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1
Decomposition of continuous signals

For many technical applications of optics and information theory it is 
useful to decompose a function that is continuous in time or space. 
Depending on the application, different decompositions are suitable. 
We will first discuss the Fourier decomposition (harmonic analysis, 
Fourier analysis). For example, a function of time is decomposed 
into sine and cosine functions of different frequencies. In section 1.2 
we consider a decomposition into functions that have values which 
are significantly different from zero only in a limited range on the 
time axis.



1. Decomposition of continuous signals

1.1 Harmonic analysis
There are physical systems that decompose a given function into 
sine or cosine functions:

• An optical filter allows only sinusoidal light waves of certain fre-
quencies to pass.

• A prism deflects sinusoidal light waves differently depending on 
the frequency.

• An electrical transmission channel only lets pass certain harmon-
ic components of signals.

• A lens sorts spatial sine structures of an object in the focal plane 
according to the “spatial frequency”.

• A piano with a pressed pedal sorts an incoming sound wave ac-
cording to sinusoidal components.

This does not mean that the “true nature” of light, sound or electrical 
signals is that they are composed of sine functions. They could just 
as easily have been broken down into other parts. The decomposi-
tion into harmonic parts is useful because nature itself often per-
forms this decomposition. In some cases a decomposition of a time-
dependent quantity is appropriate, in others it is a decomposition of 
a position-dependent quantity. In the following we will use the time 
as a variable, to be specific. However, all results apply – mutatis mu-
tandis – also to functions of position.
The method of decomposing a function into sine and cosine compo-
nents is called Fourier analysis or harmonic analysis. The inverse, 
i.e. the composition of a non-harmonic function from harmonic com-
ponents, is called Fourier synthesis.
So far we have spoken of devices or physical systems that perform 
a Fourier analysis or synthesis. Of course, these processes can also 
be understood as mathematical processes and, for example, a func-
tion given on paper can be decomposed by means of mathematics. 
For the mathematician, each of the natural or technical processes 
listed above represents a kind of analog computer.
With a little practice, one can often see what harmonic components 
a function contains. We will learn some rules in the following math-
ematical treatment of harmonic analysis.
We start with a special case. The function to be analyzed is periodic: 
f(t) = f(t + T). J. B. Fourier (1768-1830) has shown that any such 
function can be decomposed into oscillations of frequencies

i.e. into a fundamental oscillation and its harmonics.
So it is

(1.1)

with

If f(t) is known, the coefficients An and Bn can be calculated: 

The following decomposition is equivalent to this:

(1.2)

(1.3)

The coefficients in (1.1) and (1.2) are related according to
A0 = a0  
An = Re (2an) 
Bn = – Im (2an)

For f(t) to be real, the following must apply
an = a*–n

The contributions of the terms with (+n) and (–n) taken together are 
then real. If f(t) is an even function, in equation (1.1) the coefficients 
Bn are zero, and in equation (1.2) the an = a–n are real. If f(t) is odd, 
in equation (1.1) the An (including A0) disappear and in equation 
(1.2) the an = – a–n are imaginary. Note also the meaning of A0 and 
a0: This coefficient simply represents the time average of the func-
tion f(t). 
As an example we consider the rectangular function of Fig. 1.1:

f(t) = 1      for     0 ≤ t < T/2
f(t) = –1    for     T/2 ≤ t < T

One can see:
• The function is odd, so it has only sin components.
• Since it is odd, its average value is zero.
• Its shape has a rough similarity with the sine function sinωt, so 

the coefficient B1 must have a high value.
Inserting f(t) into the equations for A0, An and Bn gives the values of 
the Fourier coefficients An and Bn:

A0 = 0
An = 0  

So f(t) written as a harmonic series is:

We now abandon the restriction that the function to be analyzed 
should be periodic. In this general case it contains a continuum of 
harmonic components and instead of equation (1.2) we have

(1.4)

The resolution for F(ω), which is mathematically somewhat difficult, 
results in

(1.5)

The function F(ω) specifies the continuous distribution of the har-
monic components contained in f(t). F(ω) is called the spectral func-
tion, or briefly the spectrum of f(t).
We can also read equation (1.4) in a way that a function F(ω) is 
transformed into a function f(t). It is said that a Fourier transforma-
tion is realized. Both equations (1.4) and (1.5) describe a transfor-
mation of the same type. So we can say that the spectral function is 
the Fourier transform of f(t), and f(t) is the Fourier transform of the 
spectral function. f(t) also tells us which harmonic components the 
spectral function has. Applying the Fourier transform twice to a func-
tion f(t) yields the same function f(t) again, except for a factor 2π.
For f(t) to be real, F(ω) must again satisfy a condition, namely F(–ω) 
= F*(ω). And again F(ω) is purely real if f(t) is an even function.
As an example we consider the rectangular function shown in Fig. 
1.2.

The function is defined in such a way that

We calculate F(ω).

Figure 1.3 shows the original function and its spectrum for different 
values of Δt.

One recognizes an important property of the Fourier transform: The 
wider the original function, the narrower the Fourier transform.
Two more examples are shown (without calculation) in Fig. 1.4. A 
Gaussian curve centered at t = 0 is transformed into a Gaussian 
curve centered at ω = 0, Fig. 1.4a. If the spectral function is a 
Gaussian curve centered at ω0 ≠ 0, the original function must con-
tain oscillations of the frequency ω0, Fig. 1.4b.

Finally, we will look at an example that is particularly simple but 
technically very important. For the transmission of messages with 
electromagnetic waves, a high-frequency electromagnetic carrier 
wave (frequency ω0) is used, which is modulated by the function to 
be transmitted. For the sake of simplicity, we assume that the func-
tion to be transmitted is a low-frequency sine wave of frequency ω1. 
Fig. 1.5 shows the case of an amplitude modulation: the amplitude 
of the carrier wave is multiplied by the function to be transmitted.

For the configuration of the transmission channel it is important to 
know which harmonic components the synthesized wave has. From 
a superficial look one might conclude that it contains one oscillation 
of the carrier frequency and one of the signal frequency.
But mathematical analysis shows that this is wrong. The modulated 
oscillation is represented by

With

we get

The overall oscillation therefore contains a partial oscillation of the 
carrier frequency ω0 and two more components with the adjacent 
frequencies ω0 –  ω1 and ω0 +  ω1.
If the signal contains a whole spectrum of the width Δω of low-fre-
quency oscillations, the spectrum of the modulated wave is a fre-
quency “band” of the width Δω, which is centered around ω0. This 
explains why many radio and television programs can be transmitted 
simultaneously. Each program occupies a different frequency band.
Finally, we write down the important equations (1.4) and (1.5) again, 
but replace the time by the position x. The oscillation period T then 
changes to the wavelength λ, and the angular frequency ω corre-
sponds to the wave number k

t → x  
T → λ  
ω → k 
ω = 2π /T → k = 2π /λ 
E = ℏ   ω → p = ℏ   k

(1.6)

(1.7)

It is obvious to extend the Fourier transform to three dimensions. 
With

r = (x, y, z)
and

k = (kx, ky, kz)
we obtain

(1.8)

(1.9)

The integral in equation (1.9) extends over the whole space, or more 
precisely, the whole position-space. The integral in equation (1.8) 
extends over the so-called reciprocal space, or k-space. The dimen-
sion of the coordinates in k-space is that of a reciprocal length. A 
volume in k-space has the dimension of a reciprocal normal volume.
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Rectangular functions of different 
width. Left: Original function, right: 
spectrum
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(a) The spectral function is a 
Gaussian function centered at ω = 
0, the original function is a Gauss-
ian function. 
(b) The spectral function is a 
Gaussian function centered at ω0, 
in the original function an oscilla-
tion with the frequency ω0 can be 
seen.
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Fig. 1.5 
Amplitude modulation: The ampli-
tude of the carrier wave is multi-
plied by the function to be transmit-
ted.
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1. Decomposition of continuous signals

1.2 The sampling theorem
For certain purposes a different decomposition than the Fourier de-
composition is more suitable. In the following we consider the de-
composition of a “frequency-band-limited” function f(t) into sinc func-
tions. We will first explain two terms:
sinc function

band-limited function
A function whose spectrum does not go beyond a highest fre-
quency ω = 2πB. 

Suppose f(t) is such a function limited to ω < 2πB. Then

(1.10)

with

This decomposition has some interesting properties. 
The coefficients an are simply the values of f(t) at equidistant points 
on the t-axis. The shape of the continuous function is thus unam-
biguously defined by the function values for these discrete points in 
time. Of course, this is only possible because of the restriction that 
the Fourier components of the function do not exceed a maximum 
frequency.
For the “sample values” f(n/2B) all but one of the summands of 
(1.10) are zero. If n = n0, then only the summand with n = n0 is dif-
ferent from zero.
The statement that a frequency-band-limited function can be devel-
oped according to equation (1.10) is called sampling theorem. 
The sampling theorem ensures that a discrete sequence of numbers 
is sufficient for the transmission of a continuous signal, Fig. 1.6. This 
is applied, for example, for compact disks.

We will later learn about the reciprocal of B to be the coherence 
time. So the sampling theorem tells us that one has to sample twice 
per coherence time.
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Fig. 1.6 
The values of the original function (a) are taken at indicated “sampling points”, multiplied by sinc-
functions and added up again, and displayed graphically in (c). The procedure has just arrived at 
point tk on the time axis. The last sinc-function added is shown in (b).
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2
Light

Although there is also optics of electrons and other radiations, the 
most important radiation for the realization of images is light. What 
does the physicist understand by light? We will answer this question 
step by step, and we will give different answers to it. Here is the first 
one: light is a kind of substance. It has much in common with a ma-
terial gas. If you put it in a container, Fig. 2.1, it takes up the entire 
volume of the container. If you make a hole in such a “radiation cavi-
ty”, light flows out. One can arrange the opening in such a way that 
a narrow bundle develops. Just like other gases, light has pressure, 
volume, energy, entropy and often a temperature.

One can therefore regard light as one of many gases. Just as there 
is an oxygen gas, an electron gas or a neutron gas, there is also a 
light gas.
Another answer to the question “What is light?” is: light is an elec-
tromagnetic field; light is a system described by Maxwell’s equati-
ons; light is an electromagnetic wave. However, not all of the soluti-
ons of Maxwell’s equations are called light, e.g. not static electric or 
magnetic fields. However, the transition between the fields that are 
called light and those that are no longer called light is blurred.
A typical example of light is the light that comes from the sun. One 
way to describe this light would be to give the electric and magnetic 
field strength as a function of position and time, E(r, t) and H(r, t). 
But these functions are so complicated that, firstly, it is impossible to 
specify them and, secondly, they would not be of much use. But 
which electromagnetic fields are of interest in optics? The solutions 
of Maxwell’s equations that are dearest to the physicist working in 
the field of optics are the linearly polarized, monochromatic, plane 
waves that are almost never found in nature. When he is dealing 
with real light, he breaks it down – in thought or experiment – into 
such plane waves. And to characterize a particular type of light, he 
indicates how much of each different type of plane wave is contai-
ned in it. Before we get to know this characterization, we need to 
take a closer look at plane waves.

Fig. 2.1 
(a) The light gas is confined in a 
container. (b) The light gas exits 
through an opening. (c) A light 
beam is created.



2. Light

2.1 Plane waves
A special solution of the Maxwell equations is the “linearly polarized, 
monochromatic, plane wave”. Despite the long name, it is a very 
simple solution. The electric field strength E as a function of position 
r and time t is

E(r,t) = E0 cos (ωt – kr + Φ)
The argument of the cosine function (ωt – kr + Φ) is called phase. 
For t = 0 and r = 0 it is equal to Φ. We call Φ the initial phase. If we 
are not interested in the initial phase, we set it to zero:

E(r,t) = E0 cos (ωt – kr)
From the Maxwell equations we get the magnetic field strength

H(r,t) = H0 cos (ωt – kr)
H is perpendicular to E, and for the magnitude of the field strengths 
we have

E and H are therefore connected in a simple, unambiguous way. It is 
therefore often sufficient to consider only one of these two field 
strengths. We continue with the investigation of the wave.

E(r,t) = E0 cos (ωt – kr) (2.1)
E0 is the (vectorial) amplitude of the field strength. cos (ωt – kr) de-
scribes a harmonic plane wave propagating in the direction of the k-
vector. The angular frequency

describes how fast the cosine function oscillates at a fixed position r. 
The magnitude of the wave number vector k is a measure of the 
wavelength:

From Maxwell’s equations it follows that E0 is perpendicular to k. 
The velocity at which a selected maximum, or a selected zero cross-
ing, is moving, the so-called phase velocity, has the fixed value

 c is related to ω and k according to

The direction of E0 is called the direction of polarization of the wave.
We summarize the meaning of the constants contained in (2.1):

Magnitude of E0: Amplitude of the wave  
Direction of E0: Direction of polarization  
Magnitude of k: Measure of the wavelength  
Direction of k: direction of propagation of the wave  
ω: Measure for the oscillation period

We can now understand the long name of the waves we have stud-
ied: plane, monochromatic, linearly polarized waves.
Plane: The wave has a single k vector.  
Monochromatic: The wave has a single ω value. 
Linearly polarized: The wave has a single polarization direction.
With the propagation of the wave an energy flow is associated. The 
energy flow density j (energy current strength per area) is

Since in our case E is perpendicular to H, and 

we obtain

and with

it follows
j = c·ε0·E2

 j has the same direction as k.
Since the energy density is

we can write

This is analogous to the relationship between electric charge density 
and electric current density:

With E = E0 cos (ωt – kr) the time average of the energy current 
density becomes:

Often it is useful to represent waves by complex numbers:

However, only the real part has a physical meaning.
This notation has advantages when superimposing waves. Complex 
numbers can be easily added in the complex number plane: The 
numbers are represented by arrows and added graphically like vec-
tors.

ε0· E = µ0· H

ω = 2π
T

k = k = 2π
λ

c = 1
ε0µ0

≈ 3 · 108  m/s

c = ω
k

j = E ×H

ε0· E = µ0· H

j = ε0
µ0

E 2

c = 1
ε0µ0

ρE = ε0
2
E 2 + µ0

2
H 2 = ε0 E

2

jE = ρE·c

jQ = ρQ· v

j = 1
2
· ε0

µ0

·E0
2

E = E0ei (ωt−kr )



2. Light

2.2 Superposition of two plane waves
Later we want to represent light as a superposition of plane waves. 
We begin by examining the simplest superposition that can be imag-
ined: that of two plane waves.

There are various possibilities.

