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1. Substance-like quantities

There is a class of physical quantities which are particularly easy to 
handle: the substance-like quantities. These include:


• mass m
• energy E
• electric charge Q
• momentum 
• entropy S
• amount of substance n

and others.

One may imagine each of these quantities as a kind of substance, 
and one can speak about them as one speaks about a substance. 
The physical reason for this is that for each such quantity a density 
(mass density, energy density, charge density ... ) and a current 
(mass flow, energy flow, electric current ... ) can be defined. 

This fact leads to further properties of the substance-like quantities: 
They add up when combining two systems into one, Fig. 1.1. If the 
quantity X has the value X1 in system S1 and the value X2 in system 
S2, it has the value X1 + X2 in the composed system S. This rule 
does not apply to non-substance-like quantities, such as tempera-
ture, pressure or velocity.


The question of whether or not a quantity is conserved is a meaning-
ful question only for substance-like quantities. Energy and electric 
charge are conserved, entropy and amount of substance are not, 
because one can create entropy, and can create as well as destroy 
amount of substance. The question about the conservation of non-
substance-like quantities, is meaningless, such as the question: “Is 
pressure a conserved quantity?”

For historical reasons, the strengths of some currents have their 
own names: The energy current strength is usually called power, 
and the momentum current strength is almost exclusively called 
force. Table 1.1 lists the most important substance-like quantities to-
gether with the corresponding currents.


There are analogies existing between some areas of physics: From 
a relationship that is valid in one area of physics, one obtains a rela-
tionship that is valid in another by purely formal translation. In these 
analogies, substance-like quantities correspond to each other. In the 
following text we will often refer to the analogy between mechanics 
and electricity. In this case, momentum and electric charge, as well 
as force (= momentum current) and electric current, correspond to 
each other.

!
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Fig. 1.1 

Regarding the additivity of sub-
stance-like quantities

Table 1.1 

Some substance-like quantities and their currents

Substance-like quantity Current strength

Name Symbol (unit) Name Symbol (unit)

Mass m (Kilogram, kg) Mass current – , (kg/s)

Energy E (Joule, J) Power P (Watt, W = J/s)

Electric charge Q (Coulomb, C) Electric current I (Ampere, A = C/s)

Momentum Force

Entropy S (Carnot, Ct) Entropy current – , (Ct/s)

Amount of substance n (Mol, mol) Substance current – , (mol/s)

  (Huygens, Hy)!
p  (Newton, N = Hy/

s)

!
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2. Momentum and momentum capacitance

2.1 Definition of momentum

A rolling carriage has momentum. The faster it rolls, and the heavier 
it is, the more momentum it has. The meaning of what is colloquially 
called momentum is very much in line with the meaning of the sub-
stance-like physical quantity momentum.

Huygens called the momentum “quantitas motus”, meaning quantity  
or amount of movement. A moving body contains a certain amount 
of momentum, just as an electrically charged body contains a certain 
amount of electricity.

At first we concentrate on the analysis of one-dimensional, rectilin-
ear movements in the x-direction, and we define:

If a body moves in the positive x-direction, its momentum is positive. 
If the body moves in the negative x-direction, its momentum is nega-
tive. If the body is at rest, its momentum is zero.

Fig. 2.1 shows how the momentum of a body B can be measured. 
Unit bodies U i.e. bodies each of which carries one (negative) unit of 
momentum, are allowed to collide with B in such a way that they re-
main connected to B after the collision (“inelastic collision”). Momen-
tum is thereby transferred from B to the unit bodies. One now lets 
unit bodies collide with B until B and all unit bodies already attached 
to it have come to rest. If z unit bodies are required for this, we know 
that B had z units of momentum at the beginning.

This measuring method assumes that no momentum is lost in the 
collision and no new momentum is generated. That this is the case 
can easily be proven in further experiments.


Fig. 2.1 

Measuring momentum. B = Body whose momentum is to be measured. U = Body with one unit 
of momentum.



2. Momentum and momentum capacitance

2.2 Momentum capacitance

We now ask what the momentum of a body depends on and ascer-
tain: 

The momentum of a body depends on


• the velocity of the body;

• the mass of the body. 


It does not depend on e.g.

• the chemical composition of the body;

• the geometrical shape of the body.


The quantitative investigation shows that for not too high velocities 
(v ≪ c) the following applies:


p ∝m · v 

The unit of measurement Huygens of the momentum is chosen in 
such a way that the proportionality becomes an equation:


p = m · v	 (2.1)

Of course, this relationship only applies to that class of systems for 
which it has been experimentally verified: for bodies of not too high 
velocity. For other systems, e.g. electromagnetic fields, other rela-
tionships apply.

Equation (2.1) can also be read as follows: At a given velocity a 
body contains the more momentum the greater its mass is. Thus the 
mass is a measure for the momentum capacity of a body.

Table 2.1 lists some typical momentum values.

The relation of electricity which is analogous to equation (2.1) is


Q = C · U
It tells us, that for a given voltage the plates of a capacitor carry the 
more electric charge Q, the higher the capacity C of the capacitor is.

It is experimentally established that momentum can neither be cre-
ated nor destroyed:


Momentum is a conserved quantity.


Flying tennis ball 2 Hy

Flying soccer ball 12 Hy

Pedestrian 100 Hy

Moving passenger car 40 000 Hy

Earth (on its orbit around the sun) 1.8 · 1028 Hy

Photon of visible light 10–27 Hy

Table 2.1

Some typical momentum values
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3. Force

3.1 Momentum currents

When electric charge is transferred from a place A to a place B, it is 
said that an electric current is flowing from A to B. In the same way, 
when momentum is transferred from a body A to a body B, one can 
say that a momentum current flows from A to B, Fig. 3.1 and Fig. 
3.2.


 


If the momentum of a body is allowed to flow into the earth, it is dis-
tributed in the earth; it is “diluted” so much that it can no longer be 
detected, Fig. 3.3. The analogous electrical situation is shown in Fig. 
3.4.


If there is a connection, the momentum flows into the earth by itself. 
To make the momentum flow against its natural direction, a “momen-
tum pump” is needed. In fig. 3.5 the person acts as a momentum 
pump. Fig. 3.6 shows the analog electrical situation.


It is easy to ascertain whether an object or other structure conducts 
the momentum well or poorly, Fig. 3.7:


• Solid objects conduct momentum currents;

• gases conduct momentum currents poorly;

• ropes conduct momentum currents in one direction only;

• wheels are often used for momentum insulation.


If two objects friction against each other, a momentum current flows 
between them. The lower the friction, the better the momentum insu-
lation.

Non-material physical systems, the so-called fields, also conduct 
momentum. Fig. 3.8 shows how momentum flows through a mag-
netic field.


 


Fig. 3.1 

Momentum is flowing from A to B. 
The momentum from body A dis-
tributes to both bodies A and B.

