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1. Introduction

Architectural materials at mesoscale open new opportunities
for the design of materials with unique combinations of

properties.[1–3] One of the subclasses of this
kind of material is lattice (meta)materials.
Classical lattice materials have a mesh-like
structure generated by translation in space
of an elementary cell that comprises several,
most commonly identical, elements, such as
thin bars or rods.[4,5] It was found that
materials with this type of inner architecture
while having a low density, exhibit high
values of stiffness, strength, and fracture
toughness.[4–6] Great expectations in this field
are connected with nanoscale lattices.[7,8]

Two principal directions can be followed
to get to more versatile behavior. First,
lattice-based metamaterials can, of course,
be built from more complex unit cells.
Buckling elements in the unit cell can effec-
tively give a plastic response,[9] chiral
elements can show macroscopically chiral
response,[10] and gear-based lattice structures
can change connectivity and allow extreme

adaptivity of elastic properties even in the built structure.[11]

The second direction is to build lattice materials with a
structure different from the classical one, which possesses
new properties.[12] For example, it was shown that irregular mesh
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Through the current work, the usefulness of the concept of architectured rod
lattices based on unit cell motifs designed at mesoscale is demonstrated.
Specifically, 2D triangular lattices with unit cells containing different numbers of
rods are considered. Combinations of rods of two different types provide the
lattices explored with a greater complexity and versatility. For mesocells with a
large number of variable parameters, it is virtually impossible to calculate the
entire set of the points mapping the material onto its property space, as the
volume of calculations would be gigantic. The number of possible motifs increases
exponentially with the number of rods. Herein, the lattice metamaterials with
mesoscale motifs are investigated with the focus on their elastic properties by
combining machine learning techniques (specifically, Bayesian optimization) with
finite element computations. The proposed approach made it possible to con-
struct property charts illustrating the evolution of the boundary of the elastic
compliance tensor of lattice metamaterials with an increase in the number of rods
of the mesocell when a full-factor experiment would not be possible.
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structures offer broad possibilities in the design of materials with
superior functional characteristics.[13] These include insensitivity
to crystal lattice defects, the efficacy of impact energy absorption,
and redistribution of internal stresses. A recent article discusses
materials with regular or irregular lattice structure assembled
from specially designed building blocks, which exhibit a superior
buckling resistance.[14] A new strategy for the design of chiral
materials based on the idea that their lattice consists of two types
of unit cells rotating in opposite directions during deformation
has been presented.[15] The idea of designing a metamaterial with
the desired structural properties based on a macroscopic periodic
lattice composed of optimized microscopic unit cells has been
proposed.[16] In recent publications, lattice metamaterials with
mesoscale motifs (LMMM) were introduced.[3,17] They are char-
acterized by a multiscale architecture with a regular lattice at the
lowest length scale, which entails structural elements (rods,
nodes) of more than one type. Thanks to this architecture, meso-
scale patterns can form at a higher length scale. This enables rad-
ical changes in the properties of the overall lattice structure,
inducing, for instance, tuneable anisotropy. The elastic compli-
ance tensor can thus be controlled both by variation of the meso-
scale architecture and by tuning the characteristics of the
elements of the structure.

Because of a large number of possible variants of the meso-
structure, the design of LMMMs poses a challenging problem.
Indeed, if the elementary cell of the mesostructure contains n
elements (rods, beams), each of which belonging to one of k pos-
sible types, then kn variants of the mesh architecture are possible.
Already for relatively modest values of n ¼ 50, k ¼ 2, a very large
number of different patterns, 250 � 1015, would exist. On the one
hand, this suggests a broad range of possibilities of LMMM. On
the other hand, this illustrates the difficulty with choosing the
architecture variant that would ensure an optimum according
to specified design criteria.

