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The impact of active and passive investment on market 
efficiency: a simulation study
Patrick Jaquart, Marvin Motz, Lutz Köhler and Christof Weinhardt

Institute of Information Systems and Marketing, Karlsruhe Institute of Technology, Karlsruhe, Germany

ABSTRACT
We create a simulated financial market and examine the effect of 
different levels of active and passive investment on fundamental 
market efficiency. In our simulated market, active, passive, and 
random investors interact with each other through issuing orders. 
Active and passive investors select their portfolio weights by opti
mizing Markowitz-based utility functions. We find that higher frac
tions of active investment within a market lead to an increased 
fundamental market efficiency. The marginal increase in fundamen
tal market efficiency per additional active investor is lower in mar
kets with higher levels of active investment. Furthermore, we find 
that a large fraction of passive investors within a market may 
facilitate technical price bubbles, resulting in market failure. By 
examining the effect of specific parameters on market outcomes, 
we find that that lower transaction costs, lower individual forecast
ing errors of active investors, and less restrictive portfolio con
straints tend to increase fundamental market efficiency in the 
market.
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1. Introduction

Passive investing has steadily grown relative to active investing over the last decades 
(Anadu et al., 2020; Blitz, 2014) and is expected to overtake active investing by 2026 in the 
US equity market (Seyffart, 2021). In the US domestic equity-fund market, passive 
vehicles have already overtaken active ones due to the large number of passive funds 
tracking the S&P 500 index (Seyffart, 2021). Passive investors select the portfolio weights 
of assets within the risky fraction of their portfolio based on asset market capitalization 
(Sharpe, 1991). Therefore, passive investors only need to decide about the fraction they 
want to invest in the risk-free asset and the risky market portfolio for each period 
(Pedersen, 2018). In contrast to passive investors, active investors usually trade based 
on the assessment of asset mispricings. As these assessments tend to change frequently, 
active investors generally trade more often than passive investors (Sharpe, 1991).

For instance, the fraction of actively managed mutual funds and ETFs relative to the 
total fund market in the US has decreased from 81% in 2010 to 60% in 2020 (ICI, 2021).
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Additionally, active shares and fees of active mutual funds have fallen (Cremers & 
Petajisto, 2009; ICI, 2020; Stambaugh, 2014), resulting in active investment manage
ment becoming more similar to passive investment management. Due to higher 
expense ratios of active management, passive investment management tends to out
perform active investment management after fees (Carhart, 1997; Fama & French,  
2010). However, there is a need for active investment in financial markets since the 
security analysis of active investors connects market prices to fundamental asset 
values and keeps financial markets efficient (Blitz, 2014; Pedersen, 2018). Therefore, 
the shift from active to passive investment may reduce the information contained in 
individual asset prices (Sushko & Turner, 2018) and lead to higher systematic market 
risks (Anadu et al., 2020). As the shift from active to passive investment constitutes 
a major trend for global financial markets, it is essential to examine it further and 
analyze its implications.

Against the backdrop of the rise of passive investment, it is crucial to understand the 
implications of this significant trend for financial markets and their participants. 
Therefore, financial researchers have begun to empirically examine different aspects of 
the shift from active to passive investment. These empirical analyses suggest that this shift 
may have reduced the information contained in individual asset prices (Sushko & 
Turner, 2018) and led to higher systematic market risks (Anadu et al., 2020). In this 
work, we want to shed more light on how different forms of investment affect financial 
markets. Concretely, we address the research question:

RQ: How do different levels of active and passive investment affect fundamental price 
efficiency?

By answering this research question, we evaluate the implications of the ongoing shift 
from active to passive investing. Furthermore, we investigate different market conditions 
that may mitigate potential adverse effects on market efficiency.

Besides shifts across investment types, specific investment forms are also evolving. 
Consistent with findings that machine learning models can improve financial market 
forecasting (Fischer & Krauss, 2018; Gu et al., 2020; Rasekhschaffe & Jones, 2019), a large 
proportion of professional active investors have adopted machine learning models for 
trading and portfolio management (BarclayHedge, 2018; Petropoulos et al., 2022). Given 
this trend, it is essential to assess the impact of differences in the accuracy of active 
investors’ market forecasts on underlying market efficiency.

To answer the stated research question, we create a simulated financial market and 
closely examine the impact of different investor compositions and other market para
meters on fundamental market efficiency. Different stylized investors interact with each 
other in a simulated market through issuing orders, which are matched via common 
continuous double auctions. Thereby, market prices are solely set by the investor 
behavior without external interventions. While there exist different interpretations and 
levels of market efficiency in the literature (e.g., see (Fama, 1970, 1991)), in this paper, we 
focus on market efficiency in terms of the deviation between market prices and funda
mental asset values. In this work, we denote this form of market efficiency with the term 
fundamental market efficiency.
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In the financial literature, so-called noisy rational expectation models have been 
applied to study similar research settings as simulated financial market models (Blume 
et al., 1994; D. W. Diamond & Verrecchia, 1981; Grossman & Stiglitz, 1980; Milgrom & 
Stokey, 1982), for which these models generally find closed-form solutions. However, 
these models differ from our study regarding the exogeneity and endogeneity of market 
parameters. Furthermore, the theoretical models rely on many assumptions and restric
tions to arrive at their equilibriums, such as market clearing (Brown & Jennings, 1989; 
D. W. Diamond & Verrecchia, 1981), limiting cases (Brown & Jennings, 1989), or a single 
period (D. W. Diamond & Verrecchia, 1981). Thus, we use a simulation approach to find 
results for scenarios that rely on fewer assumptions. At the same time, this approach 
allows us to combine different real-world settings into a single model instead of creating 
multiple models to examine different market enviornments to ensure a closed-form 
solution. Hence, our simulation approach enables us to generate novel insights, as well 
as to verify assumptions and results made in different noisy rational expectation models 
(e.g., the assumption of a higher information level in the market for a higher share of 
active investors Grossman and Stiglitz (1980)).

Our paper has two main contributions. First, we show how different investor compo
sitions affect fundamental market efficiency. In doing so, we find that larger fractions of 
active investment and lower fractions of passive investment within a market results in 
higher market efficiency. Thereby, the marginal increase in market efficiency is lower for 
an additional active investor if there is a high level of active investment within a market. 
We find that large portions of passive investment within a market may facilitate price 
bubbles and lead to market failure. Second, we evaluate the impact of different market 
parameters, for instance market frictions and individual target price forecasting errors, 
on fundamental market efficiency to increase the robustness of our results in the context 
of constantly evolving financial markets. We find that market frictions in the form of 
higher transaction costs and stricter portfolio constraints reduce fundamental market 
efficiency. Additionally, we find that a lower level of risk aversion of individual investors, 
tends to increase fundamental market efficiency. Lastly, we show that less volatile 
individual target price forecasts of active investors translate into higher fundamental 
efficiency of market prices.

2. Related work

2.1. Implications of active and passive investment

Anadu et al. (2020) empirically investigate the implications of the past shift from active to 
passive investment strategies for financial stability. They find that this shift may decrease 
liquidity transformation risks but increase market volatility. Furthermore, Anadu et al. 
(2020) present evidence indicating that passive investment facilitates the co-movement of 
assets.

Pedersen (2018) challenges William Sharpe’s equality, which states that “before costs, 
the return on the average actively managed dollar will equal the return on the average 
passively managed dollar” (Sharpe, 1991). Pedersen (2018) argues that the assumption of 
a never-changing market portfolio does not hold for real-world financial markets and 
presents ways how active traders can generate profits. For instance, adequately informed 
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active traders could outperform non-informed active traders, influenced by cognitive 
biases. Additionally, only active investors can identify and participate in profitable IPOs. 
Furthermore, passive investors need to trade when the composition of their respective 
benchmark index changes, which can be anticipated and exploited by active investors. 
Pedersen (2018) concludes that there exists an equilibrium level of active and passive 
investment that keeps the market close to but not perfectly efficient.

