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Abstract. We present an application of the major new features of pySecDec, a program
designed to numerically calculate multi-loop integrals. One important new feature is the ability
to integrate weighted sums of integrals in a way which is optimised to reach a given accuracy
goal on the sums rather than on the individual integrals. Another feature is the option to
perform asymptotic expansions. These new assets of the program represent an important step
towards the efficient evaluation of multi-loop amplitudes in a largely automated way. We will
illustrate them in a pedagogical example, through the calculation of the one-loop amplitude
for Higgs plus jet production in the gluon channel, mediated by a top quark loop. Numerical
results in the heavy top limit, compared to their analytic counterparts, are shown as well.

1. Introduction
Precision calculations are essential for testing and advancing our knowledge of high energy
physics. Theoretical predictions need to be precise enough to match the increasing experimental
precision and to look for discrepancies hinting towards new physics directions. In light of the data
expected at the Large Hadron Collider and potential future colliders, higher order corrections for
relevant processes must be evaluated. However, with higher numbers of loops and mass scales,
the complexity of such problems increases substantially. Thus, opting for numerical evaluations
of the integrals, as well as approximations in certain limits, can often be an efficient way to
provide sufficiently accurate phenomenological results.

The program pySecDec[1, 2] has been further developed towards this goal [3], a detailed
description can be found in the contribution of V. Magerya [4]. The purpose of these proceedings
is to present two new features resulting from this development with a concrete example. We
will describe an explicit demonstration of how to evaluate weighted sums of integrals and how
to perform expansion by regions [5, 6]. The implementation of these features represents a
step towards the automation of multi-loop calculations. Here we illustrate the methodology by
considering the example gg → gH at 1-loop, which is part of the amplitude for Higgs plus jet
production at the LHC. Full code for this example is available in the secdec respository, see
nodist_examples/gggH1L.
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2. New features of pySecDec
2.1. sum package
The python package sum_package can be used to perform the numerical evaluation of weighted
sums of Feynman integrals as they occur, for example, in calculations of scattering amplitudes.
The evaluation procedure is optimised to reach a given accuracy goal on the sum rather
than on the individual integrals. It takes as input a list of regularised integrals through the
package_generators, which can be loop integrals (defined via loop_package) or more general
parametric integrals (defined via make_package). The coefficients (rational functions) can
be defined in a separate file, requiring the specification of numerators and denominators for all
coefficients. These coefficients depend on the defined parameters and regulators. An example
is shown below.

sum_package(

‘F212’,

package_generators,

regulators = [‘eps’],

requested_orders = [0],

real_parameters = [‘s12’,‘s13’,‘s23’,‘mtsq’,‘mhsq’],

coefficients = coefficientsF212.coeff,

complex_parameters = []

)

The function generates a library F212, the coefficients are contained in the file
coefficientsF212. They are rational polynomials of the kinematic invariants and the
regulators, and they need to be given in the same order as the integrals in package_generators.
An example of a such file is shown below where the M1num and M1den are the
numerator and denominator of the P1 coefficient which can be defined appropriately (e.g.
M1num = [‘-(16*eps*(s13*s23))’]). The parameters should contain all the real and complex
parameters defined above.

coeff = [

# P1 g1(mtsq) coefficient

[Coefficient(M1num,M1den,parameters),

...

# P14 g9(s23,s13,mhsq,mtsq) coefficient

Coefficient(M14num,M14den,parameters)]

]

The loop integrals can be defined as an ordered list in a standard manner with pySecDec
methods from loop_package like LoopIntegralFromGraph or LoopIntegralFromPropagators.
We use the latter and define all the integrals based on the same list of propagators, adjusting
their powers correspondingly in powerlist.

The algorithm in sum_package attempts to obtain the overall precision requested by the user
while evaluating the superposition of given integrals with their coefficients. This avoids spending
too much time on integrals which do not give a large contribution to the full amplitude.

2.2. Expansion by regions
Expansion by regions is a systematic method for expressing Feynman integrals as a series
expansion in terms of a ratio of scales, summed over different regions defined by a scale hierarchy.
The method has been pioneered in Refs. [7, 5, 8] and further developed in Refs. [9, 6, 10, 11]. A
standard example [6] is the integral :

I2 = µ2ε

∫
ddk

1

(k + p)2(k2 −m2)2
(1)
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Considering the case |p2| ≫ m2, we can expand the integrand in two regions, hard (k ∼ p) and
soft (k ∼ m).

(hard) :
1

(k + p)2(k2 −m2)2
→ 1

(k + p)2(k2)2

(
1 +

2m2

k2
+ · · ·

)
for |m2| < |k2|

(soft) :
1

(k + p)2(k2 −m2)2
→ 1

p2(k2 −m2)2

(
1− k2 + 2p · k

p2
+ · · ·

)
for k2 + 2k · p < p2

(2)

Integrating all the terms over the complete integration domain, there will be no double counting
because the ‘overlap’ terms are scaleless integrals which are zero in dimensional regularisation
(Working in d = 4− 2ε dimensions).