Partial waves with different polarization directions
The two partial waves propagate in the z-direction, i.e. kr = kz. They 
are supposed to have the same frequency ω, and their amplitudes 
are supposed to be perpendicular to each other: E1,0 =  (E1,0, 0, 0) 
and E2,0 = (0, E2,0, 0). Furthermore, they should be out of phase with 
each other by π/2. So it is

Thus the resulting wave is

Such a wave is called elliptically polarized. For z = const, the E vec-
tor describes an ellipse in the x-y plane. If E1,0 = E2,0 , the ellipse be-
comes a circle and the wave is called a circularly polarized wave. 

Partial waves with different frequencies
The two partial waves propagate in the z-direction, the polarization 
direction of both waves is the x-direction, the frequencies are 
ω + Δω and ω – Δω:

The resulting wave is

If z = const, a modulated oscillation is obtained, Fig. 1.5. If E1,0 =  
E2,0, the wave is completely pinched off, it breaks down into wave 
trains or wave packets.

Partial waves with different directions of propagation
The two partial waves have the same amplitude, and the same fre-
quency, and they are both polarized in the x-direction. Their direc-
tions of propagation, however, are inclined in the y-z plane away 
from the z-direction by equal and opposite angles. We use the com-
plex notation:

and (2.2)

The resulting wave is

(2.3)

This is a plane wave moving in the z-direction, which is spatially 
modulated in the y-direction. At positions with kyy = (n/2)·π, with n = 
0, 2, 4, 6, ... its amplitude is 2E0, i.e. twice as large as that of the 
single waves. At positions with kyy =  (n/2)·π, with n = 1, 3, 5,... the 
amplitude is equal to zero. This phenomenon is called interference. 
At some points the interference is constructive, we have amplifica-
tion, at others it is destructive, we have cancellation. The time aver-
age of the energy flux density is

Interference is a phenomenon for which we have no experience 
whatsoever in dealing with ordinary light. After all, it says the follow-
ing: At a certain place a light wave number 1 arrives. So energy also 
arrives there, and “it is bright”. Now we take the light wave 1 away 
and let another light wave 2 run to the place and again it’s bright. 
But if we now let both light waves 1 and 2 run at the same time, the 
flow of energy to the place under consideration disappears, it is dark 
there. The reason why we have almost no experience with this is 
that the interference of light can be disturbed very easily.
We consider two plane waves as in equation (2.2), but allow that 
there is a phase shift between them, which changes with time. (This 
is equivalent to the fact that we no longer have purely harmonic 
waves). We can take this into account by adding the phase angle 
𝜑(t) to the modulation factor in (2.3):

(2.4)

The positions y, for which cos(kyy + 𝜑(t)) = 0, now move back and 
forth with time according to 𝜑(t), and if they move fast, they can no 
longer be recognized.
The time average of the energy flux density of the wave (2.4) is

It is simply equal to the sum of the energy flux densities of the indi-
vidual waves.
To put it somewhat loosely, we can summarized:
If one has interference, one must add the field strengths. If there is 
no interference, one has to add the energy current densities.

E = E1 +E2 = E1,0ei (ω1t−k1r ) +E2,0ei (ω2t−k2r+ϕ )
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j = cε0
2
4E0

2 ·cos2(ky y ) = 2cε0E0
2 ·cos2(ky y )

E = 2E0·cos(ky y +ϕ(t )) ·cos(ωt – kzz )

j = cε0E 2 = cε0E0
2



2.3 Distributions of plane waves
Light coming from any light source can be thought of as composed 
of linearly polarized, monochromatic, plane waves. Depending on 
the light source and – for a given light source – depending on the 
position under consideration, this composition is different. In gener-
al, waves of different polarization directions, frequencies and k-vec-
tors will contribute to the light. One can characterize the light by giv-
ing the following information:

(1) the distribution of polarization directions  
(2) the distribution of frequencies (the spectrum) 
(3) the distribution of k-vector directions.

Because c = ω/k the frequency is equivalent to the magnitude of the 
k-vector. Points (2) and (3) together therefore specify the entire dis-
tribution of the k-vectors. 

The degree of polarization
If the light contains waves of all polarization directions, it is said to 
be unpolarized.
One can divide the total energy current density j into a linearly polar-
ized part jp and an unpolarized part ju:
The degree of polarization V is

A polarizing filter is transparent for light of one polarization direction 
and opaque for light of the perpendicular polarization direction.
If polarized light of the energy flux density j0 is incident on a polariza-
tion filter whose transmission direction is rotated by the angle Θ 
against the polarization direction of the light, the fraction

will pass through the filter.
If completely unpolarized light of energy flux density j0 is incident on 
the filter, the energy flux density j behind the filter is just half the val-
ue it is in front of the filter

because the unpolarized light can be seen as a mixture of waves of 
different polarization directions Θ, and the average value of cos2Θ 
over all angles is 1/2.
With a polarization filter one can determine the degree of polariza-
tion of light: One lets the light shine on the filter and twists the filter 
over an angular range ΔΘ = π. The energy flow of the transmitted 
light takes on a maximum value jmax and a minimum value jmin. Now 
jmax – jmin. = jp and therefore

Coherence
The distribution of the k-vectors of light is best represented in k-
space. We consider light propagating in the z-direction and in adja-
cent directions. To characterize the light, we draw in k-space the re-
gion where the endpoints of those k-vector arrows are located, that 
represent the largest part of the light. Figure 2.2 shows a section 
through the k-space and through this region. In this cross-section 
the region appears as a surface area.

Of course, it is generally not possible to specify an exact boundary 
of this region. But it is possible, for example, to place the boundary 
line so that the k-vectors within the enclosed area describe 90% of 
the total light. Or one could draw level lines in the image, i.e. the 
10%, 20% line, etc. 
For a plane, monochromatic wave, the area shrinks to one point, 
Figure 2.3a. The larger the area that the light occupies in k-space, 
the more it deviates from such a wave.

Fig. 2.3b shows the distribution for a wave that is plane but not 
monochromatic. The k-vectors of its harmonic components all have 
the same direction, but the magnitudes are different. With ω = c · k 
the wave also has a wide frequency range. If we superpose plane 
waves of different frequencies, which all lie in a narrow frequency 
range of the width Δω, we obtain a wave that consists of wave trains 
(cf. section 2.2), Fig. 2.4.

These wave trains have an average length of 2π/Δk and they have a 
period of

There is a well-defined phase relationship between the spatial parts 
of such a wave train. The smaller the interval Δk (or Δω), the longer 
the wave trains or, as we say, the greater the temporal coherence. 
2π/Δk is the coherence length of the wave and 2π/Δω the coherence 
time.
Figure 2.3c shows the distribution for a wave that is monochromatic 
but not plane. The k-vectors have a well-defined magnitude, but 
their directions are spreading. In such a wave, there are spatial 
beats transverse to the direction of propagation, see section 2.2. 
The narrower the angular range in k-space, the wider the coherent 
wave fronts or, as we say, the greater the spatial coherence.
In the same way that polarized light can be obtained from unpolar-
ized light by filtering out the light with the “wrong” direction of polar-
ization, one can also get coherent light from incoherent light by filter-
ing out the light with the “wrong” k-vectors. And just as with polariza-
tion, there are different methods or tricks for doing this.
The simplest way to reduce the frequency range is to use an optical 
filter. Devices in which both the frequency interval and the average 
frequency can be set arbitrarily are called monochromators.
The angular dispersion of light can be reduced in two very simple 
ways: Either one moves away from the light source, or one blocks 
out the light of the wrong direction. Thus, the light from a fixed star 
(at the location of the earth) is spatially very coherent.
The distributions in Figures 2.2 and 2.3 correspond qualitatively to 
the following types of light:
Fig. 2.2 Sunlight  
Fig. 2.3a Laser light  
Fig. 2.3b Light from a star  
Fig. 2.3c Light from a spectral lamp (close to the lamp)
Table 2.1 contains some typical numerical values.

Table 2.1

* at a distance of 0.5 m

V =
jp

jp + ju

j
j0

= cos2θ

j
j0

= 1
2

V = jmax – jmin
jmax + jmin

Fig. 2.2 
Light distribution, shown in k-spacekx

kz

Fig. 2.3
Light distribution in k-space for
(a) coherent light
(b) spatial coherent light
(c) temporal coherent light

kx

kx

kx

kz

kz

kz

a

b

c

Fig. 2.4 
A wave containing Fourier compo-
nents of different frequencies con-
sists of “wave trains“.

E(t)

t

2π
Δω

= 2π
cΔk

Frequency 
interval (1/s)

Coherence 
time (s)

Coherence 
length (m)

Solid angle 
(sterad)

Width of wave 
trains (m)

Sun 3 · 1015 3 · 10–16 10–7 10–4 2,5 · 10–5

Spectral lamp 5 · 109 2 · 10–10 6 · 10–2 5 · 10–4* 10–5*

Argon laser 5 · 106 2 · 10–7 60 10–8 0,5 · 10–2



2. Light

2.4 Spherical waves
Besides the plane wave, the spherical wave is an important wave 
type for optics. While a longitudinal spherical sound wave has a very 
simple structure, the spherical electromagnetic wave is a complicat-
ed phenomenon: it is described in the lecture about electromagnet-
ism in the context of the Hertzian dipole. Since the E and H vectors 
are transverse to the direction of propagation, this wave cannot have 
full spherical symmetry. The wave surfaces, i.e. the surfaces of con-
stant phase, are indeed spherical surfaces. However, the magni-
tudes of the electric and magnetic field strength, as well as the en-
ergy flux density, are direction-dependent. This is due to the fact that 
the radiating dipole has a specific direction in space.
However, one can imagine that from one point radiating dipoles of 
different orientation emit wave trains in quick succession. In this 
case, the temporal average of the energy flux density is spherically 
symmetrical, and the wave can be treated like a scalar wave.



3
Light in matter

When light propagates in a material medium, an interaction between 
light and matter takes place. The influence of matter on light 
becomes easily understandable if one thinks of the light broken 
down into monochromatic, plane, polarized waves: Matter acts on 
each such component in a characteristic way. One could also say 
that it decomposes the light into these components.
The study of the interaction between light and matter has two objec-
tives:

• In order to realize optical images one has to manipulate light by 
means of material arrangements.

• The light is a means to study the structure of matter. Such inves-
tigations are a subject of solid state physics and atomic physics.



3. Light in matter

3.1 The optical constants
Three things happen with a light wave that is sent on its way in mat-
ter:

• Its phase velocity is different in matter than in vacuum.
• Its amplitude decreases in the direction of propagation and the 

wave is absorbed.
• Its direction of polarization is rotated.

Each of the three effects is described by a material constant: the first 
by the refractive index n, the second by the absorption index κ and 
the third by the specific rotation. Actually these “material constants” 
are not constants at all, because their values depend on the fre-
quency. They are functions of the frequency.
In addition, the optical properties can also depend on the direction of 
polarization and the direction of the k-vector. They are then no 
longer described by scalars, but by tensors. However, we start with 
the study of optically isotropic substances, i.e. substances whose 
optical constants are scalars.
For the quantities ω and k appearing in the solution of the Maxwell 
equation

(3.1)
the relation

only applies as long as ε = 1, μ = 1 and σ = 0, i.e. for the vacuum. In 
matter these conditions are no longer fulfilled. Nevertheless, one 
can still make a solution approach like (3.1) for matter, but then one 
gets another relationship between ω and k. In particular, it can hap-
pen that k becomes complex, i.e.

k = k1 – ik2 (3.2)
where k1 and k2 are real numbers. We want to investigate how such 
solutions differ from those in the vaccum. For this purpose we insert 
(3.2) in (3.1):

(3.3)
This is a wave with an exponentially decreasing amplitude. Its phase 
velocity is

The ratio between the phase velocity in vacuum and that in matter is 
called the refractive index n of the matter

So the refractive index is related to ω and k1 according to

(3.4)

Also the energy flux density of such a wave decreases exponentially 
with x. For the time average of j applies

(3.5)
a is called the absorption coefficient. Since j is quadratic with the 
field strength E we have:

a = 2k2

It is convenient to define a complex refractive index n’. In (3.4) in-
stead of the real part k1 we insert the whole complex k

The quotient

(3.6)

is called the absorption index of the medium. Thus we have

(3.7)

With k1 = 2π/λ we get

κ has an obvious physical meaning: From (3.5) it follows that the 
reciprocal value of a can be understood as the penetration depth of 
light in matter. The absorption index is therefore a measure of the 
penetration depth per wavelength.
If a wave runs from a medium with the refractive index na into a 
medium with a different refractive index nb, its frequency does not 
change. Therefore, it follows from (3.4) that n and k1 are unambigu-
ously related for the wave. It is therefore often useful not to consider 
ω and k (or k1) as independent parameters, but ω and n. The elec-
tric field strength of a plane wave running in x-direction is therefore 
often written like as

If the medium is absorbing, i.e. κ ≠ 0, it is sufficient to use the com-
plex refractive index n’ instead of n. With (3.7), (3.6) and (3.4) one 
obtains again (3.3).

E (x ,t ) =E0ei (ωt−kx )

ω
k

= 1
ε0µ0

= c

E (x ,t ) =E0·e −k2x ·ei (ωt−k1x )

v ph =
ω
k1

n = c
v ph

n = c
ω
k1

j
j = j0 ·e –ax

n’ = c
ω
(k1 – ik2 ) = n 1– i k2

k1
⎛
⎝⎜

⎞
⎠⎟

κ = k2
k1

= a
2k1

n’ = n(1– iκ )

κ = aλ
4π

E (x ,t ) =E0·e
iω t –n

c
x⎛

⎝⎜
⎞
⎠⎟



3. Light in matter

3.2 Frequency, direction and polarization  
     dependence of the optical constants
Since (3.1) is a solution of the Maxwell equations, the optical con-
stants n and κ clearly depend on the material quantities ε, μ and σ 
that appear in the Maxwell equations. From the fact that ε, μ and σ 
depend on the frequency, the direction of propagation and the polar-
ization of the wave it follows that n and κ also show such dependen-
cies. To relate these dependencies to the structure of matter is an 
important research topic in solid state physics and atomic physics.
Because n is a function of ω, a wave train of finite length, which con-
tains Fourier components of different frequencies, will run apart on 
its way. This process is called dispersion. Usually n grows with ω, 
(decreases with λ) Fig. 3.1. This is called normal dispersion. In fre-
quency ranges in which n decreases with increasing ω there is 
anomalous dispersion.