Sushko and Turner (2018) examine the effect of the shift from active to passive 
investing on security markets. They find that active mutual funds are subject to persistent 
outflows in stress periods, while the flows of passive mutual funds remain relatively 
stable. Additionally, the authors find a positive relationship between the weight of 
a company in the Bank of America Merrill Lynch Global Broad Market Corporate 
Index and the company’s leverage factor. According to Sushko and Turner (2018), 
a further expansion of the passive fund management industry may have two main 
consequences: First, security-specific information could decrease in prices because pas
sive fund managers do not use this information for their valuations. Second, security 
pricing can be influenced by an increasing number of passive managers selling or buying 
the entire set of index constituents by tracking an index. These transactions could lead to 
the prices of the assets in the index to be subject to higher co-movement.

Schwert (2003) shows that market anomalies published in the academic financial 
literature are integrated into trading strategies and hence disappear after publication. 
Therefore, he states that research on market anomalies makes financial markets more 
efficient.

Sullivan and Xiong (2012) analyze the effects of increased index trading. The authors 
find that the rising fraction of passively managed equity indices leads to an increased 
systematic risk of equity markets. The higher amount of passive investing amplifies the 
trading commonality of the index assets caused by interactions between market partici
pants. This commonality increases systematic fluctuations in aggregate demand, which 
have a fundamental impact on markets and portfolio compositions. Moreover, Sullivan 
and Xiong (2012) state that more equity index trading leads to increasing stock return 
correlations. Additionally, the authors find that equity betas have risen and converged 
between 1997 and 2010.

Appel et al. (2019) empirically analyze the effect of passive investors on investment 
strategies and investment results of active investors. The authors find that if passive 
mutual funds own the shares of a company to a more considerable degree, activists are 
more likely to be represented on the company’s board. Moreover, they show that a high 
fraction of passive traders owning a company’s stocks is positively related to the number 
of proxy fights and settlements of a company. Finally, Appel et al. (2019) concludes that 
free-rider problems are weakened by the increasing number of passive institutional 
investors.

Qin and Singal (2015) examine the external effects of indexing on stock price’s 
efficiency. By analyzing a sample of stocks, they find that a higher degree of indexing is 
related to less efficient stock prices. Concretely, Qin and Singal (2015) find a higher post- 
earnings-announcement drift and a more significant random walk deviation of stock 
prices for higher degrees of indexing. Qin and Singal (2015) suggest that price efficiency 
is decreased by indexing and passive trading, as passive investing lowers the appeal of 
information collection and arbitrage.
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In his work, Blitz (2014) addresses the shortcomings of passive investment strategies. 
First, he outlines that passive investment constitutes free-riding, as passive investors rely 
on active investors to keep markets efficient. Blitz (2014) states that the relationship 
between fundamentals and asset prices would be destroyed if there were only passive 
investors. Moreover, he describes specific security characteristics, which have been 
shown to cause a weak asset performance. Passive investors cannot avoid investing in 
these securities when they are present in the respective passively replicated index.

Belasco et al. (2012) examine how passive investing affects corporate valuations by 
analyzing the relation between index fund money flow and company valuations. They 
find that valuations of index constituents are positively correlated with index fund money 
flow, whereas valuations of non-constituents are not. Moreover, they find that this 
impact does not directly divert since money flow also impacts valuations the following 
month after the flow. Belasco et al. (2012) conclude that mispricing caused by index fund 
investing could reduce stock market efficiency and manipulate how investors evaluate the 
performance of actively managed funds.

French (2008) analyzes the cost of active investing and finds that active investors pay 
0.67% of the total market value of a stock for search costs. Moreover, he shows that 
society faces capitalized price discovery costs, which can amount to up to ten percent of 
a stock’s market capitalization. French (2008) finds that between the years 1980 and 2006, 
the average annual return of a typical active investor could have risen by 67 basis points if 
the investor switched from active to passive investing.

2.2. Financial market simulation

Ponta et al. (2011) simulate an artificial stock market that consists of zero-intelligence 
traders and analyze the effect of dividend and external cash flows on the market outcome. 
Traders randomly allocate a fraction of their wealth into different stocks, whereby asset 
prices are determined by aggregating demand and supply. Despite using zero-intelligence 
traders, the authors can reproduce several stylized facts (e.g., volatility clustering) in the 
resulting price series. The stylized facts reproduction does not depend on dividend 
payments and external cash flows.

Cocco et al. (2017) simulate an artificial agent-based cryptocurrency market in which 
heterogeneous agents trade bitcoins. The authors model several market characteristics of 
the bitcoin market (e.g., bitcoin mining and investor distribution). Cocco et al. (2017) 
examine whether their simulated market exhibits stylized facts known from real-world 
financial markets. They define two types of agents, namely momentum-based technical 
traders and random traders, whose orders are matched via limit order books. The authors 
find that the price series data of the artificial market shows three stylized facts of real 
financial time-series data: Unit-root property, fat tails, and volatility clustering.

Bertella et al. (2014) use an agent-based artificial market to analyze the effect of (over-) 
confidence (Kahneman & Riepe, 1998) on market outcomes. In their model, agents can 
either be fundamental or technical traders. Fundamental traders estimate future asset 
values using the Gordon dividend growth model, whereas the technical traders use 
a moving average with different time horizons to estimate asset values. Both stylized 
agent types aim to maximize a utility function based on constant absolute risk aversion. 
Prices are calculated based on a market impact function based on Farmer and Joshi 
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(2002) for varying levels of the agents’ market confidence. The authors find that higher 
confidence levels are positively correlated with investment returns. However, market 
confidence also has negative effects, leading to increased price volatility.

Benhammada et al. (2017) implement an artificial stock market based on continuous 
double auctions to identify sources of bubbles and crashes in financial markets. The 
modeled agents can be grouped into fundamental, noise, technical, and hybrid traders. 
Noise traders issue orders randomly, which increases market liquidity. Fundamental 
traders issue orders based on a function to calculate the fundamental value, while 
technical traders issue their orders based on the direction of the forecasted price and 
the market liquidity. Hybrid traders change their stylized trading behavior between 
technical and fundamental trading based on the market state. Benhammada et al. 
(2017) find that prices deviate from fundamental values if technical traders dominate 
the artificial market. However, these markets lack characteristics of financial price 
bubbles in the real world. The price bubbles become more realistic when hybrid traders 
are predominant within the market. The authors find no evidence for the existence of 
market bubbles in the case that fundamental traders dominate the market.

Goykhman (2017) implements a sentiment-driven artificial financial market and 
examines how the wealth of different agents develops over time. In the market, agents 
do not maximize a utility function but issue orders depending on three time-series 
processes: buy/sell imbalance, jump volatility, and trading intensity. These orders are 
matched via limit order books. The author finds that non-trivial volatility sentiment 
processes result in large stock returns different from the log-normal distribution. The use 
of non-trivial buy/sell sentiments leads to predictable price trends. Furthermore, 
Goykhman (2017) finds that the results do not depend on the initial wealth distribution 
among the agents, as the wealth is distributed very quickly with a power-law Pareto tail 
among the agents in any case.

Katahira et al. (2019) create an agent-based artificial asset market and analyze stylized 
market facts. They model agents as technical traders and calculate asset prices for each 
period from the aggregated excess demand, assuming sufficient market liquidity. They 
find several stylized facts in the time-series data of resulting market price returns (e.g., 
heavy tails and conditional heavy tails) but cannot reproduce the gain/loss asymmetry.

Khashanah and Alsulaiman (2017) construct an agent-based artificial market in which 
agents can trade between a risk-free asset and a risky asset. They aim to identify the 
causes of market instability depending on the information flow between the agents. 
Agents are randomly selected to adopt four different strategies: random, fundamental, 
momentum/technical, and adaptive trading (using neural networks to predict asset 
prices). Thereby all but the technical traders optimize a utility function based on 
Markowitz (1952). Asset prices are calculated based on the bid and ask prices, but the 
underlying market mechanism does not utilize order books. The authors simulate jump 
events that affect the market and test whether agents can react appropriately to these 
jumps. They find that the outputs of the scenarios depend on the market state regarding 
information awareness. In states of systematic ignorance, mean volatility and the vola
tility index are lowest. The volatility index and fear index increase for a larger number of 
hubs or hermits in a network.

Moiseev and Akhmadeev (2017) implement an agent-based artificial stock market and 
examine resulting wealth distribution and price movements. In their simulation, agents 
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randomly issue orders, and the turnover maximization criterion determines prices. The 
authors find that wealth distribution becomes increasingly positively skewed over time. 
The behavior patterns of the agents influence the speed of inequality growth. Thereby, 
the inequality of the wealth distribution grows the fastest in a setting in which most 
agents are issuing bid orders, followed by a setting in which most agents issue sell orders. 
The wealth inequality grows the slowest when there is a balance between buy and sell 
orders in the market.