Lattice materials for which k and n are given contain a certain
number of mesostructures corresponding to a set of points that
represent their characteristics in the property space. Such a prop-
erty space is multidimensional, and to simplify analysis and the
practical use, its 2D projections are commonly used.[17] In fact,
they can be viewed as Ashby’s material property charts, reflecting
the ranges of variation of the properties of LMMMs. The experi-
ence with using such charts shows that they greatly facilitate the
search for effective materials and their design.[18] Recent studies
in this area have generated a great deal of activity in materials
design and discovery.[19,20]

Building LMMM property charts with a large number n of
structural elements in a mesocell is a difficult task, since the
required volume of calculations grows with increasing n according
to a power-law, kn, where k is the number of different kinds of rods
in the structure. This article aims to solve this formidable problem.
It presents an approach to finding new points in the property space
that represent an expansion of the mapping of this space onto the
2D property charts. We are proposing a tool for searching for an
LMMM architecture whose properties form a limiting boundary
on the corresponding property chart. The approach uses the
Bayesian optimization method and is based on a relatively small
number of calculations, which allows us to find the approximate
shape of the LMMMproperty charts at a reasonable computational

cost. In addition, we have established the general patterns of evo-
lution of LMMM property charts with an increase in the number
of structural elements in a mesocell.

2. Limit Properties of LMMM Property Charts

We consider the limit properties of the LMMM property charts
by considering the elastic compliance tensor. The region in the
elastic compliance space Z populated by the set of points repre-
senting all possible LMMM with n structural elements in the
mesoscale unit cell is denoted by Ωn and its outer boundary is
denoted by ∂Ωn. In this section, we demonstrate that for fixed
properties of structural elements, an increase in n leads to a
progressively denser filling of Ωn with the representative points.
Concurrently, its boundary ∂Ωn expands, asymptotically
approaching a limited surface ∂Ω. This means that for
n ! ∞, the limit region Ω with a boundary ∂Ω is formed.

To prove the posited statement, we consider, again without
loss of generality, the case when an LMMM has structural ele-
ments of just two possible kinds, with the elastic moduli E1
and E2. Let us introduce the following notation: Gn denoting
the set of mesostructures with n rods within the elementary cell;
Ai,n denoting the i-th mesostructure from within this set (in the
case of two kinds of rods, i is in the range 1 ≤ i ≤ 2n); and Z
denoting the 6D space of the elastic compliance, with ZðAi,nÞ
representing a point in the latter space which corresponds to
an LMMM with the mesostructure Ai,n.

For a fixed value of n, the points with 1 ≤ i ≤ 2n populate the
region Ωn, with the boundary ∂Ωn, in the Z space. These are
examples of material property charts, which provide a visual
representation of the elastic characteristics of the LMMM.[17]

We now posit that there exists a limit surface toward the outer
boundaries of the sets ZðAi,nÞ tend when n ! ∞. To that end, we
consider a geometric sequence of sets Gn, in which each
value of n doubles that of the previous one (for example,
n ¼ 3, 6, 12, 24, : : : ). Assuming n2 > n1, a special case of a meso-
scale cell with n2 rods is its filling with

n2
n1
identical mesoscale cells

with n1 rods. It follows that the set Gn2 contains all elements of
the set Gn1, which means that the region Ωn2 includes the region
Ωn1. Let Dn be the size of the region Ωn in an arbitrary direction
of the space Z. From the previous statement, it follows that with
growing n, the quantities Dn form a monotone growing
sequence. Compliance moduli are limited in magnitude for
physical reasons because unlimited compliance would mean
non-zero deformation under the action of zero load.
According to the Bolzano–Weierstrass theorem, any bounded
monotone sequence has a limit.[21] It follows that all regions
Ωn are inserted within some limit region Ω, the boundaries
∂Ωn tending to ∂Ω asymptotically when n ! ∞. The limit
boundary ∂Ω is the boundary in the elastic compliance space
Z for LMMM for the considered sequence n.

