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Abstract

The physical and chemical phenomena occurring before, during and after
the combustion in Gasoline Direct Injection (GDI) engines are complex and
include multiple interactions between liquids, gases and the surrounding ma-
terials. In the past years, several simulation tools and measurement techniques
have been developed in order to understand and optimize the components in-
volved in the engine combustion processes. However, the possibility to explore
the whole design space is limited by the significant efforts required to generate
and to evaluate the non-linear and multidimensional results. The aim of this
work is to develop and validate a knowledge discovery framework able to ana-
lyze the data produced in the GDI context through machine learning methods.
These procedures are able to explore and exploit the investigated design spaces
based on a limited number of observations, discovering connections and cor-
relations in complex phenomena. Furthermore, costly and time consuming
evaluations can be substituted by fast and accurate predictions.
After the introduction of the main data characteristics available in this con-

text, the knowledge discovery framework is presented highlighting its modular
and interdisciplinary nature. The core of the framework is a parameter-free,
fast and dynamic data-driven model selection, which is tailored for the GDI
heterogeneous datasets. Its potential is demonstrated on the analysis of nu-
merical and experimental investigations regarding nozzles and engines. In
particular, the non-linear influences of the design parameters on inflow and
spray characteristics as well as on emissions are extracted from the data. Fur-
thermore, new designs able to achieve predefined objectives and performance
are identified based on machine learning predictions. The extracted knowledge
is finally validated with the domain expertise, revealing the potential and the
limitations of this novel approach.





Zusammenfassung

Die physikalischen und chemischenPhänomene vor, während und nach derVer-
brennung in Motoren mit Benzindirekteinspritzung (BDE) sind komplex und
umfassen unterschiedliche Wechselwirkungen zwischen Flüssigkeiten, Gasen
und der umgebenden Brennraumwand. In den letzten Jahren wurden ver-
schiedene Simulationstools und Messtechniken entwickelt, um die an den
Verbrennungsprozessen beteiligten Komponenten zu bewerten und zu opti-
mieren. Die Möglichkeit, den gesamten Gestaltungsraum zu erkunden, ist
jedoch durch den hohen Aufwand zur Generierung und zur Analyse der nicht-
linearen und multidimensionalen Ergebnisse begrenzt. Das Ziel dieser Ar-
beit ist die Entwicklung und Validierung eines Datenanalysewerkzeugs zur
Erkenntnisgewinnung. Im Rahmen dieser Arbeit wird der gesamte Prozess
als auch das Werkzeug als "Knowledge-Discovery Framework" bezeichnet.
Dieses Werkzeug soll in der Lage sein, die im BDE-Kontext erzeugten Daten
durch Methoden des maschinellen Lernens zu analysieren. Anhand einer be-
grenzten Anzahl von Beobachtungen wird damit ermöglicht, die untersuchten
Gestaltungsräume zu erkunden sowie Zusammenhänge in den Beobachtungen
der komplexen Phänomene schneller zu entdecken. Damit können teure und
zeitaufwendige Auswertungen durch schnelle und genaue Vorhersagen ersetzt
werden. Nach der Einführung der wichtigsten Datenmerkmale im Bereich der
BDE Anwendungen wird das Framework vorgestellt und seine modularen und
interdisziplinären Eigenschaften dargestellt. Kern des Frameworks ist eine
parameterfreie, schnelle und dynamische datenbasierte Modellauswahl für die
BDE-typischen, heterogenen Datensätze. Das Potenzial dieses Ansatzes wird
in der Analyse numerischer und experimenteller Untersuchungen an Düsen
und Motoren gezeigt. Insbesondere werden die nichtlinearen Einflüsse der
Auslegungsparameter auf Einström- und Sprayverhalten sowie auf Emissio-
nen aus den Daten extrahiert. Darüber hinaus werden neue Designs, basierend
auf Vorhersagen des maschinellen Lernens identifiziert, welche vordefinierte
Ziele und Leistungen erfüllen können. Das extrahierteWissen wird schließlich
mit der Domänenexpertise validiert, wodurch das Potenzial und die Grenzen
dieses neuartigen Ansatzes aufgezeigt werden.
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1 Introduction

The desire of reducing mobility climate impact and the demand of high ef-
ficiency powertrain solutions is leading the automotive industry to new chal-
lenges. The road transport in Europe is responsible for more than 25% of the
whole greenhouse gas emissions, which makes it one of the major contributor
to the climate change [1]. Since the 1990s, the European Union (EU) has
started introducing new regulations aiming the reduction of concentration of
pollutants. Fuel quality and emissions standards as well as air quality man-
agement plans ensured lower emissions from road transport, despite the higher
activities in this sector [2]. To be specific, carbon monoxides CO decreased by
88%, nitrogen oxides NOx by 60% and solphur oxides SOx by 99% since the
introduction of these regulations [2]. As next target, the EU aims to net-zero
greenhouse gas emissions by 2050 [3].
In order to meet these expectations, many resources are invested in the re-

search of alternative fuels and electric solutions. The spread of fully electric
and plug-in hybrid cars has increased since their first appearance in the mar-
ket [4]. Their production as well as their use-costs have become cheaper [4],
thus, more competitive with respect to conventional vehicles. Nevertheless,
several barriers are still present, e.g. reduced drive range, long recharging time
as well as lower availability of infrastructures [5]. In particular, if the energy is
not completely retrieved from renewables, the emissions of an electric vehicle
throughout its whole life-cycle are not neglectable [4]. In addition, particulate
matter coming from wear of tyres, brakes and roads are present as well and
the production of electric vehicles is typically more energy-intensive than the
conventional ones [4].
The volume shares of Gasoline Direct Injection (GDI) engines are expected

to increase with respect to other conventional systems [6] since they are consid-
ered a valuable internal combustion engine solution for hybrid applications [7].
For these reasons, many activities are further involved in the research and de-
velopment of GDI systems.
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1 Introduction

1.1 Direct Injection System for Gasoline Engines

The GDI system is characterized by the injection of high-pressurized gasoline
directly into the combustion chamber, as represented in Figure 1.1. Based on
the Otto cycle, the GDI engine converts chemical energy into kinetic energy
by burning an air-fuel mixture [8]. This process is achieved with four phases,
better known as four-stroke principle: intake, compression, combustion and
exhaust, as represented in Figure 1.2. Following, the four-stroke principle
is introduced referring to the components enumerated in Figure 1.1 and in
Figure 1.2. During the intake phase, the intake valve (1) is opened and the
downwards movement of the piston (2) allows fresh air to enter the combustion
chamber (3). Once the piston reached its lower limit calledBottomDeadCenter
(BDC), the compression phase initiates. The intake valve closes and the piston
moves upward going back to its upper limit called Top Dead Center (TDC),
compressing the air volume. The injector (4) injects the high-pressurized fuel
inside the combustion chamber during the intake and compression phases.
According to the operating strategy, the injection time and the number of
injections may vary. Just before the piston reaches the TDC, the combustion
phase starts. The spark plug (5) ignites the air-fuel mixture such that the heat
and the pressure increase, pushing the piston downward. Shortly before the
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Figure 1.1: GDI System [9].
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Figure 1.2: Four-Stroke Principle, based on [8].
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1.1 Direct Injection System for Gasoline Engines

piston reaches the BDC, the exhaust valve (6) opens, letting the exhaust gas
leave the combustion chamber. The movement of the piston is converted by
the conrod (7) into a rotational movement of the crankshaft (8). The sectional
view of an injector is represented in Figure 1.3.

Figure 1.3: Sectional view of a multi-hole high pressure gasoline injector (Bosch HDEV
5.2) [10].

According to [11], the key element for a proper combustion is a good air-fuel
mixture formation, which influences emissions as well as efficiency in terms
of consumption and performance. Several direct and indirect phenomena are
involved in this process, as summarized in Figure 1.4. Beside the ambition
to reach the perfect air-fuel homogenization, the achievement of an inflam-
mable mixture at the ignition time independently from engine speed or load
is fundamental as well. During the development of a combustion system,
the parameters that can be adjusted are typically the geometry of the cylinder
and the injector nozzle together with the engine operating points and the fuel
characteristics. However, these parameters do not have a direct influence to
the the mixture formation. Principally, they can be used to affect spray pene-
tration and impingement, which have indeed a direct influence to the mixture
characteristics. The spray penetration corresponds to the distance between the
injector valve seat and the spray plume tip. The impingement represents the
amount of fuel droplets impinged on the combustion chamber surfaces. A large
penetration may cause high impingement if the fuel does not fully evaporate
before reaching a specific surface, as instance the piston head or the cylinder
wall. The latter is also known as cylinder liner. The impingement may lead to
unburned fuel, thus, to a lower air-fuel homogenization and higher emissions.
Due to the complexity and high-dimensionality of the interrelations among the

3



1 Introduction

design parameters, a large effort is required to properly define them in order to
satisfy given engine and emission specifications.

Operating Points

Injection Quantity

Multiple Injection

Injection Timing

Engine Speed

Engine Load

Flow Conditions

Ignition Timing

Turbulence Intensity

Temperature

Flow Rate

Flow Structure

Pressure

Liquid Atomization

Fuel Pressure

Nozzle Geometry
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Combustion

influence evaporation charge transport

Spray Characteristics

Mixture
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Impingement

Piston

Liner

Spark Plug

Injector Tip

Penetration

Axial Radial

PerformanceConsumption Emissions

Figure 1.4: GDI parameters affecting engine emissions, performance and consumption.

The desire of better and deeper understanding of the complex GDI system led
to a continuous development of tools and techniques in this field. Nowadays,
its analysis is performed through complementary studies between physical ex-
periments and numerical investigations [12]. In particular, the analysis can be
divided into four parts: injector, spray, combustion chamber and vehicle [13],
as depicted in Figure 1.5. Measurements are able to provide a global overview
of the entire system. This is achieved in terms of vehicle performance, spray
and emission analysis as well as of combustion chamber endoscopy. As the
potential of computer aided engineering spread in many fields, it found a valu-
able application in the combustion development too. Specifically, 3D Com-
putational Fluid Dynamics (CFD) simulations are able to model the complex
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1.2 Motivation and Goals of the Work

fluid-mechanical and thermodynamic processes of the combustion, including
the spray system with the injector as a key component. The increase of compu-
tational performance enabled meaningful analysis by means of virtual product
development. However, the data resulting from GDI investigations are expen-
sive in terms of time and costs. Experiments require costly test benches and
prototypes to be built and calibrated. Simulations are run onHigh Performance
Computer (HPC), where a single evaluation may need days to be completed
on a large number of parallel Central Processing Units (CPUs) [14]. Although
the availability of advanced simulation and experimental tools, the analysis
of GDI system is still a challenging task in terms of understanding its several
complex, non-linear and highly multidimensional relations.

Spray and Combustion System Development

Injection System Real Driving

Simulation

Experiment

Injector Spray Combustion Chamber Engine/Vehicle

injector dynamic spray break-up ↔mixture form. combustion ↔test cycle real driving

tip wetting penetration ↔spray charge motion ↔steady motion transien

entrainment ↔spray wall ↔singly-cyl. multi-cyl.internal flow

thermal management

Figure 1.5: Complementary investigations in engine combustion systems [13].

1.2 Motivation and Goals of the Work

The classical engineering development in the GDI context consists in starting
from a base geometric layout or engine operating point and through expert
knowledge adjust the involved features iteratively until the required objec-
tives are achieved. This procedure corresponds most of the times to a trade-
off among several contradictive requirements. Statistical tools are generally
adopted in order to analyze data or substitute costly investigations by means
of estimated models [15], especially in the GDI development [14, 16]. In
particular, input-output relationships are suggested by the domain expertise
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1 Introduction

in order to model physical phenomena. The resulting estimations are highly
interpretable, but the exposure to bias determined by the choice of the model
structure may be significant. Therefore, without proper tools, the possibility
to explore the whole design space is limited to the large amount of resources
requested, including the risk of neglecting some essential underlying relations.

Machine learning techniques based on advanced statistics and data analysis
became more popular in the recent years due to the progress of the computa-
tional resources [17] and the larger production of data [18]. The application
of machine learning supporting the product development is largely spread, as
long as the data quality and the data quantity are adequate. In the context of
combustion systems, several applications of machine learning can be found.
In [19], machine learning is adopted to model emissions and performance
of dual fuel high pressure direct injection based on engine operating points.
In [20], GDI dynamics in terms of injector opening delay and closing time are
modeled in order to improve combustion efficiency. In [21], in-cylinder GDI
combustion characteristics are analyzed to predict particulate matter.

The machine learning methods differently from the classical statistical ap-
proaches do not require assumptions about the relationships to model. The
latter are identified based on the underlying data, leading towards a complete
data-driven development. Due to the large activities carried out in the GDI
development, many data are already available and many more are upcoming
with new investigations. These data can be explored and exploited in order to
gain a deeper understanding of complex and non-linear combustion phenom-
ena. Furthermore, the machine learning models can support or even substitute
challenging numerical and experimental studies, without any additional costs.
The possibility to identify how design parameters and operating points influ-
ence injection spray shape, fuel consumption or emission is a powerful tool in
order to improve the GDI investigations.

In this work, a knowledge discovery (KD) framework based on machine
learning is developed and presented as the new frontier for a data-driven GDI
development. The fundamental characteristic of the framework is its ability to
analyze the data independently from their source (numerical or experimental)
and from the represented component or system (injector, spray or engine). The
proposed framework is not only limited to prediction tasks, but it enables the
interpretability of its decisions from a human point-of-view, stepping beyond
the concept of black-box Artificial Inteligence (AI). The already strong and
well-grounded expertise established in the industry and in the academy can now
be deepened and reinforced with additional knowledge explained by machine
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1.2 Motivation and Goals of the Work

learning algorithms. Moreover, with this work it is intended to collect a series
of best practices and lessons learned in order to exploit as most the application
of machine learning on GDI data.
The structure of the work is presented as follows. In Chapter 2, the re-

quired fundamentals are provided. After the introduction of the KD concept,
the main steps necessary to enable a data-driven development are explained:
from the data preprocessing and the data modeling until the knowledge inter-
pretation. In Chapter 3, the developed KD framework for the GDI context is
explained together with its features and structure. Afterwards, in Chapter 4, a
novel machine learning model selection algorithm for heterogeneous datasets
is proposed. The application of the KD framework on GDI data is reported
in Chapter 5 and Chapter 6. Chapter 5 focuses on the injector nozzle: data
from numerical and experimental analysis are investigated in order to extract
meaningful information regarding nozzle inflow and nozzle spray. Similarly,
Chapter 6 analyzes engine data, including spray mixture and emissions based
on numerical and experimental data. In Chapter 7, the main limitations and
the risks of the machine learning applications are summarized. Finally, in
Chapter 8 conclusions are drawn together with the outlook of the work.
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2 Fundamentals

In this chapter, the fundamentals of knowledge discovery and machine learning
necessary for the comprehension of the presented work are introduced.

2.1 Knowledge Discovery

Since the early 1990s, researchers and practitioners have started addressing
the necessity of extracting knowledge from the rapidly growing volumes of
data [22]. Traditional techniques like data visualization are limited to the large
dimensionality of the datasets and impractical due to human limitations in
absorbing details [23]. These approaches are based on manual analysis and
interpretation, which are slow, expensive, and highly subjective. The extracted
knowledge depends on the human ability to identify useful information based
on statistical analysis [22]. Furthermore, the gap between the human processing
level and the data availability is increasing exponentially [24]. The current
data analysis capabilities are not yet compatible with the actual enormous
data production and collection, preventing the access to the whole available
knowledge [23–25]. In this context, famous has become the saying "data
rich – but information poor" [26]. For these reasons, the interest of scientific
communities in the data area has grown in the past years.

2.1.1 Definition

The problem of searching useful information in the data is multidisciplinary
and it is approached by several research communities, e.g. statistics or ma-
chine learning as part of AI [23, 27]. The whole process starting from the
raw data until the knowledge extraction was defined in [22] as knowledge
discovery in databases (KDD), reported as the nontrivial process of identify-
ing valid, novel, potentially useful and ultimately understandable patterns in
data. Nevertheless, in the literature the whole KDD process is often addressed
simply as data mining or knowledge discovery (KD), especially when the data
are not stored in databases. Independently by its naming, the KD process
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2.1 Knowledge Discovery

focuses on data storage, data preparation, human-machine interfaces, results
interpretation and visualization as well as how the extracted knowledge would
affect the application domain [22]. In addition, the whole process or parts
of it are automatized when possible. KD borrows ideas from different tech-
nologies, including machine learning, statistics, mathematical optimization,
high-performance computing, databases and others [23], as summarized in
Fig. 2.1. At the very beginning, the knowledge extraction was mainly focused
on business applications. As the technology in sensors, storage and high-
performance computing progressed, scientists and engineers started collecting
large amount of data from simulations and experiments, demanding novel data
analysis approaches as well [23, 28].

Mathematics

Knowledge

Discovery

Statistics
Machine

Learning

Data Management System and High Performance Computing

Figure 2.1: Multidisciplinary knowledge discovery.

2.1.2 Taxonomy

A taxonomy of knowledge extraction activities is introduced as follows and
it is summarized in Fig. 2.2. Generally, it is possible to distinguish two
different types of knowledge extractions: verification-oriented and discovery-
oriented [24]. The knowledge verification consists in the evaluation of hy-
pothesis delivered by an external source, e.g. by an expert. This activity is
related to classical statistics approaches including, for instance, the analysis of
variance or the goodness of fit test. The knowledge discovery counterpart aims
to automatize the identification of new information in the data, sharing most
of its methodologies with machine learning. The knowledge discovery can
be further split into descriptive-oriented and predictive-oriented [22, 24]. The
descriptive methods focus on the interpretation and the understanding of the
processes hidden behind the data. A descriptive model is taken as the reflection
of the reality and the knowledge can be extracted directly from it. Predictive
approaches focus on the construction of accurate behavioral models, which
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2 Fundamentals

are able to predict responses of unseen input data. A predictive model does
not have to be necessarily understandable or to reflect the reality, as long as
it delivers accurate predictions. Nevertheless, predictive models can support
knowledge understanding as well. In this case, the descriptive task is referred
as inference [29].

Usually, complex predictive approaches tend to fit better the data at the
costs of the interpretability, whereas simple models are robuster and more in-
terpretable [22]. A practical example of predictive and predictive-descriptive
approaches are the Artificial Neural Networks (ANN) and decision trees re-
spectively. Generally, ANN outperforms decision trees in terms of prediction
accuracy, while the latter are able to provide more understandable models [24].
According to the investigated problem, predictive modeling can be divided
into regression and classification. Generally, if the investigated phenomenon
is numeric, the predictive learning is known as regression, otherwise if it
corresponds to a set of categories, it is called classification.

Knowledge

Verification Discovery

Prediction Description

Regression Classification

Figure 2.2: Knowledge extraction taxonomy.

Notation

In this section the notation adopted to define a knowledge discovery problem
is introduced, which is based on [29, 30].

For instance, consider a set of measurements required to analyze the emis-
sions level in a specific combustion process: the measurements are called
observations and the known information about the process are the explanatory
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2.1 Knowledge Discovery

variables, e.g. temperature and pressure of the combustion chamber. Explana-
tory variables are referredwith different names, such as predictors, independent
variables, input variables, features, attributes or just variables. In contrast, the
variables indicating the behavior of the phenomena to be analyzed are called
dependent variables, output variables, response variables or ground truths. In
the engine example, the latter represent the emissions level measured at each
observation.
The collection of observations of the explanatory and the response variables

are indicated with the matrices X and Y respectively. The i-th observation
of j-th variable is expressed as xi j or yi j . In case of n observations and p
variables, the matrix corresponding to the explanatory variables can be written
as:

X =

©«
x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...

xn1 xn2 . . . xnp

ª®®®®®¬
. (2.1)

The rows of the matrices X and Y are indicated with xi and yi , which represent
the i-th observation for all the variables. Considering the example on the
explanatory variables in (2.1):

xi =

©«
xi1
xi2
...

xip

ª®®®®®¬
(2.2)

The columns are indicated with x j and y j for explanatory and response vari-
ables respectively, corresponding to the set of observations of the j-th variable.
Considering the example on the explanatory variables in (2.1):

x j =

©«
x1j

x2j
...

xnj

ª®®®®®¬
(2.3)
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Without referring to a specific set of observations, the p independent variables
are expressed as X = (X1 , X2 , . . . , Xp) and q dependent variables as
Y = (Y1 , Y2 , . . . , Yq). For simplicity, in case of a dataset with a single
variable it can be written X1 = X or Y1 = Y .

2.1.3 Predictive Learning and Inference

The goal of the knowledge discovery in terms of prediction and inference is to
extract a function from the observed data, such that the relation between input
and output variables can be reproduced. As instance, it can be used to predict
new observations or to analyze the original relation. Consider a quantitative
response Y and p different predictors X = (X1, X2, . . . , Xp). It is possible to
assume that the relationship between X and Y can be written in the following
general form [29]:

Y = f (X) + ε, (2.4)

where f (·) is an unknown function of (X1, X2, . . . , Xp) representing the sys-
tematic information that X provides of Y . The term ε represents a random
error with mean equal to zero and independent of X . The process able to
estimate f (·) is referred as statistical learning or machine learning and it can
be divided into supervised and unsupervised learning. Supervised learning
requires that to each predictor observation a response observation is associated.
In particular, f (·) can be estimated by generalizing the relationships between X
and Y from the data. In contrast, unsupervised learning aims to learn specific
patterns or behaviors only from the explanatory observations, e.g. clustering
the data based on similar characteristics. Typically, predictive tasks are based
on supervised learning, while descriptive tasks on unsupervised learning. The
current work focuses on inference based on supervised learning.

For most real life phenomena, the set of inputs X is available unlike the
output Y , which is difficult to obtain, especially in large quantities. Therefore,
supervised modeling aims to predict Y , such that [29]:

Ŷ = f̂ (X) ≈ Y (2.5)

where f̂ (·) is the estimate for f (·) and Ŷ the resulting prediction. The obser-
vations employed to estimate the function are called training points, while the
process of function estimation is referred as model training or model fitting.
The accuracy of the estimated function depends on two errors: the reducible

12
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error and the irreducible error [29]. Consider an estimate f̂ (·) and a set of
predictors X yielding Ŷ = f̂ (X). The expected value of the squared difference
between the predicted Ŷ and the ground truthY can be demonstrated to be [29]:

E(Y − Ŷ )2 = [ f (X) − f̂ (X)]2︸             ︷︷             ︸
Reducible

+ Var(ε)︸ ︷︷ ︸
Irreducible

.
(2.6)

The reducible error can be improved by proper modeling techniques. The
irreducible error corresponds to the variance associated with the random error
ε in (2.4), which may contain information not included in X but still required
to predict Y , e.g. unmeasured variables or unmeasurable variations. The focus
of data modeling is to minimize the reducible error, while the irreducible error
provides an unknown upper bound on the accuracy.
In case of inference, the estimation of the function f (·) in (2.4) is not

necessarily adopted to deliver accurate predictions for the response Y : the aim
of the inference task is to reveal the relationship between the response variable
and each predictor [29]. Specific techniques are able to combine predictive
and inference tasks (see Section 2.3 and Section 2.4).

2.1.4 Knowledge Discovery Process

The KD process is step-wise, iterative and interactive in terms of including
feedbacks from experts of the analyzed domain. Based on the results of each
step, some previous operationsmay have to be repeated or next stepsmay not be
required anymore. The single steps can be found with different names or order
in the literature, but the main structure remains the same [22–24, 27, 31]. The
process starts with the definition of the discovery goals and terminates with the
implementation of the discovered knowledge. The KD process considered for
this work is reported in Fig. 2.3 and its steps are briefly explained as follows.
The dashed arrows in Fig. 2.3 represent the interactivity of the process, which
allows to return to previous steps or skip next ones.

Problem Understanding. A solid domain expertise is fundamental in order
to validate the extracted information and to lead the investigation in the correct
direction. The goals of the analysis are defined in this step based on relevant
prior knowledge.

Data Selection and Exploration. The extracted knowledge is based on the
underlying observations. Therefore, if important attributes or datapoints are
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missing, the final results may not reflect the real process behind the data. This
step consists in selecting and screening already available data or obtaining new
observations, in order to fulfill the intended analysis.

Data Preprocessing. The reliability of the raw data is enhanced and these
are transformed in a proper format for the modeling algorithm. According to
the data, the preprocessing methods can be completely ignored or be the main
activity of the process. Typically, this is a domain-specific step.

Data Modeling. First, an appropriate family of algorithms for the required
task is chosen, i.e. predictive or descriptive. Second, specific modeling meta-
parameters, the so-called hyperparameters, are selected and validated. Finally,
the model is trained.

Knowledge Interpretation and Integration. The extracted knowledge in terms
of predictive models, rules or descriptions is analyzed, validated and docu-
mented for further usage. The discovered information can be reported to
experts and integrated with previous knowledge.

Knowledge

Integration

Knowledge

Domain

Expertise

Problem

Understanding

Data Selection and

Exploration

Data

Preprocessing

Data

Modeling

Knowledge

Interpretation

Raw Data

Selected Data

Preproc. Data

Modeled Data

Figure 2.3: Knowledge discovery process.

In the next sections, more details regarding the state-of-the-art for data prepro-
cessing and data modeling are given.
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2.2 Data Preprocessing

2.2 Data Preprocessing

The data preprocessing includes all the stages to prepare the raw data for
the modeling algorithms. Real world data are typically heterogeneous due
to the complexity of the sources and of the processes that generated them.
Therefore, every dataset requires a tailored procedure able to enhance the
reliability of the knowledge extraction and ensure the quality of the data. The
latter can be described in terms of accuracy, currentness, completeness and
consistency [32]. These requirements may not be fulfilled considering real-
world data, which are often incomplete and inconsistent [31]. Some examples
are: the integration of data coming fromdifferent sourcesmay generatemissing
or redundant information; measurements may be affected by factors not tracked
in the data; errors during the collection of the data may also contribute to the
overall data quality.
Generally, preprocessing algorithms are divided into four categories: data

integration, data cleaning, data transformation and data reduction. The ap-
plication and the order of these processes are not strict and immutable. In
addition, the knowledge extraction starts with the data preprocessing: some
properties of the process generating the data may be highlighted during the data
preparation. For instance, how the independent variables are related to each
others or in which conditions invalid or redundant information are present. As
follows, the main data preprocessing approaches are introduced.

2.2.1 Data Integration

The data integration operators allow to map heterogeneous datasets into a uni-
form one. Raw data may be collected from different sources, e.g. different
sensors, tools or procedures, which may be stored in different formats, includ-
ing inconsistent names or measurement units. Similar data may be collected
from several sources, generating redundant information. Additionally, in case
the structure of the datasets to be integrated is not equal, missing values or
attributes may also be induced. Generally, the data integration is a manual
step and it is driven by the domain expertise. Nevertheless, once the set of
operations for a specific integration problem is fixed, software routines can be
defined and executed whenever new observations are available. This would
increase the efficienty and the reproducibility of the data integration.
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2.2.2 Data Cleaning

Inaccuracies in the data may affect the reliability of the discovered knowledge.
In the literature, datasets including missing data, noise and inconsistencies
are denominated dirty data [33]. The main reasons for these issues are often
associated to the source and the collection of the data [24, 27]. However, the
enhancement of the data generation and collection processes may be costly
or even impossible. Therefore, data cleaning tools support the preparation
of the data in order to achieve a reasonable quality to enable the knowledge
extraction.