Fig. 3.2 

Momentum is flowing from A to B. 
All of the momentum goes from A 
to B.

Fig. 3.3 

The momentum flows from the car 
into the earth, where it dilutes so 
much that it can no longer be de-
tected.

Fig. 3.4 

The electric charge flows from the 
sphere into the earth, where it is 
diluted so much that it can no 
longer be detected.

+

Fig. 3.5

The momentum of the carriage 
increases. The person “pumps” it 
out of the ground over the rope into 
the cart.

Fig. 3.6 

The electric charge of the sphere 
increases. The power supply 
“pumps” it out of the ground via the 
cable onto the sphere.

Fig. 3.7 

The momentum of the carriage 
increases. The person “pumps” it 
out of the ground over the rod into 
the cart.

Fig. 3.8 

The cart gets its momentum via the 
magnetic field between the two 
magnets.



3. Force

3.2 Current direction

If an object (or other entity) is under tensile stress, a momentum cur-
rent flows in it in the negative x-direction, Fig. 3.9. If an object is un-
der compressive stress, momentum flows in the positive x-direction, 
Fig. 3.10. These statements are based on a convention: If the mo-
mentum of a body is counted positive when the body moves in the 
negative x-direction, the directions of the currents are reversed as 
well. (In electricity, too, one has made an arbitrary choice of sign: 
Electrons or rubbed sealing wax sticks are defined as negatively 
charged).


Fig. 3.9 

Momentum flows in the negative x-
direction.

Fig. 3.10 

Momentum flows in the positive x-
direction.



3. Force

3.3 Momentum current intensity

An object that a momentum current passes through is deformed. If 
the object resumes its old shape after the momentum flow has 
stopped, it is called elastic. Elastic bodies can be used to measure 
the momentum current strength or intensity. Such current meters are 
called dynamometers. They are handled in the same way as other 
current meters, e.g. ammeters, Fig. 3.11:


• The conductor in which flows the current to be measured is cut;

• the two new ends are connected to the two terminals of the am-

meter or dynamometer, respectively.


The unit of measurement of the momentum current strength is the 
Newton (N). We have 


In physics, the common name for momentum current strength is 
force. However, the verbal handling of the word force is somewhat 
different from that of the word current. In table 3.1 some translation 
rules are listed.


Fig. 3.11 

Measuring the momentum current 
intensity

1N=1Hy
s

Momentum current Force

A momentum current enters the body. A force is acting on the body.

A momentum current flows from body A to body B. Body A exerts a force on body B.

A momentum current flows through the rope. Two forces that are equal and opposite 
are acting on the rope.

Table 3.1 

The verbal handling of the words “force” and “momentum current”



3. Force

3.4 Momentum current circuits

In figures 3.12 a to c the momentum change of body K is 10 Hy/s, 
because a momentum current of 10 N flows into the respective 
body. Due to the large mass of the body in Fig. 3.12 c, however, its 
velocity only changes very little. Nevertheless, a the momentum cur-
rent flowing through the dynamometer into the body has the same 
intensity as that in Fig. 3.12 a. This shows that the flow of a momen-
tum current has nothing to do with the movement of the momentum 
conductor.


 

Finally, in fig. 3.12 d again a momentum current of 10 N is flowing. 
But this time there is no change in the momentum of any body. In 
this case the momentum flows in a closed “circuit”. This situation is 
similar to the arrangement of Fig. 3.13: The upper spring is under 
tensile stress, i.e. the momentum current flows from right to left, the 
lower spring is under compressive stress, i.e. the momentum current 
flows from left to right.

Arrangements in which momentum does not accumulate anywhere 
are called static arrangements. 

The momentum circuit of Fig. 3.13 illustrates a trivial experience: If 
there is compressive stress in any component of a static arrange-
ment, there must be another component under tensile stress. 


It may seem strange to speak of currents in the context of static 
arrangements for two reasons:

1. Is it possible that a current flows continuously – without any drive, 
without any energy source? Apparently yes. After all, there are also 
electric “frictionless” currents, the super currents.

2. The arrangement of fig. 3.13 is right-left symmetrical. But why 
does the current distinguish one of the two directions? The answer 
is: The symmetry breaking is not caused by the current. We our-
selves are responsible for this. Because we have defined that bod-
ies moving to the right have positive momentum. So it is simply be-
cause our coordinate system is asymmetrical. We say: right and left 
are different, right is positive, left is negative. It is not nature who 
says it.

Fig. 3.12 

The flow of a momentum current 
has nothing to do with the 
movement of the momentum 
conductor.

K
10 N

K

K

10 N

10 N

10 N

a

b

c

d

Fig. 3.13 

Closed momentum circuit



3. Force

3.5 Momentum balance equation

Since momentum is a conserved quantity, its value within a region of 
space can only change if a momentum current flows into or out of 
the region. The flowing in and out can be realized in two different 
ways: Either, as in Fig. 3.14 a, by tension or pressure, or, as in Fig. 
3.14 b, by moving momentum “convectively” into or out of the re-
gion. 


Thus, the total momentum current Ip can have two contributions. 
Only the first one, the compression or tension term, is called force. 
The second one is the convective current Fconv . So we have


Ip  = F + Fconv 	

The convective momentum current Fconv, for example in a water jet, 
can be expressed by the mass current Im and the velocity vj of the 
jet. For the change dp of the momentum in the region marked with a 
dashed line in Fig. 3.14 b the we get


dp = vj dm.

and thus


	 


The total intensity of the current can thus be written

Ip  = F + vj Im

and for the momentum change in the region of space we can write


	 	 (3.1)


Equation (3.1) is the balance equation for the momentum. Note that 
this relation is not a definition of the quantity Ip. It rather describes an 
experience: the experience that momentum is a conserved quantity. 
The quantities on the left and on the right side can be measured in-
dependently.

The balance equation for the electric charge is analogue to (3.1)


	 


just as the balance equation for the mass


	

Fig. 3.14 

Two kinds of momentum currents

a

b

dpconv
dt

= Fconv =v j
dm
dt

=v j · Im

dp
dt

= Ip

dQ
dt

= I

dm
dt

= Im
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4. Momentum and force as vector quantities

4.1 Momentum as a vector quantity

We now remove the restriction that bodies may only move in the 
positive or negative x direction. To specify the value of the momen-
tum of a body of any direction of motion, we have to specify the 
amount of the momentum and the direction of motion, the “direction 
of the momentum”. Thus, momentum is a vector quantity. Since 
momentum is substance-like, the additivity must be defined: The 
momentum is added according to the usual vector addition rule 
(parallelogram rule).

The momentums of the spatially separated systems A and B are pA 
and pB. Then the momentum of the system composed of A and B is


 

(Velocity is not a substance-like quantity. The sum of two velocities 
corresponds to a change of the reference frame. Velocities can only 
be added as long as |v | « c).