Let us now take a mesoscale cell (“mesocell” for short) that
contains an arbitrary number m of rods, with m not belonging
to the sequence n considered previously. For n ≫ m, i.e., for the
case when a cell with n rods contains many cells with m rods, a
mesocell with n rods can be represented as an integer number ½nm�
of mesocells withm rods and a residual structure with fng ¼ n�
½nm� rods. It is reasonable to postulate that the effect of the residual
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structure on the elastic moduli of the material can be neglected

for a sufficiently small ratio fng
n . Consequently, for anym, one can

find such a large value of n from the geometric sequence consid-
ered previously that the elastic compliances of the material with a
mesocell with m rods will practically coincide with those of the
material with an n-rod mesocell. In other words, for the case of
two types of rods, LMMM with any number of rods in the mes-
ocell will have the same limit boundary of the elastic compliances
in the Z space.

Now we consider a further property of the LMMM structures,
namely an increase in the density with which the representative
points populate the region Ω with an increase in the number of
the structural elements in a mesocell. Indeed, to each mesoscale
structure with a unit cell composed of n structural elements, one
can ascribe a binary number ðc1, c2, : : : , cnÞ, where ci can be 0 or
1, depending on the type of the element, a or b, located in the
corresponding position. This means that for n ! ∞ all possible
mesoscale structures form a countable set. It is mapped onto a
limited region of the elastic compliance space by means of the
function ZðAi,nÞ: In this way, for n ! ∞, a countable set of points
ZðAi,nÞ is formed in a bounded volume of the Z space. It is
known that a countable set is dense in the space of real numbers,
i.e., any point in the Z space can be represented by the points
ZðAi,nÞ with a desired degree of precision.[22] This reasoning
proves the previous statement.

3. Methodology of LMMM Property
Chart Calculations

To elucidate the features of LMMM Property Chart limits, we
consider the case when all nodes of a rod lattice are rigid.
Rod elements of just two kinds—identical in terms of their
geometry but different in stiffness—are admitted. The elastic
modulus of the rods of the first and second kinds are set at
100 and 10MPa, respectively. All rod elements are treated as
Bernoulli beams 10mm in length with a square-shaped cross-
section 1mm� 1mm in size. Five LMMM arrays with

mesoscale unit cells composed of 3, 12, 27, 48, and 75-rod ele-
ments were analyzed. They generated, respectively, 23 ¼ 8,
212 ¼ 4, 096, 227 � 108, 248 � 1014, and 275 � 1023 possible
LMMMs. Figure 1 displays examples of patterns of mesocells,
along with the corresponding structures at mesoscale.

The calculations are limited to small elastic deformations of
2D lattices within the linear elasticity theory. The components
of the linear compliance tensor were calculated using the
Representative volume element (RVE) approach.[17] An RVE con-
taining 10� 10 mesocells was chosen. The volume of computa-
tions involved in this method is much greater than that required
when homogenization with periodic boundary conditions is
used. We opted for the former despite this computational cost
because an RVE of a size much bigger than that of a mesocell
enables accounting for possible nonuniformities at mesoscale,
such as the presence of mesocells with different structure in
the mesh or random defects in rod or node elements.
Besides, the choice of a mesoscale motif is not unique, which
can lead to different results when periodic boundary conditions
are employed.[23,24]

The ideated problem we are trying to solve in this manuscript
is a high-dimensional (global) optimization problem with poten-
tially nonsmooth surfaces. Such optimization problems can be
addressed with various algorithms (e.g., gradient methods,
genetic algorithms, etc.). However, all of these techniques
require a large number of ground truth evaluations, which is
not feasible computationally considering the humongous size
of the search space (2n). One could choose a way of replacing
the ground truth evaluation with a trained surrogate model.
Given the type of input we have here, graph neural networks
or convolutional neural networks would be most suitable.[25,26]

However, optimization based on such a surrogate model would
not be sufficient in our case, as the regions of interest
(i.e., extremal properties) are populated very scarcely and are
not covered by any randomly drawn initial dataset.[27–29]

Therefore, active learning approaches are required to make
the most efficient use of the costly ground truth evaluations
(i.e., simulations). Bayesian optimization can be seen as one