Anomalous dispersion is always accompanied by absorption.
In addition, n and κ in substances of sufficiently low symmetry also 
depend on both the direction of propagation and the direction of po-
larization. Therefore, and due to the fact that solids can have a wide 
variety of symmetries, a large number of different effects result.
If the refractive index depends on the direction of wave propagation, 
it also automatically depends on the direction of polarization. Crys-
tals for which this is the case are called birefringent. If the absorption 
index depends on the direction of polarization, it is called dichroism.
An optically isotropic substance can also be made anisotropic “from 
the outside”, for example by

• a mechanical stress 
• an electric field 
• a magnetic field.

Mechanical stress leads to stress birefringence. The birefringence 
caused by an electric field is known as the Kerr effect. A magnetic 
field causes birefringence if the field strength is transverse to the di-
rection of propagation of the light (Cotton-Mouton effect) or a rota-
tion of the plane of polarization if the light propagates in the direction 
of the field (Faraday effect).
Further effects occur when crystals that are already anisotropic in 
themselves are brought into external fields.

0,2 0,4 0,6 0,8 1,0 1,2 λ (μm)
1,42

1,46

1,50

1,54

n

Fig. 3.1 
Refractive index for Quartz glass as a function of the wavelength. For normal dispersion, the 
refractive index decreases with increasing wavelength.
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3.3 The group velocity
So far in the context of waves we have been dealing with the phase 
velocity. However, the phase velocity is not a dynamic physical 
quantity, but a kinematic one. It does not describe the movement of 
a physical object, but only the movement of a geometric point, such 
as the zero crossing of the electric field strength in a wave. It is no 
more similar to a physical movement than the movement of a “car” 
on a cinema screen, which is only the movement of a shadow.
But with a light flux a real physical transport is associated, namely 
the transport of energy, momentum, entropy and other substance-
like quantities. Does it make sense to describe this transport by a 
velocity? It makes sense at least as long as the transport has a tem-
poral (and thus a spatial) beginning and an end, Fig. 3.2. Because 
then the energy and the other quantities are localized, they are in 
the region of x1 at a time t1 and in the region of x2 at a time t2. From 
this one can calculate a transport velocity

If there is no dispersion, the wave packet moves without changing 
its shape, because all its Fourier components have the same phase 
velocity. The dynamic, or group velocity of the wave packet is there-
fore equal to the phase velocity. Things are different when disper-
sion is present. Then the partial waves of the wave packet run at dif-
ferent velocities than the packet as a whole. The phase velocity of 
the partial waves can be higher than c, but the whole packet always 
runs with a (dynamic) velocity v ≤ c.
If one looks at the representation of a wave packet, where only the 
electric field strength is plotted, one could suspect a contradiction, 
Fig. 3.3.

If the maxima within the wave packet run faster than the whole 
packet, doesn’t the energy within the packet have to run at the high 
velocity as well? But then what happens to it when it reaches the 
front end of the packet? One can see that in this case the energy 
density cannot simply be equal to ε0E2 as it is the case for a wave in 
a vacuum. This is only true as long as electric and magnetic field 
strength are in phase. So it follows that E and H can no longer be in 
phase as soon as dispersion is present.
Let us calculate the group velocity for a simple special case: the 
case that the wave group has only two harmonic components with 
frequencies close together. The total wave is then a kind of beat, a 
sequence of wave packets, Fig. 1.5.
For the maximum of a wave group, the phases of the two partial 
waves coincide:
ω1t – k1x =  ω2t – k2x

or
(ω2 –  ω1) t = (k2 –  k1) x

The velocity at which the group propagates is therefore

or, as the frequencies should be close together

If ω is not linearly dependent on k, the velocity of the wave group is 
no longer the same as the phase velocity of the harmonic waves into 
which it can be decomposed. Of course, this fact has the conse-
quence that the wave packet will spread apart during its movement.

v = x2 – x1
t2 – t1

Fig. 3.2 
Wave packet at three instances 
of time. A velocity can be as-
signed to the transport.x1 x2 x3

t1

t2

t3

Fig. 3.3 
The phase velocity can be 
greater than the group velocity.

v gr =
x
t
= ω2 – ω1

k2 – k1

v gr =
dω
d k
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4. Light at interfaces: Reflection and refraction

4.1 Law of Reflection and Refraction
As is well known, light that passes from one homogeneous material 
to another is refracted and reflected, Fig. 4.1. The transition from 
one material to the other must take place in a layer whose thickness 
is << λ. In this case the law of reflection applies
α = α’ (4.1)

and the law of refraction
na sin α =  nb sin β (4.2)

apply. α and α’ are the angles between the wave normal of the inci-
dent or reflected wave and the normal of the boundary surface. β is 
the angle between the normal of the refracted wave and that of the 
the boundary surface, and na and nb are the refractive indices of the 
two materials. 

The wave front normals of the incident, reflected and refracted light, 
as well as the boundary surface normal lie in one plane, the plane of 
incidence.
The two laws (4.1) and (4.2) give information about the direction of 
the outgoing waves, if one knows the direction of the incoming wave 
and the refractive indices. They don’t tell us which fraction of the 
light is reflected and which is refracted. This is done by the Fresnel 
equations, which will be discussed in the next section.
We mark quantities that refer to the three waves as follows:

incident wave: index i  
reflected wave: index r  
refracted (transmitted) wave: index t

The laws of reflection and refraction can be easily derived for mono-
chromatic plane waves. At the surface, the phases of the three 
waves can only differ by a constant value, i.e. for all time instants t 
and all positions rG on the interface must apply:
ωit – kirG = ωrt – krrG + Φr = ωtt – ktrG + Φt (4.3)

From the fact that this chain of equations must apply to any fixed lo-
cation rG for any instant of time, it follows
ωi = ωr = ωt 

So all three waves have the same frequency. The fact that (4.3) 
must be valid for a given instant of time for every position rG of the 
interface is equivalent to

(ki – kr)rG = const for every rG

and
(ki – kt)rG = const for every rG

These relations are fulfilled when (ki – kr) and (ki – kt) are perpen-
dicular to the interface. This means that the components of the k-
vectors parallel to the interface

k||i, k||r and k||t

must be equal to each other, Fig. 4.2.

With

and

we get

and with

we finally obtain
na sinα =  nb sinβ

Fig. 4.1 
The light wave is reflected and re-
fracted.

α

na

nb

α’

Fig. 4.2 
(a) A light wave is reflected and 
refracted on a plane. (b) The com-
ponents of the k-vector which are 
parallel to the plane are equal.

a

b

k!i = k i sinα

k!t = k t sinβ

k i sinα = k t sinβ

k i
k t

=

ωna
c

ωnb
c

= na
nb



4. Light at interfaces: Reflection and refraction

4.2 The Fresnel equations
The question of how much of a light flux hitting an interface is re-
flected and how much is refracted can also be answered solely on 
the basis a knowledge of the refractive indices. However, the result 
depends on how the incident light is polarized. It is therefore useful 
to decompose the E-vector into a component E⊥ which is perpen-
dicular to the plane of incidence and a component E|| which lies in 
the plane of incidence, Fig. 4.3.

Using the Maxwell equations, a somewhat laborious calculation 
yields the reflection coefficients r⊥ and r||, and the transmission coef-
ficients t⊥ and t||:

(4.4)

(4.5)

(4.6)

(4.7)

Here α is the angle of incidence of the incoming wave and nb/na is 
abbreviated n.
Fresnel had already derived these equations in 1821 using his me-
chanical theory of light. They are called Fresnel’s equations.
Since the components Ei ||, Er || and Et || are not parallel to each other, 
there is no uniform, natural way to define the signs. The signs in 
both equations (4.6) and (4.7) correspond to directions of positive 
counting indicated by arrows in Figure 4.4.

Figure 4.5 shows the curve of the four coefficients (4.4) to (4.7) as a 
function of the angle of incidence α for the case that n = nb/na = 1.7. 
This corresponds approximately to the transition from air (na = 1) 
into glass (the refractive index is between 1.45 and 1.9 depending 
on the type of glass).

Let us discuss these curves.
1. For α = 0 we have

and

2. The greater the difference nb  –  na  of the refractive indices, the 
more light is reflected.
3. for α → 90°, i.e. for grazing incidence, all light is reflected.
4. While the phase of the transmitted light is the same as that of the 
incident light, the Er⊥ component makes a phase jump of π.
5. Er|| displays the most interesting curve shape, Fig. 4.6. For angles 
of incidence smaller than the Brewster angle αB, Er|| makes a phase 
jump. At α = αB we have Er|| = 0, and for larger angles Er|| is in phase 
with Ei||.

Zeroing the numerator in (4.6) results in a condition for αB

tan αB = n
Furthermore, one finds
 αB + βB = 90°
If the light is incident at the Brewster angle, the reflected light is 
completely linearly polarized. The vector of the electric field strength 
is perpendicular to the plane of incidence. 
If na > nb, i.e. if the light passes from the material with the lower to 
that with the higher refraction index, a new phenomenon emerges: 
total reflection. Fig. 4.7 shows for this case the value of the four co-
efficients (4.4) to (4.7) as a function of the angle of incidence. Since 
n = nb/na < 1, for angles of incidence with sin α > n the root

 
becomes imaginary. So the four coefficients become complex. The 
angle αG in sin αG = n is called critical angle of total reflection.

The contributions of r⊥ and r||, are equal to 1, i.e. the reflected wave 
is only out of phase with the incident wave. The magnitudes of t⊥ 
and t||, however, are not equal to zero. This means that a wave pen-
etrates into the medium with the lower refractive index. The wave 
fronts of this wave are perpendicular to the interface. However, their 
amplitude decays exponentially in the direction of the normal of the 
interface.
The Fresnel equations can still be applied even if the refractive in-
dices are complex.
We consider the case that the incident wave travels in air (na  ≈ 1) 
and hits a metal surface (n’ = n(1 – iκ) = complex) vertically (α = 0).
With (4.8) the reflection coefficient becomes

The reflectance R indicates which fraction of the incoming energy 
flows away with the reflected light.
It is

Fig. 4.3 
Appropriate decomposition of the 
vector of the electric field strength

plane of 
incidence

boundary 
surface

normal of 
boundary 
surface

r⊥ = E r⊥

E i⊥
= cosα – n2 – sin2α
cosα + n2 – sin2α

t⊥ = E t⊥

E i⊥
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cosα + n2 – sin2α

r! =
E r!

E i!
= – n

2 cosα – n2 – sin2α
n2 cosα + n2 – sin2α

t! =
E t!

E i!
= 2n cosα
n2 cosα + n2 – sin2α

Fig. 4.4 
To define the sign in the Fresnel 
equations

Fig. 4.5 
Coefficients of reflection and 
transmission as a function of the 
angle of incidence for
nb > na
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Fig. 4.6 
If the light is incident at the Brew-
ster angle, the directions of the 
reflected and refracted waves are 
orthogonal to each other.
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Fig. 4.7 
Coefficients of reflection and 
transmission as a function of the 
angle of incidence for
na > nb
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5. Diffraction

5.1 What is diffraction?
If an obstacle is placed in the way of a plane wave in such a way 
that part of each wave front passes it and part of it does not, it is 
found that the wave also runs behind the obstacle into the area from 
which the source cannot be seen, i.e. which is actually in the shad-
ow. This phenomenon is called diffraction. It is said that the wave is 
diffracted at the obstacle. This means that it is deflected from the di-
rection in which it would run without an obstacle.
For sound waves, diffraction is a common, everyday phenomenon. 
Although the effect is usually very weak in light, it plays an important 
role in optics.



5. Diffraction

5.2 The Huygens-Fresnel principle
The principle can be formulated at different levels of generalization. 
The more general the formulation, however, the more unwieldy it 
becomes. We choose a formulation whose validity is quite limited. 
On the other hand, it is very transparent, it is easy to use, and it is 
sufficient to solve the most important problems.
A monochromatic, plane wave hits a flat obstacle with openings in it. 
The plane of the obstacle is parallel to the wavefronts of the incom-
ing wave. The Huygens-Fresnel principle allows to determine the 
light distribution behind the obstacle. It tells us that the light wave 
continues behind the obstacle as if a spherical wave emanated from 
each point of the opening. The amplitude of the light field at any 
point behind the obstacle is obtained by superimposing the contribu-
tions of all these spherical waves.
The principle can also be interpreted in this way: The light field be-
hind the obstacle is the same, no matter whether a plane wave hits 
the obstacle or whether there are many emitters oscillating in phase 
at the positions of the openings.
The Huygens-Fresnel principle follows from the Maxwell equations. 
However, the derivation is complicated. Statements about boundary 
conditions must be included in this derivation, and approximations 
are made, namely

• the light amplitude immediately behind the obstacle is zero;
• the light distribution in the open areas of the obstacle is the same 

as if the obstacle were not there.
It is difficult to check mathematically whether these conditions are 
met with sufficient accuracy. We take as legitimation of the principle 
the fact that it provides a very good prediction of the outcome of op-
tical experiments.



6
Scattering



6. Scattering

6.1 What is scattering
So far, we have considered the wave propagation in homogeneous 
media, or at the interface from one homogeneous medium to anoth-
er. Of course, “homogeneous” does not mean that the material is 
homogeneous down to the smallest dimensions. It simply means 
that the average values of the physical quantities over regions of the 
order of the wavelength of the radiation under consideration are in-
dependent of the position. If this restriction is abandoned, processes 
known as scattering are admitted. For example, light is scattered 
when it passes through a ground glass screen or when it is reflected 
by a sheet of white paper. On a clear day, sunlight is scattered by 
the air in the atmosphere, with the result that we see the sky not 
black but bright blue.
The simplest situation involving scattering is the following: A plane 
wave of any radiation hits a small obstacle, i.e. an obstacle that is 
small compared to the wavelength or of the same order of magni-
tude as the wavelength of the radiation.
However, scattering usually refers to a slightly different phe-
nomenon: the light wave encounters an ensemble of many irregular-
ly arranged obstacles.
Depending on the size, distribution and nature of the scatterers and 
depending on the wavelength of the light, other phenomena are ob-
served. These often bear the name of their discoverer: Rayleigh 
scattering, Mie scattering, Thomson scattering, Compton scattering, 
Raman scattering, Brillouin scattering, etc. Scattering phenomena 
can be divided into two classes:

• elastic scattering: the frequency of the light does not change (ex-
amples: Rayleigh and Mie scattering)

• inelastic scattering: the frequency of the light changes (exam-
ples: Compton, Raman, Brillouin scattering).



6. Scattering

6.2 Scattering as an irreversible process
A monochromatic, plane light wave hits a ground-glass screen, Fig. 
6.1. The arrows in the figure represent the k-vectors of the light.

