

Sustainability Assessment of NET fuel production processes

Martina Haase, Manuel Andresh, Andreas Patyk, Christine Rösch

Workshop NET@KIT, 23. März 2023

Agenda

- Approach for Sustainability Assessment
- Fuel Production Processes (Examples from the reFuels project)
- Results
 - Life Cycle Impact Assessment
 - MCDA for Sustainablity Assessment
- Takeaways

 Decision Support Tool for MCDA assisted sustainability assessment

KIT MCDA Tool (https://portal.iket.kit.edu/projects/MCDA/)

MCDA for Sustainability Assessment

- Multi Criteria Decision Analysis (MCDA) to support decision-making processes
- Comparison of alternatives based on relevant, often conflicting, criteria.
 - Mathematical procedures to aggregate results from sub-problems
 - Systematically determine the best choice for a decision maker
 - Selection and weighting of criteria as key aspects

Common MCDA methods for criteria aggregation

Method	Description	Pros	Cons	
WSM*	Simple linear additive models	simple computation, transparent	only basic estimations, -only single preference	
TOPSIS**	best alternative should have the shortest (Euclidian) distance from the positive ideal solution while it has the longest distance from the negative ideal solution	simple computation	does not consider difference between neg. & pos. values	
PROMETHEE***	construction of outranking relation to compare each pair of actions;	considers interdependency of criteria	complex method, computation efforts high	

(Guitouni and Martel 1998, Wang et al. 2009)

^{*} Weighted Sum Method ** Technique for Order Preference by Similarity to Ideal Solution *** Preference ranking organization method for enrichment evaluation

 Decision Support Tool for MCDA assisted sustainability assessment

KIT MCDA Tool (https://portal.iket.kit.edu/projects/MCDA/)

Life Cycle Assessment of fuel production pathways

Examples from the reFuels project

- Comparison of potential environmental impacts of different fuel production pathways
 - Analysis of the effects of different process constellations and locations
 - Identification of hotspots and potentials
 - Focus on Global Warming Potential (GWP), Fine Particulate Matter Formation, Fossil Resource Scarcity
- Fuel production pathways
 - Microstructured Fischer-Tropsch (FT) synthesis with CO₂ from Direct Air Capture (DAC)
 - Conventional Fischer-Tropsch (FT) synthesis with CO₂ from a cement plant
 - Bioliq Dimethyl Ether (DME) fuel synthesis with CO₂ capture by biomass

 Decision Support Tool for MCDA assisted sustainability assessment

KIT MCDA Tool (https://portal.iket.kit.edu/projects/MCDA/)

Fuel production processes

Examples from the reFuels project

Microstructured Fischer-Tropsch (FT) synthesis

(Andresh et al. 2021)

Process data from Vázquez et al. (2018)

Fuel production processes

Examples from the reFuels project

Conventional Fischer-Tropsch (FT) synthesis

(Andresh et al. 2021)

Process data from Institute for Industrial Production (KIT-IIP)

Fuel production processes

Examples from the reFuels project

Bioliq DME petrol synthesis

(Andresh et al. 2021)

Process data from Trippe (2013): Techno-ökonomische Bewertung alternativer Verfahrenskonfigurationen zur Herstellung von Biomass-to-Liquid (BtL) Kraftstoffen und Chemikalien

 Decision Support Tool for MCDA assisted sustainability assessment

KIT MCDA Tool (https://portal.iket.kit.edu/projects/MCDA/)