Figure 1. Examples of LMMM structures for mesocells with different numbers of independent rods: a) n= 3; b) n= 12; c) n= 27; d) n= 48; e) n= 75.
The upper row shows the mesocell motifs, and the lower one shows the corresponding structures at mesoscale. The two different colors of the rods reflect
the difference in their elastic moduli.
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(highly efficient) approach to implementing active learning,
where the surrogate model (in our case, a Gaussian process
regression model) is updated iteratively to learn from ground
truth evaluations in a data-efficient way. Given the size of the
input space and the cost of ground truth evaluations, we found
Bayesian optimization to be the most promising way of finding a
large number of optima/extrema in a complex and high-
dimensional space. For larger lattice sizes and potentially more
complex lattice representations (e.g., grid representations), other
approaches, e.g., a combination of active learning and deep
learning surrogate models or inverse models (e.g., conditional
generative models), might be the optimal choice.[30]

For mesocells with 3 and 12 elements, full factorial simula-
tions were conducted, in which the elastic compliance tensor
was determined for all possible variants of mesocells. Because
of the enormously large numbers of the variants of mesocells
with 27, 48, and 75 elements, the contours of the LMMM prop-
erty charts and the density of their filling were determined based
on Bayesian optimization in the following form

maxZiZj
α
Zi � ZibZi

þ β
Zj � ZjbZj

 !
, (1)

where α and β are the parameters of the optimization grid

[�1, �0.9, …., 0.9, 1] � [�1, �0.9, …., 0.9, 1]; Z and bZ denote,
respectively, the mean values and the amplitude of the compo-
nents of the elastic compliance tensor of the LMMMs.[31]

The 6D space of the elastic compliances has 15 independent
projections. The following algorithm was applied for each of
them. First, 2,000 random lattice patterns were generated. For

them, the mean values ðZi,ZjÞ and the variations ðbZi, bZjÞ for
a given projection were determined. Then, for each combination
of α and β considered, 400 iterations of the Bayesian optimization
were carried out. For each iteration, the elastic properties were
calculated using the finite element method. For each mesocell,
more than 2.6 million mesoscale structures were included in the
computations, see more details in Table 1.

4. Results

The results of the calculations of the evolution of the LMMM
property charts with the number of structural elements in the
mesoscale cells are shown in Figure 2 on three exemplary

projections. The complete set of all 15 planar projections of
the 6D space of the elastic compliance tensor is shown in
Figure 3.

The evolution of the population of the property space shown in
Figure 2 for three projections of the elastic compliance tensor is
characteristic for all 15 projections. The projection on the
ðZ2222,Z1111Þ plane, Figure 2a, is interesting in that the smallest
mesocell with just three elements yields a combination of the
“extremal” components of the compliance tensor. That is to
say, the points corresponding to this mesocell are situated on
the perimeter of the limit region Ω. This region gets filled with
the points representing materials with new properties as the
number of the independent elements in the mesocell increases.
A remarkable observation is that for these uniaxial compliances,
the additional degrees of freedom introduced when the number
of the elements in the mesocell is increased do not cause an
expansion of the property chart. It is also surprising that even
the simplest mesocell with just three independent rod elements
gives rise to a mesoscale pattern which brings about properties
substantially different from those predicted by the mixture rules.
The projection on the ðZ2222,Z1122Þ plane, Figure 2b reveals that
the main effect of using mesocells with greater complexity con-
sists in a higher density with which the representative points
populate the property chart. Starting from n= 27, new areas
emerge, which means that the property space is expanding in
Z11122 direction. An example of cardinally new properties gener-
ated by using the unit cell with 27 elements is the structure pre-
sented previously in Figure 1c, which is a classical exemplar of an
auxetic. In the projection on the ðZ2222,Z1112Þ plane shown in
Figure 2c, the effect of the complexity of the material architecture
is expressed even more prominently. The properties of the rod
lattice generated by the three-rod mesocell are practically identi-
cal with those following from the rule of mixtures. With an
increase in the number of elements of the mesocell, the range
of attainable properties expands.