Expansion by regions can be implemented for loop integrals li_z through the loop_regions
method. The scale hierarchy can be defined by multiplying the invariants of the standard loop
integral li appropriately with a smallness_parameter ∼ z. Expansion about z=0 up to a
user-defined order is performed, then sum_package sums over all the regions (with z=1).

li_z = psd.loop_integral.LoopIntegralFromPropagators(

propagators=li.propagators, loop_momenta=li.loop_momenta,

regulators=li.regulators, powerlist=li.powerlist,

replacement_rules = [ (‘p1*p1’, ‘0’),(‘p2*p2’, ‘0’),(‘p3*p3’, ‘0’),

(‘p1*p2’, ‘(s12*z)/2’),(‘p1*p3’, ‘(s13*z)/2’),(‘p2*p3’, ‘(s23*z)/2’),

(‘mt**2’,‘mtsq’),(‘(p1*p2)+(p2*p3)+(p1*p3)’,‘((mhsq)*z)/2’) ])

generators_args = loop_regions(

name = "g9(s23,s13,mhsq,mtsq)",

loop_integral=li_z,

smallness_parameter = "z",

expansion_by_regions_order=1)

sum_package(name, generators_args, li_z.regulators,

requested_orders = [1],

real_parameters = [‘s12’,‘s13’,‘s23’,‘mtsq’,‘mhsq’,‘z’],

complex_parameters = [])

For integrals with large scale differences between its invariants, standard pySecDec can
face convergence problems due to large cancellations. In the case of large scale hierarchies, the
uncertainty introduced through the truncation of the series in the expansion by regions method
can be considerably lower and therefore expansion by regions is the method of choice in such
cases. For more details we refer to [3] or section 3.2.7 of [12].

3. Application: Higgs plus three-gluon amplitude at one loop
Now we illustrate the application of the above features by calculating an example from Higgs+ jet
production in the gluon channel at 1-loop. Although there are 7 different partonic channels that
contribute, the calculational methodology for the fixed order matrix elements is similar for all
sub-processes. Thus, we consider specifically the gg → gH process here. A more complete
discussion of this amplitude can be found in [13].

Exploiting the tensor structure of the amplitude and imposing all the necessary constraints
like parity and gauge invariance, the absolute square of the matrix element can be expressed in
terms of four form factors, F212, F312, F332 and F311. Additionally, the form factors F212, F332

and F311 are related due to the permutation invariance of the amplitude under the exchange of
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Figure 1. gg → gH mediated by a top quark loop

gluons. The complete amplitude thus can be expressed in terms of the two independent form
factors F212 and F312. These form factors depend on 9 master integrals related to our topology
and 5 crossed integrals. Therefore the amplitude can be expressed as a linear combination of
these 14 integrals : F =

∑14
i=1 ciJi where the Ji can be written as:

1. g1(m
2
t ) = I2,0,0,0 6. g5(s12,m

2
t ) = I1,1,1,0 11. g8(s23,m

2
H ,m2

t ) = I1,1,0,1

2. g2(s12,m
2
t ) = I2,0,1,0 7. g5(s13,m

2
t ) = I1,1,1,0 12. g9(s12, s23,m

2
H ,m2

t ) = I1,1,1,1

3. g2(s13,m
2
t ) = I2,0,1,0 8. g6(s23,m

2
t ) = I0,1,1,1 13. g9(s12, s13,m

2
H ,m2

t ) = I1,1,1,1

4. g3(s23,m
2
t ) = I0,2,0,1 9. g7(s12,m

2
H ,m2

t ) = I1,0,1,114. g9(s23, s13,m
2
H ,m2

t ) = I1,1,1,1

5. g4(m
2
H ,m2

t ) = I2,0,0,1 10. g7(s13,m
2
H ,m2

t ) = I1,0,1,1 , (3)

where

Iα1,α2,α3,α4 =

∫
ddk1

iπd/2

1

Dα1
1 Dα2

2 Dα3
3 Dα4

4

(4)

with the propagators defined appropriately. The kinematic invariants are defined as sij = (pi +
pj)

2 . The form factors are related by F212(s12, s13, s23) = F311(s13, s23, s12) = F332(s23, s12, s13),
such that only F212(s12, s13, s23) and F312(s12, s13, s23) are independent.

