KIT | KIT-Bibliothek | Impressum | Datenschutz

Synthesis of large scale 3D microscopic images of 3D cell cultures for training and benchmarking

Bruch, Roman ORCID iD icon 1; Keller, Florian; Böhland, Moritz 1; Vitacolonna, Mario; Klinger, Lukas 1; Rudolf, Rüdiger; Reischl, Markus ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

The analysis of 3D microscopic cell culture images plays a vital role in the development of new therapeutics. While 3D cell cultures offer a greater similarity to the human organism than adherent cell cultures, they introduce new challenges for automatic evaluation, like increased heterogeneity. Deep learning algorithms are able to outperform conventional analysis methods in such conditions but require a large amount of training data. Due to data size and complexity, the manual annotation of 3D images to generate large datasets is a nearly impossible task. We therefore propose a pipeline that combines conventional simulation methods with deep-learning-based optimization to generate large 3D synthetic images of 3D cell cultures where the labels are known by design. The hybrid procedure helps to keep the generated image structures consistent with the underlying labels. A new approach and an additional measure are introduced to model and evaluate the reduced brightness and quality in deeper image regions. Our analyses show that the deep learning optimization step consistently improves the quality of the generated images. We could also demonstrate that a deep learning segmentation model trained with our synthetic data outperforms a classical segmentation method on real image data. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000157763
Veröffentlicht am 11.04.2023
Originalveröffentlichung
DOI: 10.1371/journal.pone.0283828
Scopus
Zitationen: 5
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1932-6203
KITopen-ID: 1000157763
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Weitere HGF-Programme 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in PLOS ONE
Verlag Public Library of Science (PLoS)
Band 18
Heft 3
Seiten Article no: e0283828
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 31.03.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page