Generally, the domain knowledge has a key role in the data cleaning: being
able to define error boundaries or understanding the reason of missing data can
support the identification and the correction of the issues. Often, data cleaning
tools are such domain specific that are addressed as a "black art" [24]. However,
when the complexity and high dimensionality of the data cannot be handled
anymore by the domain knowledge, data-centric methods based on statistical
behaviors are applied [24, 27]. Nevertheless, any data inconsistency has to
be analyzed manually before discarding any information: neglecting correct
data because they were identified as dirty data means losing information.
Procedures to handle noisy and missing data are introduced as follows.

Outlier detection

Noise in the data is typically associated to the presence of outliers. A formal
definition of outlierwas given in [34] as "an observationwhich deviates somuch
from the other observations as to arouse suspicions that it was generated by a
different mechanism". The different mechanism can be intended as an error or
as a novelty, i.e. something correct from the perspective of the data generation,
but not expected and different from the rest of the collected observations. For
this reason, outliers are often referred as anomalies or exceptions. In Figure 2.4
an example of outlier is reported.

Anomalies, to be considered as such, have to cover a small percentage of
the whole portion of the data. Therefore, outlier detection methods are mostly
unsupervised algorithms (see Section 2.1.3) and they cannot be validated,
unless domain knowledge is integrated.

Outliers can be removed, corrected or ignored [31]. Since outliers valida-
tion is not always possible, removing potential anomalies may cause the lost of
valuable information. Similarly, if the outliers are indeed correct exceptions of
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the investigated phenomenon, their correction based on the remaining observa-
tions would probably generate new unreliable instances. In case removal and
correction are not possible, noise-robust modeling algorithms may be adopted.
Thesemethods are less sensitive to noisy data and their performance are similar
in presence of clean and dirty data (see Section 2.3).

Outlier

Variable 2

V
a
ri

a
b
le

 1

Figure 2.4: Example of an outlier in a two-dimensional dataset.

Two common outlier detection approaches are the Chebyshev outlier detec-
tion [35], a simple univariate statistical detection, and the Isolation Forest [36],
a more complex ensemble-based detection for high-dimensional data.

Chebyshev Outlier Detection. The Chebyshev outlier detection, based on
the homonym’s theorem, computes the outlier boundaries for univariate data
empirically and independently from their distribution [35]. This approach
assumes that the observations are independent measurements and that the
outliers are a relatively small portion.
Assuming p to be an arbitrary value larger than the overall probability of

detecting an outlier in the data, i.e. it indicates the detection severity. The
upper and lower outlier boundaries, also referred as Outlier Detection Values
(ODVs), are defined as:

(ODVl,ODVu) = (µ − k ∗ σ, µ + k ∗ σ), (2.7)

where µ and σ are the mean and the standard deviation of a given variable and
k = 1/√p. In case of unimodal distribution, an extension of the Chebyshev
outlier detection is able to achieve more accurate boundaries estimations [35].
The latter considers the mode M of the data instead of the mean µ, an adjusted
standard deviation equal to

√
σ2 + (M − µ)2 and k = 2/(3√p).

The Chebyshev outlier detection suggests an iterative two-step process to
compute the final ODVs. First, a large p1 is chosen to roughly exclude possible
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outliers and to compute a first guess of the ODVs with all the available obser-
vations. Second, a smaller p2 is used to define the final ODVs based on the
data within the first interval. The computation of the temporal ODVs avoids
that possible outliers inflate the detection interval, masking other anomalies.

Isolation Forest. The Isolation Forest explicitly isolates anomalies instead
of profiling normal instances [36]. The main keys of this algorithm are the
linear time complexity, the low computational resources demanded and the
robustness against high-dimensional datasets as well as against data not con-
taining outliers. It exploits the characteristics of the anomalies to be "few and
different": outliers tends to be easier to be isolated with respect to normal
observations.

The Isolation Forest is based on binary trees in computer science. A binary
tree is a data-structure containing a finite number of nodes [37]. Every single
node has at most two children nodes, the left child and the right child. The first
node is called root node and a node without successors is referred as leaf. An
example of binary tree is depicted in Figure 2.5.

root

leafb leafc

leafd leafeleafa nodeb

nodea nodec

Figure 2.5: Example of a binary tree with three nodes and five leaves.

For a given dataset, the Isolation Forest builds an ensemble of Isolation Trees
on stochastic sub-samplings of the domain space in terms of observations
and features. Every Isolation Tree is a proper binary tree that partitions
the datapoints recursively, until every single observation is isolated, i.e. until
they all occupy a leaf node. The number of divisions required to isolate the
observations is then averaged over the whole ensemble of Isolation Trees. The
anomalies are identified as the instances requiring on average less divisions to
be isolated, i.e. having on average a short path length from the root to the leaf
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node. The Isolation Forest provides for each observation an anomaly score s
based on its averaged path length. This can be used as a threshold in order to
label an observation as anomaly. Specifically, s can be interpreted as follows:

• s→ 1, the instance is definitely an anomaly;
• s→ 0, the instance is a normal point;
• s→ 0.5 for all the instances, then no distinct anomalies are present.

The operation of stochastic sub-sampling during the building of Isolation Trees
allows to soften the effects of two common problems in anomaly detection:
swamping and masking [38, 39]. Swamping refers to the incorrect labeling of
normal instances as anomalies, e.g. when normal instances are too close to
anomalies. Masking indicates the presence of clusters of anomalies, which
increase the difficulty to distinguish them from normal instances. Detecting
anomalies on sub-domains allows to highlight the difference between them
and the normal points. In addition, each Isolation Tree would be specialized
on different observations and features, which makes it suitable to work with
high-dimensions. For an efficient Isolation Forest, the authors of the algorithm
suggest a small sub-sampling size, e.g. 28 to 256, combined with an ensemble
of maximum 100 Isolation Trees [36].

Missing Data

Missing entries in datasets are common when the data collection process is
not perfect, for example in case of incorrect measurements to be removed or
manual data collection [27,31]. Missing data can be handled in three different
ways [24,27]: eliminate the records containing at least a missing entry, replace
themor adopt datamodelingmethods able to dealwith this issue. The operation
of replacing the data is also indicated as imputation.

In case many entries are missing for different records, the elimination of
the latter would drastically reduce the dataset size. Furthermore, deleting any
record in the dataset may lead to information loss. Similarly, the imputation of
missing values may introduce additional uncertainty in the dataset. Specific
imputation methods are available for some domain applications [40,41]. Typ-
ically, the awareness of the mechanisms which generated the missing data is
required. A simple approach consists in substituting the missing entries with
the average value of the corresponding attribute [24, 31].
The handling of missing values is a delicate topic depending on the applica-

tion domain and the available data. This means that out-of-the-box solutions
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are not present yet; domain knowledge has to be integrated in order to evaluate
possible solutions. For these reasons, the choice of data modeling methods
able to work with missing data is typically preferred [27].

2.2.3 Data Transformation

Generally, raw data cannot be processed directly from themodeling algorithms.
A proper data structure and format allow and improve the knowledge extraction.
The data transformation process contains different approaches according to the
available data and the problem to solve. For this reason, a human supervision is
often necessary in order to define the required transformation methods [24,31].
The data normalization, data type portability and data aggregation are reported
as follows.

Data Normalization

Datasets from different sources or expressed in different scales may not be di-
rectly comparable with each other [27]. In addition, somemodeling algorithms
are sensible to handle attributes on different scales, resulting in emphasizing
the data with larger magnitude. Therefore, data normalization is required,
especially if it is not possible to convert all the variables to the same unit
of measurement. Moreover, in case of sensible data, it may be necessary to
anonymize the data in order to share the results publicly.

The most common normalization method is the Z-score normalization, also
known as standardization [27, 31]. Consider xi j the i-th observation of the
j-th variable of a dataset and x j the set of observations of that variable. If µj
and σj are the mean and the standard deviation of x j respectively, each i-th
datapoint xi j can be normalized into xi j,n as:

xi j,n =
xi j − µj
σj

. (2.8)

The resulting dataset would be centered at zero, i.e. the mean corresponds to
zero and the standard deviation to one.
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A second method is theMin-Max scaling [27,31], which maps all the variables
in the interval [0, 1]. Considering the datapoint xi j introducedwith the previous
transformation, the Min-Max scaling can be written as:

xi j,n =
xi j −minj

maxj −minj
, (2.9)

where minj and maxj are the minimum and the maximum values in x j . This
method is not always applicable because the minimum and maximum values
of the attributes may not be known or may be influenced by outliers, generating
a biased normalization.

Data Type Portability

The presence of heterogeneous data types in a dataset may limit the choice
of the modeling algorithm, since not all approaches can manage mixed data.
Additionally, it may be necessary to enhance some characteristics of the phe-
nomena by converting the data into a proper format. For example, categorical
data can be converted to numerical data and vice versa. Another common con-
version is from continuous series to discrete sequences or scalar values [27].
Even though the data conversion is in some cases essential, the representation
accuracy and expressiveness of the data may be compromised [27]. For in-
stance, spacial or time series may be averaged in order to represent a global
behavior. In this case, the small local variations are lost but the dataset results
more adequate for the analysis.

Data Aggregation

The data aggregation consists in enhancing the information contained in the
dataset by applying mathematical formulas on its attributes.
Let XS = (X1, X2, . . . , Xs) be a subset of the variables of a dataset. A

new variable X ′ can be estimated with a transformation function ft (·) of the
variables in XS as:

X ′ = ft (X1, X2, . . . , Xs). (2.10)

The function ft (·) can be of any kind and it is typically defined according to
specific domain knowledge. For example, consider (X1, X3) and (X2, X4) to be
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the coordinates representing the position of two objects. The distance between
the two objects can be computed based on the Pythagorean theorem, such as:

X ′ =
√
(X1 − X2)2 + (X3 − X4)2 (2.11)

In case the domain knowledge required to select the proper transformation is
not available, it is possible to estimate the transformation function ft (·) using
a brute force approach [42].

2.2.4 Data Reduction

Data reduction methods are divided into feature and instance reduction. These
aim to decrease the dataset size in terms of attributes and observations without
information loss. Differently, data aggregation creates a new representation of
the data to enhance them.

Data reduction improves accuracy, computational performance, interpretabil-
ity and visualization [24, 27, 31]. Irrelevant and redundant information may
generate noise for the modeling algorithms, affecting the robustness and the
performance of the knowledge extraction. Therefore, it is preferred to work
with compact datasets including only essential information. Moreover, in order
to estimate a function with a given level of accuracy, the number of required
observations grows exponentially with the number of significant features in
the dataset. This phenomenon is known as the curse of dimensionality [43]:
an extensive set of features corresponds to a large search space where a proper
model can be identified.

In case of new available observations for an already preprocessed dataset,
the information to be neglected or combined have to be reevaluated [23]. The
available data are usually a partial snapshot of the analyzed phenomena under
predefined constraints and requirements. Therefore, specific features or data
clusters may be uncritical only for the considered observations. A correct
dimension reduction is essential to ensure the integrity of the final extracted
knowledge.

Feature Reduction

The feature reduction can be defined as the process of choosing an optimal
subset of features according to a certain criterion [44, 45]. The criterion de-
pends on the scope of the application domain [31], but generally it corresponds
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to the minimal subset of attributes achieving the best predictive accuracy or
requiring lower computational resources.
Let X be the original set of features with cardinality p and J(·) the feature se-

lection criterion, for instance to be maximized. The feature reduction problem
can be written as:

X ′ = arg max
Z

J(Z), with Z ⊆ X, (2.12)

where X ′ is the optimal set of features. Beside a brute force search, which
would require a huge amount of resources for a large p, basic feature reduc-
tions start from an empty set and sequentially add new features monitoring
their performance [31]. Other common approaches are based on the correla-
tion analysis, neglecting redundant information [31]. Additionally, advanced
methods like decision trees can be applied for data reduction as well, indicating
the effects of the features on the output [46, 47].
In contrast, considering the response variables, it is common to collect as

much information as possible at once, especially if the phenomena generating
the data cannot be easily reproduced due to costs or complexity. All the
response variables may not be useful for the current investigation, but some
information may be required for later examinations. Furthermore, the response
variables necessary to analyze a particular phenomenon are in some cases not
clear prior to the data generation, which may be indeed the knowledge to be
extracted [23].
As following the correlation analysis as feature reduction approach is pre-

sented.

Correlation Analysis andMulticollinearity. Redundancy corresponds to the
presence of different features explaining completely or partly the same infor-
mation. This characteristics is also known as multicollinearity and can be
detected when more predictor variables are correlated [48]. A common corre-
lation index is the Pearson’s coefficient [49, 50], which measures the amount
of association between two variables in terms of linear relationship. The
Pearson’s correlation of two variables X1 and X2 is given by:

rX1,X2 =
cov(X1, X2)

σX1σX2

(2.13)
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where cov(X1, X2) is the estimated covariance between the two variables, rep-
resenting their linear relationship. At the denominator,σX1 andσX2 correspond
to the standard deviations of X1 and X2 respectively, necessary to normalize
the covariance [51]. The correlation rX1,X2 assumes values in the range [−1, 1]:

• rX1,X2 > 0, the two attributes are positively correlated; i.e. they increase
and decrease together;

• rX1,X2 < 0, the two attributes are negatively correlated; i.e. when one
increases, the other one decreases;

• rX1,X2 = 0, the two attributes are independent.
The modulus of rX1,X2 indicates the strength of the relationship. However, the
correlation index does not provide any indication regarding the causality of
the relationship, i.e. it is not possible to estimate if X1 causes X2 or vice versa.
In particular, it may be an intermediate variable X3 that indirectly influences
the behavior of both X1 and X2 [51, 52]. Even though the correlation index
is enough to determine the presence of redundant information [31], it may
still lead to spurious and nonsense correlations [52]. Spurious correlations
correspond to apparent relationships between variables, which are indeed due
to artifacts in the data, e.g. bias due to outliers or sampling procedures. Non-
sense correlations are those relationships which are statistically correct, but
accidental [52]. In case of spurious and nonsense correlations, no features
can be completely removed without losing information. Methods like the
Principal Component Analysis (PCA) can be applied in order to represent the
data in a lower multidimensional space without information loss, where all the
dimensions are independent from each other [53].

The correlation analysis is typically performed with a so-called correlation
matrix: on the two axis are reported all the input variables; the content of every
cell corresponds to the Pearson’s correlation coefficient computed on the two
variables identifying the cell.

Multicollinearity does not influence the predictive accuracy of the models;
however, their interpretabilitymay be affected [48]. Consider two input features
X1 and X2 and the response variable Y . A simple estimation Ŷ of Y can be
written as:

Ŷ = αX1 + βX2, (2.14)

where α and β are the coefficients to be estimated given a set of observations.
If the two variables X1 and X2 depend on each other, e.g. X2 = γX1, the relation
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in (2.14) does not properly represent the reality. A correcter estimation of Y
corresponds to:

Ŷ = (α + βγ)X1 =
α + βγ

γ
X2. (2.15)

In general, the correlation analysis gives an indication about the relationships
in the data. These have to be validated with the domain expertise before
proceeding with the feature reduction.

Instance Reduction

The reduction of the instances is typically necessary to analyze large datasets [54]
or to remove redundant and inconsistent observations [31]. Large datasets can
be sub-sampled in order to reduce their size. The fraction of data must however
reflects the diversity of the entire observations. The presence of unbalanced
datasets has to be taken into account [27, 31]: certain information may not
be properly represented in the data because of their rarity, despite their im-
portance for the learning task. In this case, over-sampling (sampling more
rare observations) or under-sampling (sampling less common observations)
may help balancing the dataset. Another approach is the stratified sampling.
Here, the observations are divided into mutually disjointed portions according
to predefined criteria able to represent all the diversities in the dataset. The
disjointed portions are called strata. The new dataset is generated by equally
sampling from the different strata [55].
In case the data contain clearly observable and independent trends repre-

sented by heterogeneous portions of datapoints, these are modeled separately.
Redundant information have to be handled also in the instances. In general,

similar or duplicate observations do not provide any additional information
or even worse, they may cause inconsistencies, e.g. if the same set of in-
put parameters generate different output characteristics [31]. In some specific
applications, redundant information are intentionally collected in order to eval-
uate the consistency of the process generating the data. In this case, plausibility
checks can be applied to select the correct instances. Otherwise, the duplicated
observations can be averaged.
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2.3 Data Modeling

Once the raw data have been properly preprocessed, they can modeled by the
learning algorithms. As already anticipated in Section 2.1.3, the data modeling
aims to determine the estimate function f̂ (·) of the real function f (·), which
relates the explanatory variables X to the response variableY . This can be done
by minimizing the reducible error in (2.6) based on the available observations.
The reducible error is represented by a loss function indicated with L(·). The
function estimation can be defined as an optimization problem, which search
the best estimate function f̂ (·), able to minimize the loss function L(·) [47]:

f̂ (·) = arg min
f (·)

L(Y, f (X)), (2.16)

A typical loss function is the least squares, which aims to minimize the squared
error between the ground truth Y and the function f (X), such that [47]:

L(Y, f (X)) =
(Y − f (X))2

2
. (2.17)

The function estimation can be divided into two categories: parametric and
non-parametric [29, 56].

Parametric Learning

The parametric learning estimates the function f (·) starting from a general
assumption of its functional form and then adjusting a set of coefficients to
better fit the available observations. Typically, the function is shaped according
to the real physical meaning of the investigated relations or by brute force. A
simple assumption may be a parametric linear relationship of the p explanatory
variables in X , such that:

f (X) = β0 + β1X1 + β2X2 + · · · + βpXp . (2.18)

The real function can be estimated by determining the p + 1 coefficients indi-
cated as β = (β0, β1, . . . , βp), such that:

f̂ (X) = f (X, β̂) ≈ f (X), (2.19)

where β̂ corresponds to the estimation of the unknown real coefficients β.
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Therefore, the function estimation in (2.16) can be simplified as the estimation
of the coefficients minimizing the reducible error:

β̂ = arg min
β

L(Y, f (X, β)). (2.20)

The main disadvantage of the parametric learning is that if the form of f (·)
is not correctly chosen to match its true shape, the model would not be able
to represent the real function. The wrong choice of the parametric form may
be done in terms of neglecting important explanatory variables or considering
the wrong relationship between the predictors, e.g. simple terms instead of
a quadratic ones. The relation described in (2.18) is known as simple lin-
ear regression, while including exponentiation of the explanatory variables is
referred as polynomial regression.

Non-parametric Learning

Non-parametric learning extracts the shape of the real f (·) directly from the
data. This is helpful in case no assumptions regarding the underlying process
that generated the data can be done [57]. Although this is a more flexible
approach, a larger number of observations are required to obtain an accurate
estimate. Common non-parametric methods are [56]: Support Vector Ma-
chine, Gaussian Processes or Boosting Models. In this work the boosting
method called eXtreme Gradient Boosting (XGBoost) [58] is adopted, which
is derived from the Gradient Boosting Machine (GBM) [47,59].

2.3.1 Gradient Boosting Machine

In the following section, the Gradient Boosting Machine (GBM) is introduced.
First, the concept of boosting is explained. Then, the main mechanisms of
the algorithm are reported in terms of gradient descent optimization in the
function space. Afterwards, the concepts of regularization, regression trees
and bagging are short presented together with the hyperparameters. Finally,
the XGBoost is introduced as an improved variation of the original GBM.

Boosting

The boosting approach is based on the Adaptive Basis-function Model (ABM)
[56]. Common ABM methods are the Classification And Regression Trees
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(CART) [60], the RandomForest [61] and the generalized additivemodels [62].
For these approaches, the shape of the real function f (·) is learned from the
data in terms of aggregation of several basis functions h(·), such as:

f (X) =
M∑
m=0

hm(X) =
M∑
m=0

βmh(X, am), (2.21)

where M is an arbitrary number and (βm, am) are the parameters of the m-
th basis function hm(·). The basis function is also known as weak or base
learner. The term weak emphasizes its performance mediocrity and the term
base indicates a building block of the algorithm [63]. The basis function can
be any kind of modeling approach, as long as it performs slightly better than a
random guess [63]. Even though this is a non-parametric approach, the basis
functions h(·) are indeed parametric with parameters (βm, am).
With the term boosting is typically indicated a greedy algorithm able to

fit iteratively the basis functions h(·) on the given set of observations. To be
more specific, the coefficients of the m-th basis function are estimated with a
weighted version of the available datapoints: at each iteration m, the algorithm
associates a weight to each observation according to how the model is able to
predict it correctly using the previous m − 1 basis functions [56].

Gradient Descent in Function Space

The boosting method was applied for the first time as a form of gradient
descent in the function space in [64], which was then expanded to different
loss functions as GBM [47]. The latter estimates the original function f (·)
combining different approaches: numerical optimization in the function space,
stage-wise additive expansion and steepest descent minimization [47]. As
following, the steepest descent is introduced for the estimation of a parametric
function. After that, the optimization in the function space is explained in
order to connect the stage-wise additive expansion with the steepest descent
for the estimation of a non-parametric function.

Steepest Descent. A general approach to solve the optimization problem in
(2.20) in order to estimate the coefficients β of a parametric function f (X, β)
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is using a numerical optimization [47]. The estimated parameters β̂ can be
expressed as [47]:

β̂ =
M∑
m=0

βm, (2.22)

where β0 is an initial guess and {βm}
M
1 are M successive increments based

on the estimations achieved with the previous iterations. The increments are
also called steps, boosts or updates. The partial estimation of the coefficients
achieved at any iteration m is indicated as Bm and it can be expressed as:

Bm = Bm−1 + βm. (2.23)

In particular, for m = M , then Bm = β̂.
Each increment can be computed using the steepest-descent minimization

method [65]. This technique defines the increments {βm}
M
1 as:

βm = −ρmgm, (2.24)

where −gm indicates the steepest-descent direction corresponding to the gra-
dient of the function to minimize and ρm is the step length along the steepest-
descent direction such that the objective function decreases. Considering the
loss function L(·) in (2.20) to be minimized, the steepest-descent direction is
defined as [47]:

gm = {gjm} =
{[ ∂L(Y, f (X, B))

∂βj

]
B=Bm−1

}
, (2.25)

which corresponds to a vector containing the partial derivatives over the j
parameters of β computed at the partial estimation Bm−1. The step length ρm
is computed through the line search method as [47]:

ρm = arg min
ρ

L(Y, f (X, Bm−1 − ρgm), (2.26)

which indicates the length of the step size from the partial estimation Bm−1
required to minimize L(·).

Optimization in the Function Space. The evaluation of f (·) at each obser-
vation can be considered a parameter of the function to model, i.e. in a finite
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dataset of n observations there would be { f (xi)}n1 parameters. In this way, the
optimization problem in (2.16) can be solved in the function space with the
steepest-descent approach. Considering the empirical loss minimized over the
observations {xi}n1 , the function estimation can be written as:

f̂ (·) = arg min
f (·)

n∑
i=0

L(yi, f (xi)). (2.27)

Expressing the function f (·) as the additive expansion defined in (2.21), the
equation (2.27) becomes:

{βm, am}M1 = arg min
{β′m,a′m }M1

n∑
i=1

L
(
yi,

M∑
m=1

β′mh(xi, a′m)
)
. (2.28)

Considering the boosting approach, the parameters (βm, am) for a single incre-
ment m can be indicated as:

(βm, am) = arg min
β,a

n∑
i=1

L(yi, Fm−1(xi) + βh(xi, a)), (2.29)

and
Fm(X) = Fm−1(X) + βmh(X, am) (2.30)

indicates the partial estimation of f̂ (X) at the boosting step m.
The combination of the steepest-descent approach and the optimization in

the function space is explained as follows. Some similarities can be noticed
between the expansion in (2.30) and the partial parameter estimation of a
parametric-function in (2.23): given any approximation of Fm−1(X), the func-
tion h(X, am) can be seen as the best greedy step towards f̂ (X). By construction
from (2.25), the negative gradient based on the observations {xi, yi}n1 can be
written as:

− gm(xi) = −
[ ∂L(yi, F(xi))

∂F(xi)

]
F(X)=Fm−1(X)

, (2.31)

which indicates the best steepest-descent direction−gm = {−gm(xi)}n1 in the n-
dimensional data space evaluated at Fm−1(X). However, the gradient reported
in (2.31) is defined only at the given {xi}n1 observations. In order to generalize
the solution to other datapoints, the parametric class of the weak learner
h(X, am) is chosen such that hm = {h(xi, am)}n1 is parallel to −gm ∈ Rn. This
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can be obtained selecting the parameters of the basis function such that the
latter is most correlated to the gradient over the data distribution, such as:

am = arg min
a,β

n∑
i=1
[−gm(xi) − βh(xi, a)]2. (2.32)

The h(X, am) can be substituted to −gm(X) for the step size search in (2.26):

ρm = arg min
ρ

n∑
i=1

L(yi, Fm−1(xi) + ρh(xi, a)), (2.33)

which can be used to compute the approximation update as:

Fm(X) = Fm−1(X) + ρmh(X, am). (2.34)

This procedure allows to estimate the parameters of (2.28) in two steps:
• solve the least squares minimization in (2.32), corresponding to fit the
weak learners h(X, am) to the steepest-descent directions {−gm(xi)}ni=1,
which are called pseudo-responses { ỹi}ni=1;

• solve a single parameter optimization to find the step size in (2.33).
Any differentiable loss L(·) can be minimized based on forward stage-wise
modeling using any weak learner, for which a feasible least squares algorithm
exists. This procedure is called Gradient Boosting Machine (GBM).

Considering the least squares loss function in (2.17), the GBM can be
significantly simplified. This is reported in Algorithm 1. The initial guess
F0(X) is typically set to the average of the response observations ȳ. The pseudo-
responses from (2.31) are simply the residuals of the current approximation

Algorithm 1: Gradient boosting for least squares loss [47].
1 Routine
2 F0(x) = ȳ;
3 for m = 1, M do
4 ỹi = yi − Fm−1(xi), i = 1, n;
5 (ρm, am) = arg mina,ρ

∑n
i=1[ỹi − ρh(xi, a)]2;

6 Fm(X) = Fm−1(X) + ρmh(X, am);
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with respect to the available observations: ỹi = yi −Fm−1(xi). This means that
the parameters of the weak learners are chosen in order to fit the residual of
the current iteration. In other words, the gradient boosting iteratively updates
the function estimation by fitting the current residuals.

Regularization

Due to their structure, boosting methods may be able to fit perfectly the given
observations at the costs of the generalization on new datapoints [47]. This
phenomenon is called overfitting and regularization methods are applied to
reduce its effects. Overfitting is described in detail in Section 2.3.2.

