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Abstract. The evaluation of higher-loop Feynman integrals is at the core of the quest to reduce
the uncertainty of theoretical predictions and match experimental data from the LHC and future
colliders. pySecDec is a program to evaluate such integrals numerically based on the sector
decomposition approach; its new release version 1.5 introduces features significantly improving
its performance: automatic adaptive evaluation of weighted sums of integrals (e.g. amplitudes)
and asymptotic expansion in kinematic ratios. Here we briefly review both, illustrating the
expected performance benefits.

1. Introduction
The increasing amount of data from the Large Hadron Collider (LHC) allows the experimental
groups to push the precision boundaries of the knowledge of scattering cross-sections, and poses
an ongoing challenge to the theoreticians to make the theoretical predictions at least as precise
as the experimental ones. Already now at least 2-loop QCD corrections are needed for this, and
future colliders will require 3-loop QCD and mixed QCD-electroweak corrections [1].

The two major bottlenecks for these corrections are phase-space integration and loop
integration of the amplitudes. While at 1-loop level the required loop integrals are all known
analytically, and the phase-space integration can be done using e.g. the well known Passarino-
Veltman reduction [2], no such general solutions exist starting at the 2-loop level: the existing
phase-space integration methods are computationally challenging and process-dependent, only
a subset of the 2-loop Feynman integrals of interest are known analytically (mostly in the
massless cases), and the numerical evaluation methods have long-standing problems with both
performance and precision.

pySecDec [3, 4, 5] comes into this picture as a tool for numerical evaluation of loop integrals,
implementing the sector decomposition approach [6, 7] (with Fiesta [8] being the other major
implementation of the same method). It has a long history, and has started as the Mathematica
code SecDec [9, 10, 11]. The current iteration is written in Python and C++, and is available
from GitHub1.

Recently version 1.5 of pySecDec was released bringing performance improvements through
adaptive sampling of weighted sums of integrals (i.e. amplitudes) and an implementation of the
expansion-by-regions method of the asymptotic expansion of integrals in kinematic invariants to
help with e.g. high-energy regions where the numerical integration performance is known to be

1 https://github.com/gudrunhe/secdec

https://github.com/gudrunhe/secdec
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Diagram\Relative precision 10−3 10−4 10−5 10−6 10−7 10−8

mW
mZ mZ

GPU 15s 20s 40s 200s 13m 50m

CPU 10s 50s 400s 4000s 180m 1200m

mZ mZ

mt mt

mtmt
mt mt

GPU 18s 19s 30s 20s 1.2m 2m

CPU 5s 14s 60s 50s 12m 16m

mZ mZ

mt

mt
mW

GPU 6s 11s 12s 30s 3m 24m

CPU 5s 10s 50s 800s 60m 800m

Table 1. pySecDec 1.5 integration time with Quasi Monte-Carlo (QMC) integrator for a
selection of massive 3-loop electroweak self-energy integrals taken from [13]. The CPU is
AMD Epyc 7302 with 32 threads; the GPU is NVidia A100.

a problem. A more detailed description can be found in [5]; here we would like to report on the
current status of pySecDec performance when applied to practical higher-loop calculations.

2. The expected performance
pySecDec comes with multiple configurable integrators. Possibly the most well-known one is
the Vegas integrator (provided by Cuba [12]); the recommended one however is the Quasi
Monte-Carlo integrator (QMC) described in [4]. The major advantage QMC has over the
classical Monte-Carlo techniques, even the advanced ones such as the Vegas integrator, is
that its precision scales as 1/N or better, with N being the number of integrand evaluations
(“samples”), while the classical approaches scale as 1/

√
N . In other words, to get 10x precision

with QMC one needs to wait at most 10x as long, while with classical Monte-Carlo one would
have to wait 100x as long.

To illustrate the scaling and the generally expected performance, let us turn to Table 1 where
integration times of several 3-loop massive integrals are displayed. In short: it takes seconds to
minutes per integral to achieve sufficient precision for practical purposes. Note that the precision
scaling for the first and the second integrals is even better than 1/N : it is closer to 1/N1.5 and
1/N3 respectively, i.e. it takes less than 10x time to achieve 10x precision.

Naturally, the performance depends on the employed computer hardware. See Figure 1
for a rough comparison between different CPU and GPU models. The takeaway is that a
top consumer-grade GPU brings the performance of a single server-grade CPU, while a top
server-grade GPU is 10x faster. For this reason we advocate the use of server-grade GPUs for
complicated integration problems. Note that the factor limiting pySecDec performance on
GPUs is the use of double-precision floating point variables—something that is not needed by
the majority of GPU users, and is not optimized for by GPU manufacturers outside of specific
server-grade GPU models like NVidia A100 or AMD MI200.2

2.1. On the importance of a good integral selection
While the integration times shown in Table 1 are representative of many 7- and 8-line integrals,
if one needs to evaluate a full amplitude, many more integrals would need to be calculated, and
in our experience a fraction of them will converge much slower. For this reason it is important
to remove linearly dependent integrals by using reduction via the integration-by-parts (IBP)
relations, and it is important to apply an effort to the selection of the master integral basis:

2 Note that pySecDec relies on NVidia’s CUDA libraries and therefore does not currently work on AMD GPUs.
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Figure 1. The number of integrand evaluations per second of the integrands of the diagrams
from Table 1 on a desktop-grade CPU (Intel Core i5-6500), a server-grade CPU (AMD
Epyc 7302), a consumer-grade GPU (NVidia RTX 2080 Ti), and a server-grade GPU (NVidia
A100).
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Figure 2. Integration time of the first diagram from Table 1 to 7 digits of precision by
pySecDec version. Here dev stands for the current public development version (v1.5.3+),
wip stands for the work-in-progress code to be released in the future, and avx2 stands for
compilation with AVX2 and FMA processor instruction sets allowed (the work-in-progress code
has special provisions to use them).

choosing a good basis can be the difference between having the answer in minutes and not
having it at all.

