KIT | KIT-Bibliothek | Impressum | Datenschutz

Strongly Hyperbolic Unit Disk Graphs

Bläsius, Thomas ORCID iD icon 1; Friedrich, Tobias; Katzmann, Maximilian 2; Stephan, Daniel
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

The class of Euclidean unit disk graphs is one of the most fundamental and well-studied graph classes with underlying geometry. In this paper, we identify this class as a special case in the broader class of hyperbolic unit disk graphs and introduce strongly hyperbolic unit disk graphs as a natural counterpart to the Euclidean variant. In contrast to the grid-like structures exhibited by Euclidean unit disk graphs, strongly hyperbolic networks feature hierarchical structures, which are also observed in complex real-world networks.
We investigate basic properties of strongly hyperbolic unit disk graphs, including adjacencies and the formation of cliques, and utilize the derived insights to demonstrate that the class is useful for the development and analysis of graph algorithms. Specifically, we develop a simple greedy routing scheme and analyze its performance on strongly hyperbolic unit disk graphs in order to prove that routing can be performed more efficiently on such networks than in general.


Verlagsausgabe §
DOI: 10.5445/IR/1000157578
Veröffentlicht am 24.10.2024
Originalveröffentlichung
DOI: 10.4230/lipics.stacs.2023.13
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISBN: 978-3-9597726-6-2
ISSN: 1868-8969
KITopen-ID: 1000157578
Erschienen in 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Ed.: P. Berenbrink
Veranstaltung Symposium on Theoretical Aspects of Computer Science (STACS 2023), Hamburg, Deutschland, 07.03.2023 – 09.03.2023
Verlag Schloss Dagstuhl - Leibniz-Zentrum für Informatik (LZI)
Seiten 13.1-13.17
Serie Leibniz International Proceedings in Informatics (LIPIcs) ; 254
Schlagwörter hyperbolic geometry, unit disk graphs, greedy routing, hyperbolic random graphs, graph classes, Theory of computation → Graph algorithms analysis, Theory of computation → Computational geometry, Mathematics of computing → Graph algorithms
Nachgewiesen in Scopus
arXiv
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page