Ponta and Cincotti (2018) simulate an agent-based artificial stock market to examine 
the influence of agents’ networks on the structure of the market. Agents decide about 
issuing orders based on their vision of the market trend and the average sentiment 
towards all assets. The resulting supply and demand curves are matched to obtain market 
prices. The authors find an intrinsic structural resilience of the stock market. Moreover, 
the inclusion of the network between agents leads to a higher number of stylized facts 
reproduced in the artificial market.

Wu et al. (2018) implement an agent-based stock market in order to investigate the 
stock price dynamics in agent networks. Agents are fundamental or technical traders and 
aim to maximize their individual utility function, which is based on constant absolute 
risk aversion. All agents are connected via networks, which allows them to collect 
information from their neighbors. Orders are matched via continuous double auctions. 
The authors find that small-world networks lead to a decreasing kurtosis of returns. The 
return kurtosis is lower for a higher reconnection probability between nodes. Wu et al. 
(2018) find that changing the network structures does not affect the standard deviation of 
returns. Finally, the authors conclude that the level of information efficiency has 
a manifold impact on the market outcomes for diverse network structures.

Vanfossan et al. (2020) construct an artificial stock market to evaluate the success of 
different trading strategies. They model agents as investors and mutual funds, whereby 
investors have a lower buying power but are more frequent than mutual funds. The 
agents are connected via media networks and social media. Based on the network and 
their strategy, investors issue buy or sell orders, which are matched through continuous 
double auctions. Finally, the authors calculate the mean returns for each strategy for a 50- 
day period. They find that the strategy based on relative asset strength constitutes the 
most successful strategy, whereby the strategy based on market index acceleration is the 
least successful.

Mathieu and Brandouy (2010) introduce an API for artificial stock markets that allows 
for a broad spectrum of configurations. Agents randomly place orders without utilizing 
information from the market or other agents. These orders are matched via order books. 
Mathieu and Brandouy (2010) highlight that the asset returns of the artificial market are 
similar to the ones of a real-world data sample and that stylized facts can be reproduced 
successfully.

3. Methodology

We introduce a simulated financial market where different heterogeneous agents buy and 
sell stocks based on their respective utility functions, following (Lebaron, 2001). Relative 
to other financial market simulation frameworks, our market model exhibits a rather 
high degree of complexity, as we create a limit-order market in which heterogeneous 
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agents conduct individual utility-based portfolio optimization and trade multiple assets. 
We choose this relatively high model complexity, to increase the external validity of our 
results. However, it still constitutes, like economic models in general, a significant 
simplification of the real world. In this Chapter, we present the market framework and 
market parameters. We systematically modify central market aspects (e.g., agent compo
sition and agent target price forecasting errors) to increase the robustness of our results 
with regard to different market situations and to analyze the impact of these central 
market aspects on market outcomes. To further increase the robustness of our results, we 
run every simulation setting on eight different random seeds, whereby each individual 
simulation consists of 100 simulation rounds. One simulation round is considered 
a quarter of a year in the real world. Agents adjust their portfolio holdings once per 
simulation round based on their stylized behavior and utility functions.

3.1. Assets

The agents’ portfolios consist of four different risky assets and risk-free cash holdings. 
We choose a number of four risky assets to still enable a relative weighting between the 
different risky assets, while ensuring a feasible computational complexity of the portfolio 
optimization problem. Holding cash is equivalent to investing into a risk-free asset with 
zero return, which is a commonly used economic model (Adam-Müller & Panaretou,  
2009; Clarkson et al., 1996; Ovtchinnikov & McConnell, 2009). Stocks are traded on the 
simulated market and have an underlying fundamental value and a publicly observable 
market value. At the time of inception, every artificial stock is assigned a random real- 
world equivalent. For every random seed, real-world equivalent stocks are sampled 
randomly among the constituents of the S&P 500 index as of the start of 1996. We 
calculate these stocks’ quarterly total-return time series using data from the CRSP/ 
Compustat merged database and exclude stocks that have not been traded publicly 
constantly between 1986 and 2020. We further exclude other stocks that do not have 
complete and uninterrupted time series during that time, which are necessary for our 
simulation setting where we need a real-world total return for each round. We acknowl
edge that this exclusion induces a survivorship bias in the remaining return series. 
However, we argue that this survivorship bias should not significantly affect the critical 
results of our analysis of the individual stocks, as the survivorship bias would only affect 
random seeds, in which a company with an incomplete return series would be sampled 
into one of the four risky stocks of a market. Even in these cases, the return forecasting 
process of active agents is the same for different return levels. We use the first 10 years of 
the resulting time series, namely the data from the beginning of 1986 until the end of 
1995, for parameter initialization (e.g., variance-covariance matrix) and use the remain
ing data from the beginning of 1996 to the end of 2020 to run the simulation. Specifically, 
at the end of each simulation round, the fundamental value for each artificial stock is 
updated based on the total quarterly return of the respective real-world stock. We denote 
the fundamental value of stock i at time t with ptrue

it and the total number of risky assets 
with i. While this fundamental price is not directly observable for market participants, 
every stock also has a publicly observable market price, pmarket

it , that gets updated con
tinuously throughout the simulation rounds and is exclusively determined by the trading 
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activity in the simulated market. A market capitalization-weighted combination of all 
risky assets constitutes the market portfolio at a given point in time. At the beginning of 
the simulation, we initialize all artificial stocks with a fundamental value and a market 
value of 100 US dollars.

3.2. Market mechanism

We implement continuous double auctions to aggregate supply and demand in our 
simulated market. We choose continuous double auctions over a simpler market clearing 
mechanism, as continuous double auctions are used within most real-world stock 
markets and therefore make the market setting more realistic (Lebaron, 2001). Over 
each simulation round, the traders gradually place their buy and sell orders for the 
different stocks. Orders are matched (partially) with suitable orders in the respective 
order book, if possible. Parts of the order that cannot be executed directly are added to 
the respective order book. At the beginning of each simulation round, all order books are 
cleared.

3.3. Agents

In our simulated market setting, we distinguish between three different stylized agent 
types: active investors, passive investors, and random investors. We choose a total 
number of 500 agents for each simulated market setting, as we find that this parameter 
value leads to a stable convergence of market prices while ensuring computational 
feasibility. In every simulation round, each agent determines their target portfolio 
weights once and issues limit buy or sell orders based on these target portfolio weights. 
Active investors and passive investors both maximize the following commonly used 
utility function (Bodie et al., 2018) based on the modern portfolio theory (Markowitz,  
1952): 

Û ¼ r̂ � 0:5γ σ̂2; (1) 

where Û is the estimated utility, r̂ is the estimated portfolio return, σ̂2 is the estimated 
portfolio return variance, γ is the risk aversion, which is randomly initialized with a value 
between two and six (see Cincotti et al. (2003), Bodie et al. (2018)) at the beginning of the 
simulation for each agent, and 0.5 is a scaling convention. While active investors and 
passive investors have the same utility function, they differ in the way they generate their 
return estimates, as we describe in detail in Subsection 3.3.1 and Subsection 3.3.2. For 
a given simulation round, the optimization and trading activities of all agents occur 
sequentially with a randomized agent order. Specifically, the trading process for 
a simulation round is divided into J segments, where J represents the total number of 
agents. At a given point in time t, the Jth randomly selected trader determines their target 
portfolio weights based on their stylized agent behavior and issues limit buy or sell orders 
to obtain their target portfolio composition. For a buy order, the limit buy price for stock 
i at time t, pb

it , is computed by: 

pb
ijt ¼ bit nijt; (2) 
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where bit represents the highest bid price for stock i at time t and nit represents 
a random draw from the Gaussian distribution Nð1:005; 0:005Þ. Conversely, the sell price 
for asset i at time t, ps

it , is computed by: 

ps
ijt ¼ ait=nijt; (3) 

where ait denotes the lowest ask price for asset i at time t and nit represents a random 
draw from the Gaussian distribution Nð1:005; 0:005Þ. Following the rationale of Raberto 
et al. (2001), Raberto, Cincotti et al. (2003), Raberto and Cincotti (2005), Ponta et al. 
(2011), and Cocco et al. (2017), this means that agents who want to buy an asset 
marginally overbid the current best bid price on average and agents who seek to sell an 
asset tend to marginally underbid the current best ask price in the market. Therefore, buy 
(sell) orders with prices higher (lower) than the best ask (bid) price for an asset are 
equivalent to market orders, given a sufficient market depth. Similar to the cited 
approaches, we tune the system with different parameters 
(fNð1:005; 0:005Þ;Nð1:01; 0:005Þ;Nð1:005; 0:01Þ;Nð1:01; 0:01Þg) and select the para
meter combination (Nð1:005; 0:005Þ), for which the highest number of the stylized 
facts of real-world financial markets described in Section 3.5.3 is fulfilled.