A natural regularization parameter for boosting is the number of iterations
M: a large number of updates fitting the residuals computed on the given ob-
servations would reduce the validity of the estimate function on new data [47].
Another regularization approach is achieved through the shrinkage of the ad-
ditive terms [66]. For the GBM it corresponds to the reduction of the updates
impact by a learning rate ε . The approximation update in (2.34) becomes:

Fm(X) = Fm−1(X) + ε · ρmh(X, am), 0 < ε ≤ 1, (2.35)

such that the estimate function is generated with softened steps.
The number of iterations M and the learning rate ε have opposite effects [47]:

for a smaller ε , a larger number of iterations M is required to minimize the
loss. Additionally, more iterations increase the computational effort. The best
regularization parameters can be identified through model selection methods
(see Section 2.3.3).

Regression trees

A typical base learner family adopted for the GBM is the regression tree from
CART [60], also known as decision regression tree [30, 56]. This algorithm
applies recursive binary partitions on the input space defining local models
in each of the resulting region. Consider a regression problem with two
inputs (X1, X2) and a continuous response Y . Starting from the entire input
space, the decision tree divides it into two regions. The split point is chosen
such that the average of the responses in the regions represents them with the
smallest loss. Afterwards, each region is split again into two more regions; this
procedure is recursed until a stopping rule is applied, e.g. until a predefined
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number of iterations is achieved. The regression model results into a piecewise
constant surface, where the responses of the observations within each region
are associated to the average of the responses available in that region.
Although applied for different purposes, the structure of a decision tree is

similar to the one of the binary search tree reported in Figure 2.5; the main
difference is that the leaves of a decision tree correspond to the regions. In
Figure 2.6a an example of decision tree is represented. In this case, the input
space (X1, X2) is divided into five regions (R1, . . . , R5) based on four split points
(t1, . . . , t4). The resulting piecewise constant surface is depicted in Figure 2.6b.
The major advantage of the recursive binary tree is its interpretability: the
feature space can be fully described by a single tree.

X2     t2 

R3

R4 R5

R2R1 X1      t3 

X2      t4 

X1      t1 

(a)

X2

X1

t1 t2 

t4 
t3 

Y

(b)

Figure 2.6: Simple regression tree on two inputs, from [56].

A regression tree can be written in the following additive form [47,56]:

h(X, {bj, Rj}
J
1 ) =

J∑
j=1

bj1(X ∈ Rj), (2.36)

where {Rj}
J
1 are the disjoint regions that collectively cover the input space of

the explanatory variables X , while bj indicates the average response in the j-th
region. Since the regions are disjoint, the function 1(·) is equivalent to the
prediction rule: if X ∈ Rj then h(X) = bj . The parameters of the regression
tree in (2.36) are the coefficient {bj}

J
1 and the boundaries of the regions {Rj}

J
1 .

Consider the parametric regression tree as base learner for the GBMwith least
squares loss reported in Algorithm 1. At each iteration, the regression tree
is built to best predict the current residuals ỹ, which means that the partial
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estimated function Fm−1(X) is updated by simply adding the averages of the
residuals computed on the new regions. The generated piecewise-constant
approximation results into a robust approach, able to attenuate the effect ofwide
tails distribution and outliers, both in the input and in the output variables [47].

The number of nodes of a decision tree depends on the highest order of
dominant interactions within the input variables [47]. Considering p features,
a single decision tree with J terminal nodes is able to represent an interaction
order of at most min(J − 1, p). Empirically, a low order of interactions is
already able to approximate the target function [47,67]. Therefore, small trees
are preferred. The best maximum tree size for the available observations can
be identified through model selection methods (see Section 2.3.3).

Bagging

The performance of the GBM can be improved injecting some randomness
into the function estimation procedure [59]. Decision trees suffer from high
variance [29], which means that estimating a function on different portions
of data may produce different results. The bootstrap data and aggregating
models approach [68], or shorter bagging, was introduced to solve this issue.
It consists in bootstrapping [29], i.e. random sampling with replacement, the
available observations generating B different datasets. In this way, B functions
f̂ (·) are estimated separately on the bootstrapped sets. The predictions are
finally averaged along the B different results:

f̂bag(X) =
1
B

B∑
b=1

f̂ b(X). (2.37)

The bagging approach is included in the gradient boosting procedure with the
stochastic GBM [59]. Differently from the original bagging, the functions are
not averaged, but at each iteration the base learners are fittedwith a bootstrapped
set of the training data. This variant is called boosting bagging hybrid [59].
The fraction of data sd ∈ [0, 1] adopted for the bootstrap affects directly the
amount of injected variance. For large datasets, a smaller set of observations at
each iteration would reduce the computation by a factor equivalent to sd [59].
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Hyperparameters

The number of iterations M (also known as number of estimators), the learning
rate ε and the fraction of subsampling sd are themeta-parameters of the learning
algorithm, also called hyperparameters. In addition, the hyperparameters
associated to the base learner have to be set as well. In the case of regression
trees, some hyperparameters are [69]:

• maximum depth of a base regression tree;
• minimum number of observations per split;
• minimum number of observations in a terminal node;
• minimum loss decrease required to split a node.

The choice of the hyperparameters may be a challenging task. More informa-
tion about the hyperparameters selection is given in Section 2.3.3.

Gradient Boosting Machine Variations

In the last two decades, several variants of the original GBM have been devel-
oped. Most of them focus on improving computing and accuracy performance
as well as on solving specific tasks. One of the first and most successful
variant is the XGBoost [58], introducing a distributed and scalable solution
for the original GBM. Afterwards, LightGBM [70] proposes a novel tech-
nique called gradient-based one-side sampling to find the split values. Finally,
CatBoost [71] focuses on categorical data. In the following section, a more
detailed presentation of XGBoost is given, which has been used as modeling
approach in the frame of this work.

Extreme Gradient Boosting Machine Due to the increasing production of
data, higher performance solutions are demanded for data modeling. The
XGBoost improves the original decision tree based GBM in terms of [58]:

• a weighted procedure for efficient split proposal;
• a sparsity-aware algorithm for parallel tree learning;
• a novel highly scalable tree boosting system;
• an effective cache-aware structure for tree learning;
• additional regularization approaches.
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The more extensive process in a regression tree is the search of the best split
points. The GBM iterates over all the possible splits on all the features,
demanding high computational resources especially in continuous domains.
The XGBoost proposes an approximation of the original split search called
weighted quantile sketch. This is based on the statistical characteristics of the
data introducing a novel structure supportingmerge and prune operations. The
XGBoost split achieves the same accuracy of the original procedure requiring
dramatically less computational resources [58]. Furthermore, the XGBoost is
developed to be sparsity-aware. The term sparsity in a dataset implicates the
presence of missing values or low variation. The XGBoost includes a default
direction for sparse datapoints in each tree node, which is learned directly from
the data. Moreover, since the GBM is an iterative procedure, the construction
of the estimate function cannot be completely parallelized. Nevertheless,
some procedures like the split point research are run in parallel in XGBoost
and optimized through proper data structures, called blocks. Combining the
block structure with management of cache and memory, high computational
performance are achieved.

XGBoost introduces additional regularization forms to the already imple-
mented in GBM. One of them is the regularized learning objective that penal-
izes the loss function L(·) according to the complexity of the trees. Consider
M boosting iterations and that each m-th regression tree has size Jm and
weights γm associated to its leaves. The regularized loss function for XGBoost
becomes:

L(Y, f (X)) = L(Y, f (X)) +
M∑
m=1
Ω(Jm, γm), (2.38)

where:
Ω(J, γ) = αJ +

1
2
λ | |γ | |2. (2.39)

The two terms α and λ are known as L1 and L2 regularization respectively [30].
The parameter α penalizes complex and large trees in order to reduce overfit-
ting [58]. Differently, λ favors models able to achieve accurate predictions by
penalizing trees producing large residuals. The regularized objective tends to
select a model employing simpler and more predictive functions.

Typically, if a dominant predictor is present in the dataset, this would be
chosen as split variable for all the decision trees, producing highly correlated
trees and losing precious information regarding the other features. For this
reason, XGBoost selects a random subset of predictors at each iteration, which
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are then further sub-sampled at each level and at each split [58]. In this way,
additional variance is brought at each update in order to deeper explore the
feature space.

2.3.2 Modeling Performance

An essential step of the data modeling is the assessment of the accuracy [29,
30, 56]. Several evaluation metrics, also called accuracy or error metrics, are
available to quantify the prediction capability of a learning method. These
metrics measure the deviation between the predicted responses { f̂ (xi)}n1 and
the ground truth values {yi}n1 , where {xi, yi}

n
1 are in this case a general set of

observations, not necessarily those used to fit the learning algorithm. Indeed,
in supervised learning two types of errors can be computed: the training error
and the test error. The former is computed on the data used to train the model,
also called training data, while the latter is computed on new data, which are
also known as test or validation data. The prediction capability of a learning
method on the test data is referred as generalization [30].
The division between test and training error is required since the learning

procedure may identify a relation in the training data caused by random chance
rather than by the real proprieties of the investigated phenomenon. This prob-
lem is called overfitting and it occurs when the training error is much lower
than the test error. Nevertheless, the training error is expected to be generally
lower [29]. The opposite effect of overfitting is called underfitting. This case
cannot be identified directly from the errors, but it indicates the inadequacy
of the chosen learning method to capture the real relationship in the data. An
example of overfitting and underfitting is reported in Figure 2.7 from [29].
In Figure 2.7a, general observations are depicted together with the real func-
tion and different estimates. In particular, the latter are defined adjusting the
modeling hyperparameters in order to influence the flexibility of the learning
method. The optimal-fitting is the one close to the real function. The un-
derfitting situation is represented by a linear estimation, which cannot model
the non-linearity of the underlying phenomena. Finally, in the overfitting case
the model learns the noise in the data as well, missing the real relationship
of the observations. In Figure 2.7b, the test and training errors are depicted
in function of the learning algorithm flexibility. In the underfitting case, both
test and training errors are large due to the inability of the chosen model to
estimate the real behavior. In contrast, a very flexible method may learn per-
fectly the training data, while missing the generalization on new observations.
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The horizontal dashed line indicates the irreducible error induced by external
factors, as reported in (2.6). The optimal-fitting corresponds to the model
able to produce the minimum reducible error achievable by the chosen applied
learning technique. The U-shape assumed by the test error over the model
flexibility in Figure 2.7b is independent of the dataset or the applied learning
method [29,56]. A proper trade-off between modeling flexibility and error has
to be always found. In particular, the "no-free lunch theorem" [72] indicates
that there is no universal method able to outperform other approaches for all
possible datasets. Therefore, the proper learning algorithm has to be selected
and calibrated in order to produce the best results on a given dataset.
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Figure 2.7: Examples of overfitting and underfitting, from [29].

Another factor influencing the fitting performance is the correct choice of the
training and test sets, especially when a proper test set is not available due to
the high costs of the data generation. Some training-test splitting approaches
are introduced later in this section.

Evaluation Metrics

In this section three evaluation metrics adopted to compute the training and test
scores in regression tasks are introduced: the Mean Absolute Error (MAE),
the Root Mean Square Error (RMSE) and the coefficient of determination R2.
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The MAE [55], also called averaged L1-norm, indicates the averaged absolute
deviation between the ground truth and the prediction, such as:

M AE(Y, f̂ (X)) =
1
n

n∑
i=1

��yi − f̂ (xi)
��. (2.40)

The RMSE [55] indicates the performance of the model as the root square of
the averaged squared distance between the ground truth Y and the prediction
f̂ (X), such as:

RMSE(Y, f̂ (X)) =

√√
1
n

n∑
i=1

(
yi − f̂ (xi)

)2
. (2.41)

This metric corresponds to the L2-norm between the real yi and the predicted
f̂ (xi), averaged by

√
n, where n is the number of datapoints. Due to the squared

difference, the RMSE is very sensitive to large outliers: in case of a wrong
prediction, the whole score is largely affected.
Differently from the previous two, the coefficient of determination R2 [48]

is a unit-independent metric and it is generally adopted to quantify the linear
relationship between two variables. The linearity of the relation Y = f̂ (X) is
used to evaluate the goodness-of-fit of a model. The R2 is defined as:

R2(Y, f̂ (X)) = 1 −
MSE(Y, f̂ (X))

Var(Y )
= 1 −

∑n
i (yi − f̂ (xi))2∑n

i (yi − ȳ)2
, (2.42)

where the Mean Square Error (MSE) corresponds to the square of the RMSE
in (2.41) normalized by the variance of the ground truth Y . If the MSE is zero,
then the prediction matches the ground truth, resulting in R2 = 1. In contrast,
if the predictive capability of the model is equal to a baseline able to only
predict the average of the observed responses ȳ, i.e. f̂ (X) = ȳ, then R2 = 0. In
case that the model is worse then the baseline, R2 assumes negative values.

It is important to distinguish the introduced evaluation metrics from the
loss function considered as objective during the function estimation in (2.16).
Considering the training set, both evaluation metric and loss function indicate
the reducible error in (2.6); however, they are applied for different scopes.
While the loss function is part of the learning algorithm, the error evaluates
the general model performance a posteriori.
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Training-Test Split

Different approaches are available to obtain a proper test dataset from the
available observations [29, 56]. Generally, two essential requirements have to
be fulfilled. First, the datapoints in the test set do not have to be included in
the training set, otherwise the generalization capabilities of the model cannot
be properly evaluated [73]. This may be the case of duplicated observation in
the dataset. Second, both sets should represent the whole input space.

In Figure 2.8, the most common training-test splitting approaches are de-
picted. The blue boxes indicate the test data and the orange ones the training
data. The simplest split is represented in Figure 2.8a. It consists in randomly
splitting the dataset into two portions: typically, 80% of the data are used for
the training and the rest 20% for the test. However, reducing small datasets
further may affect the representation of the input space. To deeper evaluate the
modeling performance based on the whole available observations, the cross
validation (CV) is applied. The K-fold CV procedure is summarized in Fig-
ure 2.8b. This method consists in randomly dividing the observations into K
different folds of approximately equal sizes. Afterwards, K − 1 folds are used
as training set and the remaining fold as test set. This operation is repeated
K times, using each time a different fold as test set and consequently different
K − 1 folds for the training set. In this way, K validation errors are generated
(Err1, . . . , Errk). Finally, the K validation errors can be evaluated through
their average µErr and standard deviation σErr , such as:

µErr =
1
K

K∑
i=1

Erri, (2.43)

σErr =

√√√
1
K

K∑
i=1
(Erri − µErr )

2. (2.44)

As instance, in case the selected evaluation metric is the MAE, those are
referred as µMAE and σMAE. The value of K is chosen according to the quantity
of data available in order to maintain a certain input space representation.
Commonly, K is set equal to 5 or 10 to ensure 20% or 10% of the data as
test set [29]. A variant of the K-fold CV is the Leave-One-Out (LOO) CV
reported in Figure 2.8c, where K is set to be equal to the number of available
observations n. In this case, the error is evaluated on every single observation
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with a model trained on the remaining n − 1 points. The LOO CV estimates
more precisely the generalization error for future predictions; however, it is
not ideal for computational expensive function estimations or in case of large
datasets [29]. After the assertion of the model quality, all the available data
are typically used to train the final model.
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(c) Leave-One-Out CV

Figure 2.8: Modeling validation types.

2.3.3 Hyperparameter Optimization

As already introduced for the GBM in Section 2.3.1, the hyperparameters are
the meta-parameters of the learning algorithm. The selection of the hyperpara-
meters is necessary in order to adapt the learning method to the given data [74].
In particular, the right choice of hyperparameters can avoid overfitting and en-
sure generalization on new data, as mentioned in Section 2.3.2. The selection
process of the optimal hyperparameters of a learning method for a given set of
observations is referred as Hyperparameter Optimization (HPO).
Beside manual search, optimization methods can be applied to solve an HPO

problem [74, 75]. In this case, the learning algorithm is treated as a black-box
and different combination of hyperparameters are tested in order to find the
optimal model on the given data. Typically, potential hyperparameters are
determined through sampling techniques on the whole hyperparameter space.
One of the simplest black-box HPO is the Grid Search, also known as full
factorial design or Grid Sampling [76]: for each hyperparameter a finite set of
values is manually chosen and their Cartesian product is evaluated, as shown
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in Figure 2.9a. Finally, the best hyperparameter set is selected. However,
the number of function estimations grows exponentially with the considered
hyperparameter space size and the chosen discretization [74]. An alternative
to the Grid Search is the Random Search or Random Sampling [75]. Here, the
modeling configurations are sampled at random on the hyperparameter space,
as represented in Figure 2.9b. Random Search is considered to outperform
Grid Search, in particular when the hyperparameters do not have the same
effectiveness on the model [75]. In Figure 2.9, Grid Search is able to achieve
a higher coverage of the two dimensional hyperparameter space; however,
the projections onto the hyperparameters axis result much more efficient for
the Random Search considering the importance of the hyperparameters. To
be specific, considering a budget of B possible function evaluations and N
hyperparameters, Random Search is able to explore B different solutions of
each hyperparameter, while Grid Search only B1/N [74]. Nevertheless, both
approaches can be well parallelized.
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Figure 2.9: Comparison between Grid Search and Random Search on a two dimension
hyperparameter space, considering their effect on the learning algorithm, based

on [75].

A more complex black-box HPO is the Bayesian Optimization [74], which
is typically adopted for computational expensive learning algorithms. This
is an iterative approach composed of a probabilistic surrogate model and an
acquisition function, which suggest the points to evaluate next. However, the
Bayesian Optimization is still limited to some specific applications, especially
for low hyperparameter space, e.g. for the tuning of deep neural networks [77].
Another family of black-box optimizations applied for HPO are the evolution-
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ary algorithms [74,78], which are deeper described later in this section due to
their relevance to this work.
In contrast to black-box optimizations, multi-fidelity HPOs include some

knowledge of the learning algorithm in the optimization process. One of
these is the early stopping [79], which avoids overfitting for iterative learning
algorithms. The difference between the training and the test errors is monitored
along the iterations and the learning algorithm is stopped as soon as no further
improvements are achieved. A more recently proposed multi-fidelity HPO is
the Hyperband [80]. In this case, a predefined type of budget is allocated
to randomly sampled hyperparameters. The Hyperband searches the best
hyperparameters able to consume less possible budget, while achieving the
best accuracy. The budget may be, for instance, the number of iterations of the
learning process.
Intensive HPOs may provide biased hyperparameters valid only for the

considered observations. Therefore, an additional evaluation with data not
included during the HPO is required. In particular, the test and validation sets
introduced in Section 2.3.2 assume here different meanings. The validation set
indicates the datapoints adopted to evaluate the goodness of the model during
the HPO, while the test dataset is used to evaluate the final hyperparameter set.
The typical procedure is described as follows. First, the whole data is split into
training and test data. The training data are then further divided by a K-fold
CV to choose the best hyperparameters during the HPO. Finally, the chosen
hyperparameters are evaluated on the test data to ensure their generalization.
This procedure is shown in Figure 2.10 with a (80 − 20)% training-test split.
The score computed on the final test set is typically indicated as eErr .

K-fold

Cross-Validation

Hyperparameter

Optimization

Hyperparameter

Test

20%

80%
Data

Figure 2.10: Generic HPO validation with a (80 − 20)% training-test split and a K-fold CV.

43



2 Fundamentals

Evolutionary Algorithms

Evolutionary algorithms are optimization techniques based on biological evo-
lution and natural selection theory [78], whose main mechanism is reported
in Figure 2.11. These are iterative procedures, where each iteration is called
generation. During each generation, the search space is explored and new solu-
tions are evaluated through a fitness function. In case of HPO, the search space
corresponds to the hyperparameter space and the fitness function to the eval-
uation of the hyperparameters on the training data. Every proposed solution
is called individual and a set of individuals composes a population. Starting
with an initial, generally random, population of size µ, the first step in each
generation corresponds to select individuals in order to create new solutions in
the search space. The selected individuals are called parents and the selection
procedure is referred as selection for reproduction. Typically, potentially good
solutions have higher chance to be selected as part of the parents set. Af-
terwards, specific stochastic operators are applied in order to introduce some
variations into the parents set. These operators can be divided into mutation
and crossover. Mutation refers to the variations of a single parent in order to
create a new individual, while crossover, also known as combination, involves
two parents for the creation of at least a new solution. The just generated
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parent population

offspring population

next population
Selection for Replacement

Variation

evaluation

next population

current
population

Selection for Reproduction

Stop

no
Termination

yes

evaluation

Data Flow

Control Flow

Figure 2.11: Generic evolutionary algorithm flowchart, based on [78].
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individuals are called offspring. The final step corresponds to the selection
for replacement, where individuals from parents and offspring are chosen to
generate a new population of the same size µ. This selection can be interpreted
as selection for survival: only the best individuals are allowed to be member
of the next population. The evolutionary cycle is iterated until a termination
criterion is meet, e.g. a maximum number of iterations.
In the last decades many variations of the general evolutionary algorithm

have been developed. In particular, the research focused on different strategies
for selections and stochastic operators as well as on different individual rep-
resentations. One of these variations is the Genetic Algorithm (GA) [81, 82],
where the individuals assume a genetic representation composed of chromo-
somes and genotypes, which can be mutated and altered. A particular GA is
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [83], which is an
improvement of the NSGA [84]. The NSGA-II is one of the most adopted
multi-objective optimization able to achieve fast and robust solutions. In this
case, the selection for replacement is based on the non-dominated sorting and
crowding distance estimation, which are able to generate better spread solu-
tions on multi-objective domain spaces. In a multi-objective optimization, a
solution x1 is said to dominate another solution x2, if x1 is no worse than x2 in
all objectives and if x1 is strictly better than x2 in at least one objective [85]. The
non-dominated solutions represent a non-domination front, also called Pareto
front [85]. In Figure 2.12 the selection for replacement of the NSGA-II is rep-
resented. The non-dominated sorting classifies the population composed from
parents and offspring into different non-domination classes. First, considering
the whole population, the non-dominated solutions are associated to the class
F1. Afterwards, the non-dominated solutions of the remaining individuals are
clustered into the class F2, and so on until all the individuals are associated to
a class. The different F classes correspond to the Pareto fronts, as represented
in Figure 2.12b. The first µ individuals in the sorted F classes are selected to
represent the population of the next generation, while the rest are discarded.
In this way, the dominating solutions are kept along the generations, such that
the NSGA-II is considered an elitist algorithm. In case that a front has to be
split in order to fit the new population size, its individuals are sorted according
to the so-called crowding distance. The crowding distance of an individual i
indicates the space around it not occupied by any other solution, as represented
in Figure 2.12b. The crowded-sorting ensure the persistence of diversity in the
population. Typically, the first front F1 is referred as the Pareto front of the
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considered generation. The final solution is then chosen from the final Pareto
front.
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Figure 2.12: NSGA-II characteristics, based on [83, 86].

2.4 Knowledge Interpretation

The main drawback of complex function estimations is their black-box charac-
teristic. Robust and accuratemodels can be built, but no explanations regarding
the reasons of specific decisions are provided [87]. The necessity of explain-
able AI is growing inmany fields, principally where legal and ethical norms are
essential [88]. Moreover, the interpretability of the models may be used for ac-
quisition of new knowledge as well [87]. In particular, a large interest concerns
how variations in the input space influence the investigated phenomena.

2.4.1 Feature Importance

Based on their structure, decision trees (see Regression trees in Section 2.3.1)
can be easily interpreted: the influence of every single feature on the considered
response can be extracted from the data. Consider it as the improvement of
the estimation achieved with the split at the node t. For a given decision tree
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T , the relative influence Ij of the variable j on the estimate function can be
defined as [60]:

I2
j (T) =

J−1∑
t=1

i2
t 1(vt = j), (2.45)

which indicates the summation over the squared improvements i2
t of the internal

(J − 1) nodes t, when the splitting variable vt coincides with the variable j.
The relative influence of a variable corresponds to the number of times it was
selected for a split during the construction of the tree, which is then weighted
with the improvements i2

t attributed to those splits. For boosting trees, the
influence of a variable j on the single trees is averaged over all the M basis
learners [47], such as:

I2
j (T) =

1
M

M∑
m=1

I2
j (Tm). (2.46)

Generally, the influences of all the input variables on the output are normalized
such that their sum is one. The feature importance can be considered as
knowledge extracted from the data in the KD process: in this way, a data-driven
development can focus only on the most important features. Additionally, the
importance can be used as feature reduction in the data preprocessing stage, as
introduced in Feature Reduction in Section 2.2.4.

2.4.2 Partial Dependencies

The feature importance analysis does not provide any information about the
nature of the relationship between the explanatory and the response variables.
This kind of information can be depicted as partial dependence of the output
on few input variables [30,47]. Consider the input features X of size p and XS
a subset of it. Let XC be the complement set of XS , such that XS ∪ XC = X .
In particular, the estimate function f̂ (X) depends on all the input variables:
f̂ (X) = f̂ (XS, XC). Given n observations, the partial dependence of f̂ (X) on
XS can be estimated as [30]:

f̂S(XS) =
1
n

n∑
i=1

f̂ (XS, xiC), (2.47)
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where {xiC}n1 are the observations of XC . The partial dependency corresponds
to the effect of XS on f̂ (X) taking into account the average effects of XC .
If XS and XC are independent, i.e. they do not have strong interactions, the
partial dependence can be interpreted as the effect of XS on f̂ (X), ignoring
XC [30]. In case the two subsets are dependent, possible effects of XC on
f̂S(XS) have to be taken into account. The number of dependent variables
can be reduced with the multicollinearity analysis (see Section 2.2.4). Partial
dependence functions can be applied to interpret the results of any black box
learning method [30, 56].

2.5 Summary

In this chapter the fundamental notions of the KD process are introduced:
starting from its definition and the nomenclature adopted in this work, the
main stages to extract the knowledge from raw data are described. A particular
attention is addressed to the data preprocessing and data modeling, which are
the two core steps in order to ensure reliability and quality of the extracted
information. Even though most of the preprocessing procedures are based on
domain expertise, several tools and operators are available to support this step,
e.g. data inconsistency and redundant information handling. In the data mod-
eling section, beside the basic concepts of learning algorithms, the boosting
approach is introduced through GBM and XGBoost as a robust and efficient
function estimation. Furthermore, the essential techniques employed to select
a model and evaluate its performance on the available data are reported as well,
e.g. validation procedures and proper choice of data and modeling tuning. Fi-
nally, the extraction of the knowledge from the models is reported in terms of
feature importance and partial dependencies.
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In this chapter, the KD framework specifically designed and developed for
the multidisciplinary analysis of complex and multidimensional phenomena
in the product development is presented. The overview of the KD framework
is depicted in Figure 3.1. This can be considered as a bridge between the
product development and the AI. As shown in the left side, the product devel-
opment includes measurements and simulations of components, sub-systems
and complete systems. On the other side, the AI incorporates data prepro-
cessing, computer science, statistics and machine learning, as introduced in
Section 2.1. The framework is responsible to collect the data from the product
development and provide them to the AI, where advanced data analysis tools
are adopted in order to derive complex information from the data. Afterwards,
the extracted knowledge is transferred back to the product development and it
is integrated with the already available know-how. In this way, it is possible
to focus future investigations on yet to be explored research areas and design
spaces. Such upcoming studies will generate new data leading to an iterative
and continuous product improvement.