It is often useful to decompose the momentum of a body into the x, y 
and z components:


Momentum that points in the x-direction is called x-momentum for 
short. Accordingly there is also y- and z-momentum.

!
p =
!
pA +

!
pB

!p = px
!ex + py

!ey + pz
!ez



4. Momentum and force as vector quantities

4.2 Force as a vector quantity

Electric charge is a scalar. Therefore also the electric current is a 
scalar. Momentum is a vector. Accordingly also the force, i.e. the 
momentum current intensity, must be a vector.

To specify a momentum current (or force), it is not enough to say, 
that e.g. 10 Hy/s are flowing in the corresponding conductor. One 
must also say, what kind of momentum is flowing: x-momentum, y-
momentum, z-momentum or any combination of them. Therefore the 
momentum current intensity is a vector quantity.

The magnitude of this vector indicates the amount of momentum 
passing through a given surface per time. Its direction indicates the 
direction of the momentum flowing in the conductor.

Attention: The direction of the momentum current vector (= direction 
of the force) is in general not the same as that of the conductor 
through which the momentum flows (e.g. a rod).

Fig. 4.1 shows three examples of x-momentum flowing into a body. 
In all three cases it is said that “a force in x-direction acts on the 
body“. Notice that the direction of flow of the x-momentum is differ-
ent in every partial image. In fig. 4.1(a) the x-momentum goes from 
right to left and enters the body from the right, in fig. 4.1(b) it goes 
from left to right and enters the body from the left and in fig. 4.1(c) it 
flows upwards and enters the body from below.


Fig. 4.2 shows a body that is charged with y-momentum. A force of 
y-direction acts on the body. In fig. 4.2 a the momentum comes from 
the right; in fig. 4.2 b it also comes from the right, but it still has to 
pass through the loop.


Fig. 4.1 

 (a) x-momentum flows from right to left. (b) x-momentum flows from left to right. (c) x-momen-
tum flows from bottom to top.

a b c

a b

Fig. 4.2 

(a) y-momentum flows from right to left. (b) y-momentum flows from the right through the loop to 
the left.



4. Momentum and force as vector quantities

4.3. Newton’s laws

We can now write the balance equation in vector form:


	 	 with	 	 	 	 (4.1)


If convective momentum currents are excluded, the following re-
mains


We now can formulate Newton’s laws of motion.

1. First law


Every body persists in its state of being at rest or of moving uni-
formly straight forward, except insofar as it is compelled to change 
its state by force impressed.


Alternatively, equivalent to this

If no momentum current flows into or out of a body the momentum 
of the body does not change.


2. Second law

If a force  acts on a body, its momentum changes such that


Or

When a momentum current flows into a body, its momentum 
changes such that


(4.2)


3. Third law

When one body A exerts a force  on a second body B, the sec-
ond body simultaneously exerts a force –  equal in magnitude 
and opposite in direction on the first body.


Or

If a momentum current of intensity flows from a body A to a body 
B, then the momentum current leaving A and that entering B have 
the same intensity.


It is obvious that all three laws express the conservation of momen-
tum. The first and the third one express the conservation in special 
situations: the first in the case where the momentum does not 
change; the third compares two sections through an unbranched 
momentum conductor.

From a modern point of view, one would formulate the content of 
Newton’s laws more briefly in one single statement:


Momentum cannot be created or annihilated.

Or


The momentum of a body can change only by inflow or outflow. 

If for a body or a particle the relation


is valid, it follows from the Newton’s (second) law


If, in addition, m is independent of the velocity, we get


With the acceleration  we finally obtain


. 

Often, this relation is called Newton’s 2nd law. In fact, it contains 
Newton’s momentum balance law, which is always valid, but it also 
contains the linear relationship between  and , which is not al-
ways valid. 

d
!
p
dt

=
!
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!
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!
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d
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p
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4. Momentum and force as vector quantities

4.4 The force of gravity

The z-axis is perpendicular to the surface of the earth, and it is ori-
ented downward. 

For a falling body, momentum and velocity increase. There is a flow 
of z-momentum into the body. This momentum comes from the earth 
via the gravitational field. If there is air friction, momentum also flows 
out of the body into the air. 

The momentum current flowing from the earth into a body is used to 
define the gravitational mass. Observation shows that the total mo-
mentum current flowing into two completely similar bodies is twice 
that flowing into one of them. The momentum current is thus propor-
tional to the magnitude of the body, as measured by some arbitrary 
extensive physical quantity. One then defines that two different bod-
ies have the same gravitational mass mS if the momentum currents 
flowing into the bodies from the earth are equal. The unit is defined 
by specifying that a certain reference body has the mass of 1 kg.

Thus, the gravitational mass is defined by the equation:


 is called gravitational force or weight. 

The magnitude of the vector  depends on the location. In central 
Europe, its value is 9.81 N/kg near the earth’s surface, 9.83 N/kg at 
the north and south poles, and 9.78 N/kg at the equator. Later, we 
will get to know a more general meaning of . 

Experience has shown that the inertial mass m and the gravitational 
mass mS are exactly proportional to each other. Since one uses the 
same unit for both, they are even equal:


m = mS 
In the framework of classical mechanics, this equation expresses 
the observable equality of two different physical quantities. Accord-
ing to the general theory of relativity, inertia and gravity are the same 
phenomenon. Accordingly, there is also no difference between an 
inertial mass and a gravitational mass.

If the body is prevented from falling by fixing it somehow, Fig. 4.3, a 
closed momentum circuit is obtained: The momentum flows from the 
earth via the gravitational field into the body and from there via the 
suspension back into the earth.


To describe the state of the body in Fig. 4.3, one traditionally distin-
guishes between four different forces. Although all of them are of the 
same magnitude, they have to be distinguished from each other 
conceptually:


1. The force , that the string exerts on the body; 
2. the force , that the body exerts on the string; 
3. the force , that the earth exerts on the body; 
4. the force , that the body exerts on the earth.


The following relationships apply between these forces:

(4.3a)


(4.3b)


(4.3c)

Equations (4.3a) and (4.3b) are expressions of Newton’s 3rd law. 
Equation (4.3c) states that the sum of the forces acting on the body 
is zero. This sum must be equal to zero, because the momentum of 
the body does not change.

Looking at the arrangement in the momentum current picture, we 
see that the four forces represent nothing more than the current 
strength of the same momentum current at four different locations: 
when it leaves the rope, when it enters the body, when it leaves the 
body, and when it enters the earth.

!
F =mS ·

!
g

!
F

!
g

!
g

Fig. 4.3 

Closed momentum circuit

!
Fsb!
Fbs!
Feb!
Fbe

!
Fsb = –

!
Fbs

!
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!
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!
Fsb = –

!
Feb



4. Momentum and force as vector quantities

4.5 Momentum balance for rotational movements

The centrifugal force
A body of mass m is supposed to move frictionless with constant 
angular velocity


on a circular path. ( = Angle in radians.  is a vector. If the 
curved fingers of the right hand point in the direction of rotation, the 
thumb indicates the direction of the  vector. It follows that the an-
gular velocity is also a vector, Fig. 4.4).