3.3.1. Active investors
Our active investors estimate the fundamental values for the individual stocks and 
optimize their individual portfolio weights based on these estimates. Mathematically, at 
time t, agent j estimates the end-of-round fundamental value of asset i, ptrue eor

it with: 

p̂eor
ijt ¼ ptrue eor

it þ n fc
ijt ; (4) 

where nfc
it denotes the forecasting error, determined by a random draw from the Gaussian 

distribution Nð0; σfc
itÞ. Since there is limited evidence about target price forecasting errors 

of financial analysts in academic research (Bonini et al., 2010) and forecasting errors can 
vary strongly for different markets and countries (Bilinski et al., 2013), we run the 
simulations with different values for σfc

it . Bilinski et al. (2013) evaluate the twelve- 
month target price forecasting errors of financial analysts, aTPE, in different countries. 
We use the average analyst target price accuracy identified in Bilinski et al. (2013) to 
calculate the starting value for σfc

it and scale it to a three-month horizon under the 
assumption of unbiased and normally distributed forecast errors and a Brownian motion 
forecast error development over time (see Appendix C). This yields a starting value of 
0:45 for aTPE and equivalently 0:2820pmarket

it for σfc
it . We consider this our baseline 

setting, but as it is based on a number of assumptions, we run our simulation with 
different values for the individual target price forecasting errors to ensure the validity of 
our results in different settings. This results in a final value set for aTPE of aTPE 2
f0:2250; 0:4500; 0:9000g and equivalently a final value set for σfc

it 

of σfc
it 2 f0:1410pmarket

it ; 0:2820pmarket
it ; 0:5640pmarket

it g.
Utilizing their price estimate p̂eor

ijt for risky asset i for the end of the round, p̂eor
ij , agent j 

estimates the end-of-round return for asset i at time t, r̂eor
ijt , as follows: 
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r̂eor
ijt ¼

p̂eor
ijt

pmarket
it

� 1; (5) 

where pit denotes the market price of asset i at time t.
Based on Equation 5 agent j generates return estimates for all risky assets, which, 

combined with the risk-free return of zero, yield return estimate vector 
r̂jt ¼ fr̂eor

ijt ; i ¼ 1; . . . ; I þ 1g. At time t, the fundamental agent j selects their desired 
portfolio weights ŵjt ¼ fŵijt; i ¼ 1; . . . ; I þ 1g by maximizing their utility based on 
Equation 1. Thereby, the estimated portfolio return, r̂jt , is given by 

r̂jt ¼ ŵT
jt r̂jt; (6) 

with 

ŵijt > ¼ wmin " i; j; t (7) 

and 

ŵijt < ¼ wmax " i; j; t; (8) 

where wmin denotes the minimum individual portfolio weight, and wmax denotes the 
maximum individual portfolio weight. For these portfolio optimization tasks, we utilize 
the cvxpy package (S. Diamond & Boyd, 2016) in combination with the ecos solver 
(Domahidi et al., 2013). Furthermore, the estimated portfolio variance of agent j at 
time t, σ̂2

jt , is given by 

σ̂2
jt ¼ ŵT

jt V̂t ŵjt; (9) 

where σ̂2
jt denotes the estimated portfolio variance of agent j, V̂t denotes the estimated 

variance-covariance matrix (ðI þ 1Þ � ðI þ 1Þ) of all asset returns. All agents estimate 
the variance-covariance matrix at a specific time from the 40 most recent asset 
returns. The variance of the risk-free asset and its covariance with other assets is 
zero per definition. We focus on active agent’s forecasts of prices and, related to that, 
returns, as returns are the critical input parameter in mean-variance portfolio opti
misation (Best & Grauer, 1991). We choose the simplification of a joint variance- 
covariance matrix, as, similar to individual target price forecasting errors, modeling 
individual errors would be subjected to several assumptions. As this assumptions 
already constitute Chopra and Ziemba (1993) compare the importance of different 
input parameters on mean-variance portfolio optimization and show that returns 
have about eleven times as much influence on the portfolio selection as portfolio 
variances. Further, we restrict the individual portfolio weights to be non-negative with 
an upper bound of wmax 2 f0:33; 0:5; 1g, where wmax ¼ 0:5 constitutes our base case. 
We define these portfolio weight restrictions to increase the robustness of portfolio 
optimization. In reality, short-selling usually comes with high costs and certain types 
of investors are restricted to participate in short-selling. Imposing short-scale con
straints is equivalent to shrinking larger elements of the covariance matrix towards 
zero (Jagannathan & Ma, 2003). Jagannathan and Ma (2003) argue that the most 
extreme covariance estimates are likely to be caused by downward-biased or upward- 
biased estimation errors. Therefore, this shrinking may reduce the overall estimation 
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error. Furthermore, mean-variance optimization tends to lead to extreme portfolio 
weight results, and the introduction of an upper weight bound can ensure a certain 
level of portfolio diversification and lower the risk of extreme events (Eichhorn et al.,  
1998; Grauer & Shen, 2000; Jagannathan & Ma, 2003). Finally, the difference between 
the desired portfolio weights ŵjt and actual portfolio weights wjt determines the order 
vector Δwjt for agent j at time t: 

Δwjt ¼ ŵjt � wjt: (10) 

After determining their order vector, agent j issues orders with the corresponding order 
quantities, where we round the exact number of shares to integer values.

3.3.2. Passive investors
The passive investors do not estimate stock values of individual securities but instead 
combine the market with the risk-free asset to form their overall portfolio. All risky assets 
are weighted based on their market capitalization within the market portfolio. Thus, 
passive investors face a more simple portfolio optimization problem than active investors, 
as they only determine which fraction of their wealth they invest in the stock market and 
do not actively select the individual portfolio weights of the risky assets. Specifically, at 
time t, passive agent j selects the portfolio weights ŵpassive

jt ¼ fŵmarket
jt ; ŵcash

jt g that maximize 
the utility function specified in Equation 1. The estimated portfolio return, r̂jt, is given by: 

r̂jt ¼ ŵpassive
jt r̂ passive

jt ; (11) 

with 

ŵmarket
jt � wmin " j; t (12) 

and 

ŵcash
jt � wmin " j; t; (13) 

where wmin denotes the minimum portfolio weight and ̂rpassive
jt ¼ fr̂market

t ; 0g is a vector of 
length two that includes the expected market return of passive investors, the average 
return of the market portfolio over the last 40 observations, and the expected return of 
cash, zero. The estimated portfolio variance σ̂2

jt is given by: 

σ̂2
jt ¼ ŵT passive

jt V̂passive
t ŵpassive

jt ; (14) 

where V̂passive
t denotes the estimated return variance-covariance matrix (2� 2) at 

time t, whereby the market return variance is estimated over the last 40 simulation 
rounds and the estimated covariance between the market portfolio return and cash, 
as well as the variance of the risk-free return, is zero. Corresponding to 
Equation 10, the passive agent j issues orders with trading quantities based on 
the difference between their desired portfolio weights and their actual portfolio 
weights. Again, the exact number of shares is rounded to integer values.
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3.3.3. Random investors
Our third stylized investor group consists of agents that have a completely randomized 
behavior. These random behaviors can stabilize the trading system of a simulated market 
and are often described in the academic literature as a thermal bath to evaluate other 
stylized trading behavior (Cincotti et al., 2003; Cocco et al., 2017; Raberto et al., 2003). 
Researchers have been able to reproduce various stylized facts of real-world financial 
markets in simulated markets consisting of only random investors (Mathieu & Brandouy,  
2010; Ponta et al., 2011). In our study, random investors may denote a multitude of 
different investor types who have in common that their aggregated trading behavior is 
not related to fundamental asset values and, hence, does not have a systematic directed 
impact on asset prices. Same as the other types of investors, random investors rebalance 
their portfolio once per simulation round. For the random agents, we loosely follow the 
agent design of Ponta et al. (2011). At the time t, the desired risky portfolio weight for 
random agent j is drawn from a uniform distribution between zero and one.

