KIT | KIT-Bibliothek | Impressum | Datenschutz

Unraveling the Electrochemical Mechanism in Tin Oxide/MXene Nanocomposites as Highly Reversible Negative Electrodes for Lithium‐Ion Batteries

Gentile, A.; Gentile, Antonio; Arnold, Stefanie; Ferrara, Chiara; Marchionna, Stefano; Tang, Yushu ORCID iD icon 1,2; Maibach, Julia 2; Kübel, Christian ORCID iD icon 1,2; Presser, Volker; Ruffo, Riccardo
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)

Abstract:

Lithium-ion batteries are constantly developing as the demands for power and energy storage increase. One promising approach to designing high-performance lithium-ion batteries is using conversion/alloying materials, such as SnO$_{2}$. This class of materials does, in fact, present excellent performance and ease of preparation; however, it suffers from mechanical instabilities during cycling that impair its use. One way to overcome these problems is to prepare composites with bi-dimensional materials that stabilize them. Thus, over the past 10 years, two-dimensional materials with excellent transport properties (graphene, MXenes) have been developed that can be used synergistically with conversion materials to exploit both advantages. In this work, a 50/50 (by mass) SnO$_{2}$/Ti$_{3}$C$_{2}$T$_{z}$ nanocomposite is prepared and optimized as a negative electrode for lithium-ion batteries. The nanocomposite delivers over 500 mAh g$^{–1}$ for 700 cycles at 0.1 A g$^{–1}$ and demonstrates excellent rate capability, with 340 mAh g$^{–1}$ at 8 A g$^{–1}$. These results are due to the synergistic behavior of the two components of the nanocomposite, as demonstrated by ex situ chemical, structural, and morphological analyses. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000157746
Veröffentlicht am 19.04.2023
Originalveröffentlichung
DOI: 10.1002/admi.202202484
Scopus
Zitationen: 5
Web of Science
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2196-7350
KITopen-ID: 1000157746
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Advanced Materials Interfaces
Verlag John Wiley and Sons
Band 10
Heft 12
Seiten Art.-Nr.: 2202484
Vorab online veröffentlicht am 22.03.2023
Schlagwörter 2020-025-030029, XPS, TEM
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page