The fact that the body moves on a circular path means that its mo-
mentum is constantly changing, Fig. 4.5.


 

The change of momentum in the time interval dt is


With  we get


and with  and finally


For the momentum of the body to change, a force must act on it.  (A 
momentum current must enter it.) This force is called centripetal 
force. 

With  we get for the centripetal force


Obviously, this force can be measured. If, for example, we are deal-
ing with a body that is being flung around with a string, we only need 
to install a force gauge in the string. 

With this, we have established the momentum balance for the body. 

It becomes more difficult when we sit on the body and make the bal-
ance in this new reference frame. On the force gauge we see that a 
momentum current still flows into the body. However, we do not no-
tice any change of the momentum; in our new frame of reference the 
body is at rest. We therefore conclude that the momentum flows out 
again through an invisible conductor. Thus a current of the strength


leaves the body.

We say: On the body acts a force which keeps the balance to the 
centripetal force, the centrifugal force. 

We already got to know the system through which this current is 
flowing away. It is the gravitational field.  

The Coriolis force
We consider a vehicle of mass m moving on a disk that rotates with 
angular velocity , Fig. 4.6. 


Let the velocity  of the vehicle relative to the disk be constant, as 
well as the angular velocity . It is possible in this case to express 
the change of the momentum of the vehicle by the quantities m,  
and  alone. In fact it is


(4.4)


The first summand on the right side is equal to the centripetal force. 
In addition, there is a contribution to the change of momentum which 
is perpendicular to the velocity . To get an idea of this second 
summand, let us consider a special case: The vehicle moves radially 
outward on a rail. We consider the vehicle when it is so close to the 
center of the disk that we can neglect the first term on the right side 
of (4.4). (The second term is independent of the radius.) We can 
now think of the change of the second term as being composed of 
two components, Fig. 4.7.


The first contribution comes from the fact that the momentum vector 
 is rotated with the angular velocity . It amounts to


The second contribution is due to the fact that, because of the radial 
motion, after the time dt has elapsed, the vehicle is located on a dif-
ferent circumference, i.e. at a point on the disk moving at a different 
tangential velocity:


The sum of the two contributions is .

If the vehicle moves at a greater distance from the center, the first 
term in (4.4) has to be added 


so that in total we get


Also the force corresponding to the term  can be mea-
sured. It would manifest itself in a rail vehicle by a pressure on the 
rails transverse to their direction.

Again we establish the momentum balance in the rotating reference 
frame. Here, the momentum change is zero, although the forces fol-
lowing from equation (4.4) act on the body. So besides the centrifu-
gal force 


there must be yet another force 


that counterbalances the second summand on the right side of 
equation (4.4). This force is called Coriolis force. Also  describes 
a momentum current which flows out of the body into the gravita-
tional field, and also this current exists only in the rotating reference 
frame.

!ω = d
!α

dt
d !α d !α

d !α

Fig. 4.4 

The definition of the angular veloci-
ty vector

d !α

Fig. 4.5 

For calculating the change of the 
momentum of a body making a 
circular motion
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In addition to the centrifugal force, 
another force acts on the vehicle 
transverse to the direction of the 
rails.
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Fig. 4.7 

Decomposition of the momentum 
change in the time interval dt into 
two parts. The third part is zero.d
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4. Momentum and force as vector quantities

4.6 Parallel momentum current circuits

We have seen that the force is a vector. What is the physical mean-
ing of vector addition of forces? In the arrangement of Fig. 4.8, three 
ropes meet at a point, a node or junction.


 

We apply the balance equation (4.2) to the dashed framed area:


The total current  is the sum of the three partial currents ,  
and . The momentum in the considered range does not change, 
i.e.  . With the balance equation it follows:


The sum of the forces acting on the junction is equal to zero. (The 
total current flowing to the junction is equal to zero.)

The electrical analog of this rule is Kirchhoff’s junction rule.

Fig. 4.8 

The sum of the forces acting on the 
node is zero.
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5. Momentum currents and energy currents

5.1 The relation between energy current strength, 
momentum current strength and velocity
A crate is pulled over the ground with constant velocity, Fig. 5.1. The 
rope is under tension, i.e. a momentum current flows through the 
rope to the left. From the fact that neither the momentum of the crate 
nor that of the person changes, we can conclude that the momen-
tum flows back through the ground to the person. We are dealing 
with a closed momentum circuit.


The flow of the momentum current can be seen even better if the 
experiment is modified as shown in Fig. 5.2. The momentum circuit 
is isolated from the ground by the wheels. The flowing of the mo-
mentum current can be seen by means of the two springs: The up-
per spring is stretched, i.e. the momentum current flows to the left, 
the lower spring is compressed, i.e. the momentum current flows to 
the right.


In the process, the person has to make an effort, and the underside 
of the crate heats up. This shows that energy is flowing from the 
person to the crate. It comes from the person’s muscles and flows 
through the rope and the crate to the bottom of the crate. The ener-
gy flows only as long as the crate is moving and as long as the rope 
is under tensional stress. This means that the energy current 
strength P depends on the velocity v of the crate and on the force F 
acting on the crate (i.e. the strength of the momentum current flow-
ing through the rope to the crate). We are looking for this relation-
ship between P, v and F. 

It is easy to see that at constant velocity P ∝ F if the person is 
pulling two crates side by side instead of one, Fig. 5.3.


Because of the junction rule (applied to the point P), the following 
applies to the energy flow:


P1 + P2 + P3  = 0

and to the momentum flow


F1 + F2 + F3  = 0.

With P2 = P3  and F2 = F3  we get


and

.


At constant velocity, a doubling of the force results in a doubling of 
the energy current strength. 

It can be seen from Fig. 5.4 that for a constant energy current 
strength we obtain F ∝ 1/v.


 

For geometrical reasons


v1 = 2v2 .

Since there is no energy flow through rope 3 we have


P1 = P2 

By applying the junction rule to the pulley, we get


F1 + F2 + F3  = 0,

and taking into account the symmetry of the pulley, 


.


Thus, at constant energy current strength, the force is proportional 
to the reciprocal of the velocity. 

From 


P ∝ F     for  v = const

and


F ∝ 1/v   for P = const

we obtain


P ∝ v · F.
The unit of measurement of the energy is defined in such a way that 
we have 


P = v · F.
Measuring v in m/s and F in N, we obtain P in Watt (W). 

If the whole arrangement is allowed to move with the velocity v’, Fig. 
5.5 (which is the same as if it were described in a different reference 
frame), then we not only have energy flow 


PS = (v’ +  Δv) F,

in the rope, where Δv is the velocity of the crate relative to the 
board. There is also an energy flow in the “return line”, i.e. within the 
board:


PR =  – v’ F.