The buy and sell prices of these orders are given by Equations (2) and (3). The desired 
market weight of a random agent j at time t is given by: 

ŵmarket
jt ¼ ujt; (15) 

where ujt denotes a random draw from the continuous uniform distribution Uð0; 1Þ. 
Correspondingly, the desired weight of the portfolio cash fraction of random agent j at 
time t is given by: 

ŵcash
jt ¼ 1 � ŵmarket

jt : (16) 

Furthermore, the desired weights of each individual risky asset within the risky portion 
of the portfolio are each drawn from the continuous uniform distribution Uð0; 1Þ. These 
draws are normalized to sum up to one and subsequently scaled by the desired risky 
portfolio portion ŵmarket

jt . Combined with the desired cash weight, this gives the desired 

portfolio weight vector of random agent j at time t, ŵrandom
jt . Parallel to the other stylized 

investors, random agent j issues orders based on the difference between actual and 
desired portfolio weights (see Equation 10), rounding the exact number of shares to 
integer values.

3.4. Parameter overview and sensitivity analysis

Table 1 gives an overview over our parameter choices in the standard market setting. 
However, as mentioned above, we aim to understand the impact of major market 
parameters on market results and hence repeatedly run the simulation on all random 
seeds with systematically altered simulation parameters. Concretely, we repeat the 
simulation with the following, varying parameter specifications:

● Fraction of random agents relative to all market participants of 40 percent and 
90 percent

● Individual active investors’ absolute target price forecasting errors (aTPE) of 0.225 
and 0.9
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● Individual risk aversion factors fixed at two and six
● Transaction costs of 0.5 percent
● Active investors’ upper portfolio weight constraints of 0.33 and 1.

3.5. Evaluation

To assess our simulated market’s quality and create comparability to a real-world stock 
market, we use different established measures, i.e., price deviation, trading volume, 
market depth, and quoted spread. These measures are calculated for each market con
figuration by aggregating the results over all assets, simulation rounds, and random 
seeds. Additionally, we test whether selected stylized facts of real-world financial time 
series are reproduced in our baseline simulated market.

3.5.1. Fundamental market efficiency
We measure fundamental market efficiency by calculating the mean absolute deviation 
between the market price of the simulation, pmarket

it from the fundamental market prices, 
ptrue

it , at time t for each asset i: 

PriceDevAbst ¼
1
I

XI

i¼1
pmarket

it � ptrue
it

�
�

�
�: (17) 

To receive relative price deviation as a percentage value, we divide the absolute value in 
the above formula by ptrue

it and multiply by 100, which results in 

PriceDevRelt ¼ 100 �
1
I

XI

i¼1

pmarket
it � ptrue

it
�
�

�
�

ptrue
it

: (18) 

3.5.2. Trading volume
Another measure we use is the trading volume, which describes the number of shares 
traded in each round multiplied by their corresponding prices. Trading volume generally 
indicates market activity and constitutes a basis for many liquidity measures of financial 
markets (Sarr & Lybek, 2002).

Table 1. Overview of parameter choices in the standard market setting.
Parameter Notation Value

Total # of Risky Assets I 4
Risk-Free Rate rrf 0
Initial Asset Price 100$
Gamma Lower Bound γmin 2
Gamma Upper Bound γmax 6
Initial Wealth of Agents 100,000$
Portfolio Constraint Lower Bound wmin 0
Portfolio Constraint Upper Bound wmax 0.5
Absolute Target Price Forecasting Error aTPE 0.45
Transaction Cost 0
# Simulation Rounds 100
Total # of Agents J 500
Fraction of Random Agents 0.8
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3.5.3. Stylized facts of real-world financial markets
To further evaluate our simulation model, we investigate if our time series of returns 
follow the same statistical patterns found in many financial time series, so-called stylized 
facts of financial markets. We check whether the resulting market return series of our 
simulated market elicits these stylized facts to evaluate the external validity of our results. 
Cont (2001) list eleven different stylized facts that have been observed and studied 
repeatedly over the last decades. While these statistical properties are typical for real- 
world data, Cont (2001) also describe that it is very challenging to create a synthetic 
market model that can reproduce all stylized facts. Furthermore, since stylized facts 
generalize and simplify, they are a more qualitative measure by nature. This qualitative 
character of many stylized facts impedes the comparability of different market scenarios 
based on these properties. Therefore, we focus on the following selected stylized facts, as 
they allow for a certain level of quantitative analysis. Since the stylized facts are usually 
found in return time series with a higher data frequency (Cont, 2001), we further split our 
simulation rounds into 90 equal proportions, which then results in a resolution of daily 
returns. We test for the existence of each stylized fact on every random seed and every 
trader composition in the baseline market setting.

● Heavy Tails: Real-world financial return time series tend to be heavy tailed and non- 
Gaussian (Bradley & Taqqu, 2003; Cont, 2001). These series often appear to exhibit 
a power-law tail with a tail index between two and five (Cont, 2001; Katahira et al.,  
2019). To test whether a return series follows a normal distribution, we calculate its 
excess kurtosis and conduct a Kolmogorov-Smirnov test (Kolmogorov, 1933; 
Massey, 1951; Smirnov, 1948) to show that it is non-Gaussian and heavy tailed. 
Following Katahira et al. (2019), we also calculate the alphas (i.e., tail-indices) of the 
heavy tail power-law distributions and calculate the log-likelihood ratio (Wilks,  
1938) between a power-law and an exponential distribution given our observed 
return distribution sample. In total, we calculate the excess kurtosis and p-values of 
the Kolmogorov-Smirnov test, the power-law alpha, as well as log-likelihood ratios 
including corresponding p-values for a goodness-of-fit comparison between 
a power-law and an exponential distribution.

● Conditional Heavy Tails: Real-world returns also often show so-called conditional 
heavy tails, these are given when a return series is corrected for volatility clustering 
and still shows heavy tails (Cont, 2001). However, the excess kurtosis of the 
corrected returns is smaller than the excess kurtosis for the unconditional return 
distribution. Therefore, we calculate the excess kurtosis of the residuals gained from 
a GARCH (Bollerslev, 1986) model trained to account for volatility clustering. 
Again, we run the Kolmogorov-Smirnov test to calculate each corresponding 
p-value. We consider the stylized fact as fulfilled if the calculated excess kurtosis is 
positive but lower than the kurtosis calculated for the unconditional heavy tails and 
if the Kolmogorov-Smirnov test shows statistical significance at the 95% confidence 
level.

● Gain Loss Asymmetry: Gain loss asymmetry is the difference in the upward and 
downward movement of returns. In real-world financial markets, prices tend to fall 
faster than they rise Cont (2001). To test for the fact in a quantifiable way we mainly 
follow the procedure of Jensen et al. (2003). We set a positive and a negative return 
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level of ten percent and minus ten percent respectively, and then count the time 
steps needed (i.e., the investment horizons) until the asset reaches this return level. 
This is done for each asset and at each time step. We then calculate the two density 
functions of the negative and positive investment horizons and determine their 
maxima to compare whether, in general, the positive or the negative return level is 
reached more quickly. We consider the stylized fact as fulfilled if the maximum of 
the density function for the negative return level lies before the positive return level.

4. Results

In this section, we present the results of the different simulation runs described in 
Section 3. Concretely, we analyze the effect of different market settings and parameters 
on our key metric fundamental market efficiency and on market activity. Furthermore, 
we evaluate our market model based on the quantifiable stylized facts described in 
Section 3.5.3.