Fig. 6.2 shows the distribution of the k-vectors in k-space at a point 
P in front of and at a point Q behind the ground-glass screen. The 
magnitudes of the k-vectors, and thus the frequencies, are the same 
in front of and behind the screen: the scattering is elastic. However, 
the distribution of the directions of k has changed: the spatial coher-
ence has strongly decreased.

There is no passive optical component (lens, mirror, ground glass ...) 
with which the scattering process can be reversed. Scattering is an 
irreversible process.
In thermodynamics, irreversible processes are described in a very 
simple and comprehensive way. There is one quantity that can be 
created but not destroyed: entropy. A process is always irreversible if 
entropy is produced. Reversing the process would require the anni-
hilation of entropy, and that is forbidden. So scattering is a process 
in which entropy is produced.

Fig. 6.1 
Distribution of the k-vectors in front 
of and behind a ground-glass 
screen, displayed in position space

P
Q

Fig. 6.2 
Distribution of the k-vectors in front 
of and behind a ground-glass 
screen, displayed in k-spacekxP

Q kx

ky

ky



6. Scattering

6.3 Example: Rayleigh scattering
If a plane light wave hits a single molecule, the molecule becomes 
polarized. The polarization follows the electric field strength of the 
incident light, it changes according to sin(ωt). This turns the mol-
ecule into a Hertzian oscillator and it emits a wave. The energy flux 
density of this wave is directional: It is zero in the direction of the di-
pole moment, i.e. in the direction of the electric field strength of the 
incident wave. Furthermore, it is proportional to the fourth power of 
the oscillation frequency.
The directional dependence has the consequence that the scattered 
light that runs away perpendicular to the direction of incidence is lin-
early polarized, Fig. 6.3. The frequency dependence has the conse-
quence that blue light is scattered much more than red light.

These considerations were based on a single molecule.If the light 
wave now falls on many homogeneously distributed molecules, the 
scattering disappears, because for each molecule there is a second 
one at a distance of λ/2 transverse to the direction of incidence, 
whose scattered wave interferes with that of the first molecule, Fig. 
6.4. 

Only when the scattering medium is no longer homogeneous does a 
scattering effect result again: i.e. when the density of the material 
changes over distances of the order of λ. Such density fluctuations 
are always present in gases. That is why gases show this scattering 
behavior. This scattering is called Rayleigh scattering.
Rayleigh scattering can be recognized by the following properties:

• the energy flux density of the scattered light goes with ω4;
• the light scattered perpendicularly to the direction of the incident 

light is linearly polarized;
• the energy flux density of the scattered light is symmetrically dis-

tributed over the angle against the incident light: it is scattered 
equally in forward and backward direction.

The blue light of the unclouded sky is Rayleigh scattered light.

Fig. 6.3 
Direction of propagation of linearly 
polarized light in Rayleigh scatter-
ing

light of this direction 
is linearly polarized

direction of incidence

Fig. 6.4 
On Rayleigh Scattering

λ/2



6. Scattering

6.4 Example: Mie scattering
Things become much more complicated when the size of the scat-
tering centers approaches the wavelength range of the light. The 
case in which the scatterers are spherical was treated quantitatively 
by Gustav Mie. The directional dependence of the energy flux densi-
ty of the scattered light is complicated. However, a qualitative state-
ment can be easily remembered: The larger the scattering centers 
are, the more light is scattered in the forward direction.



7
Interference phenomena

The superposition of plane, monochromatic waves leads to the 
phenomenon of interference: extinction of light at certain points, 
amplification at others (see section 2.2). In this chapter ee will inves-
tigate interference phenomena. In each of the experiments to be 
considered we will be dealing with two problems:

• What does the resulting wave field look like?
• Which trick is used to obtain the plane, monochromatic waves, 

i.e. the coherent light?



7. Interference phenomena

7.1 Elementary light beams
Light, whose k-vectors are distributed in the area Δkx  · Δky  · Δkz, 
forms spatial wave packets of the extension Δx ·  Δy ·  Δz with
Δx · Δkx = 2π Δy · Δky = 2π Δz · Δkz = 2π (7.1)

As long as the light used for an experiment comes from a single 
packet, interference can be observed. The relations (7.1) are also 
called coherence conditions. We write them in yet another form. The 
light forms a beam, which essentially runs in the z-direction, Fig. 7.1.

We then have

 Thus the coherence conditions become

Δx · Δkx = 2π Δy · Δky = 2π (7.2)

Δz is the coherence length known from before. With Δz/Δt = c we 
can replace it by the coherence time, and we get
Δx · Δkx = 2π Δy · Δky = 2π Δt · Δω = 2π

Instead of Δkx and Δky one can also use the angular aperture of the 
k-vector distribution. With

and

we get

(7.3)

In general, for any given light beam we have
Δx · Δkx > 2π Δy · Δky > 2π Δz · Δkz > 2π

However, each beam can be broken down into partial beams de-
fined by (7.1), so-called elementary beams.
Such a decomposition can be carried out in many ways: e.g. by tak-
ing the whole angular distribution of the k-vectors and obtaining very 
small spatial areas. Or one takes the whole light-filled space and 
splits the light into parts with very narrow k-distributions, or some-
thing in between. In the 6-dimensional phase space, which is formed 
by the three spatial and the three wavenumber coordinates, an ele-
mentary beam occupies a well-defined (6-dimensional) “volume”, 
namely

Figure 7.2 shows a two-dimensional section of the phase space. 
The whole light beam occupies the space bounded by the large rec-
tangle. The partial images a, b and c show three different decompo-
sitions into elementary beams. The area of the projections of the el-
ementary beams is the same in all three cases, namely 2π .

Fig. 7.1 
Distribution of the k-vectors for light 
travelling essentially in the z-direc-
tion.
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Fig. 7.2 
Three different decompositions of 
light into elementary beams.
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7. Interference phenomena

7.2 The interference pattern  
of two spherical waves

Since this case occurs frequently, we will look at it in more detail. 
Two spherical waves (cf. section 2.4) depart from two points P1 and 
P2, which are at a distance of 3λ, Fig. 7.3. The oscillations at the 
points P1 and P2 are in phase.

At any point P there is a phase difference Δ𝜑 between the two 
waves coming from P1 or P2. If the phase difference is an even mul-
tiple of π, the waves superpose constructively. Where the phase dif-
ference is an odd multiple of π, the waves superpose destructively. If 
they have the same amplitude at the considered position, they can-
cel each other completely:
Δ𝜑 = nπ  with  n = 0, ±2. ±4, … amplification
Δ𝜑 = nπ  with  n = ±1. ±3, …   attenuation

Instead of the phase difference one often uses the path difference Δl 
between two waves:

The path difference has the dimension of a length. The conditions 
for amplification and attenuation are thus:

     with  n = 0, ±2. ±4, … amplification

 with  n = ±1. ±3, …   attenuation

Fig. 7.3 shows the sections with the drawing plane of the surfaces 
defined by the phase differences –4π, –2π, 0, 2π and 4π (hyper-
boloids of revolution). The waves are amplified at these points. The 
hyperboloids on which extinction takes place lie between these sur-
faces.
One usually observes a light field by using a flat white screen. If 
such a screen is placed parallel to the connecting line P1P2, one 
sees hyperbolas as interference patterns. On a small screen at a 
large distance these become parallel straight lines. If, on the other 
hand, the screen is perpendicular to the straight line P1P2, one ob-
tains circles, or again straight lines if the screen is far off the axis 
P1P2.

Fig. 7.3 
From points P1 and P2 spherical 
waves originate. The oscillations at 
the positions of points P1 and P2 
are in phase. The hyperbolas 
drawn are places of constructive 
interference.
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7. Interference phenomena

7.3 Interference by reflection 
7.3.1 The Michelson interferometer
Figure 7.4 shows its setup: S1 and S2 are two mirrors, H is a semi-
transparent mirror. At first we assume that a plane wave enters from 
the left. The amplitude of this wave is decomposed by H into the 
equal parts t and r. The component t is reflected by mirror S1, the 
component r by S2.

The returning waves are split again at H, namely t into tt' and tr', and 
r into rt’ and rr’. tt’ now interferes with rr’ and rt’ with tr’. If the first of 
these interferences is constructive, the second is destructive and 
vice versa. Since it is more convenient, one observes only the light 
rt’ + tr’, i.e. the light running away in the direction of the thick arrow 
in fig. 7.4. Whether the light in this direction is amplified or extin-
guished depends on the distances s1 and s2 of the mirrors from the 
centre of the apparatus, more precisely: on the difference s2 – s1. If 
one of the mirrors S1 and S2 is shifted in the direction of its normal 
by λ/2, one goes from extinction to amplification or vice versa.
If the incident light is not a plane but a spherical wave, the interfer-
ence phenomena are more complicated. In fig. 7.5 a spherical wave 
starts from L. The light field of the outgoing beam is the same as if 
one had the two point-shaped light sources L1 and L2. If the mirror 
normals are perpendicular to each other and at an angle of 45° to 
the normal of H, and if S1 and S2 have different distances from H, 
Fig. 7.5a, a circular interference pattern is obtained. If, on the other 
hand, the distances s1 and s2 are the same, and if one of the mirrors 
S1 and S2 is tilted, Fig. 7.5b, then one obtains hyperbolas as inter-
ference patterns.

Now in reality one has neither ideal plane waves nor spherical 
waves. What are the requirements for observing interference? They 
can be learned from the coherence conditions, (7.1), (7.2) or (7.3).
As in Fig. 7.5a, we consider the two “virtual” light sources L1 and L2, 
Fig. 7.6. Their distance is equal to 2(s2 – s1). We therefore superim-
pose two light amplitudes belonging to two points of the light field at 
a distance of Δz =  2(s2 – s1). According to the 3rd condition in (7.3) 
the spectral bandwidth Δω of the light must be

The larger the distance s2 – s1 is chosen, the more monochromatic 
the light has to be in order to observe interference.

The other two coherence conditions give a statement about the 
width of the used light field.
At point P in Fig. 7.7, light comes to interfere, leaving the same point 
of the light source in directions different by Δ𝜑x.

With
Δ𝜑x = β1 – β2

and

we get

According to the first coherence condition (7.3), the maximum per-
missible width Δx of the light field becomes

Correspondingly, this applies to the width Δy. Here, too, coherence 
is destroyed if s2 - s1 is too large. In addition, one can see that the 
extension of the light source must be small if one wants to observe 
interference at large distances a from the center of the interference 
pattern.
The Michelson interferometer has many applications:

• precise length measurements;
• testing the quality of lens and mirror surfaces;
• measurement of the refraction index of gases;
• investigation of the dependence of the speed of light on its direc-

tion (Michelson-Morley experiment);
• spectral analysis.

A Michelson interferometer used for spectral analysis is called a 
Fourier spectrometer.
The Fourier spectrometer works as follows: The light to be analyzed 
is sent into the interferometer. The detector is located in the center 
of the observation beam. Now one of the two mirrors is moved in the 
direction of its normal, so that the distance Δs = 2(s2 - s1) between 
the virtual light sources changes, and the energy flux density is reg-
istered as a function of Δs. The contribution of a frequency ω to the 
electric field strength at the location of the detector is

From this we get

The Fourier transformation of the measured function j(Δs) returns 
the spectrum E0(ω)2.
The resolution of the spectrometer is the better, the larger the range 
over which Δs is changed. Since Δs must be measured accurately 
to fractions of a wavelength, the spectrometer is not suitable for light 
of very short wavelengths. It is used for spectral analysis in the in-
frared range.
There are other interferometers that are similar to the Michelson in-
terferometer (Mach-Zehnder interferometer, Sagnac interferometer), 
and there are simpler experiments and natural phenomena based 
on the same principle as the Michelson interferometer.
Fig. 7.8 shows the Pohl interference experiment. The light coming 
from L is reflected at the front and the back of a thin mica plate. L1 
and L2 are the virtual mirror images of L. The path difference be-
tween waves 1 and 2 increases with increasing angle θ. On the 
screen one can see a ring-shaped interference pattern.

Soap bubbles or a thin film of oil on water appear colored. The light 
is reflected at the top and bottom of the oil film or bubble skin, and 
the reflected light is made to interfere on the retina of our eyes. 
Since the condition for extinction depends on the wavelength, it oc-
curs at a different angle depending on the wavelength.  
The coating of optical lenses is also based on this principle: a thin 
layer (thickness d) of a transparent material (refractive index ns) is 
applied to the lens surface. The light is reflected at both the front 
and the back of the layer. By choosing an appropriate thickness of 
the layer (d = λ/4ns), the reflected light is destructively interfering, 
and by choosing the appropriate refractive index (ns = √n) for the 
layer, the amplitudes of the two reflected waves are equal, so that 
they cancel each other completely.

Fig. 7.4 
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Fig. 7.5 
(a) If the virtual light sources L1 
and L2 are placed one behind the 
other, a circular interference pat-
tern is created. (b) If the light 
sources are side by side, hyperbo-
las are obtained.
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7. Interference phenomena

7.3 Interference by reflection 
7.3.2 The Fabry-Pérot interferometer
The Fabry-Pérot interferometer essentially consists of two plane-
parallel glass plates which are mirrored in such a way that the de-
gree of reflection is about 0.9, Fig. 7.9.

On one side of the plates there is an extended light source, on the 
other a lens, and in the focal plane of the lens is the observation 
screen. The light that reaches the space between the plates is re-
flected back and forth several times. With each reflection, a small 
part of this light leaves the space between the plates. The light that 
leaves this space in the direction of the lens, falls on the screen, and 
one there observes interference patterns. The figure shows that in 
one point on the observation screen, the light that corresponds to a 
single direction in front of the plates is united. In the point under 
consideration, many waves (of the same direction) interfere: the 
wave that was not reflected at all by the glass plates, the wave that 
was reflected once to and fro, the wave that was reflected twice to 
and fro, and so on. There is a phase difference between two con-
secutive waves in this series δ, which consists of two parts: one part

that is caused by the different lengths of the waves’ paths and one 
part that is due to the fact that each further back and forth of the 
wave causes two phase jumps when being reflected. Successive 
waves interfere constructively or destructively, depending on the an-
gle Θ and the distance d between the plates. In the observation 
plane, the locations with the same phase difference lie on circles. 
One therefore observes circular interference patterns. Before we 
discuss the interference pattern further, we want to examine the 
question, which requirements the coherence conditions make on the 
light source.
In the plane of the screen, waves that are offset by Δz = 2d in the 
direction of propagation interfere. The third relationship of (7.2) 
therefore requires

The greater the plate spacing, the more monochromatic the light 
must be.
At any point on the screen, light of a single direction interferes, i.e. 
∆kx = ∆ky = 0. It follows from the first two conditions of (7.1), (7.2) or 
(7.3) that the light source may be extended laterally to any extent.
We now calculate the amplitude of the transmitted light as a function 
of the angle of incidence Θ and the plate distance d. The designa-
tions are shown in Fig. 7.10.