Life Cycle Impact Assessment

Global Warming Potential of considered alternatives

Life Cycle Impact Assessment

ReCiPe 2016 Midpoint

Impact categories ReCiPe 2016 Midpoint	Unit	Microstructured FT, CO ₂ from DAC	Conventional FT, CO ₂ from cement plant	Bioliq, CO ₂ capture by biomass	Fossil (Diesel)	
		!				
		Germany, wind, offshore	Germany, wind, offshore	Straw, regional		
Fine particulate matter formation	kg PM2,5 eq	-4.0E-05	-3.2E-05	4.4E-05	3.6E-05	
Fossil resource scarcity	kg oil eq	-1.2E-02	-2.5E-02	1.7E-03	2.9E-02	
Freshwater ecotoxicity	kg 1,4-DCB	2.2E-02	3.7E-02	7.3E-04	1.1E-04	
Freshwater eutrophication	kg P eq	-4.6E-05	-2.5E-05	-1.1E-05	7.3E-07	
Global warming	kg CO2 eq	-2.0E-02	-7.4E-02	2.0E-03	8.6E-02	
Human carcinogenic toxicity	kg 1,4-DCB	1.5E-02	2.3E-02	5.5E-04	5.7E-04	
Human non-carcinogenic toxicity	kg 1,4-DCB	4.0E-02	1.2E-01	4.2E-02	2.6E-03	
lonizing radiation	kBq Co-60 eq	-3.0E-02	-2.5E-02	-2.4E-03	7.6E-04	
Land use	m2a crop eq	-6.7E-04	5.6E-04	1.7E-04	1.1E-04	
Marine ecotoxicity	kg 1,4-DCB	2.7E-02	4.5E-02	1.1E-03	2.1E-04	
Marine eutrophication	kg N eq	-2.8E-06	-7.9E-07	-8.7E-07	1.1E-07	
Mineral resource scarcity	kg Cu eq	7.3E-04	1.1E-03	2.4E-04	1.7E-05	
Ozone formation, Human health	kg NOx eq	-4.3E-05	-3.1E-05	9.9E-05	5.0E-05	
Ozone formation, Terrestrial ecosystems	kg NOx eq	-4.2E-05	-3.1E-05	1.0E-04	5.3E-05	
Stratospheric ozone depletion	kg CFC11 eq	3.1E-07	-2.3E-08	8.0E-09	2.3E-08	
Terrestrial acidification	kg SO2 eq	-1.1E-04	-1.2E-04	8.6E-05	1.1E-04	
Terrestrial ecotoxicity	kg 1,4-DCB	1.1E-01	1.9E-01	1.5E-01	4.2E-02	
Water consumption	m3	-2.6E-03	-1.2E-05	1.4E-04	9.9E-06	

(Andresh et al. 2021)

MCDA for Sustainability Assessment

Exemplary results – TOPSIS*

Equal weighting of criteria

Stability of weights – GWP

*Technique for Order Preference by Similarity to ideal Solution

KIT MCDA Tool (https://portal.iket.kit.edu/projects/MCDA/)

Takeaways

- Presented fuel production processes show negative CO₂ equivalents considering production and use of primary and by-products
- For sustainability assessment, economic, social and further environmental impacts need to be considered
- MCDA for integrative consideration of criteria
- Selection and weighting of criteria has a decisive influence on results
 → Integration of stakeholders

Literature

- Andresh et al. (2021): Ökobilanzen im Projekt reFuels Kraftstoffe neu denken. Forschungsbericht, Karlsruher Institut für Technologie (KIT). DOI: 10.5445/IR/1000141494
- Guitouni, Martel (1998). Tentative guidelines to help choosing an appropriate MCDA method. European
 journal of operational research, 109(2), 501-521
- Haase et al (2022a): Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment. Energy, Sustainability and Society, 12 (20), Article no: 20. doi:10.1186/s13705-022-00344-6
- Haase et al. (2022b): Multi criteria decision analysis for prospective sustainability assessment of alternative technologies and fuels for individual motorized transport. Clean technologies and environmental policy, 24 (10), 3171–3197. doi:10.1007/s10098-022-02407-w
- Mesa Estrada et al. (2022): Status of MCDA Tool Development. Helmholtz Workshop "MCDA for Sustainability Assessment", 10.11.2022, online
- Trippe, Techno-ökonomische Bewertung alternativer Verfahrenskonfigurationen zur Herstellung von Biomass-to-Liquid (BtL) Kraftstoffen und Chemikalien, Print on demand. Karlsruhe: KIT Scientific Publishing, 2013.
- Vázquez et al. (2018): Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization. https://doi.org/10.1016/j.jcou.2018.09.026
- Wang et al. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and sustainable energy reviews, 13(9), 2263-2278.

Contact

Dr. Martina Haase

Phone: +49 721 608-26094

Email: martina.haase@kit.edu