4.1. Standard market setting

Figure 1 shows the relative fundamental price deviation for varying fractions of active 
and passive investors over all random seeds for our standard scenario (i.e., 80 percent 
random investors). We find a lower relative fundamental price deviation for a higher 
fraction of active investors. Specifically, market prices on average deviate by 55.17 percent 
from fundamental prices in the market setting without active investors and 100 (i.e., 
20 percent) passive investors and by 25.86 percent in the market setting with 100 (i.e., 
20 percent) active investors and zero passive investors. On average, the substitution of 
a passive investor with an active investor increases the fundamental market efficiency, as 
the fitted cubic function is monotonously decreasing between x ¼ 0 and x ¼ 1. However, 
the marginal increase in fundamental market efficiency for this substitution is lower for 
higher levels of active investment in the market, as the second-order derivative of the 
function is strictly positive in the area under consideration. Furthermore, as detailed in 
Table 2, the mean trading volume increases for a larger fraction of active investors, nearly 

Figure 1. Fundamental price deviation by fraction of active investors (relative to all active and passive 
investors) detailed over all random seeds in the standard setting.
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doubling from the setting without active investors and the setting with 100 (i.e., 20 per
cent) active investors.

4.2. Sensitivity to different levels of random investment

Table 3 shows the relative fundamental price deviation and mean trading volume for 
different fractions of random agents of the total number of market participants (i.e., 40% 
and 90%). For each scenario, we run the simulation on multiple random seeds, repeatedly 
altering the combinations of active and passive investors by five percentage points. We 
find that a lower portion of random agents, which corresponds to a higher combined 
fraction of passive and active investors, leads to a higher discrepancy between the market 
composition without active investors and compositions with a high share of active 
investors. Concretely, in the scenario with 40 percent random agents, the mean relative 
fundamental price deviation starts at 74.42 percent with no active investors in the market. 
It decreases to 19.10 percent for the setting with 300 (i.e., 60 percent) active investors. In 
the scenario with a share of 90 percent random agents, the mean relative fundamental 
price deviation starts at only 47.64 percent in the setting where all non-random investors 
are passive investors. However, it decreases to just 31.53 for the market composition in 
which all-remaining investors are active investors.

Table A1 and Figure B2 present the corresponding results for a market composi
tion with only 20 percent random investors. These results allow us to further examine 
the effects of passive investment on fundamental market efficiency. For instance, the 
average relative price deviation from fundamental prices is 65.24 percent in the 
market with 100 active, 300 passive, and 100 random investors and amounts to 
25.86 percent in the market with 100 active, zero passive, and 400 random investors 

Table 2. Fundamental price deviation and trading volume for different 
investor compositions in the standard setting averaged over all random 
seeds.

# of Agents Mean Price Mean Trading
Active/Passive/Random Deviation Relative [%] Volume [$]

0/100/400 55.17 2,561,184
5/95/400 49.25 2,551,623
10/90/400 49.04 2,868,562
15/85/400 46.14 2,803,487
20/80/400 40.87 2,880,618
25/75/400 40.71 2,969,273
30/70/400 39.42 3,199,982
35/65/400 39.18 3,379,545
40/60/400 35.35 3,293,083
45/55/400 35.00 3,549,615
50/50/400 33.53 3,548,018
55/45/400 32.35 3,734,339
60/40/400 29.71 3,832,248
65/35/400 31.40 4,014,977
70/30/400 29.38 4,020,009
75/25/400 27.86 4,094,883
80/20/400 27.28 4,187,787
85/15/400 26.15 4,206,388
90/10/400 25.25 4,196,554
95/5/400 26.26 4,591,515
100/0/400 25.86 4,528,378
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(see Table 2). Combined with the in Section 4.1 presented findings, this indicates that 
a large fraction of passive investors, contrary to a large fraction of active and random 
investors, impairs fundamental market efficiency. While it is clear that the trading 
behavior of active investors links market prices to fundamental values, it is note
worthy that this link is distinctly stronger in market environments with a lower 
amount of passive investment. This finding may be driven by the similar trading 
patterns and generally lower trading activity within the group of passive investors. 
Regarding the latter, Table 4 shows that the average absolute weight change of all 

Table 3. Fundamental price deviation and trading volume for 
different investor compositions in the market settings with 
a share of 40 percent and 90 percent random investment 
averaged over all random seeds.

Mean Price
# of Agents Deviation Mean Trading
Active/Passive/Random Relative [%] Volume [$]

0/300/200 74.42 1,104,871
15/285/200 128.99 1,512,533
30/270/200 57.40 1,670,072
45/255/200 52.29 1,999,648
60/240/200 57.53 2,284,938
75/225/200 100.57 2,783,213
90/210/200 106.12 3,221,095
105/195/200 51.26 3,381,901
120/180/200 92.91 4,002,829
135/165/200 47.03 4,106,699
150/150/200 56.59 4,567,460
165/135/200 47.00 4,928,309
180/120/200 36.70 5,233,076
195/105/200 42.26 5,785,707
210/90/200 32.63 6,077,184
225/75/200 30.53 6,516,738
240/60/200 26.17 6,878,131
255/45/200 22.99 7,259,559
270/30/200 22.04 7,782,640
285/15/200 20.02 8,183,754
300/0/200 19.10 8,663,756
0/50/450 47.64 3,033,663
2/47/450 45.72 2,968,380
5/45/450 44.38 3,061,623
7/42/450 44.89 3,396,441
10/40/450 43.70 3,297,070
12/37/450 40.82 3,131,807
15/35/450 40.76 3,298,982
17/32/450 40.31 3,305,112
20/30/450 38.28 3,387,004
22/27/450 38.33 3,358,055
25/25/450 37.95 3,366,321
27/22/450 37.49 3,628,239
30/20/450 36.73 3,596,709
32/17/450 35.87 3,608,822
35/15/450 34.47 3,615,557
37/12/450 34.39 3,700,074
40/10/450 33.11 3,688,612
42/7/450 33.58 3,764,347
45/5/450 32.75 3,727,598
47/2/450 33.96 3,973,665
50/0/450 31.53 3,882,438
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risky assets per simulation round is distinctly higher for active investors than for 
passive investors.

Additionally, large fractions of passive investment may lead to price bubbles and market 
failure. Table 3 shows that some compositions that have a high share of passive investment 
exhibit a particularly high price deviation from fundamental values. This is driven by specific 
simulation runs, in which market values deviate strongly from fundamental values. Figure 2, 
which details the results over the different random seeds, shows that these large price bubbles 
do not occur in all market settings with a high fraction of passive investment. However, these 
settings enable price bubbles, as we do not observe bubbles of similar magnitude in settings 
with a generally lower level of passive investment (see Figure 3). Figure B1 illustrates the 

Table 4. Mean absolute changes of portfolio weights between simulation rounds by agent type and 
agent composition.

# of Agents Mean Absolute Changes of Portfolio Weights by Agent Type

Active/Passive/Random Active Passive Random

0/300/200 - 0.03 0.33
15/285/200 0.47 0.04 0.33
30/270/200 0.52 0.04 0.34
45/255/200 0.57 0.04 0.34
60/240/200 0.59 0.05 0.34
75/225/200 0.62 0.05 0.34
90/210/200 0.62 0.06 0.34
105/195/200 0.65 0.06 0.34
120/180/200 0.66 0.07 0.34
135/165/200 0.67 0.07 0.35
150/150/200 0.67 0.07 0.35
165/135/200 0.68 0.08 0.35
180/120/200 0.69 0.08 0.35
195/105/200 0.69 0.08 0.35
210/90/200 0.7 0.08 0.35
225/75/200 0.7 0.08 0.35
240/60/200 0.71 0.08 0.35
255/45/200 0.72 0.08 0.35
270/30/200 0.73 0.08 0.35
285/15/200 0.73 0.08 0.35
300/0/200 0.73 - 0.35
0/50/450 - 0.07 0.34
2/47/450 0.42 0.07 0.34
5/45/450 0.44 0.07 0.34
7/42/450 0.44 0.08 0.34
10/40/450 0.46 0.07 0.34
12/37/450 0.47 0.08 0.34
15/35/450 0.47 0.08 0.34
17/32/450 0.48 0.08 0.34
20/30/450 0.49 0.08 0.34
22/27/450 0.5 0.08 0.34
25/25/450 0.5 0.08 0.34
27/22/450 0.52 0.08 0.34
30/20/450 0.52 0.09 0.34
32/17/450 0.53 0.08 0.34
35/15/450 0.53 0.09 0.35
37/12/450 0.53 0.09 0.35
40/10/450 0.54 0.09 0.35
42/7/450 0.54 0.08 0.35
45/5/450 0.55 0.09 0.35
47/2/450 0.55 0.09 0.35
50/0/450 0.56 - 0.35
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mechanism of a price bubble at the example of the simulation run for random seed 1 and 
a market composition of 90 active, 210 passive, and 200 random investors. After a series of 
high market returns, passive investors gradually increase their risky portfolio fractions. 
Simultaneously, active investors realize that the market becomes overpriced and sell as 
many units of the risky assets as they can, given their portfolio constraints. However, due 
to the large share of passive investors, in these scenarios active investors cannot correct for 
the overpricing and the link between market prices and fundamental values breaks down.