The first characteristic type of the filling of the LMMM prop-
erty charts corresponds to the components Z1111, Z2222, and
Z1212 of the elastic compliance tensor. This can easily be ratio-
nalized as uniform lattices composed of elements with the elastic
moduli E1 and E2 produce the limit properties for the mentioned
components. Additional degrees of freedom enable filling the
space between these limit points but do not allow going beyond
them. At the same time, the observations made for LMMMs with
small values of n do not provide grounds to conclude that mes-
ocells with a larger number of elements, e.g., n= 12 or n= 27,
are sufficient to provide the full coverage of the limit region Ω.
Indeed, despite a good coverage of the property region in these
projections, it is the specific architecture, rather than the prop-
erties of the rod material that determines the properties of the
lattice. For the Z1122 component, which upon normalization rep-
resents the Poisson ratio, the influence of the lattice architecture
is quite prominent. A record, in terms of the significance of the
architecture, is held by the projections Z1112 and Z2212, which
expresses the chirality of the material. Several projections of
these components reveal that with the increasing mesocell size,
the property space expands in all directions.

The shape of the property regions within the LMMM property
charts is another aspect of interest. Of course, the results
obtained with the aid of Bayesian optimization do not guarantee

Table 1. Mesocell calculation parameters.

Number of
independent
rods in the mesocell

Number of
possible
motifs

Number of
simulations

Fraction of the
considered

motifs among the total
number of motifs [%]

3 8 8 100

12 4096 4096 100

27 1.34� 108 2.64� 108 2

48 2.81� 1014 2.64� 108 9.4� 10�7

75 3.78� 1022 2.64� 108 7.0� 10�15
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that for every mesocell considered the maximum property values
corresponding to the limit boundary ∂Ω have been obtained, cf.
Section 2. We note, however, that only some of the properties
exhibit a potential for further expansion of the property charts.
This needs to be considered in follow-up studies. For such
follow-up studies, all investigated mesocell structures and the
corresponding material properties are stored, managed, and
published through the Kadi4Mat platform for research data
management.[32,33]

5. Discussion

The results obtained in this work demonstrate that architecturing
the rod lattice structure at mesoscale does expand the realm of
material properties. In each of the projections collated in
Figure 2, two points are marked, which correspond to the lattices
composed of one sort of the beams only. The straight segment
connecting these points represents the possible material proper-
ties according to the rule of mixtures.[34] Figure 3 shows that
principally new properties not predictable by the rule of mixture
can be obtained by means of architecturing rod lattice materials
at mesoscale. It was also established that an increase in the num-
ber of the rod elements in the mesocell, the representative points
of an LMMM structure fill the Z region, which concurrently
expands in space, with ever-growing density and taking into
account the sampling of the Bayesian optimization target.
Despite the exponential growth in the number of motifs with

increasing n in the mesocell, not all motifs can be reproduced
for the sequence n ¼ 27; 48; 75 considered in the article. In some
directions in Figure 3, a mesocell with a lower n can expand fur-
ther than a mesocell with a larger n. It can be taken for granted
that a motif can be completely copied when the mesocell is
enlarged by an integer factor.

It is of interest to assess the growth of the LMMM property
charts with the mesocell size. First, we have to specify what is
considered as the area of a chart that maps sets of points rather
than a continuum. For that, we introduce an interval Δ such that
a change of the compliance within it can be neglected. It is natu-
ral to set Δ ¼ δZ, where Z is a characteristic value of the com-
pliance and δ is a small parameter. We subdivide all projection
planes into Δ� Δ squares. The area of a property chart will be
defined as the quantity S ¼ NΔ2, where N is the number of
squares that contains at least one point from the set considered.
Figure 4 displays the graphs of the SðnÞ for all property charts in
Figure 3 for δ ¼ 10�3. They show that the most rapid growth of S
with n occurs upon the transition from mesocells with n= 12 to
those with n= 27. Subsequently, this growth is retarded, a ten-
dency to saturation being recognizable in many projections. This
is in accord with the observations made in Section 2.