The light with the amplitude E0 had to pass a mirror twice, whereby 
its amplitude was reduced by the factor t 2.
Thus we have

The light with the amplitude E1 was reflected twice more, and due to 
the longer distance, it has experienced a phase shift of kΔl com-
pared to E0, where

 

It is therefore

Accordingly one gets E2, E3  etc.

That there is still a phase shift in every reflection is expressed by the 
fact that r is complex. With

we obtain
 

The resulting amplitude is

On the screen one does not observe the field strength, but the ener-
gy current density

The independent variables d and Θ are hidden in Δl.
Figure 7.11 shows j as a function of kΔl for two different values of ρ. 
One can see from this figure the benefit of the Fabry-Pérot interfer-
ometer: It is a high-resolution spectrometer. For different wave-
lengths the ring-shaped “spectral lines” have different diameters.

One also notices that the resolution gets better the closer the reflec-
tion coefficient is to 1.
The condition for the proper operation is, of course, that the coher-
ence condition is respected. If one ignores the coherence condition, 
the rings that belong to different light frequencies coincide.
Fig. 7.11 shows that the device only transmits light that is incident at 
specific, sharp angles. The light complementary to the transmitted 
light is reflected back towards the light source.
Besides being used as a spectrometer, this arrangement is also 
used as a laser resonator. In this case, the plate distance is as large 
as the laser is long.
A very simple version of the Fabry-Pérot interferometer is the inter-
ference filter: a thin layer of metal or a suitable non-conducting ma-
terial is applied to both sides of a glass plate. In contrast to filters 
whose effect is based on absorption, interference filters only allow 
light of a very small wavelength range to pass through: about 5 - 10 
nm.

Fig. 7.9 
Fabry-Pérot interferometer
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To calculate the amplitude of the 
transmitted light in the Fabry-Pérot-
interferometer
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7. Interference phenomena

7.4 Interference by diffraction
7.4.1 Generals
Instead of bringing together light coming from different places within 
an elementary beam by mirrors and thus causing interference, the 
phenomenon of diffraction can be used for this purpose.
In fig. 7.12 the light diffracted at the two holes is brought to interfer-
ence and observed on the screen. 

The mathematics of diffraction becomes particularly simple when we 
look at the arrangement invented by Fraunhofer, Fig. 7.13: Behind 
the diffracting object there is a lens. The observation screen is 
placed in its focal plane.

Here, similar to the Fabry-Pérot interferometer, the light that be-
longed to a certain direction in front of the lens is brought to interfer-
ence at a point on the screen: the lens assigns a position (on the 
screen) to a direction (left of the lens).
Before investigating certain interference patterns, we want to ask 
again which conditions the equations (7.1) to (7.3) impose on the 
structure of the arrangement.
On the screen, light from an area of width Δx = d is to be brought to 
interference. The k-vector is therefore only allowed to scatter by an 
angle

Laser light is such that this relationship still holds when the entire 
beam width is taken for Δx. Therefore, one simply says “laser light is 
coherent”. Laser light is particularly suitable for diffraction interfer-
ence experiments. The third coherence condition tells us up to which 
angle against the optical axis one can still observe interference phe-
nomena. On the screen at a distance a from the optical axis light is 
brought to interference, whose k-vector forms with the optical axis 
the angle Θ with tan Θ = a/f. This light comes from two points of the 
light field which are distant by Δz = d · sin Θ in the direction of prop-
agation. With sin Θ ≈ tan Θ we get

Therefore, the third coherence condition (7.3) requires that

The path difference of the interfering waves increases with increas-
ing a and with increasing d. The larger the diameter of the diffracting 
object and the greater the distance from the optical axis where inter-
ference patterns are to be observed, the smaller the frequency 
range of the light must be.

Fig. 7.12 
The light diffracted at the two holes 
is brought to interference.screen

two-hole diaphragm

Fig. 7.13 
Fraunhofer arrangement for the 
interference of diffracted light
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7. Interference phenomena

7.4 Interference by diffraction
7.4.2 The Fraunhofer arrangement as a Fourier transformer
We start with a one-dimensional analysis: The diffracting object is 
extended in the x-direction and is characterized by the transparency 
function t(x). t(x) indicates by which factor the amplitude of the wave 
behind the diffracting object is smaller than before. According to the 
Huygens-Fresnel principle, one can imagine that a spherical wave 
starts from every point behind the object. Since the lens makes 
waves of a certain direction converge in a certain point, we ask what 
contribution the individual Huygens’ elementary waves make to the 
field strength of the wave of a certain direction Θ.
These contributions have a different phase in the point on the 
screen, depending on the position on the object. In order to calculate 
the light amplitude on the screen, we have to integrate the contribu-
tions of all spherical waves belonging to the direction Θ with the cor-
rect phase.
We first look at the contributions of the direction Θ, which start from 
points P1 and P2, Fig. 7.14. 

The Distance between P1 and P2 is Δx. The path difference of the 
waves is
Δl = Δx · sin Θ

So their phase difference is
Δ𝜑 =  Δl · k = Δx · k · sin Θ = Δx · kx

where kx is the x-component of the k-vector of the diffracted light. 
We get the total contribution T(kx) of the spherical waves to the field 
strength at the considered point on the screen by integration

(7.4)

To each direction Θ a value of the coordinate x’ on the screen is as-
signed:

With

and sin Θ ≈ tan Θ we get

Therefore instead of (7.4) we can also write

(7.5)

T(kx) is a measure of the electric field strength on the screen. It has 
the same dependence on kx as the field strength, but it is not the 
field strength itself. It cannot be the field strength, because t(x) is not 
a field strength either. One would not have been allowed to use the 
field strength behind the diffracting object instead of t(x), at most a 
field strength per k-direction interval. By the integration a length di-
mension is added. Furthermore, one should have considered that 
the field strength of a spherical wave decreases with 1/r from the 
center of the sphere. Fortunately, we can ignore all these complica-
tions: We are not interested in the absolute value of the field 
strength, but only in its change as a function of kx or of x’, which is 
the same as that of T.
With (7.4) and (7.5) we have now obtained a very simple result: The 
field strength of the Fraunhofer diffraction pattern is the Fourier 
transform of the field strength at the location of the object.
The signal which is registered with the usual detectors, for example 
with a photographic film, is proportional to the square of the field 
strength, i.e. to the square of the Fourier transform of the trans-
parency function of the object.

Fig. 7.14 
To calculate the path difference of 
two spherical waves
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7.4 Interference by diffraction
7.4.3 Single-slit and double-slit diffraction
The transparency function of a slit of width a is

We have already calculated the Fourier transform of this function in 
chapter 1:

The graphical representation of this function is shown in Fig. 1.3. 
The energy flux density, which is proportional to the square of this 
function, is shown in Fig. 7.15. It is zero for

or with kx = k sin Θ for

or

If the slit width becomes narrower, the main maximum of the dif-
fraction pattern becomes wider. In the limit case, in which the trans-
parency function is a δ-function, T(kx) = const (the main maximum is 
infinitely wide).
As a second example we calculate the diffraction pattern of two very 
narrow (δ-functional) slits, which lie at a distance d to each other, fig. 
7.16. Their transparency function is

Thus we get
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7. Interference phenomena

7.4 Interference by diffraction
7.4.4 Grating diffraction
Finally we consider the case of the diffraction grating: a series of 
equidistant narrow slits. We take as transparency function the sum 
of N equidistant δ functions:

Here we have got T(kx) as a series. This representation is especially 
practical if one wants to follow on the computer screen, which influ-
ence each new slit pair has on the diffraction image. But one can 
also give a closed-form expression forT(kx). The calculation be-
comes easiest if we write

Then the Fourier transform is

The fact that this expression is complex only means that the field 
strength is out of phase with the contribution with m = 0.
We are interested in the energy flux density:

Figure 7.17 shows this function for N = 6.

The energy current density has high maxima proportional to N2 for kx 
values for which the denominator becomes zero, i.e. when

(7.6)

These maxima are called main maxima of zero, first, second etc. or-
der. Between each two main maxima there are  N – 2 much smaller 
side maxima.
The diffraction grating is the most important component of a grating 
spectrometer. In such a device, light with different frequency com-
ponents is sent on the grating and a superposition of the corre-
sponding diffraction images is created (the energy flux densities add 
up). In order to separate the light with two different frequencies, the 
corresponding main maxima must be clearly separated. From (7.6) 
follows that the separation of two maxima of the same order, which 
belong to two different frequencies, is proportional to the number n. 
In addition, two maxima can be resolved the better the narrower 
they are. Now the width of a main maximum is about 1/N of the dis-
tance between two adjacent main maxima. So the larger the number 
N of illuminated slits, the better the frequency resolution.
Altogether, therefore, the product n · N is a measure for the resolv-
ing power of the grating spectrometer.
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7. Interference phenomena

7.4 Interference by diffraction
7.4.5 Convolutions
In optics, a mathematical operation is often useful, which is called 
convolution. The convolution is defined by

(7.7)

One says F is the convolution of f and Φ.
One can consider the convolution as a limit of the following sum:

a1 Φ(x – x1) +  a2 Φ(x – x2) + a3 Φ(x – x3) +…
The function Φ(x) is thus shifted on the x-axis by the amounts x1, x2, 
x3,…, and all these functions are added after multiplication by the 
weight factors a a1, a2, a3,…
In expression (7.7), the weight factors are f(x’)dx’.
We will use convolutions to calculate diffraction patterns. But they 
play an important role in optics in other contexts as well.
We consider an example for the application of a convolution, which 
belongs to optics, but has nothing to do with the topic we are cur-
rently working on: the pinhole camera. The propagation of light can 
be described here with light rays, Fig. 7.18.

Each point Pi of the object generates a light distribution on the 
screen that corresponds to the transparency function Φ(x) of the 
pinhole. The two object points P1 and P2 individually create images 
Φ(x – x’1) and Φ(x – x’2) that are shifted against each other. Both to-
gether create the weighted sum

a1 Φ(x – x’1) +  a2 Φ(x – x’2) 
a1 and   a2  are measures of the energy flux density of the light com-
ing from points P1 and P2 respectively. In order to determine the ef-
fect of not only two but of all the object points on the screen, one 
must form the integral of a sum:

F(x) is the energy flux density distribution on the screen, f (x’ ) is a 
measure of the energy flux density distribution in the object plane, 
and Φ(x) describes the transparency of the hole. The unit in which x’ 
is measured in the object plane is larger by a factor of b/g than the 
unit in which the same variable x’ is measured in the image plane.
Often a simple special case of a convolution is important: the case 
where f (x’ ) describes a series of sharp peaks at the positions x1 , 
x2 ,..., i.e.

f (x’ ) = δ(x’ – x1’ ) + δ(x’ – x2’ ) + …
The convolution then reduces to the addition of a discrete set of 
functions which differ only in that they are shifted on the x-axis by 
finite distances from each other, Fig. 7.19.

It can be seen that this case is suitable for describing a set of ob-
jects that all have the same spatial structure but are located at dif-
ferent places in space: e.g. atoms in a crystal lattice or chairs in a 
seminar room.
We now return to the examination of Fraunhofer diffraction patterns. 
Whenever the diffracting object consists of a set of arbitrarily 
arranged openings of the same kind, the transparency function can 
be written as a convolution of the transparency function of a single 
opening with a sum of δ functions indicating the locations of the 
openings. This description is useful because there is a simple math-
ematical theorem about the Fourier transform of a convolution inte-
gral:
The Fourier transform of the convolution of two functions f and Φ is 
equal to the product of the Fourier transform of f and that of Φ.
As a proof we calculate the Fourier transform T(k) of the function

We obtain

If one sets x – x’ = y, then

q. e. d.
We use this theorem to calculate the diffraction pattern of a double-
slit. The transparency function t(x) of the double-slit is the convolu-
tion of the transparency function Φ(x) of the single-slit with the 
transparency function f(x’) of the δ-shaped double-slit (see section 
7.4.3):

The Fourier transforms FTΦ of Φ and FTf  of f are

According to our theorem, the Fourier transform of t(x) is the product 
of FTΦ and FTf :

Figure 7.20 shows the square of T(kx) for the case that d = 3a.

This function can also be described as follows: the diffraction pattern 
of two δ-shaped slits (a fast oscillating cosine function) is modulated 
with the diffraction pattern of the wide (not δ-shaped) single slit.
To obtain the diffraction image of a real grating, i.e. a grating whose 
slits have a finite width, the diffraction pattern of the δ-grating (sec-
tion 7.4.4) must be modulated with the diffraction pattern of the sin-
gle slit.
The coherence condition

 

can be used to determine the angular distance of very closely 
neighbouring stars, such as the partners of a binary star system, or 
the angle of aperture at which the diameter of a single star is seen. 
The arrangement used for this is the Michelson stellar interferome-
ter, Fig. 7.21.

In the focal plane of the telescope mirror, light from the locations of 
the mirrors M1 and M2 in the field of incoming light is brought to in-
terference. The interference image can be imagined to have come 
about by diffraction at two apertures: The mirrors M1 and M2 are 
equivalent to two pinholes in a screen that is placed in the way of 
the incoming light. The diffraction pattern is the product of the dif-
fraction pattern of one of these “apertures” with that of δ-shaped slits 
at a distance d. The rotational symmetric structure in fig. 7.22 is 
caused by the shape of the single mirrors, the vertical stripes by the 
δ double slit.

M1 and M2 are now moved outwards until the interference fringes 
disappear. The corresponding distance d of the mirrors is used to 
calculate the opening angle ΔΦ of the light field.
According to this method, a star diameter was determined for the 
first time in 1920 (Betelgeuse, in Orion top left).

F (x ) = f (x ’)·φ(x – x ’)dx ’
−∞

+∞

∫

Fig. 7.18 
Pinhole camera
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Fig. 7.19 
Convolution F(x) of a set of δ functions f(x’ ) with the function Φ(x)

t (x ) = f (x ’)·φ(x – x ’)dx ’∫

T (k ) = t (x )e – ikx dx∫
= f (x ’)·∫∫ φ(x – x ’)e – ikxdx ’dx

T (k ) = f (x ’)·φ(y )e – ik (x ’+y )dx ’dy∫
= f (x ’)e – ikx ’dx ’· φ(y )e – iky dy∫∫

φ(x ) = 1 for – a
2
< x < a

2
0 else

⎧
⎨
⎪

⎩⎪

f (x ’) = δ x ’ – d
2

⎛
⎝⎜

⎞
⎠⎟ +δ x ’+ d

2
⎛
⎝⎜

⎞
⎠⎟

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

t (x ) = f (x ’)·φ(x – x ’)dx ’∫

FTφ (kx ) = a
sina
2
kx

a
2
kx

FTf (kx ) = 2·coskx
d
2

T (kx ) = a
sina
2
kx

a
2
kx

·2·cosd
2
kx

T(kx)

kx

Fig. 7.20 
Energy flux density in the diffraction 
image of the double slit. One can 
see that the function can be repre-
sented by two factors: One corre-
sponds to the diffraction pattern of a 
single slit, the other to a double slit 
of two δ-functions.