Thus, the net energy flow from the person to the crate has the 
strength


P = PS + PR 

or


P = Δv · F

Fig. 5.1 

The momentum circuit is closed via 
the ground.

Fig. 5.2 

The closed momentum circuit is 
isolated from the ground.

Fig. 5.3 

In rope 1, both the momentum cur-
rent intensity and the energy cur-
rent intensity are twice as large as 
in rope 2 or in rope 3.

P1 = 2 P2

F1 = 2 F2

Fig. 5.4 

The product of force 
and velocity has the 
same value for rope 
1 as for rope 2.

F2 = 2 F1

Fig. 5.5 

Besides in the rope, an energy cur-
rent also flows in the board.v’ + Δv

v’



5. Momentum currents and energy currents

5.2 The analogy with electricity

The momentum circuit of Fig. 5.2 is analogous to a simple electric 
circuit, Fig. 5.6.


The battery corresponds to the person, the filament of the lamp cor-
responds to the bottom of the crate. The energy current strength is


P = ΔΦ · I .

We see that the electric potential Φ is the analog of the velocity.

The two equations


P = Δv · F   and   P = ΔΦ · I
express a general rule: 


Every energy flow is accompanied by the flow of another sub-
stance-like quantity. 


We call the quantity flowing simultaneously with the energy the en-
ergy carrier. In the example with the moving crate the energy carrier 
is momentum, in the electric circuit it is electric charge. 

Fig. 5.7 shows two technical devices that are analogous to each 
other: a pulley block and a transformer.


Provided that they have no losses, the strength of the energy current 
flowing in is equal to that flowing out:


P1 = P2 .

In both cases, what changes is the carrier current.

Fig. 5.6 

An electrical circuit that is analo-
gous to the momentum circuit of 
Fig. 5.2

Fig. 5.7 

Pulley block and transformer



5. Momentum currents and energy currents

5.3 Generalization to three dimensions

The equation P = Δv · F is valid only for the case that and  
have the same direction.  Δv and F are the magnitudes of these vec-
tors. The relation can be easily generalized. It then reads


Fig. 5.8 shows that we have to use the dot product of the two vetros. 
The force  is decomposed into a component parallel to the motion 
and a component perpendicular to it.


There is no energy flow connected with the perpendicular compo-
nent. The energy flow is therefore the same as if only the projection 

 of  were present.

Δ
!
v

!
F

P = Δ
!
v ·
!
F

!
F

Fig. 5.8 

Only the component  of con-
tributes to the energy current.

!
Ft

!
F

!
Ft

!
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6. Energy stores

6.1 A moving body as an energy store – kinetic  
     energy

In this chapter, we will examine mechanical energy storage devices. 
A mechanical energy store can be charged with energy using a mo-
mentum current, and the energy can be retrieved at a later time us-
ing the momentum current. It is characteristic for mechanical energy 
storage that the charging and the discharging process can be de-
scribed by the relation


 . 

There are many different systems for which this is true. During 
charging – apart from energy – some other variables of the system 
always change their value. The energy content can be read from the 
value of these variables. We will calculate the relationship between 
the energy content and such other variables for several examples.

Let us begin with a carriage that is accelerated, Fig. 6.1. An energy 
current of strength  flows through the rope into the carriage. 
Not only the energy but also the momentum accumulates in the car-
riage.


With


and


the relation between the time rates of change of E and  of the car-
riage becomes


Using   and integrating


we obtain


Here E0 is the energy of the carriage for  = 0. With  we get:


Of course, these relations are valid only as long as , i.e. as 
long as . The term  is called the kinetic en-
ergy of the body. Note that this does not mean that there are ener-
gies of different nature. With the adjective “kinetic” one only charac-
terizes the system, in which the energy is stored.

P =
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!
F

P =
!
v ·
!
F

Fig. 6.1 

A body is charged with momentum. 
Thereby its energy content in-
creases.
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6. Energy stores

6.2 The spring as an energy store

An elastic spring, Fig. 6.2, is stretched. An energy current of strength 

 flows through the rope to the spring. While the energy is 
stored within the spring, the momentum flows through the spring. 
Since the velocity of the left end of the spring is zero, P is zero as 
well.


With


and


we get


For a normal steel spring, the relationship between force and exten-
sion is linear, i.e. it holds that


(Hooke’s law, D is the spring constant). We thus get


or with 

P =
!
v ·
!
F

Fig. 6.2 

A spring is stretched. Thereby, its 
energy content increases.
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6. Energy stores

6.3 The electric field as an energy store

The plates of a capacitor are pulled apart, while the electric charge 
is kept constant, Fig. 6.3. An energy current of strength  
flows through the rope to the capacitor. The energy is deposited in 
the electric field located between the capacitor’s plates. 


With 


and


(ε0 = vacuum permittivity, A = plate area) we obtain by integration:


and with C = ε0 A/x  (C = capacitance, x = plate distance): 


or with Q  = CU


P =
!
v ·
!
F

Fig. 6.3 

The plates of a charged capacitor 
are pulled apart. Thereby the ener-
gy content of the field between the 
plates increases.
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6. Energy stores

6.4 The gravitational field as an energy store

A body is pulled upwards, Fig. 6.4. An energy flux of strength 

 flows through the rope to the body and further into the 
gravitational field of body and earth.


With 


and

F  = mg

we obtain by integration:

E(z) – E(z0) = mg(z – z0)


E(z) is called the potential energy of the body. It is said that when 
the body is lifted from z to z0, its potential energy increases. 

Note that the potential energy is not located within the body. 

P =
!
v ·
!
F

Fig. 6.4 

A body is lifted. Thereby, energy is 
stored in the gravitational field.

z

z0

P = dEdt

v = dzdt



7
Collision processes




7. Collision processes

7. Collision processes

A collision is a transition from an initial state to a final state, in which 
at least two bodies or particles (e.g. also photons) are involved. In a 
collision, momentum and energy are redistributed among the collid-
ing partners. There can also occur a reaction, i.e. particles are cre-
ated or destroyed. In the initial and in the final state, the particles are 
completely decoupled: neither momentum nor energy flows between 
them. Only during the time of the transition, momentum and energy 
transfer takes place.

Energy and momentum conservation require that


and


The center of mass  of a system of n bodies is defined by


Deriving this equation with respect to time yields:


Since the total momentum of the system (right side of the equation) 
remains constant during the collision, the velocity of the center of 
mass 


is also the same before and after the collision:


The reference frame in which the center of mass of a set of bodies is 
at rest is called the center-of-mass frame.

We can write the energy of a set of n bodies as


E0,i is the internal energy, Ekin,i the kinetic energy of body i. The sec-
ond sum can be decomposed once more


where


is the “kinetic energy of the center of mass”, and is the kinetic 
energy of body i in the centre of mass frame.