Although the increase of the area of the property charts for
large n is not very significant, investigating the evolution of
the near-boundary zone is of interest, as it is this area where
LMMM structures with record high characteristics may be found,
cf. Section 4. In this regard, it is prudent to hypothesize about the

Figure 2. Examples of the evolution of the LMMM property charts with the number of the elements of mesoscale cells for projection on the
a) ðZ2222,Z1111Þ; b) ðZ2222,Z1122Þ; c) ðZ2222,Z1112Þ planes.
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characteristic size D of the limit region Ω. If all rod elements of a
lattice material are of the same type, there exists just a single

representative point in the Z space corresponding to it. One
can hypothesize that D is determined by the difference in the
mechanical characteristics of the rod elements of the two possi-
ble types. Then, it follows from dimensional considerations that
D � jE�1

1 � E�1
2 j holds. We stress that this is a plausible evalua-

tion, not a real quantitative estimate ofD. Moreover, it most likely
applies only to some of the components of the compliance
tensor. However, this estimate is qualitatively consistent with
the numerical values of D obtained from the property charts
in Figure 3.

It should be emphasized that all considerations in this article
are not limited to triangular lattices and are applicable to any 2D
(and also 3D) lattices with unit cells of any shape. For example, a
3D mesocell obtained by duplicating an octet in each of the three
directions will contain 240 independent rods. As a side remark,
we note that such a mesocell will already contain the motif of
pentamode metamaterial.[12,35]

Lattices possessing new structural and functional characteris-
tics can be generated by using such mesocells containing rod and
node elements with different characteristics. Not only does this
refer to elasticity, but it may also apply for electrical and thermal
conductivity and other functional properties. A particular area of
applications is the development of metamaterials with auxetic
and/or chiral characteristics, see some examples in Figure 5.
This figure shows part of the motifs for the mesocell with
n ¼ 75, for which the Z1122 component is positive. This means

Figure 3. LMMM property charts for components of the elastic compliance tensor.

Figure 4. Evolution of the space-filling with the number of rod elements in
the mesocell: The chart area S as a function of n for all charts in Figure 3.
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that all these motifs are auxetic. To illustrate the principle of solv-
ing the inverse problem, several examples are shown for specific
cases when an additional requirement for material properties is
introduced.

The LMMM property charts provide a visual representation of
the possible range of material properties, which is their important
use. In this regard, it is of interest to look at a parallel with the
known Hashin–Shtrikman fork described in the context of the
composite materials.[34] It was shown that this “fork” cannot be
narrowed if the inner structure of a composite is not considered.
In a certain sense, the limit boundary of the LMMM property
charts is a multidimensional analog of the Hashin–Shtrikman
fork, as it contains the effective moduli of all possible structures.
Constraints put on the admissible LMMM structures immediately
restrict the property charts making them narrower. This is similar
to the narrowing of the Hashin–Shtrikman fork for the property
range of a composite by considering its inner structure.

Finally, we note that the LMMMproperty charts are also useful
for solving an inverse problem of finding the material architec-
ture providing desired properties. To that end, the machine
learning methods can be employed.[36–39]

While some of the hypotheses posited in this article require fur-
ther investigation and substantiation, we believe that it outlines
some promising avenues for further research in lattice materials.

6. Conclusion

Our study showed that the rod lattice structures formed by peri-
odic translation of a mesoscale unit cell composed of structural

elements of different types enable a cardinal change of the prop-
erties compared with the structures obtained with single-element
lattices. This was demonstrated by finite element calculations in
conjunction with the Bayesian optimization approach.

2D projections of the multidimensional property space of
LMMMs with n structural elements in the mesocell identified
by the computations show “demarcation lines” of possible elastic
properties of LMMMs on the property charts. The proposed
approach enables constructing these charts with a reasonable
computational cost.

Calculations showed that for n > 27, the growth of the areas of
all property charts slows down with increasing n. It was
concluded that for n > 48, the property chart boundaries are a
reasonably good representation of the limit properties of
LMMMs with a regular triangular lattice and specified structural
elements.

The LMMM property charts provide a guidance to a designer
in a quest for materials with desired elastic characteristics and
are undoubtedly an important tool for the design of architectured
lattice materials.
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