D

isc
overed Knowledge

co
m

p
o

n
en

ts

sub-systems

sy
stem

s

Measurements

Simulations

Product

Development

Data

Preprocessing

Knowledge Discovery

Framework

Data

Knowledge

AI

Statistics

Machine

Learning

Computer

Science

Figure 3.1: Overview of the KD framework, showing the interaction between product
development and AI.
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For the scope of the current work, the general structure of the KD process
depicted in Figure 2.3 is adapted to and encapsulated in a specific workflow,
which is reported in Figure 3.2. The latter includes algorithms and method-
ologies able to deal with the main demands for an interdisciplinary analysis of
complex phenomena. Starting from the raw data, three main steps are required
to access the knowledge:

1. Data Preparation: includes data preprocessing and data exploration in
order to get familiar and prepare the data for the analysis (see Section 2.2);

2. Data Modeling: selects and validates the best modeling configuration
in terms of HPO and train-test-validation datasets (see Section 2.3);

3. Knowledge Extraction: extracts the knowledge in terms of Model Ex-
ploration and Model Exploitation. The term exploration indicates the
extraction of feature importance and partial dependencies from the mod-
els (see Section 2.4). Differently, exploitation consists of exploiting the
trained models in order to substitute costly and time consuming evalu-
ations. These two parts represent respectively the descriptive and the
predictive tasks, introduced in modeling taxonomy in Section 2.1.2.

The direction of the arrows in Figure 3.2 indicates the main flow of the process;
the single steps can still be reviewed based on intermediate results. The
KD framework is named pyMICE, which stands for python Mining Internal
Combustion Engines. As the name suggests, the framework is written in the
cross-platform programming language Python [89], which includes libraries
specialized for machine learning and advanced data analysis.
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Figure 3.2: Workflow of the KD framework, based on Figure 2.3.

50



3.1 Modularity

In the next sections, the main characteristics of the KD framework are de-
scribed.

3.1 Modularity

The modularity is an essential feature of the framework: a modular and multi-
disciplinary framework is able to collect and analyze data independently from
their source and from the investigated component or system. The modularity
is generally defined with the terms abstraction, information hiding and inter-
faces [90]. A complex problem can be divided into smaller steps represented
by modules, which are indeed abstraction levels. The modules interact with
each others by means of well defined interfaces in order to complete a specific
task. According to the complexity of the single operations, a module can be
divided into several sub-modules, i.e. sub-steps.
The KD framework is developed such that every stage of the workflow

presented in Figure 3.2 is a module. Each of them requires only a dataset and
specific settings regarding the operations to be performed, independently from
the content and the source of the data. Typically, default settings are available
such that only the data to analyze are necessary. The modularity enables four
fundamental characteristics of the KD:

1. the analysis is based on the dataflow and decoupled by the workflow
direction. Every single procedure offered by the framework can be
applied at any time of the analysis by just providing the data. For
instance, it is possible to re-run any specific preprocessing operators
based on the final extracted knowledge;

2. the generalization of the analysis is enhanced since the modules are
independent from the physical meaning of the data. The interpretation
of the results and the direction of the analysis are left to the domain
expert;

3. the application of complex and sophisticated algorithms can be ab-
stracted to the user. The latter is required to provide few intuitive settings
to the framework, which then applies the proper algorithms according to
the desired task. An example may be the data modeling: the framework
runs the proper modules in order to process the provided data, let them
compatible with the modeling algorithm and select the best hyperpara-
meters in order to ensure maximum accuracy and generalization;
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4. as long as the interfaces are satisfied, every module can be singularly
substituted without affecting the whole framework; for example, an
improved learning algorithm or an additional preprocessing procedure
can be easily implemented in this way.

3.2 Data Management

In this section, the main aspects of the data in the product development are
exposed, focusing on the GDI context. First, the main characteristics and the
requirements to ensure high modeling quality are presented. Afterwards, the
storage structure developed within the KD framework in order to manage those
data is introduced.

3.2.1 Data Characteristics and Requirements

Due to the nature of the investigations in the GDI context, the produced data are
highly heterogeneous. The main contribution to this characteristic is given by
the several components, sub-systems and systems analyzed with different mea-
surement and simulation procedures. Each of them is able to answer specific
research questions with different abstraction levels and precision. Therefore,
most of the data are diverse and not directly compatible with each other. For
instance, the design space of the injector valve seat is continuous from a
simulation point-of-view, while it is limited by manufacturing constraints for
experimental investigations. Furthermore, the several simulation and measure-
ment procedures provide different data representations, contrasting naming and
measurement units as well as diffferent data structures and file formats. This
produces inconsistencies in the data.

Another main challenge is the complexity and the high dimensionality of the
problems. In order to limit the large design spaces in this context, constraints
and specifications based on domain expertise or on previously extracted know-
ledge have to be included in the analysis. For example, the influence of the
injector geometries on spray characteristics is typically analyzed within fixed
engine operating points or for a single engine, which are based on customer
requirements or research indications. However, separated investigations based
on different constraints would often produce datasets incompatible with each
others. Here, the domain expertise is essential: the available data and the
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extracted knowledge have to be contextualized within the considered investi-
gation.

Preprocessing Demand

The quality of simulations or measurements data in the GDI context is con-
sidered high. Robust and automated simulation workflows include procedures
able to detect numerical anomalies during the simulations. Measurements are
partially manually collected, therefore, missing values and outliers are rare
considering the human supervision. Missing values are generally atypical
for simulations as well: these are either completely solvable or numerically
impossible.
Independently from the source of the data, the common preprocessing tasks

for GDI data are reduction and aggregation. The first includes removing
redundant or useless information to avoid multicollinearity and the second
aims to reinforce the collected information. During the data reduction, the
domain knowledge is fundamental in order to validate the plausibility and the
causality of the correlations. For example, to recognize spurious or nonsense
correlations (see Section 2.2.4). The lattermay be induced by specific sampling
constraints, by manufacturing limitations or by given design specifications.
Different are the correlations due to variables totally or partially representing
the same quantity, which can be neglectedwithout consequences. Furthermore,
time and space observations are often averaged during the collection of the
results in order to focus the investigation on the most attractive surfaces and
instants.
Another critical circumstance is the presence of duplicated or irrelevant

observations. Typically, every single experiment is repeated a certain number
of times in order to mitigate the measurement errors. Moreover, calibration
or reference points are often included in the datasets, which do not include
any additional information for the analysis. This issue is not common for
simulation data, since these are more deterministic then experiments.

Data Sampling Approaches

The design space represented by the available observations has a strong in-
fluence on the quality and the generalization of the models. In particular, it
is not possible to guarantee the correctness of the models outside the train-
ing boundaries. In contrast, within the training boundaries, the quality of the
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models can be ensured through proper sampling approaches. So-calledDesign
Of Experiments (DOE) procedures are applied to cover the high-dimensional
domain space of the input variables as best [91, 92].

A common DOE approach corresponds to the Grid Sampling, already intro-
duced in Section 2.3.3 for the HPO. In this case, potentially good design values
are combined together in theCartesian product. More complexmethods belong
to the pseudo-random and the quasi-random sequences [93]. Pseudo-random
samplings aim tomimic random natural processes to generate a sequence of de-
signs [93]; an example is the Random Sampling previously introduced in Sec-
tion 2.3.3. Quasi-random samplings generate new designs taking into account
the already sampled ones, so that a low-discrepancy sequence is generated [93].
A widely used quasi-random sampling method for high-dimensional design
spaces is the Sobol-sequence [94, 95]. Quasi-random sampling approaches
require a well defined sampling plan, including the number of dimensions and
the sampling boundaries, limiting the possibility to expand it at a later time.
Sobol has been applied to analyze the effect of injector valve seat geometries
on spray characteristics based on 3D-CFD simulations in [14,16]. In contrast,
the coupling of two Grid Samplings has been applied in [96] to investigate
emissions and spray characteristics through experimental measurements.

3.2.2 Storage and Accessibility

Prerequisites for a modular and dataflow-oriented framework are the stan-
dardization of the data formats and a proper data storage system. Since the
modular framework is supposed to handle a large amount of different datasets,
it should be aware of their formats. Due to the several measurement pro-
cedures and simulation tools, the raw data are available in different formats,
e.g. as Comma-Separated Values (CSV), as simple text files or in some cases
even as proprietary formats. Another main complication is the location of the
raw data. The accessibility to the data may be limited by the lacking of a central
data storage. For these reasons, a system able to store the data in a single format
and to interface with the framework is essential. Furthermore, intermediate
results have to be stored as well, enabling the possibility of moving backwards
to any previous version of the data in order to skip or re-run preprocessing
steps. This system is generally referred as data warehouse [97]. In particular,
the interface regarding the extraction, the transformation and finally the load
of raw data into a data warehouse is typically referred as Extraction, Trans-
formation, Load (ETL). The data storage system adopted in this work is the
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Hierarchical Data Format 5 (HDF5) [98], which is a portable scientific format
allowing the storage of data in a hierarchical structure, including interfaces for
writing, reading and organizing data and metadata.
The data management structure of the KD framework is reported in Fig-

ure 3.3. In this case, the ETL is characterized by an Automatic Data Extraction
(ADE), an Automatic Data Transformation (ADT) and specific data format
configurations. The latter include information about data location, formats,
input/output variables, units and naming conventions. Based on the data for-
mat configurations, the ADE and ADT extract the raw data, convert names and
measurement units and then load them into the data warehouse. The automatic
procedures allow to speed up the raw data processing, hiding the main ETL
mechanisms and requiring just few information about the format. In this way,
new data, whose format configuration has already been defined, can be auto-
matically loaded without any additional effort. The standardization of names
and measurement units enables the integration of multiple datasets. In case
of highly heterogeneous and incompatible datasets, their results can still be
compared if standardized.
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Figure 3.3: Data management structure of the KD framework.

The data warehouse ensures that all the required data are stored in a central
place, including meta-information and intermediate result. A detailed view
of the data warehouse of the KD framework is represented in Figure 3.4.
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Considering the hierarchical structure of the HDF5, it is possible to organize
the datasets into five different categories:

• raw data→ original data extracted from the ADE process;
• transformed data→ results of the ADT process;
• selected data→ data selected for the analysis;
• cleaned data→ results of the data preprocessing;
• metadata→ measurement units and original names.

Each dataset is organized further into a dataset for the input variables and one
for the output variables. With this structure, any intermediate data can be
recalled at any point of the analysis.

Metadata

Measurement

Units

Standardized

Names

Raw Data

Dataset A Dataset Z...

Inputs Outputs Inputs Outputs

Dataset A Dataset Z...

Inputs Outputs Inputs Outputs

Cleaned

Data

Transformed

Data

Dataset A Dataset Z...

Inputs Outputs Inputs Outputs

Dataset A Dataset Z...

Inputs Outputs Inputs Outputs

Selected

Data

Figure 3.4: Data warehouse structure of the KD framework.

3.3 Framework Structure and Usage

The modular structure of the KD framework, i.e. of pyMICE, is reported in
Figure 3.5 as Unified Modeling Language (UML). The framework can be
considered as a single module containing in turn several sub-modules. The
main modules of the framework are ETL, Tools, Analysis and Optimization,
while the external interfaces are Storage, HPC Manager and User Interface.
These are introduced as follows together with their sub-modules.
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Figure 3.5: UML showing the modules and the interfaces included in the KD framework.

Resources Interfaces. The Storage interface allows the connection between
the framework and the data warehouse, including all the procedures in order
to store, to read and to manage the data. The HPC Manager interacts with the
nodes of the HPC in order to correctly submit and manage remote jobs.

User Interfaces. The high level of abstraction due to the modularity supports
the users to perform the data-driven analysis. The KD framework provides
different interfaces according to the scope and the expertise of the user. Every
single module of the framework can be implemented through Application
Programming Interfaces (APIs) in other source codes. Automatized procedures
like HPO, training and validation of models as well as predictions can be
performed through the Command Line Interface (CLI). In this case, the main
settings to complete the task are provided in form of configuration files, e.g. the
amount of available resources in case of a distributed computation. Finally,
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a Graphical User Interface (GUI) exposes all the information extracted from
the data in form of an interactive web application. An example of the latter is
reported in Appendix B.

ETL. The ETL module contains custom extractors and transformers based
on the provided data format configurations. Through the Storage interface,
extracted and transformed data as well as metadata are properly loaded into the
data warehouse.

Tools. The Tools module contains general support functionalities. The Dis-
tributed Computing allows to set up a scheduler and different workers enabling
the computation and the management of parallel processes. The Distributed
Computing module is separated from the HPC Manager in order to increase
the flexibility of the framework: this allows to choose whether to run the
computations on the HPC or on a local machine. The Log Manager allows
to keep track of the automatized procedures of the framework. This is useful
for time-consuming operations or for debugging. Finally, the Plot Manager is
another sub-module contributing to the overall modularity of the framework.
Data visualization is an essential part of the KD process: many complex repre-
sentations of the data are demanded, especially during the data exploration and
preprocessing. The construction of such plots requires often data preparation
and the configuration of specific plotting libraries. Furthermore, it is necessary
to maintain certain standards between the analyses, such as plots structures,
fonts, sizes and so on. In order to fulfill these requirements, the Plot Manager
includes interfaces for several figures typologies, requiring as input only the
data to visualize and few settings to plot them in a standardized way.

Analysis. The Analysis module contains all the required algorithms and pro-
cedures in order to analyze the data. Through theOutliersmodule it is possible
to apply the Chebyshev outlier detection or the Isolation Forest, introduced in
Section 2.2.2. Other modules allow to perform the correlation analysis or
reduce the dimensionality of a dataset applying the PCA, as introduced in
Section 2.2.4. Some simple operations such as listing the number of entries
with missing values or querying the dataset are included in the Basic module.
The Modeling module implements the learning algorithms together with the
procedures to evaluate and validate the models. The available algorithms are
ANN, polynomial regression, GBM and XGBoost. Moreover, the procedures
to compute and to visualize feature importance and partial dependencies are
available for the boosting-based algorithms. The Models Manager interface
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connects the Distributed Computing to theModeling in order to train the mod-
els in a distributed environment. In this way, the potential of the HPC can be
fully exploited to test different hyperparameters, to run CVs or to compute par-
tial dependencies in parallel. The Models Manager includes also operations
to create documents reporting the modeling performance and the extracted
knowledge.

Optimization. The Optimization module includes optimization algorithms.
One of the algorithms is the NSGA-II, which is then implemented as XGB-
NSGAII and as GBM-NSGAII in order to optimize the hyperparameters of the
learning algorithms XGBoost and GBM respectively. These procedures are
accessible through an Optimization Manager, which abstracts the complexity
of the algorithms automatizing the whole HPO procedures. In this way, only
the dataset to model is required to start the optimization. The progression and
the results of the optimization are collected and summarized in reports and
diagrams allowing a fast and easy assessment of the outcome. Hyperband and
Grid Search are implemented as well. The novel XGB-NSGAII developed in
this work is described in Chapter 4.

3.4 Summary

In this chapter, the KD framework is presented. After a general introduction
about the main structure and scope of the framework, the necessity of mod-
ularity is highlighted. Afterwards, the management of the data within the
framework is described. First, the main characteristics of the data in the GDI
context are reported together with the main preprocessing operations and the
required data characteristics in order to ensure a robust and reliable knowledge
extraction. In particular, sampling methods to cover properly the investigated
domain space are reported. Then, the storage and accessibility of the data in
the framework are explained. Finally, the structure and the usability of the
framework are reported, presenting the main modules required to enable the
KD. The application of the KD framework in the GDI context is presented in
Chapter 5 and Chapter 6.
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Heterogeneous Datasets

As already introduced in Section 2.3.2, specific hyperparameters are required
for any learning algorithm trained on a given dataset. Due to the several
heterogeneous andmultidisciplinary datasets in theGDI context, an automated,
parameter-free, dynamic and data-driven model selection has been developed
within this work. This algorithm is referred as XGB-NSGAII: it optimizes
the hyperparameters of the XGBoost introduced in Section 2.3.1, applying the
multi-objective optimization algorithm NSGA-II presented in Section 2.3.3.
The objective of the optimization is the research of high precision modeling
while ensuring generalization on new data.

Several HPOs have been already applied on boosting-based algorithms. For
example, Grid Search in [99] and Random Search in [100]. More advanced
techniques like Bayesian optimization have been also used for HPO of boosting
machines in [101,102]. However, the latter assumes independency among the
hyperparameters, which does not hold for boosting machines (see Regular-
ization in Section 2.3.1), limiting a complete parameter-free hyperparameter
space exploration. In [103] the more recently proposed Hyperband has been
applied as HPO for XGBoost. Finally, also GAs have been experimented in this
context in [104, 105]. In particular, [104] applies the GA for GBM regression
problems considering a population size of 16 individuals and 30 generations
in order to minimize the modeling error. Furthermore, the hyperparameter
space explored by this GA application is predefined within discrete values for
some hyperparameters, precluding a parameter-free application. In [105], the
NSGA-II has been applied to optimize XGBoost hyperparameters in a classifi-
cation problem, including the multi-objective optimization of several accuracy
criteria. In this case, neither information regarding the NSGA-II settings nor
the considered hyperparameter search space are provided.

In this chapter, the proposed XGB-NSGAII is introduced. First, the work-
flow as well as the implementation of the optimization algorithm is presented.
Second, the optimization problem defined to select the best models in the HPO
is described. Finally, the analysis of the XGB-NSGAII performance and the
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required resources for different genetic settings, i.e. the number of generations
and the population size, are reported together with a comparison with other
state-of-the-art HPOs.

4.1 Optimization Algorithm

As follows, the workflow and the implementation of the hyperparameter opti-
mization algorithm XGB-NSGAII are presented.

4.1.1 Workflow

The XGB-NSGAII combines the hyperparameters validation reported in Fig-
ure 2.10 with the evolutionary algorithm workflow represented in Figure 2.11,
applied with the XGBoost and with the NSGA-II respectively. The optimiza-
tion starts with an initial random population of hyperparameter sets. At each
generation of the GA, new sets are derived with the genetic operators and vali-
dated through the CV on the training data within a distributed system. Finally,
the best hyperparameters are evaluated on the test data. The workflow of the
developed XGB-NSGAII is divided into four steps: initialization, distributed
modeling, genetic operators and model selection. The flowchart of this ap-
proach is reported in Figure 4.1 and the mentioned steps are described below.
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parameters
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Data
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best model
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Models
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True

False

Figure 4.1: Workflow of the XGB-NSGAII divided into: initialization, distributed modeling,
genetic operators and model selection.
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Step 1 - Initialization. Beside preparatory procedures such as the loading of
the preprocessed data and the start of the distributed system, in this step the
available observations are split into training and test data. Moreover, the hy-
perparameter sets corresponding to the initial population are selected with
a random uniform sampling. This corresponds to a Random Search (see
Section 2.3.3) which is considered a useful method for initializing search-
ing processes [74]. In particular, H hyperparameter sets {p1, p2, . . . , pH} are
generated within the predefined boundaries of the hyperparameter space intro-
duced later in this section. The number of hyperparameter sets H corresponds
to the population size. In addition, two specific hyperparameter sets are added
to the randomly sampled ones in order to increase the efficiency of the HPO.
These correspond to the default hyperparameters of the XGBoost and a variant
of it, which includes a larger number of estimators, a deeper maximum tree
size and a lower learning rate.

Step 2 - Distributed Modeling. In the distributed modeling the exploration
of the hyperparameter space takes place. The prediction capability of each
hyperparameter set p is validated through the K-fold CV on the training data,
referred from now on as (X tr,Y tr ). Totally H × K models are trained in this
step. For each hyperparameter set the mean µErr and the standard deviation
σErr are computed on the K-fold CV scores, see (2.43) and (2.44) respectively.

Step 3 - Genetic Operators. The genetic operators of the NSGA-II are ap-
plied in order to generate new hyperparameter sets according to the optimiza-
tion objectives (see Evolutionary Algorithms in Section 2.3.3). First, selection
for reproduction and variation are applied to produce new potentially good
hyperparameters from the current parent population, known as offspring. The
latter are then evaluated within the distributed modeling from Step 2. Finally,
the selection for replacement is performed in order to compare the offsprings
with the current parent population and select the individuals belonging to the
next population. This step is iterated for the given number of generations.

Step 4 - Model Selection. In the final step, the hyperparameter sets included
in the Pareto front of the final population (see Figure 2.12b) are used to evaluate
the test error eErr on the test data. The final model selection consists of two
steps: first, only the hyperparameter sets of the final population for which the
error eErr lies within 2 ∗ σErr from the µErr are kept, i.e. for which:

µErr − 2 ∗ σErr < eErr < µErr + 2 ∗ σErr . (4.1)
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Afterwards, out of the filtered hyperparameter sets, the one with a lower µErr

is selected to train the final model.

4.1.2 Implementation

The implementation of XGB-NSGAII is based on three main Python libraries:
Dask [106], Distributed Evolutionary Algorithms in Python (DEAP) [107] and
the XGBoost [108]. Dask includes APIs enabling advanced parallelism and
resource scaling for analytics. It is able to run algorithms independently from
the hardware composition by efficiently breaking up large computations onto
distributed systems. The available hardware is abstracted by a scheduler and
a set of workers. The running algorithms communicate with the scheduler,
which ensures a balanced computing load on all the workers. This abstracted
system is robust to any hardware fault because workers can be dynamically
restored. In this way, the perfect balance between required performance and
available computational power is ensured either on aHPCor on a localmachine.
The XGB-NSGAII is developed such that each worker can run on a single
node of the HPC or on a thread of a local machine. The DEAP library
includes the main genetic operators and tools in order to create customized
optimization algorithms to fit any specific problem. Hence, it is possible to
combine the individual genetic operations with the Dask distributed system
and the XGBoost. According to the amount of data and the genetic settings,
the XGB-NSGAII can be scaled based on the available computational power.
In Figure 4.2, the structure of the implementation of the XGB-NSGAII is

represented in terms of framework modules, external modules and interfaces;
this is a partial detailed view of the UML reported in Figure 3.5, including
connections among the different modules and interfaces. The structure is intro-
duced as follows. The Optimization Manager acts as a central hub connecting
the required modules and resources. This ensures the correct initialization of
the procedure and the central management of possible errors. Through the
User Interface, the user is able to indicate its preferences for the optimization,
e.g. the data to model, the genetic settings, but also the required resources
in terms of number of workers and memory to allocate for each computing
node. The Optimization Manager first loads the data to model from the data
warehouse through the Storage interface. Afterwards, the scheduler and the
workers are started. As soon as everything is properly set up, the XGB-NSGAII
module is run. The latter combines the NSGA-II operations from DEAP with
themodels manager, which is in charge of training and validating the XGBoost
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models. An instance of the scheduler is provided to theModels Manager from
the Optimization Manager, such that the former is able to communicate di-
rectly with the distributed system in order to submit the procedures regarding
the models training and validation.

As introduced in Section 3.1, all the modules involved in the framework are
independent from each other such that each of them can be substituted with a
variation of it. The only requirement is that the interfaces are satisfied, i.e. that
the information flow between the modules remains unaltered. For instance,
the XGB-NSGAII module can be substituted by another optimization module.
In this way, the Grid Search and Hyperband are integrated in the framework.
Similarly, also the learning method or the storage system can be substituted.

External ModuleFramework Module InterfaceLegend

HPC

User

User Interface

HPC Manager

StorageData

Warehouse

Dask

Optimization Manager

Distributed Computing

XGBoost

Models Manager

XGB-NSGAII

NSGA-II

DEAP

Figure 4.2: UML of the XGB-NSGAII optimization.

4.2 Optimization Problem

As already introduced in Section 2.3.3, the goal of a HPO consists in selecting
the model able to achieve the best performance on the underlying data. In this
section, the considered objectives and constraints as well as the hyperparameter
space in order to achieve this goal are explained.

4.2.1 Objectives and Constraints

Single objective optimizations are able to focus only on the model performance
in terms of either accuracy or resources. Adopting a multi-objective optimiza-
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tion algorithm like the NSGA-II, it is possible to tune the hyperparameters in
order to be robust and efficient, selecting the best model ensuring both accu-
racy and generalization on new data. This can be translated as the research of
the minimum error, but at the same time be able to maintain this precision on
data not included during the modeling phase. Thus, the error estimation does
not depend on the portion of data where it is computed on. The considered
evaluation metrics for the XGB-NSGAII are the MAE and the R2, introduced
in (2.40) and in (2.42) respectively. These scores are the results of the K-fold
CV in the distributed modeling step. Consider µMAE the mean and σMAE the
standard deviation computed on the MAE scores of the K folds; similarly, µR2

is the mean computed on the R2 scores from the same procedure. The multi-
objective optimization problem considered for the proposed HPO is based on
three objectives:

1. minimize µMAE to achieve the best precision, i.e. to reduce the difference
between predictions and ground truths;

2. minimize σMAE to increase the generalization on unknown data, i.e. the
same MAE error has to be achieved on different portions of data;

3. maximize µR2 to strengthen the precision of the optimization with a
global and unit independent score.

Furthermore, since a negative R2 indicates an invalid model (see Section 2.3.2)
µR2 is constrained during the genetic operations to be positive, i.e. solutions
with negative R2 would have a lower chance to be selected for the next gen-
eration. Each score is function of the training observations (X tr,Y tr ) and
of a hyperparameter set p sampled within a predefined hyperparameter space
[p(l), p(u)]. The optimization problem is summarized as follows:

Minimize µMAE(X tr,Y tr, p), σMAE(X tr,Y tr, p)
Maximize µR2 (X tr,Y tr, p)
subject to µR2 (X tr,Y tr, p) > 0, p(l) ≤ p ≤ p(u).

(4.2)

Although the MAE is chosen as metric for the HPO, the loss function con-
sidered to train the XGBoost models is the RMSE (see Section 2.3.2 for the
difference between the evaluation metric and the loss function). Considering
two different metrics for the internal and external optimization allows robust
models and a fair comparison during the choice of the best hyperparameters.
The RMSE is more sensitive to outliers, ensuring precise models. In contrast,
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the MAE does not accentuate the difference of the error magnitude. Therefore,
the latter is considered a valid inter-comparison metric with respect to other
errors [109].

4.2.2 Hyperparameter Space

The hyperparameter space considered for the XGB-NSGAII is reported in
Table 4.1. As introduced in Section 2.3.3, the hyperparameters are related
mostly to the characteristics of the dataset and it is not possible to define them
ahead. For instance, the hyperparameters representing the subsampling of
features and observations depend on the number of significant variables in the
dataset and on the distribution of the data. Similarly, the learning rate and
the number of estimators depend on each other and on the complexity of the
phenomena to model.

Table 4.1: Hyperparameters and their boundaries considered for the XGB-NSGAII.