4.3. Sensitivity to different individual target price forecasting errors of active 
investors

Table 5 und Figure 4 present the effect of varying individual target price forecasting 
errors of active investors on fundamental market efficiency. Generally, for market 
compositions with active investors, we find that lower individual errors lead to 
a higher level of fundamental market efficiency and vice versa. In our setting, 

Figure 2. Relative fundamental price deviation by fraction of active investors (relative to all active and 
passive investors) detailed over all random seeds in the market setting with 40 percent random 
investment.

Figure 3. Relative fundamental price deviation by fraction of active investors (relative to all active and 
passive investors) detailed over all random seeds in the market setting with 90 percent random 
investment.

20 P. JAQUART ET AL.



a bisection of individual target price forecasting errors compared to the standard market 
setting reduces the mean fundamental price deviation by up to 4.56 percentage points, 
which occurs for the composition of 100 active, zero passive, and 400 random investors. 
Doubling the individual target price forecasting errors results in an average increase in 
fundamental price deviation of up to 8.00 percentage points, occurring for the market 
composition of 20 active, 80 passive, and 400 random investors. Furthermore, we find 
that a lower (higher) individual active forecasting error results in a lower (higher) overall 

Table 5. Relative fundamental price deviation for different investor compositions in the market 
settings with active investors’ individual absolute target price forecasting errors (aTPE) of 0.225 and 
0.9 averaged over all random seeds.

Mean Price 
Deviation Relative [%]

Mean Trading 
Volume [$]

# of Agents 
Active/Passive/Random aTPE ¼ 0:225 aTPE ¼ 0:9 aTPE ¼ 0:225 aTPE ¼ 0:9

0/100/400 55.17 55.17 2,561,184 2,561,184
5/95/400 48.84 52.19 2,681,653 2,742,627
10/90/400 44.84 49.65 2,662,429 2,838,584
15/85/400 45.02 48.27 2,940,474 3,045,832
20/80/400 41.49 48.87 2,775,608 3,016,024
25/75/400 37.56 43.57 2,965,971 3,160,534
30/70/400 35.65 44.18 2,930,773 3,290,539
35/65/400 35.29 39.08 3,228,643 3,244,884
40/60/400 32.30 43.01 3,206,435 3,571,412
45/55/400 32.79 40.74 3,337,158 3,685,447
50/50/400 31.04 38.23 3,401,701 3,710,353
55/45/400 28.78 38.51 3,440,410 3,906,162
60/40/400 25.66 36.34 3,580,685 3,911,939
65/35/400 25.51 34.47 3,527,615 4,109,141
70/30/400 26.12 34.57 3,706,781 4,197,060
75/25/400 24.13 33.27 3,899,526 4,295,706
80/20/400 23.92 32.83 3,941,963 4,418,396
85/15/400 23.69 32.18 3,967,384 4,506,681
90/10/400 22.67 32.02 4,120,524 4,635,829
95/5/400 22.93 30.35 4,199,213 4,747,823
100/0/400 21.30 31.66 4,291,552 4,832,332

Figure 4. Fundamental price deviation by fraction of active investors (relative to all active and passive 
investors) detailed over all random seeds in the market settings with active investors’ individual 
absolute target price forecasting errors (aTPE) of 0.225 and 0.9.
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trading volume. For lower (higher) individual forecasting errors, the estimated funda
mental prices of active investors become more (less) similar and it is less (more) likely for 
active investors to trade with each other and more (less) likely to compete for buying or 
selling the same stocks.

4.4. Sensitivity to changes in individual risk aversion

To analyze the influence of individual risk aversion on market outcomes, we formulate 
two additional scenarios in which the risk aversion factor γ is fixed at values of two and 
six, respectively. Table 6 and Figure 5 show that changes in individual risk aversion only 
have a minor impact in markets with a higher share of active investment. In market 
settings with a low share of active investment, we observe that lower individual risk 
aversion increases mean fundamental price deviation. This effect might be explained by 
the fact that lower risk aversion leads to more extreme portfolio weights, which, in turn, 
may drive prices faster away from fundamental values in markets that only have a weak 
link between fundamentals and market prices (i.e., low share of active investors).

4.5. Sensitivity to different transaction costs

Table 7 and Figure 6 present the results of a simulation scenario of a market that features 
relative trading costs of 0.5 percent. Introducing transaction costs reduces fundamental 
market efficiency in the market settings with a higher share of active investors. Specifically, 

Table 6. Relative fundamental price deviation for different investor compositions in the market 
settings with individual investors’ risk aversion of γ ¼ 2 and γ ¼ 6 averaged over all random 
seeds.

Mean Price 
Deviation Relative [%]

Mean Trading 
Volume [$]

# of Agents 
Active/Passive/Random γ = 2 γ =6 γ =2 γ =6

0/100/400 61.12 46.17 2,675,948 2,554,114
5/95/400 56.60 48.74 2,699,050 2,593,278
10/90/400 51.49 44.07 2,725,954 2,770,256
15/85/400 48.91 43.45 2,892,430 2,844,814
20/80/400 46.99 41.01 3,042,139 2,794,737
25/75/400 43.60 37.94 3,111,944 3,011,106
30/70/400 40.31 37.40 3,113,275 3,076,410
35/65/400 39.31 35.77 3,168,636 3,119,941
40/60/400 35.21 36.07 3,297,038 3,321,216
45/55/400 36.65 35.24 3,519,634 3,466,496
50/50/400 33.80 33.18 3,453,610 3,362,015
55/45/400 33.03 30.62 3,788,077 3,694,802
60/40/400 31.73 30.74 3,888,638 3,819,000
65/35/400 30.10 28.49 3,917,745 3,800,704
70/30/400 28.92 28.25 3,960,200 3,913,296
75/25/400 28.32 27.71 4,187,611 3,883,864
80/20/400 28.17 26.23 4,216,768 4,138,441
85/15/400 27.46 26.38 4,300,281 4,246,452
90/10/400 27.13 25.69 4,743,153 4,278,943
95/5/400 26.06 25.01 4,450,700 4,438,806
100/0/400 25.21 24.56 4,519,973 4,615,691
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the mean fundamental market deviation increases for all tested agent compositions with 
more than 50 active agents. Furthermore, it only decreases to 28.21 percent for the 
composition with 100 active, zero passive, and 400 random investors, compared to 
25.86 percent in the market setting without transaction costs (see Table 2). Moreover, 
an increase in transaction costs leads to lower trading volumes, as investors incorporate 
the expected trading costs into their utility functions and prefer smaller portfolio changes.

4.6. Sensitivity to portfolio weight restraints

Table 8 and Figure 7 present the results for different upper bounds for the individual 
portfolio weights of the different assets. We find that less restrictive individual portfolio 
weights (i.e., wmax ¼ 1) lead to higher fundamental market efficiency and higher trading 
activity on average. In contrast, the opposite is true for more restrictive individual 
portfolio weights (i.e., wmax ¼ 0:33). In our market setting with 100 active, zero passive, 
and 400 random investors, the less restrictive upper bound of wmax ¼ 1 results in a mean 

Figure 5. Fundamental price deviation by fraction of active investors (relative to all active and passive 
investors) detailed over all random seeds in the market setting with individual investors’ risk aversion 
of γ ¼ 2 and γ ¼ 6.

Figure 6. Fundamental price deviation by fraction of active investors (relative to all active and passive 
investors) detailed over all random seeds in the market setting with 0.5% transaction costs.
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Table 7. Fundamental price deviation and trading volume for different 
investor compositions in the market setting with 0.5 percent transaction 
cost averaged over all random seeds.