Thus, the total energy becomes


If we consider the ensemble of bodies as a whole, the sum


appears as a part of its internal energy. We therefore combine the 
two sums into E0, the internal energy of the whole ensemble:


where


and


Since the velocity of the center of mass  remains constant in the 
collision, it follows that


and


Quantities that remain constant during the collision are called colli-
sion invariants. Thus, E, , , E0 and  are collision invari-
ants. 

If in addition


is a collision invariant, the collision is called elastic, if not it is called 
inelastic. The kinetic energy missing after an inelastic collision can 
either be stored or used for heat production. In the first case the col-
lision is reversible, in the second it is not, Fig. 7.1.
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8. Dissipative momentum currents – friction and viscosity

8. Dissipative momentum currents – friction and 
viscosity

In the three situations shown in Fig. 8.1, a momentum current flows 
from one body moving at constant velocity to another body at rest. 
The momentum current flows across a velocity gradient, much like 
the electric current in an electrical resistor flows across a potential 
gradient. Since in each case an energy current of strength 

 is dissipated, i.e., used to produce heat, we call these 
momentum currents dissipative momentum currents. Mechanical 
energy dissipation is called friction.


We recognize the validity of the following rule: 

A dissipative momentum current always flows from the body of 
higher to the body of lower velocity. 


The electrical analog of this rule is:

A dissipative electric current always flows from the body of higher 
to the body of lower electric potential.


The relationship between  and is different in each of the three 
cases of Fig. 8.1, Fig. 8.2.


 

The electrical analog of the  characteristic is the  ΔΦ – I char-
acteristic.

In the first case of Fig. 8.2, when two solid bodies slide over each 
other, the force is independent of the velocity difference. This case is 
realized with the brake and clutch of a car.

The second characteristic curve of Fig. 8.2 is obtained when the in-
terfaces of two solid bodies sliding over each other are separated by 
a liquid layer (a lubricant). Here a kind of Ohm’s law applies, and 
one can define a mechanical resistance Rp in analogy to the electri-
cal resistance R = ΔΦ/I:


This case is realized in the shock absorber of a car: the force on the 
shock absorber is proportional to the velocity difference between the 
two attachments of the shock absorber.

The resistance Rp is related in a simple way to the area A of the 
bodies sliding over each other and their distance s, Fig. 8.3:


This relationship is analogous to the well-known equation the elec-
trical resistance:


η, the viscosity, is a material constant of the liquid that is conducting 
the momentum. It is the analog of the electrical conductivity σ. 
Therefore, η can also be called the momentum conductivity.


The third characteristic curve in Fig. 8.2, where the force depends 
quadratically on the velocity, is obtained when a body is pulled 
through a liquid or a gas. It describes, for example, the air resistance 
of a car:


Here ρ is the density of the fluid, A is the cross-sectional area of the 
body perpendicular to the direction of motion, and cW is the so-called 
drag coefficient. cW is dimensionless and of the order of 1.
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!
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Fig. 8.1 

In a friction process, momentum flows from the body of higher velocity to the body of low-
er velocity.
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The characteristic curves belonging to the processes shown in Fig. 8.1
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9. The analogy between mechanics and electricity – the dualism within  
mechanics and electricity

9.1 The analogy

There is an analogy between two fields of physics, if quantities of 
one field can be mapped on quantities of the other in such a way 
that the relations between the quantities of one field translate into 
correct relations between the quantities of the other. There are sev-
eral such analogies in physics. Here we are concerned with an 
analogy between mechanics and electromagnetism. The quantities 
corresponding to each other are listed in Table 9.1.


The conserved quantity  is mapped onto the conserved quantity 
Q, and the energy is mapped onto itself. 

It can be seen that from


by purely formal translation

P = U · I

is obtained. 

If one looks at an object from a mechanical point of view, often only 
three properties are of interest:


• its inertia

• its elasticity

• its dissipative behavior.


The engineer likes to realize these three properties by spatially sep-
arated components, or he decomposes a given system in his mind 
into components, namely into those which are


• inert, but rigid and frictionless,

• elastic, but mass- and frictionless and

• dissipative, but rigid and massless. 


Each of these three components is idealized in the sense that the 
variables describing the component are interrelated in a very simple 
way. These idealized components are the mass point, the elastic 
spring and the shock absorber. The relationships characterizing 
these components are:


• mass point:           

• elastic spring:       

• shock absorber:   

In electricity, the situation is analogous. Here, too, one likes to break 
down a structure into components, three of which play a special role: 
the capacitor, the coil and the resistor. Also these components are 
approximately characterized by three simple relations:


• capacitor:             Q = C · U
• coil:                       I  = (N/L)Φ
• resistor:                U = R · I

If we look at the translation table 9.1, we see that these three com-
ponents are analogous to the three mechanical components men-
tioned before, and we can thus extend our translation table, see ta-
ble 9.2. The list of quantities analogous to each other is far from be-
ing complete. A particularly interesting pair of analogous quantities 
are the angular momentum and the electric dipole moment.


mechanics electricity

electric charge Q

electric current strength I

electric potential Φ

voltage ΔΦ = U

energy E energy E

energy current strength P energy current strength P

velocity difference Δ
!
v

velocity !v

momentum !p

force (momentum current strength)
!
F

Table 9.1

Analogous  
quantities from 
mechanics and 
electromagnetism

!
p

P = Δ
!
v ·
!
F

!
p =m ·

!
v

!
F =D ·Δ

!
s

Δ
!
v =Rp ·

!
F

mechanics electricity

mass point capacitor

mass (momentum capacitance) m capacitance C

spring coil

reciprocal spring constant 1/D inductance L

shock absorber resistor

mechanical resistance Rp electric resistance R

viscosity (momentum conductivity) η electric conductivity σ

Table 9.2

Analogous  
quantities and 
components from 
mechanics and 
electromagnetism



9. The analogy between mechanics and electricity – the dualism within  
mechanics and electricity

9.2 The dualism

Furthermore, within mechanics exists a structure which we will call 
dualism. Because of the analogy between mechanics and electro-
magnetism, electromagnetism also has this dual structure. What is it 
about? One transforms an arbitrary arrangement of the previously 
described components into another arrangement according to cer-
tain rules. Moreover, one maps quantities to other quantities accord-
ing to certain rules. Then the mathematical structure of the old prob-
lem with the old quantities is the same as that of the new problem 
with the new quantities. If one applies the same translation rules 
twice in succession, one returns to the original problem. Table 9.3 
lists the corresponding components, physical quantities and “topo-
logical rules”.


Also with the dualism energy plays a special role: It is self-dual. 