Δϕ ≤ λ
d

Fig. 7.21 
Michelson stellar interferometerM2

M1

d

Fig. 7.22 
Diffraction pattern of a Michelson 
stellar interferometer. The rotational 
symmetric structure is the dif-
fraction pattern of the single mir-
rors. The vertical stripes correspond 
to a δ double slit.
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8. Ray optics

8.1 Light rays
We all know the description of light by rays. Rays are imaginary 
lines. Light moves along these lines like particles on a trajectory.
The description of light by rays is only possible under certain condi-
tions. In order to formulate these conditions, we have to investigate 
what the special feature of the description by rays is, if we assume 
that light should actually be described by waves.
The description by rays implies, on the one hand, that light casts a 
sharp, “geometric” shadow. In Fig. 8.1, light is emitted from the small 
pinhole L1, and creates a sharp shadow of the large hole L2 on the 
screen. The shape of the shadow is obtained by the construction 
known to everyone. It is also said that light propagates in straight 
lines. But the sharp shadow is only obtained if the diffraction of the 
light at L2 can be neglected, and this is the case if the hole is large 
compared to the wavelength. Thus, our first condition for the validity 
of ray optics is:
The wavelength must be small compared to the dimensions of ob-
stacles.

On the other hand, the description by rays implies that it is possible 
to add up the energy flows corresponding to two rays, Fig. 8.2, but 
this is only valid if the light is sufficiently incoherent. The light whose 
energy currents are added must not originate from the same ele-
mentary beam, otherwise interference patterns will occur. Our sec-
ond condition for the validity of ray optics is therefore
The light must be sufficiently incoherent.

The approximation of ray optics behaves to wave optics in the same 
way as the approximation of classical point mechanics to quantum 
mechanics. The concept of a light ray in ray optics corresponds to 
the concept of the path of a mass point in Hamiltonian mechanics.
If one applies ray optics, one only asks for the path of the light. One 
does not ask for the velocity at which the light travels on the rays. 
One also does not care about the polarization and therefore one 
should not ask about which part of the light is reflected and which 
part is refracted on a glass surface.

Fig. 8.1 
If the wavelength of the light is 
small against the hole L2 , a sharp 
shadow of the hole appears on the 
screen.

screen

light
source

L1
L2

Fig. 8.2 
The energy fluxes can only be 
added if the light is sufficiently in-
coherent.

screen

ray 1

ray 2
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8.2 Fermat’s principle
We assume that the conditions for operating with light rays are ful-
filled and turn to the rules of geometric optics.
If one brings into a distribution of light that comes from the left, Fig. 
8.3a, two pinholes mounted one behind the other, a so-called colli-
mator, Fig. 8.3b, a narrow beam of light is created that propagates 
similarly to a ray. Therefore, such a light beam is often called a ray – 
in accordance with the colloquial use of the word ray. Such a light 
beam makes it possible to examine the rules that apply to light rays.

The typical task of geometrical or ray optics is as follows:
Given is a point P at the position r and a direction 𝜗, Φ. What is the 
further path of the beam passing the point P in the direction 𝜗, Φ? 
Fig. 8.4 illustrates this task for the case that the ray travels in the 
drawing plane.

As long as the refractive index is spatially constant and changes 
step-wise only at well-defined interfaces, the following three known 
rules can be applied:

• Light propagates in a straight line.
• Law of reflection (α = α’) 
• Law of refraction (na sin α = nb sin β)

These rules are sufficient for the treatment of many optical devices. 
Tracking a beam through a sequence of refractive and reflective in-
terfaces is called ray-tracing.
Now, the three rules can be replaced with a single, generally valid 
rule: Fermat’s principle. For this purpose, we first define the light 
path w between two points A and B:

Here ds is an infinitesimal section of the light beam and n is the re-
fractive index. Fermat’s principle states that the actual light path be-
tween two given points A and B is minimum compared to hypotheti-
cal neighboring paths between these points:

Now, we allow the refractive index to change continuously in space.
The variational calculus deals with the general solution of such an 
expression.
That the law of reflection follows from Fermat’s principle can be 
seen easily, Fig. 8.5. Besides B, the point B’, which is mirror-sym-
metrical to B, is marked in the figure. One can see that the path APB 
is equal to the path APB’. It is obvious that APB’ is minimal if α = α’ 
is chosen.

The derivation of the law of refraction from Fermat’s principle is 
somewhat more complicated.
A ray always starts at a light source or a scattering object and ends 
on an absorbing or scattering object. One notices the special role 
that scattering objects play, for example white surfaces or ground 
glass: the rays of the incident light end here, and new rays of light 
begin, but their directions cannot be determined according to Fer-
mat’s principle from the directions of the incident rays.
As an example, we consider a lens, Fig. 8.6. Here, we refer to a lens 
as a body of glass whose surface shape is such that all light rays 
emanating from a point A merge into a point B.

Notice that although such a glass body can be manufactured exactly 
within the framework of geometric optics, one should not expect the 
surfaces to be spherical surfaces, as is the case with most technical 
lenses.
The fact that in our arrangement not only one ray S but also many 
other rays adjacent to S run from A to B means that the light paths of 
all these rays are equal because of Fermat’s principle. This is an im-
portant property of every optical imaging: If one passes from an ob-
ject point A to an image point B, the light path is the same on all 
rays.
It should be mentioned already here that, if the lens is designed to 
image A into B, there is generally no other point A’ that is imaged into 
any point B’. The rays emanating from A’ do not intersect at a com-
mon point.

Fig. 8.3 
(a) Light without a well-defined di-
rection of propagation. (b) A light 
ray is generated with the collimator.

a

b

Fig. 8.4 
(a) The light starts in a certain di-
rection. (b) Where does it go next?
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The length of the path APB is min-
imal when α = α’.
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8.3 Radiance
Radiance is a quantity used to describe a light field in the context of 
geometric optics. We introduce it step by step. We first choose a 
measure for the amount of light: energy. (The following considera-
tions would be the same with other extensive quantities, such as the 
number of photons or entropy).
The light in the box in Fig. 8.7a has a well-defined energy. In Fig. 
8.7b light is leaving the box through the hole, and thus an energy 
current of strength P flows outwards. If this current is divided by the 
surface element dA through which it flows, we obtain the magnitude 
jE of the energy current density. It is

Now the light rays pass through each surface element dA in the var-
ious directions. We therefore divide jE by the solid angle element dΩ 
and obtain the energy flux density per solid angle, or in short, the 
radiance LE. It is

(8.1)

The quantity LE depends
• on the position in the light field; 
• at a fixed position on the direction.

So we have
LE = LE(r, 𝜗, Φ)

where the direction in space is characterized by the angles 𝜗 and Φ.

Figure 8.8 shows a measuring device for LE. The surface of the lens 
corresponds to the area dA in (8.1), the photocell area defines dΩ.

Often the LE distribution is rotation-symmetric with respect to an op-
tical axis. In this case, two coordinates in the positional space and 
one angular coordinate are sufficient.
Figure 8.9 shows an example of a radiance distribution. The light 
comes from a sharply delimited, uniformly radiating surface F, Fig. 
8.9a. Fig. 8.9b shows the distribution of LE at the position z0 of the z-
axis over x and the angle 𝜗 against the z-axis in perspective. Fig. 
8.9c shows a projection onto the x-𝜗 plane. In the hatched area LE 

has a finite, constant value, outside LE = 0.

 

Figure 8.10 shows a sequence of representations of LE over 𝜗 for x 
= 0 at various distances from the light source on the z-axis.

One can see that the single images differ only in the width of the dis-
tribution. The value of LE in the direction of the z-axis (𝜗 = 0) does 
not change with increasing distance. This is an effect of the following 
rule: The radiance has the same value at all points of a beam in the 
direction of the beam.
In this form, however, the rule only applies as long as n is the same 
everywhere on the beam. The rule can be generalized:

The quantity LE/n2 has the same value at all points on a beam in 
the direction of the beam.

Here is another consequence of this rule:
One might expect that with a sufficiently large lens one could con-
centrate as much light from the sun as one wants in one point. If one 
places an object at this point, one could thus bring it to an arbitrarily 
high temperature. But this contradicts the 2nd law of thermodynam-
ics. Our theorem LE/n2 = const shows us immediately that this is not 
possible.
The sequence of images in Fig. 8.11 shows that at best it is possible 
to arrive at a situation where LE in P has the same value LE0 over the 
entire solid angle. If one has achieved this, however, the point is in 
an environment identical to the one directly at the solar surface. Be-
cause also on the sun LE has the same value LE0 according to our 
rule. The point can therefore at most assume the temperature of the 
surface of the sun; it is then in thermal equilibrium with the sun – 
and by the way, it radiates back to the sun via the lens and the mir-
ror as much light as it receives from there.

Fig. 8.12 finally shows qualitatively what happens to the LE distribu-
tion when the sky is cloudy. On the way from z1 to z2 through the 
clouds the narrow LE(𝜗) distribution is smeared over the whole half 
space.

P = jE dA∫
Fig. 8.7 
 (a) The box contains light. (b) 
Through the hole, light flows out.

a

b

P = LE dΩdA
Ω
∫

A
∫

Fig. 8.8 
(a) The radiance meter registers light that belongs to a position and direction. (b) Design of the 
instrument

a b

lens
Photocell in the 
focus

Fig. 8.9 
Example of a radiance distribution. 
(a) The light comes from the uni-
formly radiating surface F. (b) The 
radiance is plotted over the posi-
tion and the direction. (c) Projec-
tion into the x-𝜗 plane
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Radiance versus direction for different distances from the illuminating surface F
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By enlarging the parabolic mirror, light from all directions arrives at point P. The radiance is not 
changed by the mirror.
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9.1 Collinear imaging
By a mapping of the space one understands a transformation 
r'  =  r'(r), which unambiguously assigns an image point r' to each 
point r. One says that the two points are “conjugated” to each other. 
Optics is interested in those mappings that leave geometric figures 
as undistorted as possible. If one requires that planes are mapped 
back onto planes (and thus also straight lines onto straight lines), 
one arrives at the collinear mapping or imaging. A collinear mapping 
is mathematically described by the equations:

However, these mappings still allow for strong distortions. We there-
fore make further restrictions. The ideal would be the special case of 
a collinear mapping, where each figure is transformed into a geo-
metrically similar figure, e.g. the following

x’ = ax           y’ = ay              z’ = az (9.1)
However, this imaging cannot be realized with the means of optics. 
In contrast, optics can achieve, albeit only approximately, a centered 
collinear mapping. Let us take a closer look at this mapping. It dis-
tinguishes

• one axis 
• two planes perpendicular to the axis and 
• two points on the axis.

If this kind of imaging is realized with light beams, the axis is called 
the optical axis, the planes are called the principle planes H and H’, 
the two points are called the focal points F and F’, the distances HF 
and H’F’ are called the focal lengths f and f’.
We restrict further to the case where one focal point has the same 
distance from one plane as the other from the other plane, Fig. 9.1.

This mapping has the property that it images an object plane that is 
perpendicular to the optical axis into an image plane that is again 
perpendicular to the optical axis. Furthermore, figures in the image 
plane are geometrically similar to those in the object plane. If the op-
tical axis is called the z-axis, the transformation equations are

(9.2)

The coordinates z and z’ are measured from the respective focal 
points. It can be seen that the first two equations (9.2) have the 
structure of the first two equations (9.1). That means the x-y plane is 
not distorted by the mapping. Distances in the z direction, however, 
are distorted, as can be seen in the third equation (9.2).
From (9.2) follows the well-known procedure of constructing an im-
age point P’ from the corresponding object point P, Fig. 9.2.

In addition, from (9.2) follow some other well-known equations. With 
the object distance g, the image distance b, the object height G and 
image height B defined in fig. 9.3 the coordinates of the conjugate 
points P and P’ become

x = G x’ = –B z = –(g – f ) z’ = b – f (9.4) 
 

With (9.2) we obtain

(9.5)

and

(9.6)

From (9.6) follows:
(b – f )·(g – f )  = f 2

bg = f (b + g)
and

(9.7)

Transforming (9.5) results in

The right side of this equation can be replaced using (9.7) by g/b

(9.8)

We also infer from Fig. 9.3 the relationship:
g · tan u =  b · tan u’

With (9.8) and (9.4) we obtain

x · tan u =  x’ · tan u’
(9.9)

x ’ = a1x +b1y + c1z +d1
ax +by + cz +d

y ’ = a2x +b2y + c2z +d 2
ax +by + cz +d

z’ = a3x +b3y + c3z +d3
ax +by + cz +d

Fig. 9.1 
The centered collinear imaging is 
described by the optical axis, two 
principal planes and two focal 
lengths.
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To construct an image point P’ from 
an object point P

F F’ z

H H’

P

P’
z’ = 0z = 0

Fig. 9.3 
The definition of the object dis-
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9.2 Realizing collinear imaging
An imaging to which equations (9.5) to (9.9) apply can be approxi-
mated by light rays passing through a system of spherical mirrors 
and refracting surfaces.
Spherical surfaces are chosen because they are much easier to 
produce than other shapes, but an exact collinear image cannot be 
achieved even with non-spherical lenses or mirrors, because it 
would violate fundamental laws of nature: either the first or the sec-
ond law of thermodynamics.
But what does that mean: a mathematical image can be realized 
with light? While the mathematical image simply assigns a point P’ 
to a point P by a mathematical operation without any physical con-
nection between the points, the optical image means that light rays 
that start from point P pass through the lens system at various 
points and then meet again at a point P’. Of course, this does not 
mean that the corresponding light is only to be found at points P and 
P’. It is rather everywhere in space. That the optical imaging takes 
place can be seen by moving a screen (or other detector) around in 
space. If it is positioned in such a way that it contains P', the light 
distribution is “point-like”. If the screen moves away from this point, 
the light distribution expands, “the image of P becomes blurred”.
The limitations of the collinear imaging by lenses is not only that the 
image of an extended object is distorted, but above all that it is im-
possible to combine the light from more than one single object point 
into an image point.
Calculating the parameters of such a mapping from the refractive in-
dex and the geometry of a lens is somewhat laborious. Here we only 
quote the most important result for the special case of a “thin lens”, 
i.e. a lens in which the distance between the principal planes is 
small compared to the focal length:

(9.10)

f is the focal length of the lens, n the refractive index of the material 
of the lens. r1 and r2 are the radii of curvature of the lens. In optics, 
the radius of curvature of surfaces curved to the left is counted posi-
tively, that of surfaces curved to the right negatively. Thus in fig. 9.4a 
r1 = + 3 cm, r2 = – 4 cm, in Abb. 9.4b ist  r1 = – 5 cm und r2 = – 7 cm.