Name Description Boundaries
Level Subsample scl Feature subsampling at each level [0.5, 1.0]
Node Subsample scn Feature subsampling at each node [0.5, 1.0]
Tree Subsample sct Feature subsampling at each tree [0.5, 1.0]
Data Subsample sd Observ. subsampling at each iteration [0.5, 1.0]

Gamma γ Minimum loss reduction for a leaf [0.0, 1.0]
Regularization λ L1 weights regularization [0.0, 2.0]
Regularization α L2 weights regularization [0.0, 1.0]

Min. Child Weight ωmc Minimum weights sum in a leaf [0.0, 10.0]
Learning Rate ε Shrinkage contribution for each tree [0.0, 1.0]

Number of Estimators M Number of boosting iterations [1, 1000]
Tree Max Depth δM Maximum tree depth for base learners [1, 15]

In order to apply the genetic operators in the HPO, some adaptations have to be
performed on the hyperparameter space. The genetic operators work with bi-
nary or simulated-binary representations of the individuals, which are expected
to be continuous. Therefore, the presence of mixed discrete and continuous hy-
perparameters requires additional steps before applying the genetic operators.
To overcome this issue, the discrete hyperparameters are mapped as floating
values to the intervals [0, 1] before applying the genetic operators. Afterwards,
they are re-mapped to the original intervals for the modeling phase. The two
discrete hyperparameters are the tree max depth and the number of estimators.
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This operation allows a parameter-free HPO on the whole hyperparameter
domain.

Genetic Regularization As introduced in Regularization in Section 2.3.1, a
large number of estimators for the XGBoost may lead to overfitting. A common
procedure to define the best number of required estimators is using the early
stopping approach (see Section 2.3.3). In the proposed HPO the overfitting
conditions are directly monitored by the genetic operators through the defined
objectives. Overfitting situations are identified during the K-fold CV in case of
large σMAE, which means that the hyperparameters are not able to generalize
on new data. Overfitting solutions have a high chance to be neglected by
the selection operator. Thus, only the best combination of hyperparameters
survives the optimization and no early stopping is implemented in this work.

4.3 Results

In this section, the results concerning the application of the XGB-NSGAII
as HPO are presented. First, the datasets considered for the experiments are
introduced. Afterwards, the analysis of the XGB-NSGAII performance and
the required resources for different genetic settings is reported. Finally, a
comparison with other state-of-the-art HPOs is given.

4.3.1 Datasets

The four datasets chosen to investigate the potential of the XGB-NSGAII
are reported in Table 4.2. Three of them correspond to Bosch proprietary
datasets of different GDI characteristics and the fourth one to a synthetic
public dataset. The selected datasets aim to represent different data typologies,
e.g. measurement, simulation and synthetic, as well as different data sizes. The
results of 1288 spray chamber experiments are considered to analyze the effect
of 10 injector geometries and operating points on the spray width sw . 3D-
CFD simulations results of 500 variations of 8 spray targeting coordinates
and injection strategies are analyzed in order to investigate the impinged spray
mass ms. Similarly, the effect of 9 injector geometries on fuel turbulent kinetic
energy (TKE) k is analyzedwith 591 simulation results. More details regarding
these datasets are given in Sections 5 and 6. In order to show the universal
capability of theXGB-NSGAII, the synthetic public Friedman dataset [68,110]
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is considered, which is referred as Fr. The Bosch datasets are anonymized with
the Z-score normalization due to confidentiality data policy (see Section 2.2.3).

Table 4.2: Datasets considered to investigate the XGB-NSGAII.

Variables Source Samples Features
spray width sw Spray Experiments 1288 10

impinged spray mass ms Engine 3D-CFD 500 8
TKE k Nozzle 3D-CFD 591 9

synthetic variable Fr Friedman Dataset 500 10

4.3.2 Influence of the Genetic Settings

The most characterizing parameters of a GA are the size of the population
and the number of generations. Typically, the choice of these genetic set-
tings is limited by the available computing and storage resources, especially
when the individuals evaluations are costly and time consuming. Based on
the application context, the choice of the proper genetic settings may be differ-
ent [111–113]. In this section, the influence of different population sizes and
number of generations is analyzed on the proposed HPO in terms of required
resources and optimization performance. For this work, populations of sizes
24, 48, 100, 200 combined with generations between 0 and 50 are investigated,
as summarized in Table 4.3. The generation zero indicates the evaluation of
the initial population.

Table 4.3: Investigated combinations of number of generations and population sizes.

Population Size Number of Generations
24 [0-50]
48 [0-50]
100 [0-50]
200 [0-50]

Themodeling validation adopted for the investigation corresponds to a training-
test split with 80% of the data for the GA and 20% for the test set, while the K of
the K-fold CV is set equal to 5. All the results reported with this investigation
are related to experiments run on the Bosch HPC through one Dask scheduler
and 16 workers, each one running on a single CPU node.
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Resource and Performance

The influence of the different genetic settings on the modeling performance
and on the required resources for the datasets listed in Table 4.2 are depicted
in Figure 4.3. The x-axes report the number of generations. The left y-
axes indicate the percentage of improvement of µR2 at each generation of the
considered variable. The latter corresponds to the improvement with respect to
the smallest µR2 among the different population sizes found at the generation
zero. The right y-axes represent the amount of resources required during the
optimization process in terms of (CPU ∗ h) measured every 10 generations.
As expected from a typical optimization process, the scores tend to improve

and the required computational resources to increase along the number of
generations. In general, a larger population has higher chance to find better
scores already at the generation zero. Within the first 10 generations, the scores
show a collective strong improvement. After that, they converge at different
speeds and levels, according to the population sizes and datasets. Some main
patterns can be recognized: in most of the cases, a smaller population size
converges to a poorer score. The only exception is for the impinged spray
mass ms, where the run with 24 individuals outperforms the case with a
population size of 48. Generally, the population of 100 and 200 individuals
converge to similar scores, except for the impinged spray mass ms. In this
case, a clear distinction between the two populations is present, i.e. the higher
population size reaches the better score. For this reason, in order to ensure the
best results for all the variables, a population of 200 individuals together with
50 generations is chosen in the frame of this work.
The number of models to train and to validate during the optimization

increases with larger population sizes and number of generations. Thus, the
required resources increase as well. Furthermore, particular hyperparameters
of the XGBoost like the max depth δM , the learning rate ε and the number
of estimators M influence the resources too. Therefore, the progress of the
required (CPU ∗ h) may change its gradient along the generations according
to the optimal hyperparameters found. In addition, the required resources
depend also on the amount of data to model. Similar datasets sizes, such as
the impinged spray mass ms, the Friedman dataset Fr and the TKE k, require
comparable resources. In contrast, the spray width sw demandsmore resources
considering its larger size (see Table 4.2).
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(b) Spray width sw
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(c) Impinged spray mass ms
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(d) TKE k

Figure 4.3: Progression of the improvement on R2 and the required resources of the
XGB-NSGAII on different datasets.

Optimized Hyperparameters

In the following analysis, the modeling of the TKE k dataset with 200 individ-
uals and 50 generations is considered as illustration case. In Figure 4.4, the
evolution of the scores µMAE and σMAE belonging to the Pareto fronts along
different generations is depicted. In addition, part of the individuals generated
during the optimization are reported as well. Since both R2 and MAE follow
the same behavior, the former is omitted for this analysis. Utopia indicates the
desired target of the optimization, i.e. the point where all the objectives assume
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Figure 4.4: Evolution of the Pareto fronts of TKE k along the generations for the objectives µMAE
and σMAE . Part of the generated individuals are also reported.

their optimum value. Along the generations, the genetic operators are able to
discover new individuals producing scores closer to utopia.
In Figure 4.4, it is also possible to observe the contradictive nature of µMAE

and σMAE. Considering the Pareto front of the final generation, the models able
to achieve the minimum average error µMAE imply a bigger standard deviation
σMAE. In contrast, the models reaching the minimum standard deviation σMAE
have a higher average error µMAE. To describe this phenomena, the scores
of the models achieving the smallest µMAE and σMAE in the Pareto front of
each generation are depicted in Figure 4.5a and in Figure 4.5b respectively.
On the one hand, a larger standard deviation corresponds to different results
produced from each fold of the K-fold evaluation. This represents a more
unstable model with a low average error, see Figure 4.5a. On the other hand,
a smaller standard deviation indicates a stable model producing similar results
on different portions of data. This may represent a more conservative model
with a large average error, see Figure 4.5b. In Figure 4.5, the error eMAE on
the test data is reported as well. This follows the average error µMAE in both
cases indicating the absence of overfitting for the optimized hyperparameters.
The contrasting objectives and the application of the NSGA-II develop a broad
final Pareto front, from which the best model can be selected (see Step 4 -
Model Selection in Section 4.1.1).
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(b) Minimum σMAE on each Pareto front.

Figure 4.5: Development of the best TKE k modeling score along the generations.

In Figure 4.6, the optimal hyperparameter combinations discovered during the
XGB-NSGAII are represented for each dataset in Table 4.2. Additionally,
the default values of the hyperparameters of the XGBoost1 are included in
the comparison. In the parallel plot, each vertical axis corresponds to a
hyperparameter and the lines indicates the optimized hyperparameter values
for the considered datasets as well as the default hyperparameter values. The
identified hyperparameters are generally different for each modeled dataset and
from the default hyperparameters. The feature subsampling scl, scn, sct tend
to assume large values. Similarly, the number of estimators M , the learning
rate ε and gamma γ do not show a large variation in the hyperparameter
space. The optimized solutions present a large number of estimators M ,
which require low learning rates ε (see Regularization in Section 2.3.1). The
rest of hyperparameters assumes values on wider intervals of the considered
hyperparameter space.

These results confirm the necessity of adapting each model to the underlying
data through the HPO. Therefore, the automated, parameter free, dynamic and
data-driven model selection presented is the proper approach for the heteroge-
neous datasets available in the GDI context.

1 Python Scikit-Learn Wrapper Interface for XGBoost v. 1.0.2 [108]
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Default Hyperpar.
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Figure 4.6: Parallel plot of the optimal hyperparameters for each investigated dataset.

4.3.3 Benchmark with the State-of-the-Art

The proposed XGB-NSGAII is compared with different state-of-the-art HPOs,
which are: Random Search, Grid Search and Hyperband, all introduced in
Section 2.3.3. In addition, the default hyperparameters of the XGBoost are
included in the comparison in order to represent a no-HPO case. The consid-
ered hyperparameter space is the one defined in Table 4.1. The optimization
settings adopted for each of these methods are reported as follows.

XGB-NSGAII. A population size of 200 and 50 generations are chosen. Al-
though this combination of genetic settings requires a higher amount of re-
sources, it has been shown that it is able to reach optimal results.

Random Search. Through a random uniform sampling, 200 hyperparameter
sets are drawn from the hyperparameter space.

Grid Search. The combination of the first, the second and the third quantile
of the hyperparameter space is considered to achieve a sparse selection.

Hyperband. The number of estimators M is set as the resource to be optimized.
The other hyperparameters are sampled from a random uniform distribution of
the hyperparameter space. The range of resources allowed, i.e. the maximum
number of estimators, is conform to the hyperparameter space considered for
the other HPOs.
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4 Model Selection for Heterogeneous Datasets

The validation of the models is performed through a K-fold CV with K equals
to 5 and a training-test split corresponding to (80−20)% for all the approaches.
The selection of the best models is based on the lowest µMAE achieved, except
for the XGB-NSGAII. For the latter the best model selection is described in
Step 4 - Model Selection in Section 4.1.1.

In Table 4.4, the scores and the performance of the considered HPOs as
well as of the default hyperparameters are listed for the datasets in Table 4.2.
The reported scores are the three objectives considered for the XGB-NSGAII,
i.e. µMAE, σMAE and µR2 , as well as the test score eMAE. Furthermore, the
required computational resources (CPU ∗ h), the consumed average RAM pro
CPU in GigaByte (GB) and the total amount of evaluated models for each
method are reported also in the table.

Table 4.4: Benchmark of XGB-NSGAII with other HPO methods.

Data HPO µR2 µMAE σMAE eMAE CPU ∗ h mem. [GB] models

k

XGB-NSGAII 0.885 0.253 0.024 0.274 4.23 6.71 10 202
Random Search 0.864 0.280 0.023 0.288 0.07 3.54 200
Grid Search 0.849 0.294 0.027 0.286 34.49 28.00 177 147
Hyperband 0.826 0.307 0.033 0.343 0.04 2.40 1663
Default 0.801 0.336 0.026 0.351 - - 1

sw

XGB-NSGAII 0.876 0.242 0.014 0.237 9.51 10.05 10 202
Random Search 0.853 0.277 0.020 0.274 0.11 2.91 200
Grid Search 0.850 0.273 0.012 0.277 52.96 29.80 177 147
Hyperband 0.866 0.261 0.016 0.251 0.06 2.43 1663
Default 0.862 0.264 0.010 0.262 - - 1

ms

XGB-NSGAII 0.926 0.189 0.019 0.175 5.25 6.90 10 202
Random Search 0.886 0.237 0.029 0.238 0.06 2.78 200
Grid Search 0.898 0.233 0.025 0.221 41.27 27.34 177 147
Hyperband 0.884 0.245 0.025 0.187 0.05 2.41 1663
Default 0.866 0.253 0.025 0.220 - - 1

Fr

XGB-NSGAII 0.957 0.803 0.083 0.711 3.67 5.76 10 202
Random Search 0.924 1.042 0.103 0.821 0.06 2.71 200
Grid Search 0.917 1.065 0.078 0.842 35.55 28.30 177 147
Hyperband 0.927 1.049 0.075 0.947 0.04 2.39 1663
Default 0.864 1.397 0.156 1.451 - - 1

In the following analysis, the µMAE and the µR2 are considered first. Starting
from the simplest method, the default hyperparameters are able to provide good
models for all the variables. However, these are generally weaker with respect
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4.3 Results

to the other approaches. Grid Search demands a huge amount of resources
due to the extremely large number of models to compute. Since Grid Search
performs just similar to other state-of-the-art HPOs, the demanded resources
do not justify the application of this approach. Random Search and Hyperband
are comparable in terms of resources. The amount of explored models is
larger for the Hyperband but the performance improvement is not substantially
different with respect to the Random Search. Only for TKE k the latter largely
outperforms the Hyperband. It is not possible to identify the best approach
among Random Search, Grid Search and Hyperband, except for the required
resources and the exploration of the hyperparameter space. In contrast, the
proposed XGB-NSGAII provides the best scores in every case. In Figure 4.7,
the percentage of the improvement achieved by the XGB-NSGAII on µMAE and
µR2 with respect to the other HPOs is reported for every considered dataset. In
general, the XGB-NSGAII ensures an improvement between 8% and 74% for
the µMAE with an average of 25%. Similarly, it reaches an improvement up to
10% for the µR2 with an average of 4%. As expected, large improvements are
achieved against the default hyperparameters, since these are part of the initial
population of the XGB-NSGAII.
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(b) Improvement of R2.

Figure 4.7: Improvement of the scores provided by XGB-NSGAII compared to other HPOs.

Due to the larger amount of computed models, the proposed HPO requires
more resources with respect to Random Search and Hyperband. As previously
demonstrated, the amount of resources demanded by the XGB-NSGAII is
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4 Model Selection for Heterogeneous Datasets

sensible to the dataset size. This effect is less present for the Hyperband, even
when compared with the Random Search.

Beside the high precision, also the generalization on unknown data is suc-
cessfully achieved with the XGB-NSGAII. Although its values of the σMAE
in Table 4.4 are not always the lowest compared to the other HPOs, contex-
tualizing these with the other errors, the goal of the optimization problem is
successfully achieved: the test error eMAE is contained for every dataset within
the interval [µMAE ± 2σMAE]. This indicates that the standard deviation pro-
vided by the XGB-NSGAII can be considered as a meaningful indicator for the
expected error on new data and that the hyperparameter search did not overfit
the training data.

4.4 Summary

In this chapter, an automated, parameter-free, dynamic and data-driven model
selection for GDI data is presented. In particular, the potential of coupling
XGBoost with the optimization algorithmNSGA-II is shown in order to choose
the best set of hyperparameters ensuring good accuracy and generalization for
regression modeling. Compared to the previously published studies, the XGB-
NSGAII includes proper objectives to not only focus on the optimization of the
XGBoost accuracy, but also on its ability to generalize on new data. In addition,
the explored hyperparameter space is continuous and highly multidimensional,
including more hyperparameters. GAs are heuristic global search methods re-
quiring high computational resources to find optimal solutions. Therefore, a
distributed computation is part of the proposed HPO. The optimization perfor-
mance of the novel approach is compared against default hyperparameters and
state-of-the-art methods, like Random Search, Grid Search and Hyperband.
Totally, three datasets from the GDI development and one public are consid-
ered for the investigation. The optimization objectives chosen for the NSGA-II,
combined with a large population size and number of generations showed a
higher accuracy with respect to the other HPOs. However, the resources de-
manded from XGB-NSGAII depend on the dataset size and are higher with
respect to Random Search and Hyperband. Nevertheless, in the context of
GDI development, the additional computational resources are not significant
compared to the expensive generation of the data. The presented approach is
not restricted to combustion engine development, but it is shown that it can be
extended to other data and applications.
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5 Injector Nozzle Analysis

In this chapter, the KD framework is applied to analyze the effects of injector
nozzle geometries and engine operating points on flow dynamics and spray
characteristics. The analysis is performed through numerical investigations
and experiments. In Figure 5.1, the schematic geometry of the injector valve
seat is represented. The latter corresponds to the tip of the injector presented in
Figure 1.3. The fuel enters the combustion chamber through the injector holes
as the needle moves upwards. This movement is parameterized by the needle
lift height nlh . The spray hole axis is defined by the inclination angle α and
the circumferential angle β. Along this axis, the spray hole and the pre-hole
can be identified, characterized by the lengths shl and phl as well as by the
diameters shd and phd respectively. The sum of the two holes lengths is equal
to the wall thickness wtl . The spray hole is further parameterized with the
spray hole conicity Ψ and the spray hole outlet diameter shd,o, while the valve
seat with the circumferential step height sth .
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Figure 5.1: Injector nozzle geometry, from [114].
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5 Injector Nozzle Analysis

5.1 Numerical Analysis of Inner Flow

In order to investigate the nozzle inflow characteristics through the KD frame-
work, the data produced to initialize the optimization of the GDI high-pressure
injector valve seat in [114] are considered. For this work, the data are normal-
ized with the Z-score method (see Section 2.2.3) due to confidentiality data
policy. A general presentation of the data is given as follows, based on [114].
The dataset represents a DOE of 700 geometry variations sampled using the
Sobol approach (see Section 3.2.1). Totally, nine of the design parameters
introduced in Figure 5.1 are analyzed, which are summarized as follows:

X =
(

sth , β , α , nlh , phd , Ψ , shd , shl , wtl
)
. (5.1)

Furthermore, two additional parameters are taken into account to define con-
straints in order to ensure manufacturing feasibility. These are the pre-hole
length phl , corresponding to the difference between the wall thickness wtl
and the spray hole length shl , and the spray hole outlet diameter shd,o. The
constraints are listed in Definition 5.1.1.

Definition 5.1.1. DOE constraints applied for the nozzle numerical analysis:

C1: minimum pre-hole length→ phl = wtl − shl ≥ c1;
C2: pre-hole diameter larger than the sum of the spray hole outlet diameter

and a tolerance→ phd ≥ shd,o + c2;
C3: minimum spray hole outlet diameter→ shd,o ≥ c3.

The 700 sampled designs are evaluated with an automated 3D-CFD work-
flow. The numerical analysis required ∼520.000 CPU ∗ h corresponding to
75 computation days on a HPC. Due to geometrical constraints violation and
simulation failures, out of the 700 geometry variations, 592 designs generated
valid results, which are the datapoints considered for the analysis.

A single 3D-CFD simulation generates a large amount of flow dynamics
and spray information. In this work, five spray and inflow characteristics are
analyzed: the fuel massflow Ûm, the spray plume angle τ, the TKE k, the spray
targeting radius rt and the fuel plume penetration pp , which are summarized
as follows:

Y =
(
Ûm , τ , k , rt , pp

)
. (5.2)
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5.1 Numerical Analysis of Inner Flow

Except the TKE k, the investigated characteristics are depicted in Figure 5.2.
The TKE k indicates the fuel atomization quality depending on the turbulence
level of the flow. Both k and τ are calculated at the pre-hole outlet. The
quantities are spatially and temporally averaged along the considered surface
and within the simulated injection time, i.e. time and spacial series are ported
to scalar values (see Data Type Portability in Section 2.2.3). The analyzed
spray and inflow characteristics are critical for the atomization process; hence,
they are strongly related to combustion efficiency and emissions. For instance,
a small spray plume angle τ ensures a robust spray shape, while a large TKE k
allows a good fuel atomization. A large fuel plume penetration pp may increase
the fuel impingement on the combustion chamber surfaces, which may cause
a lower air-fuel homogenization level and lead to higher consumption and
emissions. The fuel massflow Ûm and the spray targeting radius rt have to be
instead adapted to the required engine and application specifications. Being
able to control and to deeper understand these characteristics would positively
contribute to a further improvement of the valve seat design.
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Figure 5.2: Investigated nozzle inflow and spray characteristics, from [114].
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5 Injector Nozzle Analysis

5.1.1 Data Exploration and Preprocessing

In this section, the exploration and the preprocessing steps of the data are
reported. Part of the data analysis is based on [114].

Input Analysis

In Figure 5.3, the most characterizing data distributions of the sampled geom-
etry parameters are represented. The rest of the distributions are reported in
Appendix A.1.1. Since the Sobol-sequence has been adopted for the DOE,
the data distributions are supposed to be uniform. This is the case of the
circumferential step height sth and the needle lift height nlh . However, due to
the constraints defined in Definition 5.1.1, the distribution of the spray hole
conicity Ψ, the spray hole length shl , the pre-hole diameter phd and the wall
thickness wtl are not uniform. In order to analyze deeper the possible effects
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Figure 5.3: Most characterizing data distributions of the input variables.
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of these constraints on the modeling performance, it is necessary to investigate
the presence of multicollinearity (see Section 2.2.4).
In Figure 5.4, the correlation matrix for the input variables is reported.
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Figure 5.4: Correlation matrix of the explanatory variables.

The correlations are generally weak and can be attributed to spurious correla-
tions due to the sampling constraints:

• C1 ensures a minimum difference between wall thickness wtl and spray
hole length shl , which results into a slightly positive correlation. The
latter can be clearly seen in Figure 5.5a, where a projection on wtl and
shl of the multi-dimensional sampled domain is depicted;

• C2 and C3 are responsible for the correlations of the spray hole conic-
ity Ψ with the spray hole diameter shd and the pre-hole diameter phd .
In this case, the correlation is due to an intermediate variable: the spray
hole outlet diameter shd,o. The latter is influenced by the spray hole
conicity Ψ, which consequently limits the pre-hole diameter phd based
on C2, as represented in Figure 5.5b. The constraint C3 ensures a min-
imum value for the spray hole outlet diameter shd,o, which reduces
the amount of designs with small spray hole conicity Ψ and spray hole
diameter shd , as shown in Figure 5.5c.
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5 Injector Nozzle Analysis

For completeness, a case of unconstrained sampling referred to the needle lift
height nlh and the circumferential step height sth is reported in Figure 5.5d.

The correlations are moderate and they are caused by the imposed con-
straints. Therefore, all the sampled variables can be used for the modeling.
If necessary, the correlations have to be taken into account during the models
interpretation, since the constraints may influence the extracted knowledge.
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Figure 5.5: Examples of constrained and unconstrained samplings, following Definition 5.1.1.

Output Analysis

The distribution of the considered spray and inflow characteristics resulting
from 3D-CFD simulations are reported in Figure 5.6. All the characteris-
tics tend to assume a normal distribution, without highlighting any particular
anomaly in the results, except for TKE k. In this case, a small percentage of
data falls far away from the rest, which may corresponds to an anomaly. As
follows, the outlier analysis is performed using the Chebyshev outlier detection
and the Isolation Forest (see Outlier detection in Section 2.2.2). First, stricter
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(d) Distribution of the fuel plume
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(e) Distribution of the spray tar-
geting radius rt .

Figure 5.6: Distribution of the investigated 3D-CFD nozzle characteristics.

outlier detection settings are set and then, these are adapted to the underlying
data. Only the variables with more potential outliers are reported.

Strict Outlier Detection. In Figure 5.7, the results concerning the Chebyshev
algorithm appliedwith p1 and p2 chosen as 0.1 and 0.05 and the Isolation Forest
with a score threshold of −0.6 are depicted. Each figure is composed of two
parts. The y-axis indicates in both cases the considered output characteristic.
On the right side, the x-axis represent the analyzed designs, while on the
left side, the distribution of the output. Considering the boundaries of the
Chebyshev outlier detection, anomalies are recognized only for TKE k and
spray plume angle τ, including observations belonging to the very end of their
distribution tails. In the case of Isolation Forest, it is not possible to direct
track back the variables that caused the points to be considered outliers, due
to the stochastic operations run during the outliers search. Although these
points are far away from the rest, most of them are still plausible. For this
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reason, adjusting the settings of the outlier detection methods may increase
their cleaning efficiency.
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(b) Outlier detection on fuel plume penetration pp
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Figure 5.7: Outliers detection results adopting strict settings.

Optimal Outlier Detection. In Figure 5.8, the results regarding the outlier
detection with adjusted settings in order to adapt the methods to the data are
reported. In this case, the Chebyshev algorithm is applied with p1 equals to
0.05 and p2 to 0.025. The Isolation Forest score threshold is slightly decreased
to −0.65. These small variations allow the algorithms to become less severe
with normal observations, but they are still able to catch the single potential
anomaly in TKE k.

Considering the results of the optimal outlier detection, the amount of outliers is
not significant with respect to the total dataset size. Therefore, the single point
highlighted from the optimal outlier detection is neglected for the next KD steps
and no further reconstruction procedures are performed. Although boosting
algorithms are robust against outliers, the presence of wrong observations in
the data has to be avoided in order to ensure a correct knowledge extraction.
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(b) Outlier detection on fuel plume penetration pp
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Figure 5.8: Outliers detection results adopting optimal settings.

5.1.2 Model Selection and Validation

The preprocessed dataset containing 591 observations and 9 features can be
used for the modeling step. The XGB-NSGAII and the polynomial regression
are considered in order to compare the parametric and the non-parametric
learning. In both cases, a 5-fold CV and (80 − 20)% training-test split are
applied to compute the scores. The XGB-NSGAII models are selected with
50 generations and a population of 200 individuals. The polynomials degrees
are chosen as the degrees providing the best average MAE in the 5-fold CV.

In Table 5.1, the scores resulting from the modeling methods are reported
in terms of µR2 , µMAE, σMAE and eMAE. In most of the cases, the performance
of the two learning methods are equivalent. For the fuel massflow Ûm, the
spray plume angle τ and the spray targeting radius rt , the polynomial modeling
is able to provide slight higher µR2 , even though a better µMAE is achieved
only for the fuel massflow Ûm. The decision-tree based modeling is able to
largely outperform the polynomial for TKE k and fuel plume penetration pp .
In particular, the XGBoost performance on TKE k improves of 6% for the
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µR2 and about 19% for the µMAE with respect to the polynomial. Similarly,
µR2 improves of 2% and µMAE of 5% for the modeling of the fuel plume
penetration pp .

