KIT | KIT-Bibliothek | Impressum | Datenschutz

SoK: Differentially Private Publication of Trajectory Data

Miranda-Pascual, Àlex ORCID iD icon 1; Guerra-Balboa, Patricia ORCID iD icon 1; Parra-Arnau, Javier; Forné, Jordi; Strufe, Thorsten ORCID iD icon 1,2
1 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)
2 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Trajectory analysis holds many promises, from improvements in traffic management to routing advice or infrastructure development. However, learning users' paths is extremely privacy-invasive. Therefore, there is a necessity to protect trajectories such that we preserve the global properties, useful for analysis, while specific and private information of individuals remains inaccessible. Trajectories, however, are difficult to protect, since they are sequential, highly dimensional, correlated, bound to geophysical restrictions, and easily mapped to semantic points of interest.

This paper aims to establish a systematic framework on protective masking and synthetic-generation measures for trajectory databases with syntactic and differentially private (DP) guarantees, including also utility properties, derived from ideas and limitations of existing proposals. To reach this goal, we systematize the utility metrics used throughout the literature, deeply analyze the DP granularity notions, explore and elaborate on the state of the art on privacy-enhancing mechanisms and their problems, and expose the main limitations of DP notions in the context of trajectories.


Verlagsausgabe §
DOI: 10.5445/IR/1000157298
Veröffentlicht am 28.03.2023
Originalveröffentlichung
DOI: 10.56553/popets-2023-0065
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2299-0984
KITopen-ID: 1000157298
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in Proceedings on Privacy Enhancing Technologies
Veranstaltung 23rd Privacy Enhancing Technologies Symposium (PETS 2023), Lausanne, Schweiz, 10.07.2023 – 15.07.2023
Verlag De Gruyter
Seiten 496–516
Projektinformation PROPOLIS (BMBF, 16KIS1393K)
Schlagwörter Systematization of knowledge, privacy-preserving data publishing, trajectory privacy, differential privacy, synthetic data, utility metrics
Nachgewiesen in Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page