We infer from equation (9.10) that the focal length of a lens is posi-
tive if it is thicker in the center than at the edge, otherwise it is nega-
tive.
Several lenses placed one behind the other form an optical system. 
An optical system also produces a collinear imaging. To construct 
the image produced by an optical system, as with a single lens, 
knowledge of a single focal length and the position of two main 
planes is sufficient. If the collinear imaging by lenses were perfect, 
two lenses would be sufficient to realize any optical system: with the 
two single focal lengths and the distance of the lenses, one has 
enough parameters to give any value to the focal length and the dis-
tance of the main planes of the system.
Nevertheless, optical systems often consist of many more than two 
lenses: the so-called optical aberrations are corrected by additional 
lenses with sometimes different refractive indices.
Optical systems have different names depending on their function 
and properties: objective, condenser, eyepiece, beam expander etc.
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Fig. 9.4 
The radius of curvature of surfaces 
curved to the left is counted posi-
tive, that of surfaces curved to the 
right negative.
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9.3 Diffraction limit of imaging
In the previous section we have seen that light rays realize approxi-
mately a collinear imaging. We had assumed from the outset that 
the approximation λ = 0 is justified. We now want to investigate the 
influence of the fact that λ is not equal to 0. Again, we will represent 
the light by rays. They now represent the normals to the wavefronts. 
To avoid several complications at the same time, we will assume 
that the laws of collinear imaging are exactly fulfilled for these “rays”.
An object that is partially transparent is illuminated from the left with 
coherent light and imaged by means of a lens on a screen, Fig. 9.5.

For the sake of clarity we choose a diffraction grating as the object. 
It is immediately obvious that the arrangement is identical with the 
Fraunhofer diffraction arrangement, Fig. 7.13, except that the screen 
is not in the focal plane but in the image plane of the grating. But this 
does not change the fact that the diffraction image is situated in the 
focal plane.
We now ask for the limitations of the imaging, that originate from the 
wave nature of the light. For this purpose we imagine to make the 
lattice constant d of the lattice smaller and smaller. The angle at 
which the light is diffracted at the grating will then increase. This 
causes the higher diffraction orders, one after the other, to move out 
of the lens. In fig. 9.6 only the zeroth and the first order hit the lens. 
The higher orders are missing, their contribution to the diffraction 
image in the focal plane disappears, and they do no longer con-
tribute to the image formation in the image plane.

If the lattice constant is reduced even further, the first-order beams 
will eventually move out of the area of the lens and only the zero-or-
der will remain.
Which consequence has the disappearance of the higher diffraction-
orders for the image? The answer to this question is given by the 
Fourier theory. To reconstruct the perfect image we need all its 
Fourier components. As the higher components are taken away, 
sharp changes of the energy flux density in the image plane are 
smeared out.
If only the 0th and the 1st diffraction order contribute to the image 
formation, the image has a sinusoidal intensity distribution, which 
shows no more than the periodicity of the original grating. If finally 
only the 0th order is left, the image plane becomes uniformly bright. 
If one looks at it, one only gets to know something about the aver-
age brightness of the object.
This can also be expressed as follows: the lens only allows the low 
spatial frequencies to pass through. The communications engineer 
calls a component that only allows low temporal frequencies to pass 
a low-pass filter. So the lens is a low-pass filter for spatial frequen-
cies.
Let us look at these things from yet another angle. We imagine that 
instead of the grating there are the frames of a movie, alternating in 
rapid succession. Now a data flow (the quantity measured in bit/s) is 
flowing through our optical system. However, the data flow that 
comes out at the back of the lens is smaller than the one that arrives 
at its front. Part of the data does not get through, it falls on the edge 
of the lens.
One can see that the data flow would be limited even with an in-
finitely large lens. If one considers details of the object whose size is 
equal to the wavelength of the light, i.e. structures of the size d = λ, 
the angle of the 1st diffraction order becomes equal to 90° because 
of

The ultimate limit of the imaging has been reached. Thus, it is not 
possible to image structures whose size is smaller than the wave-
length of the radiation. With a light microscope a resolution of about 
1 μm can therefore be achieved. In order to examine smaller struc-
tures, one must use other radiations than light: electrons, protons, 
etc. Their wavelength decreases with increasing energy. Therefore, 
these particles are often brought to very high energy in so-called ac-
celerators.
But the fact that (with coherent illumination) one encounters the dif-
fraction image in the focal plane does not only allow to determine 
the limits of the imaging. It also gives us a means to manipulate im-
ages: by masking parts of the diffraction image. Some satellite im-
ages are composed of many parallel stripes. The stripe structure 
disturbs when viewing the image. We now make an image of the 
satellite photo with coherent light. The fringe pattern is expressed in 
the diffraction image in the focal plane by a sequence of equidistant 
points. If these points are suppressed in the diffraction image, the 
fringe pattern disappears in the image plane.

Fig. 9.5 
The grating is imaged in the plane 
of the screen.
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Fig. 9.6 
Only the light of the zeroth and first 
diffraction order still goes through 
the lens. The higher orders do not 
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9.4 The resolving power of optical instruments
We will look at a result of the previous section.
An object is to be imaged which has a structure of the size. We as-
sume that the object consists of two light-emitting points with a dis-
tance G between them. In order to obtain images of the points that 
are still distinct, we need a lens that allows at least the first order of 
interference to pass.
In this case one says that the two object points are just resolved.
We now ask what this requirement means for two extreme cases of 
optical imaging, namely the image in the microscope, Fig. 9.7a, and 
the image in the telescope, Fig. 9.7b.

In the microscope, the object is almost in the focal plane, so we 
have g ≈ f, and the image is at a distance that is large compared to 
the focal length.
In the telescope, the object is at a distance large relative to f, and 
the image distance is practically equal to the focal length: b = f.
With a microscope one usually asks for the minimum distance Gmin 
that two object points may have in order to be resolved, with a tele-
scope, one asks for the minimum angle Δαmin at which they appear 
when viewed from the telescope.
In both cases we obtain for the angle 𝜗 of the 1st interference order

(9.11)

If R is the lens radius, we have:

We now set sin 𝜗 ≈ tan 𝜗. This approximation is very well fulfilled for 
the telescope. But it is also justified for the microscope, because we 
want to determine Gmin only approximately.
From (9.11) and (9.12) we thus obtain

For the microscope we have g ≈ f, and we get

microscope (9.13)

For the telescope we ask for the angle Δαmin =  Gmin/g. We thus get

telescope (9.14)

What happens if the two light emitting points are closer together 
than the relationship (9.13) or (9.14) suggests?
The image of a single point P is not a point, but a small spot, which 
can be imagined to be formed by the diffraction of light from P at the 
edge of the lens. If two light sources are closer together then corre-
sponding to equation (9.13) or (9.14), their diffraction disks overlap 
in such a way that they can no longer be recognized as images of 
separate points.
Equations (9.13) and (9.14) are of fundamental importance. We for-
mulate them again in the form of a rule:
The resolution is all the better

• the larger the opening diameter of the imaging system;
• the smaller the wavelength of the radiation used.

Equation (9.14) represents a statement of information theory. It is 
not restricted to a specific method of measuring angles. So it does 
not only set an upper limit for each telescope, but also for the 
Michelson stellar interferometer (section 7.4.5).
The statement that one detector can distinguish between two ob-
jects that have the angular distance Δαmin is equivalent to the state-
ment that the detector can localize a single object with an angular 
accuracy Δαmin. We want to illustrate this statement by making an 
acoustic experiment. Hidden behind a curtain is a loudspeaker that 
emits a sound of about 600 Hz and a “bandwidth” of about 100 Hz. 
With the help of two microphones and a two-beam oscilloscope we 
want to determine the direction in which the loudspeaker is located, 
Fig. 9.8.

The wavelength of the acoustic wave is about 1/2 m. If the distance  
d between the microphones is much smaller than 1/2 m, both will 
always register the same signal, no matter how one turns them 
against each other. If the distance is greater than 1/2 m, however, 
the microphones deliver different signals depending on the direction 
of their connecting line. By rotating this line one can determine the 
direction of the wave normal with an accuracy of about

These considerations apply to the observation of the sky with a tele-
scope as well as to the localization of an airplane with radar, an 
earthquake focus with the help of seismometers or a radio transmit-
ter by radio direction finding.

Fig. 9.7 
Resolving power of (a) the microscope and (b) the telescope
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10.1 The camera
We want to make a two-dimensional image of a three-dimensional 
object, i.e. a projection. In addition to the limits of the collinear imag-
ing mentioned so far (first: a limit given by the 2nd law; second: a 
limit coming from the finite wavelength of the light), another limitation 
emerges: even with a perfect collinear imaging, one would obtain a 
sharp “image” in three dimensions and not in two, Fig. 10.1.

In the plane of the film only the tree number II is sharp. Tree I and 
tree III are out of focus. The depth range that is still sufficiently sharp 
is called the depth of field. The depth of field increases as the aper-
ture diameter of the lens decreases. For very small apertures, the 
collinear image becomes the special case of a projection.
A normal photo lens should be able to image an angular range of 
about 2𝜑 = 30°. The film is located approximately in the focal plane, 
Fig. 10.2.

From the desired size of the negative follows the focal length that 
the lens must have. For a 35 mm film with B ≈ 15 mm, this results in 
f = B/tan𝜑 ≈ 50 mm.

The diameter of a photographic lens should be as large as possible: 
Since one wants to take pictures of moving objects, the exposure 
time must be small; therefore, the energy required to expose the film 
must pass through the lens in a short time. Since a larger lens di-
ameter results in a smaller depth of field, the effective lens diameter 
can be adjusted with the aperture and thus any compromise be-
tween energy flow and depth of field can be chosen.
The aperture scale carries the series of numbers …2.8; 4; 5.6; 8; 11; 
16.... These numbers do not indicate the objective diameter D itself, 
but the ratio f/D. The numerical values are chosen so that the ener-
gy flow doubles from one number to the next. So when the aperture 
is 5.6, twice as much energy passes through the lens as with aper-
ture 8, and at aperture 4 twice as much as with aperture 5.6.
Diffraction at the lens aperture is not a major limitation of the cam-
era.

Fig. 10.1 
Even with a perfect collinear image, a sharp image is only produced in one plane.

Film plane

F

F’

I       ΙΙ     ΙΙΙ

Fig. 10.2 
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near the focal plane.
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10.2 Image projectors
We begin by looking at a projector that is out of use today: the 
opaque projector, Fig. 10.3. 

It was used to project drawings or printed paper images onto the 
wall. The lens provides an optical image of the paper image on the 
projection screen. The problem with this projector is that it is difficult 
to get enough light onto the screen. Even though very strong lamps 
are used for the illumination of the object and a lens with a large di-
ameter for the projection, the image on the wall is rather faint. The 
light that comes from the lamps is diffused by the object in all direc-
tions and the objective, despite of its big diameter, only gets a small 
part of it.
This is why in the case of the overhead projector and the slide pro-
jector, one makes sure that all light that falls on the object also 
passes through the objective. To achieve this, two things are neces-
sary.
First, the object must not scatter the light. Slides and overhead pro-
jector transparencies let the light pass straight through in those 
places that should appear bright, in other places it is absorbed. But it 
is never scattered.
Secondly, one has to make sure that all the light that has passed 
through the object reaches the lens. This is achieved by means of 
the condenser, Fig. 10.4. The condenser is a lens as large as the 
object and is located close behind the object. It images the very 
small light source onto the objective aperture. Thus, all light that 
passes through the object also passes through the objective. This 
type of projector not only produces much brighter images than the 
opaque projector, it is also much cheaper.

Why is it cheaper? On the one hand, one can use a very small di-
ameter lens, i.e. a cheap lens. On the other hand, the condenser 
lens does not contribute to the imaging of the object on the screen. 
Thus, the condenser has to be big, but it does not need to be cor-
rected and therefore it is not expensive. In the case of the overhead 
projector, the condenser is simply a Fresnel lens made of plastic.

A Fresnel lens can be imagined to have originated from ring-shaped 
parts of an ordinary lens, whereby in each ring as much as possible 
of the superfluous glass was taken away. The refractive surfaces 
have the same angle against the optical axis as with the real lens, 
fig. 10.5. Fresnel lenses can also be found in car headlights and 
lighthouses.

Fig. 10.3 
Opaque projector
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Fig. 10.4 
The condenser ensures that all the light that hits the slide passes through the objective.
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Cross section of a Fresnel lens
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10.3 The telescope
It is used to detect the radiation emitted by stars. It is supposed to 
take an image of a section of the sky and always collect as much 
radiation as possible.
A distinction is made between lens and reflecting telescopes. Lens 
telescopes have the advantage that image errors can be easily cor-
rected. They are therefore suitable for imaging large fields of the sky. 
Due to the mechanical instability, however, lens telescopes with 
large diameters cannot be built.
The large telescopes are all mirror telescopes, mostly with a par-
abolic mirror. A parabolic mirror can image a sky field of up to 10 
arc-minutes extension sufficiently well.
Telescopes have long focal lengths: from about 1 m to over 100 m. It 
depends on the focal length what section of the sky is “seen” by the 
detector. The diameter D of large telescope mirrors is several me-
ters (Hobby Eberly telescope, MacDonald observatory: D = 11 m). 
The larger the cross-sectional area of the mirror, the greater is the 
light flux captured from a star.
Although the resolving power of the mirror should theoretically be-
come increasingly better with an increasing diameter, the diameter 
of the mirror is not important for the resolution. The resolution is 
much more limited by density fluctuations of the air in the at-
mosphere, and for diameters larger than 12 cm the resolving power 
does no longer increase with the diameter. The reason why the mir-
rors are so large is to collect enough energy from a star within a 
reasonable period of time. 
With a telescope one can therefore see many more stars in the sky 
than without. With the naked eye one can see about 6000 stars in 
the whole celestial sphere, with a telescope one can register millions 
of stars.
Astrophysics retrieves as much data as possible from the sky. It 
does not limit itself to the visible spectral range, but studies radiation 
of all wavelengths for which the atmosphere is transparent. This is 
the case not only in the visible range but also in the radio range with 
wavelengths from 1 mm to 30 m. Fig. 10.6 shows the height at 
which the radiation falling on the earth from outside is attenuated by 
a factor of 1/e.