Although the component resistor is dual to the component resistor, 
its reciprocal value, the conductance G, corresponds to the quantity 
resistance.

mechanics electricity

components mass point ⇔ spring capacitor ⇔ coil

shock absorber ⇔ shock absorber resistor ⇔ resistor

quantities

topological rules parallel circuit ⇔ series circuit

junction rule ⇔ loop rule

!
p ⇔�!r Q ⇔N�
!
F ⇔�!v I ⇔�ϕ =U
m ⇔1/D C ⇔ L
Rp ⇔1/Rp R ⇔1/R =G
E ⇔E E ⇔E
P ⇔P P ⇔P

Table 9.3

The dualism within mechanics and within electricity



9. The analogy between mechanics and electricity – the dualism within  
mechanics and electricity

9.3 Example

We solve a mechanical problem, together with its electrical ana-
logue, Fig. 9.1.


The mechanical version is on the left, the electrical one on the right. 
Thereafter, we solve the versions that are dual to both problems. Ve-
locity differences and voltages are counted clockwise (e.g. ΔvR = v2 
– v3 or UR = Φ2 – Φ3). The subscript p on the mechanical resistance 
is omitted for clarity. We apply the loop rule to the circuit:


With


and


we obtain


The solutions of these differential equations are


From this, the time dependence of other quantities of the circuits can 
be calculated:


We call

Ptotal		 total strength of the energy current from the energy 
 		 source (motor resp. battery) to the mass point resp.  

capacitor and the shock absorber resp. resistor

Pm and PC  	 strength of the energy current to the  mass point resp. 
 		 capacitor

PR  		 strength of the energy current to the shock absorber 

resp. resistor

We obtain


Fig. 9.2 shows Ptotal, PR and Pm (or PC) as a function of time.


 

The comparison of the left side of our calculation with the right side 
shows that one of the two calculations could have been spared: One 
obtains it by purely formal translation from the other side.

Using the translation rules of the dualism, we now transform the 
problem into a new one, Fig. 9.3.


 

Current intensities (also momentum current intensities) are counted 
positive toward the junction K. 

We apply the junction rule to K:


With


we obtain


The solutions of these differential equations are


From this follows again the time dependence of other quantities. We 
do not continue the calculation, because one can see already how 
things work: One obtains the equations in this example line by line 
from those of the previous example by applying the translation rules 
of dualism. 

Finally, Fig. 9.4 shows another problem including its electrical ana-
logue and its two dual versions, which is very similar to the previous 
one. We leave the corresponding calculation to the reader.


Fig. 9.1 

Two systems that are analogous to each other
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The systems are analogous to each other, and are dual to those in Fig. 9.1.
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9. The analogy between mechanics and electricity – the dualism within  
mechanics and electricity

9.4 Mechanical properties of materials

We had identified three different mechanical properties of bodies: 
inertia, described by the physical quantity mass m, elasticity, de-
scribed by the spring constant D, and viscosity, described by a fric-
tional resistance Rp.

The three quantities m, D and Rp. refer to an extended structure. 
However, each of these quantities also expresses a local property of 
a material. In addition to the local material quantities, only geometric 
quantities are included in the global quantities m, D and Rp.

 
Mass density
The local quantity describing the inertia is the mass density ρ. One 
divides the mass m contained in a region of space by the volume V 
of this region and obtains the average density. If the volume of the 
region is small against the total volume of the system under consid-
eration, one omits the adjective “average” and simply speaks of the 
density “at the location” of the chosen space region. It is thus


 

Elastic modulus
A momentum current of strength F flows through an elastic rod of 
length s and cross-sectional area A. As long as the momentum cur-
rent flows, the rod is shortened or lengthened by Δs relative to its 
normal length s. The relationship between F and Δs is described by 
Hooke’s law:


F = D · Δs
The value of the global quantity D, the “spring constant”, depends on 
the dimensions of the bar. D is proportional to the cross-sectional 
area and inversely proportional to the length s:


The factor of proportionality E is called the elastic modulus of the 
material. It depends only on the material of the bar. It is therefore


 

Viscosity
We have already learned about the local quantity describing the dis-
sipative behavior of matter: It is the viscosity η. It is related to the 
global quantity Rp via


The description of the elastic and dissipative behavior of matter giv-
en here is highly simplified. In fact, neither can be described by a 
single number. A complete representation would show that both 
elastic modulus and viscosity are so-called tensors. Tensors are 
mathematical entities that require more than one numerical value to 
define them. For example, the elasticity tensor is determined by 21 
independent numbers. If the material is isotropic, however, this 
number is reduced to 2. One of these is the elastic modulus just dis-
cussed, the other expresses how strongly the material deforms in 
the direction transverse to the applied force.

ρ = m
V

D =E ·A
s

E = s
A
·D

η = s
ARp
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10. Oscillations

10.1 Kinematics and dynamics

Kinematics is concerned with the shape of the path of a body or par-
ticle, and it is concerned with how this path is traversed in time. It is 
therefore concerned with the function . Mechanical processes 
are often classified according to kinematic criteria. Thus one speaks 
of


• rectilinear uniform motions;

• uniformly accelerated motions;

• uniform circular motions;

• harmonic motions;

• exponentially decaying motions;

• chaotic motions;

• etc.


However, such a classification by no means determines the dynam-
ics of a process. One and the same kinematic type of motion can 
come about in quite different ways. Thus, a rectilinear uniform mo-
tion is present with a car driving at constant velocity on a straight 
stretch of the highway, but also with the famous force-free body of 
Newton’s first law. The two processes have the same kinematics, 
but different dynamics.

!
r (t )



10. Oscillations

10.2 Qualitative discussion of some examples of 
oscillations

We say there is an oscillation when the value of a physical quantity 
changes periodically, e.g. the momentum of a pendulum, the electric 
current in a resonant circuit or the reflectivity of a deciduous forest at 
λ = 500 nm. Here, of course, we restrict ourselves to mechanical 
oscillations, i.e., oscillations of quantities that play a role in mechan-
ics. However, we do not define the term “oscillation” very narrowly. 
For example, we still speak of an oscillation when the periodic varia-
tion is modulated by an exponential function. Such an oscillation is 
called “damped”. 

Oscillations or oscillating systems can be characterized according to 
different criteria:


• What is the shape of the oscillation? (harmonic, sawtooth etc.)

• How many energy stores are involved in the oscillation?

• What proportion of the energy is dissipated per period?

• What energy and momentum currents flow into and out of the 

system?

• Does the system have characteristic frequencies?


We will first discuss some examples qualitatively from these points 
of view. We will see that kinematically identical oscillations can come 
about in quite different ways, i.e. have different dynamics.

  

One-dimensional elastic pendulum, Fig. 10.1
Oscillation shape: harmonic 

The energy flows periodically from the bodies into the spring and 
back again. The momentum flows back and forth between the two 
bodies. Ideally, no energy is dissipated. The system has a single 
natural frequency.


 
Elastic ball between two hard walls, Fig. 10.2
Oscillation shape: rectangular

The energy remains all the time within the ball. The momentum is 
constant most of the time; only during the reversals momentum 
flows from the ball into the wall, or from the wall into the ball. Ideally, 
no energy is dissipated. The system does not have a specific oscilla-
tion period.