While we do not have a general recipe to predict which integrals will converge poorly, but the
rule of thumb is that one should choose integrals with a positive power of the U polynomial (in
the Feynman parametrization), and the power of F should not be lower than −2. To achieve this
one would sometimes need to raise the powers of the propagators, and other times to perform
dimensional shifts (see e.g. [14]). This does of course shift the complexity from the numerical
evaluation to the IBP reduction, but often this is an acceptable tradeoff.

3. Adaptive sampling of amplitudes
Despite the best efforts to select a good basis of integrals, complicated integrals can always
remain. For those, pySecDec v1.5 brings a major performance improvement, and subsequent
work strives to incrementally improve on that: see Figure 2 for a rough performance progression
of pySecDec versions.

The biggest contributor of the improvement between v1.4 and v1.5 is adaptive sampling of
weighted sums of integrals. To see how it works, suppose one wants to evaluate

1 + 10 + 50 (1)
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Amplitude term
Naive

sampling
Naive
error

Better
sampling

Better
error

1 106 samples 1 · 10−6 1
2 · 106 samples 2 · 10−6

10 106 samples 10 · 10−6 1
2 · 106 samples 20 · 10−6

50 106 samples 50 · 10−6 2 · 106 samples 25 · 10−6

Total: 3 · 106 51 · 10−6 3 · 106 32 · 10−6

Table 2. Integration uncertainty of a sum of integrals for two different distributions of the
total number of integrand evaluations. For illustration purposes this example assumes that the
integration error is exactly 1/Nsamples.

to some fixed precision. The naive approach would be to evaluate all three integrals to this
precision and then to add them. However, because the last one has the largest coefficient and
contributes to the overall error the most, it is best to spend more time evaluating this integral,
and spend less time evaluating the others; this way more precision can be achieved using the
same integration time. See Table 2 for a worked out example.

In practice pySecDec will try to determine the optimal sampling distribution not only based
on the coefficients of integrals in a sum, but also on how well they converge and how fast can
their integrand be evaluated—all determined automatically during the integration. Note that
this optimization applies to both user-specified sums of integrals (e.g. full amplitudes) and
to single integrals too, because under the sector decomposition method each integral is split
into a sum of sectors, each sector being a separate integral. This is why Figure 2 shows a big
improvement at v1.5 even for a single integral.

We would additionally like to note that this technology is not new, and pySecDec equipped
with it has previously been successfully used in multiple 2-loop calculation such as [15, 16, 17].

4. Asymptotic expansion
Aside from some integrals being intrinsically complicated, another source of performance
problems are kinematic limits: if an integral depends on kinematic invariants, the more extreme
their ratios get the slower such an integral converges. The reason is that in this case the majority
of the integral’s value becomes progressively concentrated in a smaller region of the integration
space, and more evaluations are needed to sample this small space precisely.

As an illustration see Figure 3: the integration time needed to reach a given precision increases
with the increase of the m2/s ratio, eventually making it impractical to obtain a result.

One solution to this problem is to note that since the kinematic ratio is large, it is possible
to expand the integral in the inverse of this ratio, treating it as a smallness parameter, e.g.

m
s = (· · ·+ · · · )

( s

m2

)−1
+ (· · ·+ · · ·+ · · ·+ · · · )

( s

m2

)0
+O

( s

m2

)
. (2)

The method for such expansions, “expansion-by-regions”, has been worked out in [18, 19].
It consists of splitting the whole integration region into subregions such that the integration
variables in each are of the specific order in the smallness parameter, making straightforward
Taylor expansion possible. Then, each of the obtained integrals can be integrated over the whole
integration region (not just its specific subregion), with the justification that the contribution
of the overlapping subregions consist of scaleless integrals only (and therefore is zero).
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Figure 3. Time to evaluate the depicted integral to 3 digits of precision depending on the m2/s
ratio. The integration time is capped at 5 hours, and when m2/s > 3000 the precision target
can not be reached within that time.

Expansion by regions was previously implemented in Asy.m [20] and Asy2.m [21]; this
implementation is currently shipped as a part of Fiesta. As of version 1.5 pySecDec provides
the function loop regions() that expands a given loop integral by regions; the result of it can
be directly turned into a standard pySecDec integration library. The integration time of this
library is shown on Figure 3 in comparison to the integration time of the unexpanded integral:
as expected after the expansion the integration time no longer depends on m2/s.

5. Conclusions
The recently released pySecDec version 1.5 comes with two major new features: automatic
adaptive evaluation of the weighted sums of integrals (e.g. amplitudes) and an implementation
of asymptotic expansion of integrals in kinematic ratios. The first one brings a major speedup
in the evaluation of single integrals and allows using pySecDec to evaluate whole amplitudes
in an optimal way. The second provides an essential tool in handling extreme kinematics (e.g.
high-energy regions).

Since this release the pySecDec team continues incrementally improving its performance,
hoping to make it applicable to even more challenging integrals, and to establish it as a tool to
optimally evaluate whole amplitudes. In our view sector decomposition and pySecDec are the
tools of the last resort: when analytic evaluation is impossible, when differential equations are
unsolvable or unavailable, pySecDec will still remain a viable option to get a result. Since the
need for higher-loop corrections is higher than ever, we believe that the time for the last resort
is nigh.
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