# of Agents Mean Price Mean Trading
Active/Passive/Random Deviation Relative [%] Volume [$]

0/100/400 51.20 2,485,096
5/95/400 49.78 2,603,984
10/90/400 44.84 2,397,038
15/85/400 41.50 2,625,995
20/80/400 40.66 2,650,902
25/75/400 39.27 2,699,538
30/70/400 38.24 2,725,631
35/65/400 36.84 2,883,039
40/60/400 38.50 3,112,331
45/55/400 34.40 3,028,697
50/50/400 33.88 3,074,151
55/45/400 34.20 3,078,258
60/40/400 33.74 3,217,903
65/35/400 32.14 3,388,530
70/30/400 31.93 3,438,023
75/25/400 30.86 3,501,592
80/20/400 29.39 3,704,058
85/15/400 29.28 3,718,231
90/10/400 29.07 3,874,499
95/5/400 29.67 3,804,029
100/0/400 28.21 3,950,970

Table 8. Fundamental price deviation and trading volume for different investor compositions in the 
market setting with individual investors’ upper portfolio constraints of wmax ¼ 0:33 and wmax ¼ 1 
averaged over all random seeds.

# of Agents

Mean Price 
Deviation Relative [%]

Mean Trading 
Volume [$]

Active/Passive/Random wmax ¼ 0:33 wmax ¼ 1 wmax ¼ 0:33 wmax ¼ 1

0/100/400 55.17 55.17 2,561,184 2,561,184
5/95/400 49.19 51.68 2,655,221 2,879,598
10/90/400 50.48 47.32 2,841,004 2,810,632
15/85/400 47.39 43.18 2,867,019 2,979,468
20/80/400 49.01 42.50 3,039,779 3,099,328
25/75/400 46.58 39.10 3,040,331 3,191,590
30/70/400 45.06 37.18 2,893,290 3,340,096
35/65/400 42.13 34.00 3,115,205 3,447,845
40/60/400 42.40 33.87 3,177,080 3,458,834
45/55/400 40.06 32.25 3,275,576 3,771,100
50/50/400 39.14 32.15 3,369,085 3,937,050
55/45/400 38.29 28.73 3,508,492 4,025,272
60/40/400 36.72 27.64 3,422,609 4,231,287
65/35/400 36.09 27.12 3,517,104 4,408,642
70/30/400 34.68 27.20 3,619,060 4,682,958
75/25/400 35.49 24.30 3,553,326 4,810,109
80/20/400 33.79 24.99 3,912,030 4,799,979
85/15/400 32.38 21.49 3,798,371 2,982,970
90/10/400 31.81 22.80 3,909,569 5,153,857
95/5/400 31.68 23.13 3,963,279 5,276,650
100/0/400 30.29 22.03 4,096,592 5,507,077
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fundamental price deviation of 22.03 percent. For the same market composition, the 
more restrictive bound of wmax ¼ 0:33 leads to a mean fundamental price deviation of 
30.29 percent.

4.7. Replication of stylized facts of real-world financial markets

Table A2 presents the results of our quantitative tests for the replication of stylized facts 
of financial return time series detailed over all compositions and random seeds in our 
standard market setting. We find that all return series exhibit an excess kurtosis of at least 
two, and the Kolmogorov-Smirnov tests (Kolmogorov, 1933; Massey, 1951; Smirnov,  
1948) show that all series are found to be non-Gaussian at a 95% confidence level. The 
alpha of a fitted power-law distribution is in 71% of all simulated market outcomes in the 
range between two and five. Furthermore, the log-likelihood tests show that in 81% of 
market outcomes, the observed distribution rather follows a power-law distribution than 
an exponential distribution. While these tests are only in 17% of these cases significant at 
the 95% confidence level, they never significantly indicate that any of the observed return 
series rather follow an exponential distribution. Additionally, we find that the created 
return times series exhibit conditional heavy tails in 41% of all market outcomes. The 
stylized fact gain loss asymmetry is fulfilled in 64% of all simulated market outcomes.

5. Discussion

This simulation study sheds light on the impact of two essential investor types, namely 
active and passive investors, on fundamental market efficiency. It becomes apparent that 
high levels of passive investment within a market may foster price bubbles and impair 
fundamental market efficiency. This finding has implications for financial regulators, 
who should incorporate the level of passive investment and existing market frictions 
when assessing risks to financial market stability. In the light of an increase in passive 
investment due to the emergence of ETFs and robo-advisory, this issue has become 
increasingly relevant. However, while it is possible to approximate the level of passive 

Figure 7. Fundamental price deviation by fraction of active investors (relative to all active and passive 
investors) detailed over all random seeds in the market setting with individual investors’ upper 
portfolio constraints of 0.33 and 1.
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investment through the volume of passively managed funds, it is challenging to differ
entiate between various types of active investors without conducting concrete interviews.

Additionally, the increase of fundamental market inefficiency for a higher fraction of 
passive investment is influenced by active investors’ trading frictions and portfolio 
restrictions. Thereby, markets with less restricted active investors may incorporate 
a higher fraction of passive investors without creating large price bubbles, as less 
restricted active investors can trade more and correct a higher level of mispricing. This 
finding emphasizes the need for a careful situational assessment by regulators when 
imposing measures that constrain trading.

The study further shows that the trading behavior of active investors, who individually 
have imprecise but unbiased target price forecasts, links the market prices of assets to 
their fundamental values. The marginal increase in fundamental market efficiency for an 
additional fundamental investor entering the market decreases for higher levels of 
existing fundamental investment. However, due to the imprecision of individual fore
casts, market prices generally may not exactly reflect fundamental asset values at a certain 
point in time. Our results also show that more accurate target price forecasts, as, for 
instance, generated by the increased use of machine learning methods (Gu et al., 2020), 
leads to a higher fundamental efficiency of market prices.

Generally, we find that our results are in line with related work (e.g., (Anadu et al.,  
2020; Qin & Singal, 2015; Sullivan & Xiong, 2012; Sushko & Turner, 2018)), which finds 
that a certain share of active investors is necessary for functioning and efficient financial 
markets. Our simulation setting allows to provide further details on the underlying 
mechanisms of this issue and evaluates the impact of different market environments.

An explicit limitation of this study is its simulation setting. While we generally select 
simulation parameters carefully based on empirical evidence, it is unavoidable to make 
certain assumptions during parameter selection. Furthermore, the simulation setting 
significantly simplifies real-world financial markets. For instance, while mean-variance 
utility functions are still commonly used in finance, they may overly simplify the utility 
functions of investors. Hence, we aim to draw general conclusions about financial 
markets’ functioning rather than narrow down on the exact magnitude of specific 
numeric results. We aim to reduce this limitation by testing whether the return times 
series generated by our simulated market exhibit quantifiable stylized facts that are often 
observed in real-world financial markets. We find that all generated return series exhibit 
excess kurtoses and further tests suggest that most of the generated time series exhibit 
heavy tails and a gain-loss asymmetry. However, we only identify the stylized fact of 
conditional heavy tails in 42% of all generated return series. Overall, these tests show that 
our simulated market exhibits some but not all properties of real-world financial markets.

As this study focuses on the impact of fundamental and passive investment on funda
mental market efficiency, future research could shed further light on the decision of 
investors to invest based on fundamental analysis or to invest passively. As our study 
shows, markets become increasingly fundamentally efficient with higher fractions of active 
investors. However, in markets with higher shares of active investment, the competition to 
trade mispriced assets also increases, leading to a lower utility of individual active investors. 
Hence, researchers could investigate the existence of a possible equilibrium level of active 
and passive investment in a financial market and examine further influencing factors, such 
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as the use of other utility functions that have been shown to resemble the real world more 
realistically (e.g., prospect theory (Kahneman & Tversky, 1979)).

6. Conclusion

In this simulation study, we analyze the effects of different levels of active and passive 
investment on fundamental market efficiency. We examine various market settings to 
understand the impact of other market parameters on our results. For the selected market 
settings, we generally find that larger fractions of active investment within a market 
increase overall fundamental market efficiency. The marginal positive effect on funda
mental market efficiency per additional fundamental investor decreases for larger frac
tions of fundamental investment. In addition, a less restrictive trading environment for 
active investors in the form of relaxed portfolio constraints or lower trading costs 
facilitates trading and increases fundamental market efficiency. Furthermore, more 
accurate price forecasts of individual active investors, caused, for instance, by the pro
liferation of machine learning approaches within the asset management industry, tend to 
increase fundamental market efficiency. We also find that large fractions of passive 
investment within a financial market may lead to market failure and facilitate technical 
price bubbles.
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