Table 5.1: Modeling scores of the 3D-CFD nozzle analysis.

XGBoost Polynomial
Data µR2 µMAE σMAE eMAE µR2 µMAE σMAE eMAE degree
Ûm 0.989 0.074 0.008 0.066 0.990 0.069 0.006 0.058 3
τ 0.786 0.329 0.040 0.339 0.789 0.339 0.025 0.325 2
k 0.885 0.253 0.024 0.274 0.834 0.311 0.024 0.322 3
pp 0.782 0.363 0.020 0.378 0.767 0.380 0.023 0.373 2
rt 0.908 0.212 0.024 0.236 0.915 0.215 0.007 0.206 2

The results obtained through the XGBoost ensure that the models are able to
capture the physics behind the data. The lowest µR2 is 0.782 achieved by the
fuel plume penetration pp; right after it, there are the spray plume angle τ with
0.786 and the TKE k with 0.885. The rest of the variables are modeled with a
µR2 larger than 0.9.
In Figure 5.9, the µMAE, the σMAE and the eMAE are depicted for each model.

The test error is always in the interval [µMAE ± 2σMAE], which ensures the
reliability of themodels and excludes overfitting. This means that the XGBoost
models are able to provide a good generalization on unknown datapoints.
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Figure 5.9: Evaluation of the XGBoost modeling quality in terms of the scores µMAE , σMAE and
eMAE from the 3D-CFD nozzle analysis.
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5.1.3 Knowledge Extraction

In this section, the knowledge extraction for the analysis of the GDI high-
pressure injector valve seat is performed in terms of models exploration and
models exploitation.

Models Exploration

Once the robust and precise XGBoost models are available, the model explo-
ration based on feature importance and partial dependencies can be performed
(Section 2.4). In Figure 5.10, the relative feature importance retrieved during
the modeling of the five inflow and spray characteristics are depicted. On the
x-axis the investigated valve seat geometries are listed, while on the y-axis
their relative feature importance on each modeled output is reported. Accord-
ing to the feature importance, it is possible to determine the geometries with
a lower effect on the outputs. In particular, these are the circumferential step
height sth , the circumferential angle β and the pre-hole diameter phd , with an
importance lower than 0.1. In contrast, one of the key geometries is the needle
lift height nlh , which influences most of the variables. The spray targeting ra-
dius rt is characterized principally by the inclination angle α. The fuel plume
penetration pp is dominated by the needle lift height nlh with the highest influ-
ence achieved with respect to the other geometries and characteristics. The fuel
massflow Ûm is influenced mostly by the spray hole diameter shd . Compared to

nlh shd α wtl Ψ shl sth β phd
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Figure 5.10: Feature importance of the 3D-CFD nozzle analysis.
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the other outputs, the spray plume angle τ and the TKE k do not have a single
characterizing geometry.

A connection between the variables magnitude of influence and the mod-
eling performance reported in Table 5.1 can be established. In particular, the
less complex phenomena, i.e. the ones that can be described with less input
variables, are able to achieve higher modeling precision. For instance, the fuel
massflow Ûm can be modeled with almost 99% of accuracy and it is identified
by the main interaction of two variables, i.e. nlh and shd . In contrast, the vari-
ables influenced by many more geometries achieve lower performance. This
behavior can be associated to the curse of dimensionality (Section 2.2.4): a
higher number of relevant dimensions requires a larger amount of observations
to correctly describe the output. Nevertheless, the irreducible error introduced
in (2.6) may still affect the accuracy upper limit, independently by the amount
of collected observations.

The single effects of the most influencing nozzle geometries nlh , shd and
α are represented through the partial dependencies in Figure 5.11 for the
corresponding most affected outputs. The complete partial dependencies are
reported in Appendix A.1.2. On the x-axes are reported the geometry vari-
ations and on the y-axes their effect on the investigated characteristics. It is
important to keep in mind that all the data are normalized, therefore the y-axes
indicates only the variations of the estimate function. Furthermore, the partial
dependencies indicate the general behavior of the outputs and not the punctual
response. The partial dependencies are explained and validated through the
domain knowledge as follows.

Needle lift height nlh . The influence of nlh on the five investigated character-
istics is reported in Figure 5.11a. A large nlh allows more fuel massflow Ûm
through the valve. This holds until a certain threshold is achieved. After that, Ûm
tends to converge, indicating that the throttling does not longer depend on this
parameter. Considering that the nlh corresponds to the cross-section between
the nozzle valve seat and the needle, a large nlh allows the fluid to flow with
lower resistance and velocity. This produces lower TKE k and spray plume
angle τ. For a very low nlh , the desired massflow cannot be provided anymore,
therefore, k and τ decreases as well. Finally, the fuel plume penetration pp has
a positive relation with nlh . This is due to the effect of the latter on Ûm and τ: a
large Ûm and a small τ correspond to a large fuel plume penetration pp .

Spray hole diameter shd . The shd shows almost a linear relationship with
the fuel massflow Ûm, the TKE k and the spray plume angle τ, as depicted
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5.1 Numerical Analysis of Inner Flow

in Figure 5.11b. This behavior results from the fact that a larger shd allows
more Ûm, thus, the radial as well as the axial flow momentum increase, which
lead to higher k and τ. The effect of shd on fuel plume penetration pp and
spray targeting radius rt are omitted because negligible.

Inclination angle α. The effects of the variation of the α are depicted in
Figure 5.11c. The parameter α controls the spray plume direction. Therefore,
it has a positive effect on the spray targeting radius rt . The effect of α on the
other outputs are omitted because negligible.
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(c) Partial dependence of inclina-
tion angle α on rt .

Figure 5.11: Partial dependencies of needle lift height nlh , spray hole diameter shd and
inclination angle α for the respective most influenced inflow and spray

characteristics.

Models Exploitation

Typically, it is required to set the spray targeting radius rt and the fuel mass-
flow Ûm according to specific engine requirements. Moreover, a small spray
plume angle τ to ensure a robust spray shape, a large TKE k to achieve a good
fuel atomization and a small fuel plume penetration pp to decrease the spray
impingement are preferred. As described in the previous section, the geometry
parameters may have different influences on the output characteristics. There-
fore, the definition of a valve seat design able to achieve predefined inflow and
spray characteristics corresponds most of the time to a trade-off among differ-
ent requirements. For instance, a small needle lift height nlh produces a small
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fuel plume penetration pp as well as a large TKE k, but at the same time also
a large spray plume angle τ. The design definition becomes a multi-objective
optimization problem with contradictive objectives.

As an illustrative example, consider that it is required to design a valve
seat such that the spray hole conicity Ψ, the wall thickness wtl , the pre-
hole diameter phd and the spray hole diameter shd are fixed a priori due
to manufacturing constraints. Similarly, the fuel massflow Ûm and the spray
targeting radius rt are fixed due to engine specifications. The XGBoost models
[ fτ(·), fpp (·), fk(·), f Ûm(·), frt (·)] can be exploited in order to define the remaining
parameters, while ensuring the smallest spray plume angle τ and fuel plume
penetration pp as well as the largest TKE k possible. The optimization problem
is summarized as follows:

Minimize fτ(X), fpp (X)

Maximize fk(X)

with X =
(
nlh, shd, α, wtl, Ψ, shl, sth, β, phd

)
subject to fixed

(
Ψ, wtl, phd, shd

)
,

f Ûm(X) = Ûm0, frt (X) = rt0,

X (l)i ≤ Xi ≤ X (u)i , Xi ∈
[
nlh, α, shl, sth, β

]
.

(5.3)

A new larger DOE of ten thousand designs satisfying the constraints defined in
(5.3) is generated using the Sobol sampling. The new DOE is referred as Xs .
The geometry parameters are sampled within the same boundaries of the origi-
nal DOE, indicated in (5.3) with [X (l)i , X (u)i ]. The low-resource demanding and
high accuracy models are adopted to predict the inflow and spray characteris-
tics of Xs . The set of predictions is indicated with Y s . Afterwards, a fictive
outputY f containing the desired outputs is defined. Beside the constrained Ûm0
and rt0, the fictive output Y f contains the minimum spray plume angle τ and
fuel plume penetration pp as well as the maximum TKE k resulting from the
prediction of Xs . The fictive output Y f is summarized as follows:

Y f =
(
Ûm0 , rt0 , fτ,min(Xs) , fk,max(Xs) , fpp,min(Xs)

)
. (5.4)

In order to define the best design(s) satisfying the optimization conditions, the
MAE introduced in (2.40) is computed between the predictions Y s and the
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fictive output Y f such that the designs producing output characteristics similar
to the desired ones assume a smaller error.
The three best valve seat designs identified with the optimization are de-

picted in Figure 5.12 with a parallel plot. In the axes are reported the non-fixed
geometries and the investigated characteristics; the colors indicates the opti-
mized designs. The geometries having less influence on the modeled charac-
teristics such as the circumferential step height sth , the circumferential angle β
and the spray hole length shl have more freedom in the design space. In
contrast, the inclination angle α and needle lift height nlh are forced to assume
specific values in order to satisfy the optimization constraints.

Design A Design B Design C

Design Parameters Outputs

Figure 5.12: Machine learning optimized valve seat designs and their respective outputs.
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5.2 Experimental Analysis of Spray

The application of the KD framework for the analysis of nozzle spray charac-
teristics based on experiments is performed with the data generated during the
GDI 6-hole injector investigation from [96, 115]. The dataset contains 1451
observations corresponding to the combination of two DOEs: one including
60 valve seat designs and the other one 33 engine operating points. Specifi-
cally, the total amount of the observations corresponds to the Cartesian product
of the two DOEs satisfying specific constraints. The considered explanatory
variables are eight valve seat geometries and four operating parameters, which
are summarized as follows:

X =

(
α , shl , shd , l/d , phd , Ψ , wtl ,︸                                        ︷︷                                        ︸

Valve Seat Designs

i f , Pf , Pc , Tf , ti︸                   ︷︷                   ︸
Engine Operating Parameters

)
. (5.5)

Most of the geometries are reported in Figure 5.1, while the operating para-
meters are the fuel pressure Pf , the combustion chamber pressure Pc , the fuel
temperature Tf and the injection time ti . Additional parameters are the fuel
flow rate i f and the ratio l/d. The latter corresponds to the ratio of the spray
hole length shl and the spray hole diameter shd . Experiments are constrained
by stricter manufacturing limitation and test benches capabilities. Therefore
a continuous design space is not always possible. Thus, the DOE plan is the
result of domain knowledge and designs feasibility.

The measurements of the DOE are performed with high resolution spray
cameras, producing several physical information. More details regarding the
experimental environment can be found in [96]. For this analysis, three spray
characteristics are selected: the spray angle γ, the spray width sw and the fuel
spray penetration ps , depicted in Figure 5.13 and summarized as follows:

Y =
(
γ , sw , ps

)
. (5.6)

The spray width sw is measured at 30 mm from the injector tip, while the spray
angle γ at a distance dγ from sw . All the quantities are temporally averaged
within the injection time. The analysis of these spray characteristics is relevant
since they may influence the spray impingement as well as the air-fuel mixture
formation, affecting fuel consumption and emissions. The geometries and
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the output variables are anonymized with the Z-score normalization due to
confidentiality data policy (see Section 2.2.3).

30mm

Injector

Figure 5.13: Measured nozzle spray characteristics, based on [116].

5.2.1 Data Exploration and Preprocessing

In this section, the exploration and the preprocessing steps of the data are
reported. In addition, an analysis of the duplicated measurements is given in
terms of dimension reduction.

Input Analysis

The most characterizing data distributions of the sampled nozzle geometries
and the operating parameters are represented in Figure 5.14. The rest of the
distributions are reported in Appendix A.2.1. As previously introduced, the
experimental DOE is based on a discrete domain space due to manufacturing
limitations. For instance, the wall thickness wtl is only manufactured with
only two different lengths, as depicted in Figure 5.14c. Similarly, the possible
operating parameters are also limited by the test bench and the engine charac-
teristics. Therefore, few variations are available for the fuel temperatureTf , the
combustion chamber pressure Pc and the injection time ti , as reported in Fig-
ure 5.14d, Figure 5.14e and Figure 5.14f respectively. The rest of the variables
followmore uniform and normal distributions, with positive or negative skews,
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5 Injector Nozzle Analysis

according to the imposed constraints. In particular, the spray hole length shl
in Figure 5.14a and the pre-hole diameter phd in Figure 5.14b contain a small
cluster of observations far away from the rest of the data. Essentially, these
clusters correspond to valve seat designs without the pre-hole, i.e. the spray
hole length shl is equal to the wall thickness wtl . The pre-hole diameter phd of
these observations is set to a small arbitrary and fictive value as a placeholder.
Another peculiarity present in the data are the few anomalies assumed by the
fuel temperature Tf . Beside the two main cold (25◦C) and warm (100◦C) tem-
peratures, the variable assumes also other three values measured only for few
geometry variations. This is represented in Figure 5.15a, where the sampling
between fuel temperature Tf and spray hole diameter shd is reported. Fur-
thermore, due to the high experimental costs and physical limitations, only the
most interesting and possible parameters combinations are measured. In par-
ticular, considering Figure 5.15b, only a longer injection time ti is measured for
large values of the combustion chamber pressure Pc , leading to an unbalanced
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(d) Distribution of the fuel tem-
perature Tf .
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tion chamber pressure Pc .
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(f) Distribution of the injection
time ti .

Figure 5.14: Most characterizing data distributions of the input variables.
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sampling, as represented in Figure 5.14e and Figure 5.14f. The unconstrained
sampling between the spray hole diameter shd and the inclination angle α is
reported in Figure 5.15c.
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(b) Constrained sampling.
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(c) Unconstrained sampling.

Figure 5.15: Examples of constrained and unconstrained samplings.

Considering the introduced constraints, it is necessary to investigate the pres-
ence of multicollinearity (see Section 2.2.4). In Figure 5.16, the correlation
matrix is reported for the input variables. Togetherwith the sampled geometries
and operating parameters, the derived ratio l/d is included in the correlation
matrix as well. As expected, the latter has a high positive correlation with
the spray hole length shl and a high negative correlation with the spray hole
diameter shd . Moreover, the presence of the designs without prehole generates
a spurious correlation (see Section 2.2.4) between the spray hole length shl
and the pre-hole diameter phd: this correlation is not related to any specific
physical relation, but it is due to the fact that to the largest spray hole length shl
is associated a constant pre-hole diameter phd . This relationship causes an
indirect correlation between the pre-hole diameter phd and the ratio l/d as
well. Another spurious correlation appears between the combustion chamber
pressure Pc and the injection time ti due the constrained sampling introduced
with Figure 5.15b. Finally, the correlation between the spray hole diameter shd

and the fuel flow rate i f is an example of redundant information: the size of
the spray hole diameter shd determines the fuel flow rate i f .
The following preprocessing operations are performed to remove the multi-

collinearity and clean the dataset:
• the designs without prehole are neglected. The knowledge extraction
may result biased by these few special cases;

• the fuel temperatures Tf between the two extreme values are neglected;
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• the ratio l/d is neglected in favor of the spray hole length shl and the
spray hole diameter shd;

• the fuel flow rate i f is neglected in favor of the spray hole diameter shd .
Both the combustion chamber pressure Pc and the injection time ti are kept
due to the impossibility of removing one of them without major information
loss.

α shl shd l/d Ψ wtl phd if Pf Tf Pc ti

α
sh

l
sh

d
l/
d

Ψ
w
t l

p
h
d

i f
P
f

T
f

P
c

t i

���� ���� ����� ���� ���� ���� ���� ����� ���� ���� ���� �����

���� ���� ���� ��
� ���� ���	 ���		 ���� ���� ���� ���� �����

����� ���� ���� ����� ���� ���� ����� ���� ����� ���� ���� �����

���� ��
� ����� ���� ���� ���� ����
 ����� ���� ���� ���� �����

���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ���� ����

���� ���	 ���� ���� ���� ���� ����� ����� ����� ���� ���� �����

���� ���		 ����� ����
 ����� ����� ���� ����� ����� ����� ����� ����

����� ���� ���� ����� ���� ����� ����� ���� ����� ���� ���� �����

���� ���� ����� ���� ���� ����� ����� ����� ���� ���� ����� �����

���� ���� ���� ���� ���� ���� ����� ���� ���� ���� ����� �����

���� ���� ���� ���� ���� ���� ����� ���� ����� ����� ���� ���	

����� ����� ����� ����� ���� ����� ���� ����� ����� ����� ���	 ���� �����

���	�

�����

�����

����

����

����

��	�

����

Figure 5.16: Correlation matrix of the explanatory variables.

The cleaned input dataset contains 1290 observations and 10 features, which
are summarized as follows:

Xprep =
(
α , shl , shd , phd , Ψ , wtl , Pf , Pc , Tf , ti

)
. (5.7)

Afinal remark regarding the considered sparse discrete input sampling has to be
done. In case a variable sampled on few extreme points has a large influence on
the investigated characteristics, the response variables would follow different
behaviors according to the values assumed from that variable. This situation
may cause a bias in the knowledge extraction. For instance, it is known from
the domain expertise that the fuel temperature Tf and the combustion chamber
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pressure Pc have a strong impact on spray shape. This effect is called flash-
boiling [115,117]. Therefore, it may be necessary to split the dataset on these
variables and analyze the portions of data separately. A more detailed analysis
of this aspect is reported in the next sections.

Output Analysis

Due to acquisition software errors or high uncertainty in the measurements,
experimental datasets are more sensitive to missing data. In the considered
dataset, only two values are missing for the spray angle, corresponding to the
0.16% of the available observations. Considering the small portion of missing
values, the corresponding entries can be neglected for the analysis, which
can be performed with the remaining 1288 datapoints. The data distributions
of the measured spray characteristics are reported in Figure 5.17. All the
characteristics tend to assume a normal distribution, without large skews.
Since no further information indicate the presence of anomalies and that the
observations are plausible, all the datapoints are kept for the modeling phase.
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(b) Distribution of the spray an-
gle γ.
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(c) Distribution of the fuel spray
penetration ps .

Figure 5.17: Distributions of the investigated experimental spray characteristics.

Sampling Limitation

After the preprocessing, the dataset is composed of 54 distinct valve seat
designs, each one measured at least at 23 different operating points. Therefore,
according to the relevant dimensions in the data, different observations may
be associated to the same results. As instance, assuming that the operating
points have much lower influence on the outputs with respect to the valve seat
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geometries (or vice versa), for some observations the variation in the input
space would not generate any variation in the output space. In this case,
the validation of the modeling performance with a classical K-fold CV or a
training-test split may be compromised by the leakage of information from the
training to the test set.

In order to quantify how the grid combination of geometry designs with
operating points may affect the model quality, a specific validation procedure
based on the stratified sampling (see Instance Reduction in Section 2.2.4) is
performed. This methodology is represented in Figure 5.18 and described with
four steps as follows.
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Figure 5.18: Example of stratified sampling applied to validate the models of the experimental
spray characteristics. Totally, 54 injectors and 23 operating points are considered.
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1. Stratification. The dataset is divided into several subsets, called strata.
Each strata is composed by all the observations of a specific injector: consider-
ing the 54 available injectors, then 54 strata are defined, see a) in Figure 5.18.

2. Test Set Definition. The test set is composed of all the observations related
to two different injector designs and two different operating points. Therefore,
the test set contains the measurements of all the available operating points
for the two selected injectors, as well as all the available injectors for the two
selected operating points, see b) in Figure 5.18. In this way, the remaining data
used for the training would not contain any observation regarding the chosen
inputs combination, reducing the risk of information leakage and ensuring a
correct evaluation of the generalization capacity of the models.

3. Training Set Definition. The model validation is performed iteratively: at
each iteration, the modeling performance is evaluated on a new training set.
The latter is composed by the random sampling of i observations from each
strata, excluding the measurements selected for the test set. This means, that
the new training set contains i operating points for each injector. In this case,
i ∈ [1, 21], where 21 corresponds to the minimum number of measurements
for each injector, excluding the test set. See c) in Figure 5.18

4. Learning Curves. In Figure 5.19, the results of the iterative stratified sam-
pling for each modeled characteristics are depicted. This plots are referred as
learning curves. On the x-axis are reported the number of operating points per
injector considered at each iteration. The left y-axis indicates the modeling
score in terms of R2, while the right y-axis represents the size of the test and
the training sets. The learning algorithm adopted is the XGBoost with its
default hyperparameters, which are able to provide good results to evaluate
the learning potential (see Section 4.3.3). The training set is evaluated with a
5-fold CV. For all the analyzed outputs, the training and the test scores globally
increase along the iterations, i.e. with a larger number of observations for the
training set. Only the test score of the spray angle γ stops increasing after
about 15 operating points per injector. After this point, it does not drop sig-
nificantly and remains stable. Therefore, all the learning curves do not show
any overfitting situation. The models are able to generalize well on unknown
datapoints and all the measured observations are used to build the models.

99



5 Injector Nozzle Analysis

� � �� �� ��
��������������������������������

����
���
���
���
��	
��


R
2
���

�

�
���
���
	��

��
����

�
��
��
��
��
��
��
��
�

(a) Learning curve of spray width sw .
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(b) Learning curve of spray angle γ.
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(c) Learning curve of fuel spray penetration ps .

Training Score Test Score

Training Set Size Test Set Size

Figure 5.19: Learning curves based on the number of operating points per injector.

5.2.2 Model Selection and Validation

The preprocessed dataset containing 1288 datapoints and 10 features is used
for the modeling phase. The XGB-NSGAII and the polynomial regression are
applied with the same settings introduced in Section 5.1.2.

In Table 5.2, the scores resulting from the modeling methods are reported in
terms of µR2 , µMAE, σMAE and eMAE. The XGBoost outperforms the polyno-
mials in any dataset. This indicates the presence of high non-linearities in the
data, which cannot be properly modeled by the latter. The XGBoost perfor-
mance improves in general between 4% and 22% for the µR2 and between 34%
and 38% for the µMAE with respect to the polynomial. The results obtained
through the XGBoost ensure that the models captured the physics behind the
data. The lowest µR2 is 0.876 achieved by the spray width sw; right after it,
there are the fuel spray penetration ps with 0.884 and the spray angle γ with
0.947. In addition, the models are able to provide a good generalization on
unknown points.
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5.2 Experimental Analysis of Spray

Table 5.2: Modeling scores of the experimental spray analysis.

XGBoost Polynomial
Data µR2 µMAE σMAE eMAE µR2 µMAE σMAE eMAE degree
γ 0.947 0.140 0.009 0.133 0.910 0.212 0.012 0.189 3
sw 0.876 0.242 0.014 0.237 0.719 0.393 0.012 0.379 3
ps 0.884 0.207 0.017 0.209 0.802 0.320 0.017 0.312 3

In Figure 5.20, the µMAE, the σMAE and the eMAE are depicted for each model.
The test error is always in the interval [µMAE ± 2σMAE], which ensures the
reliability of the models and excludes overfitting.
In order to investigate the effect of the sparse discrete sampling on the

modeling performance, the XGB-NSGAII is performed separately on the ob-
servations measured at cold and at warm fuel temperatures Tf . In Figure 5.20,
the scores resulting from the K-fold CV on the split datasets are reported as
µMAE Warm and µMAE Cold. The fuel temperature Tf does not have a large
impact on the spray width sw performance: the accuracy computed on the
whole dataset and on the temperature splits are similar. In contrast, the models
of the spray angle γ and the fuel spray penetration ps achieve different accuracy
levels according to the fuel temperature Tf . In particular, the behavior of the
investigated characteristics is better captured for the cold temperature. Never-
theless, the performance on the complete dataset corresponds approximately
to the average of the accuracy achieved on the single temperature splits. The
tree-based structure of the XGBoost is able to isolate the behavior of the spray

γ ps sw
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Figure 5.20: Evaluation of the XGBoost modeling quality in terms of the scores µMAE , σMAE
and eMAE from the experimental spray analysis.
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5 Injector Nozzle Analysis

characteristics at different temperatures from the complete dataset and model
them as they were analyzed separately. For this reason, the accuracy of the
global models corresponds to the average of the split ones. It is not necessary
to split the data for the modeling phase.

5.2.3 Knowledge Extraction

In this section, the knowledge extraction for the analysis of the nozzle spray
characteristics based on experiments is performed in terms of models explo-
ration and models exploitation.

Model Exploration

TheXGBoostmodels computed on the investigated spray characteristics are ex-
plored through feature importance and partial dependencies (see Section 2.4).
In Figure 5.21, the extracted relative feature importance are reported. On
the x-axis the valve seat geometries and the operating parameters are listed,
while on the y-axis their relative feature importance on each modeled output
is reported. As expected, one of the dominating parameters is the fuel tem-
perature Tf due to the flash-boiling conditions. The second most influencing
variable is the inclination angle α, while the other parameters apparently do not
show a large effect on the investigated outputs. Differently from the modeling
accuracy, where the learning algorithm is able to generalize the influence of
the sparse fuel temperature Tf , the extracted knowledge may result biased: the

α shl shd Ψ wtl phd Pf Tf Pc ti
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Figure 5.21: Feature importance of the experimental spray analysis.
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real effects of the other variables may be masked by the strong influence of the
fuel temperature Tf . For instance, it is known that the combustion chamber
pressure Pc contributes to the flash-boiling as well, but its influence on the
spray reported in Figure 5.21 is low. Therefore, it is necessary to investigate the
effects of the fuel temperature Tf and of the other input parameters separately.
The partial dependence of the fuel temperature Tf on the three investigated

spray characteristics is depicted in Figure 5.22. The represented dependencies
between the two measured temperatures are interpolated. On the x-axis is
reported the temperature variation and on the y-axis its effect on the investigated
characteristics. Due to the flash-boiling, the fuel temperature Tf has a strong
effect on the spray angle γ and on the fuel spray penetration ps , but almost
negligible on the spray width sw . To be specific, warm fuel temperatures
generally lead to higher fuel spray penetration ps and lower spray angle γ.
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Figure 5.22: Partial dependence of the fuel temperature Tf on the spray characteristics.

The feature importance of the models computed on the portions of cold and
warm observations are reported in Figure 5.23. Similarly to themodeling accu-
racy, the feature importance extracted from the complete dataset in Figure 5.21
corresponds to the averaged importance computed on the split datasets. For
cold temperatures, the inclination angle α dominates the spray angle γ and
fuel spray penetration ps , while its effect on the spray width sw is shared with
other geometries like the wall thickness wtl and the pre-hole diameter phd . In
contrast, for warm temperatures, the inclination angle α dominates the spray
width sw and it has a much lower effect on the other two outputs. In this case,
the operating parameters have a larger effect on the spray characteristics with
respect to the geometries, especially the combustion chamber pressure Pc .
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(a) Feature importance for cold (25◦C) fuel temperature Tf .
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(b) Feature importance for warm (100◦C) fuel temperature Tf .

Figure 5.23: Experimental spray analysis feature importance based on the fuel temperature Tf .