The amplitude is most conveniently expressed in terms of helicity amplitudes. As each
gluon can have two helicities, there are in total 23 helicity amplitudes. Due to the parity and
permutation invariance, we again have only two independent helicity amplitudes, corresponding
to the two independent form factors, related by:

Mh1h2h3
gg→gH = −M−h1−h2−h3

gg→gH

M++−
gg→gH(s12, s13, s23) = M+−+

gg→gH(s13, s23, s12) = M−++
gg→gH(s23, s12, s13)

M+++
gg→gH =

√
s12s13s23√

2
·
( s12
2s13

F212 +
s23
2s12

F332 +
s13
2s23

F311 + F312

)
M++−

gg→gH =

√
s12s23
s13

· s12

2
√
2
· F212 . (5)

The last two expressions are valid only up to an overall phase factor. Thus, the absolute square
of the matrix element is given by:

|Mgg→gH |2 = 2 ·
(
|M+++

gg→gH |2 + |M++−
gg→gH |2 + |M+−+

gg→gH |2 + |M−++
gg→gH |2

)
. (6)
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We also give the analytic expression for the amplitude squared in heavy top limit [13], which
we will use to compare with our numerical results including the top-quark mass dependence, in
the limit of large top quark mass,

|Mmt→∞
gg→gH |2 = 4

9
· Nc(N

2
c − 1)α3

s

πv2
·
(m8

H + s412 + s413 + s423)

s12s13s23
+O(ϵ) (7)

For convenience, we normalise the amplitude by extracting a factor of K, defined by

|Mmt→∞
gg→gH |2 = K |Amt→∞

gg→gH |2 , K =
Nc(N

2
c − 1)m4

tα
3
s

πv2
, (8)

such that the quantity we use to check our numerical results is

|Amt→∞
gg→gH |2 = 4

9

1

m4
t

·
(m8

H + s412 + s413 + s423)

s12s13s23
+O(ϵ) . (9)

4. Numerical evaluation with pySecDec
4.1. Using sum package
Because the form factors are expressed as weighted sums of integrals, F =

∑14
i=1 ciJi, we can use

sum_package to numerically evaluate the sum directly, for both the form factors as well as the
squared helicity amplitudes represented as sums of form factors. Using the sum_package syntax
shown above, we can generate the library files for each of the two independent form factors.
To integrate, we load the library file for F212 and F312 (F212_pylink.so, F312_pylink.so),
choose an integrator (e.g. Qmc or Vegas) and provide the kinematic point to evaluate the integral
at. The amplitude is evaluated with a relative numerical accuracy of ∼ 10−7 in 5-10 seconds
with a regular CPU@1.6 GHz.

4.2. Expansion by regions
Let us now demonstrate the evaluation of the master integrals by expanding them in inverse
powers of m2

t , which will act as the smallness parameter in the heavy top limit. Analytic
expression for the first order expansion of the integral g2(s12,m

2
t ) can be written as [13]:

g2(s12,m
2
t ) = (−1)3Γ(3− d/2)

1

m2
t

( µ2

m2
t

)2−d/2 ·
(1
2
+

s12
m2

t

· 3− d/2

12
+O

( 1

m4
t

))
(10)

Following the procedure outlined earlier, we can numerically evaluate the integral with
expansion by regions, at a kinematic point where all invariants are small compared to the
squared top mass:

[s12, s13, s23,m
2
t ,m

2
H ] = [0.0009,−0.0003,−0.000442873775, 1.00, 0.000157126225]

The explicit conditions we use for the Integration are:

expansion by regions order = 1, requested orders = [1] , z = 1,
Integrator = Qmc, transform="korobov3", fitfunction="polysingular" .

Refer to the Table 1 for integration results. We observe a very small numerical uncertainty
and perfect agreement with the analytic results, illustrating also the ease of using expansion by
regions method within pySecDec.

Similarly, the other integrals composing the amplitude can be evaluated in the heavy top
limit using expansion by regions. It is known that during the expansion by regions proce-
dure, some integrals may not be fully regulated by dimensional regularisation at intermediate
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Table 1. Integration results of g2(s12,m
2
t )

Coefficient of Analytic result in HTL Full Numerical result Numerical uncertainty

ε0 −0.5000749999999999 −0.500075000000000 ∼ 10−17

ε1 0.288576123625634 0.288576123625634 ∼ 10−17

stages and therefore an additional regulator needs to be introduced. In our case g5(s12,m
2
t )

shows such a behaviour. Additional regulators can be used straightforwardly in pySecDec. We
introduce the additional regulator n1 to regulate these spurious singularities by additional prop-
agator powers, explicitly we use powerlist=[1+n1, 1+ n1/2, 1+n1/3, 0+n1/5]. For more
details about these regulators, we refer to [14, 15, 16, 3].

This completes the demonstration of sum_package and expansion by regions within
pySecDec for the evaluation of the gg → gH amplitude at 1-loop. Even though an easy example
has been shown here for demonstration purposes, the method can be applied straightforwardly to
more complicated amplitudes and therefore is a step towards the automation of the calculation
of multi-loop scattering amplitudes.
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