresponding to the points defined in the overview plot in Figure 14
are given in Figure 17. The position of the polar plots in Figure 17 mimics the position of the points within the admissible
parameter space in Figure 14. The overviews in Figures 15 and 16 correspond to the polar plot views in Figures 18 and 19
respectively. The limits of all plots of the Young’s modulus are equal and given by 0 GPa and 22 GPa.

6 Results and Conclusions

Thinking of fiber orientation tensors as a design space in combination with the known variety of planar fourth-order fiber
orientation tensors enables a complete visualization of the directional dependence of effective Young’s modulus for a given
homogenization method. The proposed visualization technique can be applied to any homogenization method, see [3]. The

1/8 |

7I\

—1/16
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Fig. 12: Definition of ten points in the plane of planar or- Fig. 13: Polar plots of direction-dependent Young’s modu-
thotropic fiber orientation tensors of fourth-order follow- lus obtained by Mori-Tanaka orientation-averaging homog-
ing [3, Figure 5a]. These points are used in Figure 13 enization following Benveniste [4], see [3, Figure 8a]
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Fig. 14: Points in the plane A1 = 1/2 used Fig, 15: Points in the plane A; = 2/3 used Fig. 16: Points in the plane A; = 5/6 used
in Figure 17 following [3, Figure 5b] in Figure 18 following [3, Figure 6a] in Figure 19 following [3, Figure 6b]

polar plots in Figure 18 are based on fiber orientation tensors with identical second-order part, as all points in the corresponding
overview plot Figure 15 are placed in the plane defined by A; = 4/6. In consequence, the differences in the polar plots in
Figure 18 are solely based on fourth-order information within N. The Young’s moduli for fixed directions of different polar
plots in Figure 18 differ significantly. The eleven points, i.e., fourth-order fiber orientation tensors utilized in Figure 18 are
grouped to the set N*1=2/3_ The maximum relative deviation of the Young’s modulus among the fiber orientation tensors in
N 1=2/3 i5 denoted by §(¢) and is calculated for each direction in the plane of planarity by

max _ planar min _ : planar

E™p) = max EF(p, N), E™(p) = min EF(e, N), (11
ymax _Emin

5(p) = %ﬂm( 5 @) (12)

The quantity d(¢) is visualized as a polar plot in Figure 11. Among the inspected set of orientation tensors, the deviation
0(¢p) varies between at least 37% and about 100%. For different sets of fiber orientation tensors this error can be significantly
smaller. For the given material parameters and the selected homogenization method it is concluded that homogenization solely
based on second-order fiber orientation tensor information leads to large errors in the resulting direction-dependent Young’s
modulus. This clearly motivates the identification and usage of fourth-order fiber orientation tensors within virtual process
chains [24].
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Fig. 17: Polar plots of direction-dependent Fig. 18: Polar plots of direction-dependent Fig. 19: Polar plots of direction-dependent
Young’s modulus for points defined in Fig- Young’s modulus for points defined in Fig- Young’s modulus for points defined in Fig-
ure 14, following [3, Figure 9a] ure 15, following [3, Figure 10a] ure 16, following [3, Figure 10b]
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Identification of fourth-order fiber orientation tensors based on second-order directional information using closure approx-
imations [17,25-28] does not generate fourth-order information. For a deterministic closure approximation, closing, e.g.,
NPlanar (= 2/3) results in exactly one, hopefully admissible, NP (X, = 2/3,d;, dg). This one-to-one mapping neglects
the possible variety of NP of microstructures which lead to the measured or simulated NP and entered the closure. In
addition, the intrinsic orthotropy of second-order tensors N restricts outcomes of closure approximations to orthotropic N.
For the special case of planar fiber distributions, this implies that for any closure outcome NPanar (M\1,d1, dg) the parameter dg
vanishes. In consequence, the outcome of closure approximations for, e.g., NP (X, = 2/3) are restricted to NP2 which
lead to effective stiffnesses located between polar plots y2, y1, x, ol, 02 in Figure 18.
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