The partial dependencies of the two most characterizing variables, i.e. the
inclination angle α and the combustion chamber pressure Pc , are reported in
Figure 5.24 for the complete dataset as well as for cold and warm fuel temper-
atures. The remaining partial dependencies are reported in Appendix A.2.2.
The partial dependencies extracted from the complete dataset correspond to
the averaged partial dependencies of the two portion of data split on the tem-
peratures. Although the general behavior represented by the complete dataset
is correct, the possibility to extend the investigation to smaller domain spaces
and analyze the underlying influences of the parameters is essential. The par-
tial dependencies of the main influencing parameters are deeper analyzed for
all the temperature conditions as follows.
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5.2 Experimental Analysis of Spray

Inclination angle α. The influence of inclination angle α on the spray char-
acteristics is reported in Figure 5.24a-c. The inclination angle α has a positive
influence on the spray angle γ and the spray width sw . Considering the de-
finition of α in Figure 5.1 and of γ in Figure 5.13, then γ ≈ 2α. Therefore,
γ has a positive correlation with α, which in turns is valid for sw as well.
In contrast, the fuel spray penetration ps is negatively influenced by α. As
already described for the nozzle numerical analysis in Section 5.1.3, a larger
spray angle produces a broader but a shorter penetration. The effects of α are
amplified in case of warm fuel temperatures.
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(d) Partial dependence of Pc on
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(e) Partial dependence of Pc for
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(f) Partial dependence of Pc for
warm Tf .

Figure 5.24: Partial dependencies of inclination angle α and combustion chamber pressure Pc

for the investigated spray characteristics based on the whole observations as well as
the warm (100◦C) and cold (25◦C) fuel temperature Tf .
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5 Injector Nozzle Analysis

Combustion chamber pressure Pc . The influence of the combustion cham-
ber pressure Pc on the spray characteristics is reported in Figure 5.24d-f. For
cold fuel temperaturesTf , the Pc has almost no influence on the spray character-
istics. In contrast, its effect changes dramatically for warm fuel temperatures.
In this case, a low Pc favors the flash-boiling effect, producing a large fuel
spray penetration ps together with a small spray angle γ. Increasing Pc , the
flash-boiling effect reduces as well as its effect on the spray characteristics.
The influence of the Pc on the spray width sw is less accentuate compared
to the other two characteristics. The effect of Pc computed on the completed
dataset results overestimated for cold fuel temperatures Tf and underestimated
for warm fuel temperatures Tf .

Model Exploitation

Generally, it is necessary to design a robust injector against the flash-boiling
conditions. For instance, given a warm fuel temperature Tf and a low combus-
tion chamber pressure Pc , the injector design should be able to generate a low
fuel spray penetration ps . Furthermore, consider the fuel pressure Pf as well
as the injection time ti to be constant due to engine specifications. The valve
seat can be optimized through the previously trained XGBoost model fps (·) in
order to minimize the fuel spray penetration ps . The optimization problem is
summarized as follows:

Minimize fps (X)

with X =
(
α, shl, shd, phd, Ψ, wtl, Pf , Pc, Tf , ti

)
subject to fixed

(
Tf , Pc, Pf , ti

)
,

X (l)i ≤ Xi ≤ X (u)i , Xi ∈
[
α, shl, shd, phd, Ψ, wtl

]
.

(5.8)

Similarly to the model exploitation performed in the nozzle numerical analysis
in Section 5.1.3, a new larger DOE of ten thousand designs is generated using
the Sobol sampling method, according to the constraints defined in (5.8). The
three best designs are depicted in Figure 5.25 as parallel plot together with
their respective outputs. The optimized designs are all able to produce a low
fuel spray penetration ps with different spray angle γ and spray width sw . The
inclination angle α for these designs tends to assume large values. As already
discussed and shown in Figure 5.24c, large values of α provide a lower ps .
The rest of the geometry parameters have low influences on ps for warm fuel
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5.3 Summary

temperature Tf , as reported in Figure 5.23b. Therefore, those parameters have
generally more freedom in the design space. The spray hole conicity Ψ and
wall thickness wtl are fixed for all the optimized designs. The reason of this
result may be associated to the low density of the parameter space of these two
parameters.

Design A Design B Design C

Design Parameters Outputs

Figure 5.25: Machine learning optimized designs and their respective outputs.

5.3 Summary

In this chapter, the potential of the data-driven development based on the
novel KD framework has been presented on the analysis of the high pressure
injector. First, the results of 3D-CFD simulations are adopted to investigate
the influence of injector nozzle geometries on fuel massflow, spray plume
angle, TKE, spray targeting radius and fuel plume penetration. Second, spray
chamber experiments of multi-hole injectors are considered to analyze the
effect of nozzle geometries and operating parameters on spray angle, spray
width and fuel spray penetration.
After a general introduction of the datasets, the data exploration and pre-

processing are performed. Input and outputs variables are analyzed in order to
handle redundant information, spurious correlations and missing values. The
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5 Injector Nozzle Analysis

presence of outliers is investigated as well. The risk of overfitting caused by
the sampling strategy is examined with an iterative stratified model validation
for the experimental analysis. The preprocessed data are used to build robust
and reliable models through the XGB-NSGAII. The modeled inflow and spray
characteristics are then explored and exploited with the guidance of feature im-
portance and partial dependencies plots. These information revealed a proper
representation of the physics behind the data, which is further validated with
the knowledge domain. The presence of sparse discrete samplings of relevant
features demanded the analysis of the physical phenomena on portions of the
dataset. Finally, the machine learning models are applied to select optimal in-
jector designs and operating points able to accomplish predefined constraints
given by manufacturing limitation and engine specifications.
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6 Engine Analysis

In this chapter, the KD framework is applied to analyze the effects of nozzle
geometries, spray targeting and injection strategies on engine mixture forma-
tion, emissions and fuel consumption. The analysis is performed through
numerical investigations and experiments.
In Figure 6.1, a section view of the cylinder of a Bosch internal turbo-charged

GDI two-cylinder research engine with central mounted injector is depicted.
The figure corresponds to a sketch of the GDI system represented in Figure 1.1
and introduced in Section 1.1. The spray plumes in Figure 6.1 are simplified
with cones.

Figure 6.1: Section view of the cylinder of a Bosch internal turbo-charged GDI engine.
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6 Engine Analysis

6.1 Numerical Analysis of Mixture Formation

In order to investigate how the interaction between spray targeting and injection
strategies affects the engine mixture formation, the KD framework is applied
on 3D-CFD engine results. The considered dataset represents a DOE of
500 spray targeting and injection strategy variations sampled using the Sobol
approach (see Section 3.2.1). The spray targeting is characterized by the
variation of the spray directions of a 5-hole injector in terms of plumes targeting
coordinates (xt, yt )1, . . . , (xt, yt )5 on a fixed Z-plane. The injection strategy
is described through two start of injections, indicated as SOI1 and SOI2, as
well as through the percentage of injected fuel mass at each injection, defined
as msplit1 and msplit2. The spray targeting coordinates as well as the output
variables are anonymized with the Z-score normalization (see Section 2.2.3)
due to confidentiality data policy. The input design space is summarized as
follows:

X =
(
(xt, yt )1 , . . . , (xt, yt )5 , SOI1 , SOI2 , msplit1 , msplit2

)
. (6.1)

The remaining engine and injector geometries as well as the engine operating
points are kept constant. In order to ensure the feasibility of the observations,
specific constraints are imposed during theDOE sampling according to domain
expertise. These are listed in Definition 6.1.1 and depicted in Figure 6.2.

Definition 6.1.1. DOE constraints applied for the engine numerical analysis:
C1: minimum distance between the spray plumes, see Figure 6.2a;
C2: the xt -coordinate of the spray plume one is constant, see Figure 6.2a;
C3: the spray plumes are symmetric about the first plume, see Figure 6.2a;
C4: the two injections are in sequence and separated by a minimum pause

interval→ SOI2 ≥ SOI1 + c4, see Figure 6.2b;
C5: the total amount of fuel injected is fixed→ msplit1 + msplit2 = 100%,

see Figure 6.2c.

The 500 designs are evaluatedwith a full automated 3D-CFDworkflow special-
ized for in-cylinder dynamic simulations of mixture formation, which required
∼240.000 CPU ∗ h on a HPC. A single simulation produces a large amount of
spray and mixture information. In this work, four physical quantities are inves-
tigated: the impinged spray mass ms, the liner impinged mass ml, the piston
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(a) Constraints C1, C2, C3 on
the five spray plumes.
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(c) Constraint C5 on the mass
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Figure 6.2: Constrained samplings, following Definition 6.1.1.

impinged mass mp and the homogeneity index λ90, which are summarized as
follows:

Y =
(

ms , ml , mp , λ90

)
. (6.2)

The liner impinged mass ml and piston impinged mass mp correspond to the
total amount of fuel injected on the liner and the piston respectively. The
impinged spray mass ms consists of the sum of all the impinged droplets
in the cylinder. The impinged fuel results into delayed mixture formation,
which may cause higher emissions and fuel consumption. Furthermore, the
mixture formation is characterized by the homogeneity index λ90 aswell, which
is computed from the distribution of the air-fuel ratio λ in the combustion
chamber. As reported in Figure 6.3, the homogeneity index λ90 corresponds
to the length of the interval containing 90% of the air-fuel ratio values. For
homogeneous GDI engines, the air-fuel ratio λ should be uniform in the whole
combustion chamber. Thus, a small homogeneity index λ90 is aimed.

��	 ��� ��	
λ����

���

���

���

���

���

�
��
���

λ90


��

Figure 6.3: Air-fuel ratio λ distribution and evaluation of the homogeneity index λ90.
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The investigated outputs correspond to the spatially averaged quantities along
the considered surfaces at the TDC.

6.1.1 Data Exploration and Preprocessing

In this section, the exploration and the preprocessing steps of the data are
reported.

Input Analysis

The most characterizing data distributions of the sampled spray targeting and
injection strategies are represented in Figure 6.4. The remaining distributions
are depicted in Appendix A.3.1. Similarly to the nozzle numerical analysis
in Section 5.1, the data distributions sampled with the Sobol approach are
uniform and highly dense. However, considering the constraints reported
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coordinate yt1.
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(c) Distribution of the targeting
coordinate yt2.
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(d) Distribution of the first injec-
tion mass split msplit1.
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(f) Distribution of the second
start of injection SOI2.

Figure 6.4: Most characterizing data distributions of the input variables.
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in Definition 6.1.1, distribution skews are present. The distributions of the
two start of injections SOI1 and SOI2 present a positive and negative skew
respectively, ensuring the order of injections and a minimal interval between
them. The spray targeting coordinatess (xt, yt ) are uniformly sampled as
polar coordinates, which then results into normal distributions in the Cartesian
system. The constraints applied during the sampling have further influences
on the distributions. For instance, the y-coordinate of the first spray plume yt1
tends to be uniform with a minimal negative skew. This is due to the absence
of variation on the x-coordinate of that spray plume and it ensures a minimum
distance from the fifth and second plumes, as depicted in Figure 6.2a.
Given the constraints in Definition 6.1.1, it is necessary to investigate the

presence of multicollinearity (see Section 2.2.4). In Figure 6.5, the correlation
matrix for the input variables is reported. The x-coordinate of the first plume
xt1 is neglected because it is constant. Three main correlation clusters can be
observed in the matrix: one for the targeting coordinates (xt, yt ), one for the
mass splits msplit1 and msplit2 and one for the start of injections SOI1 and
SOI2. The constraint C1 causes the small correlations between the various
targeting coordinates, while the symmetry imposed by the constraint C3 is
responsible for the significant correlations between the couple of coordinates
(xt2, xt5), (yt2, yt5), (xt3, xt4), (xt3, yt3). The two start of injections SOI1 and
SOI2 are slightly correlated due to the constraint C4. Finally, the constraint C5
induces the correlation between the mass splits msplit1 and msplit2: from one
mass split it is possible to obtain the other one, i.e. they produce redundant
information (see also Figure 6.2c).
The following preprocessing operations are performed to clean the data:

• for each couple of symmetric coordinates, one of them is neglected. In
this way, the representation of the input space remains unchanged;

• the second injection mass split msplit2 is neglected in favor of the first
one; a newvariable referred as fuelmass splitmsplit indicates themsplit1.

Both start of injections SOI1 and SOI2 are kept due to the impossibility of
removing one of them without information loss. The preprocessed input space
considered for the modeling phase is summarized as follows:

Xprep =
(
yt1 , (xt, yt )2 , (xt, yt )3 , SOI1 , SOI2 , msplit

)
. (6.3)
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Figure 6.5: Correlation matrix of the explanatory variables.

Output Analysis

The distribution of the considered engine characteristics resulting from 3D-
CFD simulations are reported in Figure 6.6. All the distributions tend to assume
a positive skew, especially the piston impinged mass mp. The datapoints far
away from the average of the observations are not completely isolated to
consider them anomalies. Moreover, the goal of the analysis corresponds
to identify the targeting and injection strategy achieving lower impingement
and homogeneity index λ90. Therefore, considering the observations with
high impingement and large homogeneity index λ90 as possible anomalies and
neglecting them would bias the models, since they would not be trained on the
portion of results to avoid.
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spray mass ms.
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(b) Distribution of the liner im-
pinged mass ml.
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(c) Distribution of the piston im-
pinged mass mp.
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(d) Distribution of the homo-
geneity index λ90.

Figure 6.6: Distribution of the investigated 3D-CFD engine characteristics.

6.1.2 Model Selection and Validation

The preprocessed dataset containing 500 observations and 6 features can be
used for the modeling step. The XGB-NSGAII and the polynomial regression
are applied with the same settings introduced in Section 5.1.2.
In Table 6.1, the scores resulting from the modeling methods are reported

in terms of µR2 , µMAE, σMAE and eMAE. The XGBoost outperforms the poly-

Table 6.1: Modeling scores of the 3D-CFD engine analysis.

XGBoost Polynomial
Data µR2 µMAE σMAE eMAE µR2 µMAE σMAE eMAE degree
ms 0.926 0.189 0.019 0.175 0.600 0.461 0.061 0.393 3
ml 0.855 0.275 0.040 0.268 0.714 0.420 0.047 0.413 2
mp 0.974 0.087 0.011 0.093 0.652 0.395 0.060 0.325 3
λ90 0.733 0.386 0.017 0.353 0.696 0.403 0.020 0.374 2
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nomials in any dataset. In particular, its performance on the impingement
variables improves in general between 20% and 30% for the µR2 and between
35% and 78% for the µMAE with respect to the polynomial. The improve-
ment on the homogeneity index λ90 is less substantial. The results obtained
through the XGBoost ensure that the models captured the physics behind the
data. The lowest µR2 is 0.733 achieved by the homogeneity index λ90; right
after it, there is the liner impinged mass ml with 0.855, while the rest of the
variables are modeled with scores higher than 0.9. In addition, the models
are able to provide a good generalization on unknown points. In Figure 6.7,
the µMAE, the σMAE and the eMAE are depicted. The test error is always in
the interval [µMAE ± 2σMAE], which ensures the reliability of the models and
excludes overfitting.

mp ms ml λ90
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Figure 6.7: Evaluation of the XGBoost modeling quality in terms of the scores µMAE , σMAE and
eMAE from the 3D-CFD engine analysis.

6.1.3 Knowledge Extraction

In this section, the knowledge extraction for the analysis of how the interaction
between spray targeting and injection strategies affects the engine mixture
formation is performed in terms ofmodels exploration andmodels exploitation.

Model Exploration

Once the robust and precise XGBoost models are available, the model explo-
ration based on feature importance and partial dependencies can be performed
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(see Section 2.4). In Figure 6.8, the relative feature importance retrieved dur-
ing the modeling of the engine characteristics are reported. On the x-axis
the investigated spray targeting coordinates and injection strategies are listed,
while on the y-axis their relative feature importance on each modeled output
is reported. The parameters dominating the considered output variables are
the two start of injections SOI1 and SOI2 as well as the fuel mass split msplit .
The piston impinged mass mp together with the impinged spray mass ms are
mainly characterized by the first start of injection SOI1, while the homogeneity
index λ90 and the liner impinged mass ml by the second start of injection SOI2.
The fuel mass split msplit does not dominate any characteristics, yet it has a
larger impact than the targeting coordinates. Based on the discussed feature
importance, it is possible to focus the investigation of the engine characteristics
in a lower design space, including only the input parameters having a larger
impact. Furthermore, it can be stated that the injection strategy has a larger
impact on the investigated variables compared to the spray targeting.

SOI1 SOI2 msplit yt1 xt2 yt2 xt3 yt3
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Figure 6.8: Feature importance of the 3D-CFD engine analysis.

The single interactions of SOI1, SOI2 and msplit are extracted from the models
and depicted as partial dependencies in Figure 6.9. The complete partial
dependencies are depicted in Appendix A.3.2. The influence of the parameters
on the impinged spray mass ms is omitted because it corresponds to the sum
of the other impingements. On the x-axes are reported the injection strategies
variations and on the y-axes their effect on the investigated characteristics.
The partial dependencies are explained and validated through the domain
knowledge as follows.
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Figure 6.9: Partial dependencies of first start of injection SOI1, second start of injection SOI2
and fuel mass split msplit for the engine characteristics.

First start of injection SOI1. A very early SOI1 produces a large piston im-
pinged mass mp: until 450◦CA a. TDC the piston is in the first half of its
movement towards the BDC and it can be reached by the spray plumes. In
this phase, the liner impinged mass ml is not influenced by the SOI1, since
the cylinder liner is covered by the piston. As the latter moves away from the
TDC, the mp decreases until the first injection cannot reach the piston surface
anymore. In contrast, during the piston descent, the ml starts to increase until
the area of the impinged liner remains constant. At 540◦CA a. TDC, when the
compression cycle starts, the spray plumes contract themselves reducing their
penetration. Thus, the ml decreases and the mp stays unaltered. The SOI1 has
a low effect on the homogeneity index λ90 until 550◦CA a. TDC: the fuel has
enough time to be properly mixed with the air until the end of the cycle. The
explanation of the large λ90 for a later SOI1 is reported with the description of
the SOI2 influence.

Second start of injection SOI2. The SOI2 does not have a significant effect
on the piston impinged mass mp: in the interval where the second injection
may start, the piston is either far away from the TDC or the compression phase
reduces the spray penetration. The compression is responsible also for the
monotonic behavior of the liner impinged mass ml with the variation of the
SOI2: as the piston moves towards the TDC, ml decreases together with the
spray penetration. The homogeneity index λ90 is more sensitive to the SOI2:
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a later second start of injection corresponds to a shorter time for the fuel to be
mixed with the air. Therefore, a good homogenization cannot be reached. In
addition, the SOI2 is responsible for the large λ90 in case of a late SOI1: if the
first injection happens after 550◦CA a. TDC, the second injection has to start
after the former, producing a larger λ90.

Fuel mass split msplit . The influence of the msplit on the impingements is
an indirect effect of the start of injections: injecting a larger mass during the
second injection, i.e. a small msplit , the probability of impinging either the
piston or the liner is low because of the reduced penetration. In contrast, the
homogeneity index λ90 has in this case a negative relation with the msplit : a
larger mass injected during the second injection is not able to generate a proper
air-fuel mixture in the short interval before the end of the cycle.

Model Exploitation

Besides enabling the understanding of the investigated physical phenomena, the
partial dependencies in Figure 6.9 can be analyzed to define a proper injection
strategy. For instance, in order to achieve a low impingement, it is preferred to
choose the first start of injection SOI1 approximately between 450◦CA a. TDC
and 475◦CA a. TDC. The selection of the second start of injection SOI2 and
the fuel mass split msplit may be more complicated. A low impingement is
achieved with small values of both second start of injection SOI2 and fuel mass
split msplit . However, a low homogeneity index λ90 is given by large values of
the latter variables. Due to the described conflict, the design definition becomes
a multi-objective optimization problem with contradictive objectives.
The high accuracy models can be exploited in order to define the optimal

injection strategy given a specific spray targeting. The optimization aims
to minimize the impinged spray mass ms corresponding to the sum of the
whole impingements in the combustion chamber togetherwith the homogeneity
index λ90. The optimization problem is summarized as follows:

Minimize fms (X), fλ90 (X)

with X =
(
yt1, (xt, yt )2, (xt, yt )3, SOI1, SOI2, msplit

)
subject to fixed

(
yt1, (xt, yt )2, (xt, yt )3

)
,

X (l)i ≤ Xi ≤ X (u)i , Xi ∈
[
SOI1, SOI2,msplit

]
.

(6.4)

119



6 Engine Analysis

Similarly to the model exploitation performed in the nozzle numerical analysis
in Section 5.1.3, a new larger DOE of ten thousand designs is generated using
the Sobol sampling method, according to the constraints defined in (6.4). The
three best designs are depicted in Figure 6.10 as parallel plot together with
their respective outputs. The resulting optimized designs are conform to the
information extracted from the partial dependencies plots in Figure 6.9. The
first start of injection SOI1 lays between 450◦ and 475◦CA a. TDC, where
the impingement is minimum. The second start of injection SOI2 having a
contradictive effect on liner impinged mass ml and homogeneity index λ90
can vary in the interval [550◦, 600◦], where both objectives are minimized
together, as shown in Figure 6.9b. Finally, although fuel mass split msplit has
a contradictive effect on the impingement and homogeneity index λ90, it has a
stronger influence on the latter (see Figure 6.9c). Therefore, a larger fuel mass
split msplit is selected for the optimized design.

Design A Design B Design C

Design Parameters Outputs

Figure 6.10: Machine learning optimized designs and their respective outputs.
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6.2 Experimental Analysis of Emissions

The investigation of the nozzle experimental analysis reported in Section 5.2
has been extended to study the influence of valve seat geometries and operating
points on engine emissions [96, 115]. In this case, the DOE of the geometries
is reduced from 60 to 55 variations, while a new, second DOE containing
192 engine operating points is defined. The two DOEs are combined together
as in the nozzle experimental analysis with a Cartesian product. Besides
the eight geometrical valve seat parameters presented in Section 5.2, seven
engine operating parameters are considered for this analysis. The investigated
explanatory variables are summarized as follows:

X =
(
α , shl , shd , l/d , phd , Ψ , wtl , i f , IMEP , Pf ,

Tw , lf , SOI , n
) (6.5)

The operating parameters are the indicated mean effective pressure IMEP, the
fuel pressure Pf , the cooling water temperature Tw , the engine throttle valve
position lf , the start of injection SOI and the engine speed n. Similarly to
the nozzle experimental analysis, the engine operating points are limited by
the high measurement costs and the test bench capabilities. Therefore, the
definition of the DOE plan represents a combination of domain knowledge and
feasibility.
Out of the several physical information that can be measured, three emission

quantities are selected for this analysis: the hydrocarbons HC, the nitrogen
oxides NOx and the particulate number PN , which are summarized as follows:

Y =
(

HC , NOx , PN
)

(6.6)

The geometries and the output variables are anonymized with the Z-score
normalization (see Section 2.2.3) due to confidentiality data policy. More
information regarding the experimental environment can be found in [96].

6.2.1 Data Exploration and Preprocessing

In this section, the exploration and the preprocessing steps of the data are
reported. In addition, an analysis of the duplicated measurements is given in
terms of dimension reduction.
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Data Selection

The dataset available for this investigation contains 27 817 points, which do
not only corresponds to the observations defined in the DOE, but also to cal-
ibration and reference operating points as well as duplicated measurements.
To ensure valid results, engine investigations require the evaluation of cali-
bration and reference points as well as multiple measurements to check the
plausibility of the observations. Furthermore, for each observation, the dataset
does not include the desired operating points, but the ones measured during
the experiment. In particular, the operating point given in the test bench is
reached within predefined tolerance intervals. Therefore, a simple query on
the dataset searching for the DOE operating points would not be successful.
For this reason, a search algorithm, taking into account the desired operating
points and the possible tolerance intervals is adopted. Out of the 27 817 ob-
servations in the original dataset, 20 597 datapoints corresponding to the DOE
plan are isolated and the remaining 7220 including calibration and reference
points are neglected. The handling of the duplicated observations is reported
in the section Output Analysis. For the modeling phase, the desired operating
points from the DOE are considered as training data instead of the measured
ones. This allows the models to learn the test bench tolerances in the outputs,
ensuring proper predictions on new given data.

Input Analysis

The preprocessing of the geometry parameters corresponds to the one per-
formed for the nozzle experimental analysis in Section 5.2. Although the
engine speed n assumes different values in the raw data for calibration and
reference points, it is not part of the DOE plan. Thus, it is not considered for
the modeling. In Figure 6.11, the data distributions of the sampled operating
points excluding the duplicated measurements are represented. Similarly to
the sampling of the geometry parameters, the operating points are defined in
a discrete domain space. For instance, the cooling water temperature Tw can
be either cold or warm. Similarly, the engine throttle valve position lf can be
either fully or partially opened, represented with the values 1 and −1 respec-
tively. The start of injection SOI assumes a uniform distribution, while the
IMEP and the cooling water temperature Tw present a skew due to an imposed
sampling constraint. The latter is introduced in order to focus the research
on more interesting areas of the domain space. To be specific, it is known
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(d) Distribution of the indi-
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(e) Distribution of the cooling
water temperature Tw .

Figure 6.11: Data distributions of the engine operating points.

from the domain expertise that for high IMEP and low cooling water tempera-
ture Tw , large emissions are generated due to the impossibility of achieving a
proper air-fuel mixture. Therefore, these operating points are not included in
the DOE. This constraint is reported in Figure 6.12a, while the unconstrained
sampling between the start of injection SOI and the fuel pressure Pf is reported
in Figure 6.12b. Considering the introduced constraint, it is necessary to in-
vestigate the presence of multicollinearity (see Section 2.2.4). In Figure 6.13,
the correlation matrix of the operating parameters is reported. The constraint
between the IMEP and the cooling water temperature Tw produces a relevant
correlation. In contrast, the rest of unconstrained parameters do not present any
multicollinearity issue. Since the cooling water temperature Tw and the IMEP
may have a strong impact on the emissions, both are kept for the modeling but
their multicollinearity is taken into account during the model exploration.
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(b) Unconstrained sampling.

Figure 6.12: Examples of constrained and unconstrained samplings.

The cleaned dataset after the preprocessing on the input variables contains
18 792 observations and 11 features, which are summarized as follows:

Xprep =
(
α , shl , shd , phd , Ψ , wtl , IMEP , Pf , Tw , lf , SOI

)
(6.7)
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Figure 6.13: Correlation matrix of the explanatory variables.

Output Analysis

As already introduced, the dataset contains duplicated observations. Each
injector is measured at the same engine operating point from two to eight
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times. In order to achieve robust measurements, two metrics are considered:
the average and the standard deviation of the duplicated measurements. The
procedure adopted to remove the duplicated values and possible outliers is
described as follows.

Duplicates. In Figure 6.14, the comparison between the distributions of the
measured emissions before and after the duplicates averaging are reported.
While the NOx distribution has a multimodal behavior, the HC and the PN
present a positive skew, especially the latter. The size of the reduced dataset
corresponds almost to the half of the original one: the 18 792 partially cleaned
observation resulting from the preprocessing of the input are reduced to 9597.
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(b) Distribution of NOx .
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(c) Distribution of PN .

Figure 6.14: Distribution of the emissions observations with and without the duplicates.