Most radio telescopes are designed just like optical telescopes: the 
most important component is a parabolic mirror. This mirror is made 
of metal, and it is much larger than in optical telescopes. Because of 
the longer wavelength, its surface does not need to be as precisely 
parabolic as in an optical telescope. It may even contain holes, as 
long as they are not larger than about λ/20.
The detector in the focal “point” of the mirror of a radio telescope is 
not larger than the diffraction disk. In order to obtain an extended 
image of a section of the sky, one must therefore scan this section 
with the telescope.
The largest parabolic reflector radio telescope in the world is located 
in Kedu (China, province Guizhou). Its mirror has a diameter of 500 
m. For λ = 21 cm (the wavelength of an emission line of neutral hy-
drogen which is important for astrophysics) this mirror has a resolu-
tion of about 2.8 arc minutes. Its resolving power is therefore much 
worse than that of an optical telescope. However, in the radio range 
one sees objects and phenomena that are invisible at optical wave-
lengths.
The resolving power can be improved by bringing the signals of two 
telescopes placed at a great distance from each other to interfer-
ence. Since the detector registers the amplitude and phase of the 
beams, this interference can be managed electronically. By correlat-
ing the signals from telescopes in different parts of the earth, a reso-
lution of up to 10 arc seconds can be achieved.

Fig. 10.6 
Absorption spectrum of the earth’s atmosphere
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10.4 Beam expander
Most lasers make a very thin parallel beam of light, but for many 
purposes a wide beam is needed. Therefore it is necessary to use a 
beam expander, Fig. 10.7.

Two lenses are placed in such a way that the distance between 
them is equal to the sum of their focal lengths. From fig. 10.7 it can 
be seen that

The focal length of the entire system is, like that of a plane-parallel 
glass plate, infinite. For beam expanders, however, the main planes 
also lie at infinity.

Fig. 10.7 
Beam expander
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10.5 The system “eye + magnifying glass”
A magnifying glass is a lens which, together with the eye, forms a 
lens system with which a small object is to be imaged onto the retina 
of the eye. The object is placed in one focal plane of the magnifying 
glass. The object can be seen sharply when the eye is accommo-
dated to infinity, Figure 10.8a.

The benefit of a magnifying glass can be seen by comparing the 
size Bm of the retinal image with an additional lens with B0, the im-
age size without the additional lens. To construct the image point P’ 
of P, the rays through the center of the lens were used: these do not 
change their direction when passing through the lens. From figure 
10.8a one can see:

Without a magnifying glass, Fig. 10.8b, one obtains

If the distance g between eye and object is not changed, the magni-
fying glass causes a magnification

Since the light coming from an object point is parallel between the 
magnifying glass and the lens of the eye, the size and sharpness of 
the image does not change when one approaches the magnifying 
glass with one’s eye; only the field of view becomes larger.
Thus, in order to use a magnifying glass correctly, one has to pay 
attention to two points:

• The object must be in the focal plane so that the eye is relaxed.
• The eye should be close to the magnifying glass so that the sec-

tion of the image is as large as possible.

Fig. 10.8 
Imaging an object by means of the lens of the eye (a) with and (b) without a magnifying glass
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10.6 The eyepiece
Figure 9.7 shows the most important part of the microscope and 
telescope. Instead of the screen in this figure one may think of plac-
ing a photo film. However, if one wants to look at the image directly 
instead of taking a photo, one has to extend the instruments further. 
If one really places a white screen at the position shown in fig. 9.7, 
one will not see much. The light arriving there is scattered in all di-
rections and only a tiny fraction of it gets through the pupils into our 
eyes: the image is very faint. Therefore, a so-called eyepiece is 
placed in the place of the screen. An eyepiece consists of (at least) 
two lenses with clearly separate functions: the eye lens and the field 
lens, Fig. 10.9a.

The eye lens is nothing more than a magnifying glass with which 
one views the image created by the objective. The function of the 
field lens can be compared to that of a condenser. Without it, Fig. 
10.9b, the eye lens would have to be very large, and to see the dif-
ferent parts of the image brightly, one would have to move the eye 
back and forth in front of the lens. The field lens directs the entire 
energy flow towards the small eye lens, but without changing any-
thing in the optical imaging by the objective and eye lens.
Here we have constructed the image created by the telescope from 
the images obtained by the subsystems (objective) and (eye + eye-
piece).
The telescope alone, i.e. the system (objective + eyepiece) is essen-
tially identical to the beam expander discussed in 10.4, but operated 
in reverse, i.e. as a beam compressor. This approach reveals an im-
portant function of binoculars: to collect light of a certain direction on 
a wide area and compress it so that it fits through the small pupil 
opening of the eye.

Fig. 10.9 
(a) The eyepiece consists of two lenses with clearly distinct functions: the eye lens and the field 
lens. (b) Without a field lens, part of the light does not reach the pupil of the eye.
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11.1 Radar and scanning electron microscope
An image of a non-self-luminous object can be created using two dif-
ferent methods.
Either one illuminates the whole object and analyzes the light 
backscattered from the object by direction: One measures the inten-
sity of the light as a function of the direction from which it comes, 
Fig. 11.1.

Examples:
• a photo taken with a flash; 
• a television shot where the scene is lit by lamps; 
• the observation of an object through an ordinary microscope.

With the second method, the illumination is directional: the object is 
scanned with the thinnest possible beam. The detector, on the other 
hand, does not have to distinguish the directions from which the ra-
diation backscattered by the object comes, Fig. 11.2.

Examples:
• Radar (RAdio Detection And Ranging). The radiation used is 

electromagnetic waves with wavelengths from a few mm to a few 
m. The beam is generated by a parabolic mirror. The scanning is 
done by rotating the mirror. The radiation is emitted in pulses 
(pulse repetition frequency some 100 Hz) and from the propaga-
tion time of the pulses one determines the distance of the object. 
The Doppler effect can also be used to determine the velocity of 
the object.

• The scanning electron microscope. Electrons with wavelengths 
between 0.004 nm and 0.02 nm are used as radiation. The beam 
diameter is about 10 nm. There are different possibilities for the 
detector: either the secondary electrons emitted by the object are 
registered or the luminescence radiation. The images produced 
by these scanning methods are real projections of the object. 
Therefore one obtains a very large depth of focus. This is one of 
the important properties of scanning electron microscopes.

Fig. 11.1 
The whole object is illuminated. The scattered light is analyzed by direction.

Fig. 11.2 
One spot of the object after the other is illuminated. The scattered light does not need to be 
analyzed by direction.
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11.2 Phased array antennas
The surface elements of a parabolic antenna mirror can be imagined 
to be single antennas whose signals are brought to interference at 
the focal point. Instead of arranging these single antennas on a par-
abolic surface, they can also be arranged on any other surface, e.g. 
a plane. In this case, one only has to manage the interference cor-
rectly by some other means. This is done by placing a large number 
of small antennas on a large flat surface and making their signals in-
terfere electronically. This type of antenna is only suitable for radio 
waves, because there are no phase sensitive detectors for light 
waves. Furthermore, the high frequencies of light cannot be pro-
cessed electronically. Such array antennas are especially used as 
transmitting antennas for radar systems. By superimposing the 
waves generated by the individual antennas, a sharp beam of a cer-
tain direction is created, just as a narrow beam of light is created 
behind a diffraction grating out of many spherical elementary waves. 
By controlling the phase relation between the individual antennas, 
the resulting beam can be oriented in any direction. This control is 
much faster than the mechanical orientation of the beam in ordinary 
radar.
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11.3 Optical fibers
Light can be transmitted through thin fibers made of optically highly 
transparent material. It follows the fiber even if the fiber is curved. As 
long as the diameter of the fiber is large against the wavelength, it is 
convenient to consider the propagation process as a sequence of 
total reflections on the inner surface of the guide, Fig. 11.3.

To ensure that the light does not leave the fiber, its angle against the 
normal to the surface must not be less than the critical angle of total 
reflection, defined by the relationship

sin α = n
(cf. section 4.2) .
The diameters d of technical fibers are often only a few μm and are 
no longer large compared to the wavelength. Therefore, the propa-
gation process is essentially the same as in waveguide technology: 
an electromagnetic wave is guided by a tube. This means that the 
electromagnetic field at the tube walls must satisfy certain boundary 
conditions. One finds that the wave exists in the tube in the form of 
discrete modes: For each mode, the field strength distribution across 
the cross section of the tube has a specific shape. Figure 11.4 
shows the field strength for the 0th, 1st and 2nd mode.

The larger the ratio λ/d is, the fewer modes fit into the fiber. If d is so 
small that only the zero-mode goes through the fiber, it is called a 
monomode fiber, otherwise it is called a multimode fiber. Fiber optics 
have different applications.
If many fibers are combined into a bundle in such a way that the 
arrangement of the fibres over the bundle cross-section is the same 
everywhere, images can be transmitted. Such light guide bundles 
are used in medicine for endoscopy, for example to inspect the in-
side of the stomach wall. Two light guide bundles are needed: one 
for illumination and one for image transmission.
A second important application is data transmission over a single 
fiber. This method has advantages over data transmission using 
wires or free electromagnetic waves:

• because of the high frequency of light, the maximum data flow is 
very large (up to several Gbit/s);

• the attenuation is very low (a factor of 1.6 per km of optical fibre 
length, i.e. 2 dB/km)

• the transmission is neither disturbed by the weather nor by elec-
tromagnetic fields coming from outside.

The maximum data flow in a fiber optic cable is limited by disper-
sion: a square wave signal spreads out on its way through the cable. 
Therefore, two consecutive rectangular pulses, after they have trav-
elled a long distance, are no longer detectable as two separate 
pulses. The most important cause of this divergence is mode dis-
persion. Light propagates at a different speed in the direction of the 
conductor depending on the mode. To eliminate this type of disper-
sion, monomode fibers are used for data transmission. The low at-
tenuation is achieved by using very pure quartz as material.

Fig. 11.3 
Wave guide. If the diameter is large against the wavelength of the light, the propagation process 
can be considered as a sequence of total reflections.

Fig. 11.4 
Field strength distribution over the cross-section of the conductor for the 0, 1 and 2 modes.
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11. Special procedures

11.4 Holography
On a photo of a landscape we recognize the landscape. But the 
photo is only a poor substitute for a window of the same size 
through which we look at the real landscape, Fig. 11.5, because the 
light field in a plane just above the photo is very different from the 
light field in a plane just above the window.

A hologram is a photographic image which, when illuminated with 
coherent light, reconstructs the field of light that has been created by 
the original landscape, not only close above the hologram, but in a 
large spatial area on one side of the hologram.
How are holograms created? How does the reproduction work?
The object from which a hologram is to be created is illuminated with 
coherent light. The light scattered back from the object is incident on 
the film. In addition, a plane wave, the so-called reference wave, is 
sent onto the film. The scattered light and the reference wave to-
gether create an interference pattern that is registered by the film.
If the developed film is then irradiated with a plane wave coming 
from the same direction as the reference wave when the hologram is 
recorded, the reconstruction wave, a wave field is created behind 
the hologram by diffraction of the reconstruction wave that is identi-
cal to the wave field that the original object would have created.
In order to understand the process, let us first consider the case 
where the “object” consists of a single, very distant, point. A wave 
emanates from the object, which is a plane wave at the location of 
the film. Interference with the reference wave produces a stripe-
shaped interference pattern. It can be arranged in such a way that 
the blackening amplitude of the film is proportional to the amplitude 
of the object wave. The blackening distribution perpendicular to the 
stripes is then sine-shaped in the case we are looking at.
If now the reconstruction wave is sent onto the hologram, two dif-
fracted waves are created. One of them is identical with the original 
wave coming from the object, the other one is symmetrical to it ( with 
respect to the zeroth diffraction order), fig. 11.6.

If the point of the object is not located at a great distance, the wave 
emanating from it is a spherical wave, and the hologram is a system 
of rings. The diffraction of the reconstruction wave provides firstly 
the same spherical wave as the object would have provided and 
secondly a spherical wave converging on a point. The arrangement 
of the reference wave and the object is chosen so that the wave 
fields of the divergent and convergent spherical wave do not inter-
fere with each other during reproduction, Fig. 11.7.

The possibility of reproducing the original wave field with a hologram 
is due to the fact that in the hologram not only the amplitude but also 
the direction of the wave is stored at any point of the hologram 
plane. The value of the amplitude and the direction are encoded in 
the hologram in different ways: the amplitude in the amplitude of the 
spatial changes of the blackening and the direction in the distance 
and orientation of the interference fringes.

Fig. 11.5 
A photo is only a poor substitute for 
what one would see through a rec-
tangular window.

Fig. 11.6 
Left: Recording the hologram of a very distant point with object and reference wave. Right: Re-
production using the reconstruction wave

reconstruction
 w

ave

hologram

O
ptical blackening

film

from object

reference w
ave

Fig. 11.7 
Recording (left) and reproduction (right) of the hologram of a close object
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11. Special procedures

11.5 Tomography
The imaging methods discussed so far are based on the fact that 
every light beam in the object space has a well-defined beginning. 
From this starting point of the light beam an image point is generat-
ed. In many cases, however, the conditions are more complicated. 
The structure of the illuminated object to be imaged manifests itself 
in the fact that the radiation penetrates into the object and is ab-
sorbed there gradually. An example is the human body “illuminated” 
by X-rays. In the past, to learn about the inside of the body, one 
simply made a single projection. Here, the absorption along the en-
tire path of an X-ray contributed to one pixel. It was difficult to distin-
guish between the various organs that are crossed by the x-rays on 
the picture.
The so-called computer tomography does not have this disadvan-
tage. With this method it is possible to generate an image of any 
cross-section through the body. An X-ray source generates a fine 
beam. The receiver is located at a fixed distance from the source on 
the beam axis. The source-receiver pair is now moved through the 
cross-sectional area to be recorded perpendicular to the beam direc-
tion, Fig. 11.8. The receiver records an absorption profile in the 
process. This process is then repeated for many other orientations 
in the same cross-sectional area. Successive recording directions 
differ by a few degrees. From all profiles together, the local distribu-
tion of the absorption coefficient in the whole sectional area can be 
calculated.

Fig. 11.8 
To take a tomogram, the beam is 
moved through the object to be 
examined at a right angle to its 
own direction. This process is re-
peated for different orientations of 
the source-receiver arrangement.
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