Outliers. The data reduction can be adopted as outlier detection to investigate
the plausibility of the observations. The standard deviation of the duplicated
measurements, referred as σdupl, indicates how different the repeated observa-
tions are. Thus, σdupl can be considered an outlier indicator. In case of large
σdupl, the measurement of the same input parameters produces discordant re-
sults and their average would introduce wrong information into the data. In
Figure 6.15, the standard deviations computed on the multiple observations are
reported as box plots. The box indicates the interval between the first and third
quantile. The bar within the box corresponds to the median of the data, while
the external bars indicate the interval where 90% of the points lies. The box
plots of the standard deviations demonstrate the robustness and the reliability
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of the observations: most of the measurements are able to be reproduced with
a small standard deviation. However, large differences between the duplicated
values are present, especially for the PN .
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(a) Box-plot for HC duplicates
standard deviations.
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(c) Box-plot for PN duplicates
standard deviations.

Figure 6.15: Box-plots of the standard deviations of the duplicated observations.

Based on the standard deviations and the averaged values of the duplicated
observations, the outlier detection is performed in two steps. First, Chebyshev
outlier detection is applied on the standard deviation in order to identify more
accurately the non-reproducible measurements, i.e. those with large deviations.
Second, the same outlier detection is applied on the remaining averaged obser-
vations to further improve the quality of the data. In Table 6.2 the identified
outliers on the σdupl and on the remaining averaged measurements are sum-
marized together with the sizes of the final reduced datasets. As expected,
most of the anomalies are determined for the PN due to the large skew of
its distribution. Nevertheless, more than 8500 datapoints are available for the
modeling of the three emissions quantities.

Table 6.2: Results of the outlier detection on the duplicated observations.

Variable Anomalies in σdupl [#] Anomalies in Avg. Meas. [#] Final Dataset Size [#]
HC 251 17 9329
NOx 270 0 9327
PN 403 675 8519
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Sampling Limitation

After the preprocessing steps, the datasets are composed of 50 distinct injector
designs measured at least at 190 different operating points. In order to quantify
how the grid combination of geometry design with operating parameters may
affect the model quality, the validation procedure introduced in Sampling Lim-
itation in Section 5.2.1 and depicted in Figure 5.18 for the nozzle experimental
analysis is applied. In this case, considering 50 Injectors, 50 strata are defined.
Due to the different number of observations for each investigated characteristic
after the preprocessing step (see Table 6.2), it is not possible to define a single
test set to validate all the models. Therefore, two different injectors and engine
operating points are chosen for each model to compose the test sets, which
contain about 400 observations. The model validation is performed with 11
iterations. The training set is updated every time by sampling i operating points
for each injector, with i ∈ [1, 190], where 190 corresponds to the minimum
number of measurements for each injector.
In Figure 6.16, the learning curves of the modeled emissions based on the

iterative stratified sampling are depicted. The number of considered operating
points per injector at each iteration is reported on the x-axis. The left y-axis
indicates the training and test scores in terms of R2, while the right y-axis
represents the size of the corresponding datasets. Considering the resulting
learning curves, a training set composed of a large amount of operating points
per injector either causes overfitting or does not imply a considerable improve-
ment, especially compared to the costs of the measurements. The test score
of the HC follows the training score until around 25 operating points per in-
jector, where it already achieves a satisfying accuracy. Afterwards, the test
score increases with a lower gradient, until it drops at around 125 operating
points per injector, indicating a slight overfit. Similarly, the NOx requires few
datapoints to provide a good model as well. Here, the test score follows the
training score until 125 operating points per injector. In contrast to the other
two, a strong overfitting is present for the PN . Its test score follows the training
score until 50 operating points per injector. After about 75 operating points
per injector, the test score starts to deviate from the training score drastically.
Beside showing the most pronounced case of overfitting, the PN modeling
achieves the lowest score with respect to the other emissions.
Testing the models with a combination of elements completely outside the

domain space highlights possible overfitting and avoid the leakage of informa-
tion in the validation phase. For the nozzle experimental analysis in Section 5.2,
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the overfitting is not present due to the reduced size of the measured operat-
ing points per injector (23) compared to the ones in the engine experimental
analysis (190). Given the overfitting situations and the progress of the learning
curves along the increasing size of the training set, 75 operating points per in-
jector correspond to an acceptable amount of observations in order to achieve
good and reliable scores for all the modeled characteristics. Nevertheless, a
further improvement in terms of precision and generalization can be achieved
with the HPO.
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(a) Learning curve of HC.
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(b) Learning curve of NOx .
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(c) Learning curve of PN .
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Figure 6.16: Learning curves based on the number of operating points per injector.

6.2.2 Model Selection and Validation

The reduced and cleaned datasets contains about 3600 observations and 11
features for each emission. In order to demonstrate the importance of the
test set selection in case of combining discrete design spaces with a Cartesian
product, the models are first validated through a generic (80 − 20)% training-
test split and afterwards, through the test sets defined in Sampling Limitation
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in Section 6.2.1. In both cases, the training score is evaluated with a 5-fold
CV. The considered metrics are the training scores µR2 , µMAE and σMAE as
well as the test scores eMAE and eR2 . The rest of the modeling settings are the
same introduced in Section 5.1.2.
In Table 6.3, the results of the modeling validation with the (80 − 20)%

training-test split are reported. The accuracy achieved by both learning ap-
proaches is similar. A larger difference is present only for the PN , where the
XGBoost is able to achieve better performances. Apparently, no overfitting
is present considering the resulting training and test scores. In Table 6.4, the
results of the validation based on the arbitrary test sets defined in the previous
section are reported. The evaluations of the training set are barely influenced
by the choice of the validation procedure: the training scores reported in Ta-
ble 6.3 and in Table 6.4 are similar for both learning methods. Likewise, the
choice of the validation method has a neglectable impact on the test scores
for the XGBoost. However, the test scores eR2 and eMAE of the polynomials
indicate a massive overfitting. The models are not only unable to achieve a
similar precision between the test and the training data, but the eMAE indicates
that the predictions are completely outside the domain space. In addition, the
large negative eR2 indicates a wrong model (see Evaluation Metrics in Sec-
tion 2.3.2). The explicit selection of the observations for the test set allows
to minimize the leak of information between the training and test set and to
deeply evaluate the generalization performance. The polynomials are very

Table 6.3: Scores of the modeling validation with a (80 − 20)% training-test split.

XGBoost Polynomial
Data µR2 µMAE σMAE eMAE eR2 µR2 µMAE σMAE eMAE eR2 degree
HC 0.980 0.099 0.002 0.088 0.986 0.963 0.144 0.004 0.146 0.965 3
NOx 0.991 0.068 0.002 0.068 0.992 0.987 0.087 0.002 0.086 0.987 3
PN 0.774 0.247 0.020 0.222 0.768 0.651 0.406 0.028 0.376 0.662 3

Table 6.4: Scores of the modeling validation with an arbitrary test set.

XGBoost Polynomial
Data µR2 µMAE σMAE eMAE eR2 µR2 µMAE σMAE eMAE eR2 degree
HC 0.984 0.092 0.001 0.138 0.953 0.964 0.144 0.002 5e+4 -3e+9 3
NOx 0.991 0.067 0.001 0.084 0.989 0.987 0.087 0.002 1e+4 -3e+8 3
PN 0.767 0.244 0.005 0.248 0.735 0.659 0.402 0.010 3e+3 -4e+7 3
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sensitive to discrete and sparse observations: sharp divisions of the domain
space hinder the polynomial to learn the behavior of observations not included
in the training set. The XGBoost is capable instead to individuate the correct
relationship in the data, independently from the adopted sampling. The models
validated with the arbitrary selected test set are used for next steps.

In Figure 6.17, the µMAE, the σMAE and the eMAE achieved with the XGB-
NSGAII are depicted for each modeled emission. The test scores of the NOx

and the HC are not included in the confidence interval [µMAE±2σMAE]. Never-
theless, the results reported in Table 6.4 indicate a global good generalization
on new data since both µR2 and eR2 are above 0.95. Differently, the complexity
of PN affects the modeling quality. The explored input space is not sufficient
to detect the correct behavior of the PN emission: other physical effects not
considered in this analysis largely contributes to the generation of PN [96],
e.g. the engine oil dilution [118]. However, since those quantities cannot be di-
rectly measured, the irreducible error (see Section 2.1.3) for the PN modeling
is larger with respect to the other emissions.

Similarly to temperature analysis described with the nozzle experimental
analysis in Section 5.2, in this case, it is known from the domain knowledge
that the cooling water temperature Tw has a large influence on the emissions.
Since the sampling of the temperature is limited to two discrete values, the
scores resulting from the XGB-NSGAII run on cold and warm observations
are reported in Figure 6.17. As expected, the precision achieved including all
the observations tends to correspond to the average of the results obtained with
the separated datasets.
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Figure 6.17: Evaluation of the XGBoost modeling quality in terms of the scores µMAE , σMAE
and eMAE from the experimental engine analysis.
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6.2 Experimental Analysis of Emissions

6.2.3 Knowledge Extraction

In this section, the knowledge extraction for the analysis of the influence of
valve seat geometries and operating points on engine emissions is performed
in terms of models exploration and models exploitation.

Model Exploration

The XGBoost models computed on the investigated emissions are explored
through feature importance and partial dependencies (see Section 2.4). In
Figure 6.18, the extracted relative feature importance are depicted. On the x-
axis, the valve seat geometries and the engine operating parameters are listed,
while on the y-axis, their relative feature importance on each modeled output is
reported. The parameters dominating the considered emissions are the cooling
water temperature Tw and the IMEP. The HC is influenced almost exclusively
by the Tw and with a lower magnitude by the IMEP. In contrast, the NOx

is mostly influenced by the IMEP and less by the Tw . Finally, the PN is not
exclusively dominated by any single variable, but both injector geometries and
operating points contribute to its variation.
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Figure 6.18: Feature importance of the experimental engine analysis.

As already introduced in Section 5.2, the extracted knowledgemay result biased
by the large effect of a sparsely sampled discrete variable, which corresponds
in this case to the cooling water temperature Tw . Its partial dependence
on the investigated emissions is reported in Figure 6.19. The represented
dependence between the two measured temperatures is interpolated. On the
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6 Engine Analysis

x-axes is reported the temperature variation and on the y-axes its effect on the
investigated characteristics. A warm environment leads to a larger production
of NOx . Similarly, at high temperatures the impinged fuel evaporates, reducing
the amount of PN emissions. In contrast, at lower temperatures, cold cylinder
wall may cause flame quenching [119]. The latter contributes to a larger
amount of HC due to improperly burned fuel.
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Figure 6.19: Partial dependence of the cooling water temperature Tw on the emissions.

The feature importance computed on the portions of cold and warm obser-
vations is reported in Figure 6.20. The feature importance extracted on the
complete dataset represented in Figure 6.18 corresponds to the averaged impor-
tance computed on the split datasets. Since the cooling water temperature Tw

has a lower influence on the NOx and on the PN , their feature importance
on the different temperatures does not show any critical difference: for cold
temperatures, the spray hole diameter shd and the start of injection SOI have a
slightly larger effect on the PN , while the wtl influence on the NOx increases
with warm temperatures. Apparently, the emission mainly affected by the
cooling water temperature Tw is the HC. In particular, no specific input vari-
able dominates it for cold operations, while it is mostly affected by the IMEP
for warm temperatures. However, this result is biased by the multicollinearity
between the cooling water temperature Tw and the IMEP, as presented in Fig-
ure 6.12a and Figure 6.13. The explored design space of the IMEP at different
temperatures is not balanced. Therefore, it is not possible to compare the
information extracted from the cold and from the warm observations. Indeed,
it is known from the domain knowledge that the IMEP has a large influence on
the HC for cold temperatures as well.
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(a) Feature importance for cold cooling water temperature Tw .
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(b) Feature importance for warm cooling water temperature Tw .

Figure 6.20: Experimental engine analysis feature importance based on the cooling water
temperature Tw .

The partial dependencies of the IMEP, of the start of injection SOI and of the
spray hole diameter shd are reported in Figure 6.21. They are analyzed for the
complete dataset as well as for cold and warm cooling water temperatures. The
remaining partial dependencies are reported in Appendix A.4.1. The partial
dependencies extracted from the complete dataset correspond to the averaged
partial dependencies of the two portion of data separated on the temperatures.
In particular, the effects on the emissions are attenuated or amplified according
to the cooling water temperature Tw . The partial dependencies are explained
and validated through the domain knowledge as follows.
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(a) Partial dependence of IMEP
on the whole observations.
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(b) Partial dependence of IMEP
for cold Tw .
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(c) Partial dependence of IMEP
for warm Tw .
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on the whole observations.
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(e) Partial dependence of SOI
for cold Tw .
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(f) Partial dependence of SOI
for warm Tw .
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(g) Partial dependence of shd on
the whole observations.
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Figure 6.21: Partial dependencies of IMEP, start of injection SOI and spray hole diameter shd

for the investigated engine characteristics based on the whole observations as well as
the warm (90◦C) and cold (40◦C) cooling water temperature Tw .
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6.2 Experimental Analysis of Emissions

Indicated mean effective pressure IMEP. The effect of the IMEP for cold
cooling water temperature Tw can be extracted only for low pressure values
due to the sampling constraints. Nevertheless, the behavior of the emissions
based on the IMEP variation is independent from the Tw . The magnitude
of the effect is still influenced by the latter. Typically, higher IMEP values
are reached injecting more fuel, which implies higher temperatures in the
combustion chamber for a constant air-fuel ratio λ equal to one. Consequently,
the production of NOx increases. In contrast, with higher temperatures in
the combustion chamber, the flame quenching effect is reduced. Thus, the
HC decreases as well. Finally, a larger amount of injected fuel produces more
impingement, whichmeans potentiallymore locally fuel rich zones. Therefore,
more PN are generated.

Start of injection SOI. Independently from the coolingwater temperatureTw ,
the SOI has almost a neglectable effect on the NOx and on the HC. Sim-
ilarly, the PN is not affected by the SOI until 300◦CA b. TDC. After this
value, the piston being close to the TDC is impinged by the injected fuel.
Therefore, larger PN emissions are produced. This effect is reduced for warm
temperatures, where the impinged fuel evaporates earlier.

Spray hole diameter shd . The shd has a major effect on the PN . To inject the
same amount of fuel, a small shd requires a longer injection. This affects the
generation of a proper air-fuel mixture before the ignition, producing higher
PN values. For lower cooling water temperature Tw a larger shd is required to
ensure a better homogenization.

Additionally, it may be possible to investigate how the other discrete binary
inputs affect the emissions by further splitting the datasets. For example, on
the fuel pressure Pf or on the engine throttle valve position lf .

Model Exploitation

A typical development task is the design of a valve seat geometry according
to specific engine operating points. For instance, given a warm cooling water
temperature and a high combustion chamber pressure, the valve seat geometry
is optimized in case of a full opened engine throttle valve position for both fixed
IMEP and start of injection. The goal is to minimize the NOx , the HC and the
PN as a multi-objective optimization problem with contradictive objectives.
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6 Engine Analysis

The optimization problem is summarized as follows:

Minimize fHC(X), fNOx (X), fPN (X)

with X =
(
α, shl, shd, phd, Ψ, wtl, Pf , IMEP, Tw,

SOI, lf
)

subject to fixed
(
IMEP, Tw, lf , Pf , SOI

)
,

X (l)i ≤ Xi ≤ X (u)i , Xi ∈
[
α, shl, shd, phd, Ψ, wtl

]
.

(6.8)

Similarly to the model exploitation performed in the nozzle numerical analysis
in Section 5.1.3, a new larger DOE of ten thousand designs is generated using
the Sobol sampling method, according to the constraints defined in (6.8).
The four best designs are depicted in Figure 6.22 as parallel plot together
with their respective outputs. Most of the input variables assume optimized
values within large intervals, i.e. they have a lower effect on the emissions.
Nevertheless, the optimized spray hole diameters shd are larger than −1: as
depicted in Figure 6.21i, this corresponds to the threshold above which lower
PN emissions are ensured. According to the knowledge extraction, a small
wall thickness wtl reduces the NOx for warm cooling water temperature (see

Design A Design B Design C Design D

Design Parameters Outputs

Figure 6.22: Machine learning optimized designs and their respective outputs.
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6.3 Summary

Figure A.11e). For this reason, the optimization leads to a single value of wtl
for all the designs.

6.3 Summary

In this chapter, the potential of the data-driven development based on the
presented KD framework to analyze the GDI engine has been presented. First,
3D-CFD simulations results are adopted to investigate the influence of spray
targeting coordinates and injection strategies on impingements and air-fuel
mixture homogeneity. Second, engine measurements of multi-hole injectors
are considered to analyze the effect of nozzle geometries and engine operating
points on nitrogen oxides, hydrocarbons and particulate number.
The structure of the investigation is similar to the one utilized in Chapter 5

for the analysis of the nozzle characteristics. For the engine measurements
analysis, an example of handling duplicated observations is presented. These
may interfere with the models validation. Therefore, specific preprocessing
procedures are applied in order to ensure the extraction of reliable knowledge.
Additionally, it is demonstrated how the combination of large discrete input
domains through a Cartesian product affects the quality and the reliability of
the models. In particular, an iterative stratified model validation allows to
choose the correct amount of required data to avoid the overfit.
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7 Limitations and Risks

In this chapter the limitations and risks of the application of machine learning
in the product development based on the use cases presented in this work are
summarized.

The first challenge corresponds to the sampled input space: the models
are not able to represent domain spaces not included in the training phase.
The collected observations have to cover, at least partially, the phenomena to
be investigated. For instance, consider the engine numerical analysis in Sec-
tion 6.1. In this case, the spray targeting coordinates are sampled such that
the spray plumes are not directed towards the intake valve. Therefore, even
though some information regarding the intake valve impingement is present in
the dataset, this does not correspond to a proper representation of the phenom-
ena. The DOE plan may be extended by including additional samples with
different intake impingement. Similarly, the amount of information available
for the modeling of the spray plume angle and the fuel plume penetration in the
nozzle numerical analysis in Section 5.1 as well as of the particulate number
in the engine experimental analysis in Section 6.2 was not enough to achieve
good accuracy models compared to the other variables. Therefore, the domain
expertise is essential to evaluate a proper coverage of the input space in order
to ensure enough variation in the output and minimize the irreducible error
(see Section 2.1.3).

The domain expertise is fundamental in the data preprocessing as well.
Being aware ofwhich redundant information can be neglectedwithout affecting
the final results is essential. For instance, keeping both the cooling water
temperature and the IMEP in the engine experimental analysis in Section 6.2,
despite their high correlation, allowed to deeper investigate the effect of the
temperature on the engine emissions.

Another potential limitation corresponds to the application of the models.
For example, a model trained on data collected on a specific engine geometry
cannot be always applied to predict observations for a different engine. This
can be done after ensuring that the model is able to generalize its precision in
an extended or in a different input space. Similarly, the extracted knowledge
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in form of feature importance and partial dependencies is valid only within the
considered parameter space. Models trained on other observations or includ-
ing additional explanatory variables may generate different results. Therefore,
the extracted knowledge has to be contextualized within the considered inves-
tigation.
Finally, the application of wrong learning methods or validation procedures

may also generate invalid results. An example has been reported with the
engine experimental analysis in Section 6.2. In this case, the selection of a
non-suitable test set or the adoption of a simple method like the polynomial
regression led to overfitting situations.
These limitations can be summarized in three main points: inappropriate

sampling of the input observations, the lack of domain expertise or the appli-
cation of not suitable algorithms.
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8 Conclusions and Outlook

The new emission regulations as well as the demand of high engine efficiency
and performance require advanced analysis tools able to open new frontiers
for improvement and optimization of GDI systems. Despite the continuous
development of simulation tools and measurement procedures, the complex
interactions in the combustion systems require a significant effort in the gener-
ation and in the evaluation of the results. Modern machine learning techniques
exploit the rising computational power capabilities, enabling precise modeling
and advanced knowledge extraction from already available and new data.

In this work a KD framework based on machine learning has been developed
in order to meet the specific demands of the GDI systems development. The
KD framework is written in the programming language Python and named
pyMICE, which stands for python Mining Internal Combustion Engines. The
essential feature of the framework is its modularity. Every single step is
considered to be a module, which is developed to be abstract, autonomous
and flexible. This allows the framework to be compatible with different data,
independently from their physical meaning, source, format and naming. Fur-
thermore, the modularity allows the framework to be based on the dataflow.
The KD process is iterative and each step may require the supervision of
the domain expertise to define the next actions: the direction of the analysis
can be dynamically changed by skipping some operations or by moving to a
previous stage, according to the intermediate results. The modular design is
strengthened by a proper storage system able to extract raw data with different
structures and transform them into standardized formats as well as to store and
restore intermediate results. The fundamental modules includes data extraction
and transformations, data analysis and optimization. The usability is another
building block of the framework. Specific interfaces are available in order
to support the user achieving the required task. Special data preprocessing
procedures combining the several operations implemented in the framework
can be defined through APIs. The whole KD process can be autonomously run
through a CLI. Finally, the extracted knowledge can be visualized and analyzed
with a web-based GUI.
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In order to handle the heterogeneity of the datasets available in the GDI con-
text, a novel, parameter-free, fast and dynamic data-driven model selection is
presented. In particular, this is a universal algorithm able to select the best
meta-parameters of a learning algorithms for a specific dataset. This approach
is referred as XGB-NSGAII and it couples the XGBoost with the genetic
algorithm NSGA-II. Since genetic algorithms are known to demand high com-
putational resources, the proposed algorithm is designed to run on distributed
computing. The goal of this procedure is to ensure robust and precise function
estimations of physical phenomena. This is achieved with the definition of a
proper optimization problem, evaluating both the accuracy of the models and
their generalization on new data. The presented approach outperforms state-
of-the-art methods like Random Search, Grid Search and Hyperband. Results
showing the effect of the choice of different genetic parameters are reported as
well. This approach is not restricted to combustion engine development only,
but it is shown that it can be extended to other data and applications.
Besides the typical machine learning prediction tasks, the KD framework

allows the interpretability of its results from a human point-of-view, stepping
beyond the concept of black-box AI. The knowledge extracted from the data
can lead future investigations towards unexplored areas, producing new data
to be analyzed. Therefore, it is possible to achieve an iterative continuous
product improvement. The domain expertise is still required to interpret and to
validate the extracted knowledge as well as to properly define the investigated
problem and to collect correct and valid observations.
In this work, four use cases have been presented as successful applications

of the KD framework. The considered data concern different sources as well as
components and systems. First, the results of nozzle 3D-CFD simulations and
spray chamber experiments are adopted to investigate the influence of injec-
tor nozzle geometries and operating parameters on flow dynamics and spray
characteristics. Afterwards, the results of engine 3D-CFD simulations and
experiments are considered to investigate the influence of nozzle geometries,
spray targeting and engine operating points on mixture formation, emissions
and fuel consumption. The knowledge extracted with these analyses has been
validated with the domain expertise and it revealed a proper representation of
the physics behind the data. Finally, themachine learningmodels are applied to
select optimal geometrical and operational designs able to achieve predefined
constraints and goals, ensuring higher performance and lower emissions.
The framework can be extended by adding new learning algorithms. Consid-

ering the large focus of the research community on machine learning, any new
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8 Conclusions and Outlook

discovered method can be implemented enhancing the overall performance of
the framework.

In case of new research fields, the domain expertise may not be always
available. For this purpose, novel approaches able to deal with unknown do-
main spaces are available in the literature. Instead of extracting information
from already available data or to plan a large DOE aiming to cover as best the
domain space, advanced machine learning methodologies like Active Learn-
ing [120] interact actively with the source of the data in order to explore the
domain space according to the scope of the analysis. In particular, based on the
responses of the previous samples, the learning algorithm evaluates iteratively
which observations are required in order to achieve some predefined goals,
e.g. minimize the engine emissions or improve the predictive accuracy of the
model. The resulting data can be used as input for the methodology presented
in this work.

The KD framework is developed and tailored to overcome the main issues
in the GDI context. Nevertheless, it can be extended to any other investiga-
tion area in the product development. Whenever the influence of geometric
parameters, operating points, processes settings as well as application condi-
tions has to be analyzed and optimized, the KD framework can be adopted to
deeper understand their physical effects on the problem objectives. Concrete
applications examples on new technologies are hydrogen gas injectors, electric
machines or safety-critical hardware for advanced driver assistance systems,
such as cameras and processing units. Hydrogen gas injectors are essential
components of a fuel cell electric vehicle. Similarly to gasoline injectors, spe-
cific geometries and operating points have to be identified in order to develop
efficient and low consumption solutions. Electric machines have to be adapted
to the different powertrain solutions, such as fuel cell, hybrid or battery elec-
tric, ensuring high performance and long range driving. The development of
safety-critical hardware for autonomous driving requires intensive studies on
material properties as well as on designs in order to provide robust, reliable
and lasting solutions.
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A Additional Plots
A.1 Injector Nozzle Analysis

A.1.1 Input Data

�� �� � � �
β���	

�

�

��

��

��
�

��
�


��
��

	

(a) Distribution of β.

�� �� � � �
α���	

�

�

��

��

��
�

��
�


��
��

	

(b) Distribution of α.

�� �� � � �
shd���	

�

�

��

��

��
�

��
�


��
��

	
(c) Distribution of shd .

Figure A.1: Distribution of the input data not included in Figure 5.3.
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A.1 Injector Nozzle Analysis

A.1.2 Partial Dependencies
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Figure A.2: Complete partial dependencies, as extension of Figure 5.11.
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A Additional Plots

A.2 Nozzle Spray Experimental Analysis

A.2.1 Input Data
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Figure A.3: Distribution of the input data not included in Figure 5.14.
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A.2 Nozzle Spray Experimental Analysis

A.2.2 Partial Dependencies

Complete Dataset
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Figure A.4: Complete partial dependencies for the whole data, as extension of Figure 5.24.
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A Additional Plots

Cold Dataset
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Figure A.5: Complete partial dependencies for the cold observations, as extension of Figure 5.24.
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A.2 Nozzle Spray Experimental Analysis

Warm Dataset
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Figure A.6: Complete partial dependencies for the warm observations, as extension of
Figure 5.24.
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A Additional Plots

A.3 Spray Mixture Numerical Analysis

A.3.1 Input Data
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Figure A.7: Distribution of the input data not included in Figure 6.4
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A.3 Spray Mixture Numerical Analysis

A.3.2 Partial Dependencies
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Figure A.8: Complete partial dependencies, as extension of Figure 6.9.
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A Additional Plots

A.4 Emissions Experimental Analysis

A.4.1 Partial Dependencies

Complete Dataset
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Figure A.9: Complete partial dependencies for the whole data, as extension of Figure 6.21.
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A.4 Emissions Experimental Analysis

Cold Dataset
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Figure A.10: Complete partial dependencies for the cold observations, as extension of
Figure 6.21.

153



UI

Warm Dataset
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Figure A.11: Complete partial dependencies for the warm observations, as extension of
Figure 6.21.
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B User Interface

Figure B.1: Graphic User Interface of the KD framework.
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