 
Motor + oscillating body, Fig. 10.3
Oscillation shape: (almost) harmonic

Energy flows back and forth between the body and the motor. Mo-
mentum flows periodically from the body into the earth and back 
again. Ideally, no energy is dissipated. The system has no specific 
oscillation time.


Relaxation oscillation, Fig. 10.4
Oscillation shape (of the amount of water in the upper container): 
sawtooth

A single energy store is periodically filled and emptied. A weak ener-
gy dissipation is necessary for the functioning. The oscillation time 
depends on the water flow.


Harmonic relaxation oscillation, Fig. 10.5
Oscillation shape: harmonic

A single energy store is periodically filled and emptied. A strong en-
ergy dissipation is necessary for the functioning. The system has 
one single natural frequency.


Damped oscillation, Fig. 10.6
Oscillation shape: harmonic with an exponentially decaying ampli-
tude

Most of the energy flows back and forth between the spring and the 
sphere. A small amount is dissipated in the shock absorber for each 
oscillation. The system has a natural frequency.


Self-oscillation
They take place in most clocks (exceptions: sundial, hourglass, wa-
ter clock). One uses a system, which executes oscillations as weak-
ly damped as possible. The energy lost by dissipation is replaced by 
an energy flow from outside. The strength of this energy flow is con-
trolled by the oscillator itself. As the damping increases, this type of 
oscillation steadily transitions to a relaxation oscillation. (Examples 
of vibrations that lie between these two types: string and wind in-
struments, squeaky door).


Driven oscillation, Fig. 10.7
Combination of the first (spring pendulum) and the third (motor + 
body)

Oscillation shape: harmonic

Depending on the frequency, the energy flows different ways. The 
system oscillates with any frequency.


Fig. 10.1 

One-dimensional elastic pendulum
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An elastic ball is reflected back and 
forth between two hard walls.
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10.3 The undamped elastic pendulum

The system, Fig. 10.8, consists of


• a spring (spring constant D);

• a body (mass m);

• the earth (mass infinite).


We apply Newton’s second law (the balance equation for momen-
tum) to the area surrounded by the dashed line,


insert


and obtain


The solution of this differential equation is


 x0 αnd 𝜑 define the initial conditions. x0 is the amplitude, 𝜑 deter-
mines the position of the sine curve on the time axis.

We choose 𝜑 = 0, such that x (t = 0) = 0. From the solution x(t) the 
values of the other variables can be calculated as a function of time. 
With  


we get


or


The force is obtained from F (t ) = – Dx (t )


or


It can be seen that the magnitude of the momentum current is max-
imum when the momentum itself is zero. The momentum flows peri-
odically back and forth between the body and the earth. 

The energy of the body is:


or


The energy of the spring is


or


The amplitudes p02/(4m) and Dx02/4 are equal to each other. The 
sum EB + ES is therefore constant in time, i.e. energy flows back and 
forth between the body and the spring with the frequency 2ω. 

We still calculate the strength of the energy flow between body and 
spring:


or


Fig. 10.9 shows various quantities of the spring pendulum as a func-
tion of time.


Fig. 10.8 
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10.4 The damped elastic pendulum

Figure 10.10 schematically shows a spring pendulum with damping. 
The friction is represented by a shock absorber with


We apply Newton’s second law to the area surrounded by the 
dashed line


With


we obtain the differential equation


We insert the ansatz


and obtain


If 


this solution represents a harmonic oscillation with exponentially de-
creasing amplitude, Fig. 11. For


the harmonic oscillation becomes a sum of two exponential func-
tions. To exclude solutions with positive exponents, it is best to make 
a new solution ansatz for this case


Substituting into the differential equation yields


The decay process is fastest when it is critically damped, i.e. when


If


energy flows back and forth between the spring and the body. How-
ever, part of the energy flows to the shock absorber and is dissipat-
ed. The energy loss per period is obtained by comparing the energy 
content of the spring in two successive maxima. 

We set x2 = 0 and calculate the energy content of the spring in the 
maxima, i.e. when cos ωt = 1


It follows


The Q factor of the system is defined as


We obtain


Here we have used ω = 2πT.
With


we finally get


FR = –
!x
R

= –k !x

Fig. 10.10 
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10.5 Driven oscillations

We consider two arrangements, each consisting of a mass point, a 
spring, a shock absorber, and an energy source Q, Fig. 10.12. In 
one of them the energy source causes a harmonic displacement 
(and hence a harmonic velocity), in the other a harmonic momentum 
current. (The electrical analogues of these energy sources are the 
voltage-stabilized and current-stabilized ac power supplies).


Applying the balance equation for momentum (Newton’s second 
law) to the dashed area, the same differential equation is obtained 
for both arrangements.


We call  and obtain


The general solution of this inhomogeneous differential equation is 
obtained as the sum of the general solution of the homogeneous 
equation plus a special solution of the inhomogeneous one.  The so-
lution of the homogeneous differential equation decays with time. It 
describes a transient process. We ask here only for that part of the 
solution which remains after the transient process has ended. We 
make the ansatz:


Substituting into the differential equation results in conditions for x0 
and :


With 


we also get the velocity as a function of time


where


This allows to calculate the energy dissipated in the shock absorber: 


The time average of the energy dissipated in the shock absorber 
can be considered a measure of the intensity of the oscillation. 
Since the time average of is equal to 1/2, we obtain for 
the time average of the energy flow


We substitute for v0 the expression calculated earlier and obtain:


As could be expected, the dissipated energy depends on the fre-
quency. For ω = ω0 it has its maximum; the oscillation is most in-
tense. The oscillator is said to be in resonance with the exciter. Fig. 
10.13 shows the relationship graphically, for four different k values, 
i.e., for different dampings. The curves are called resonance curves.

Often, instead of the energy current, the position amplitude is repre-
sented as a function of the frequency. Such a curve also shows the 
resonance, but only roughly, because in such a representation the 
position of the maximum changes with the frequency. One could 
have represented several other quantities as a function of the fre-
quency, for example the acceleration. In this case, the maximum 
would again have been at a different position. The most reasonable 
representation is the energy flow – or alternatively the velocity, be-
cause its maximum is also fixed at ω0. 


Let us finally consider the phase, or more precisely: the phase dif-
ference between the exciting force and the velocity of the oscillator, 
i.e. between the two factors on the right side of the equation


P = v · FR.

For the resonance case, i.e. for ω = ω0 it is equal to zero. 

Force and velocity being in phase means optimum energy transfer 
to the shock absorber. In the analogous electrical case, one would 
say that the “reactive power” is zero.

Fig. 10.12

The body of mass m performs driven oscillations. Applying the balance equation for the mo-
mentum to the dashed area leads to the same differential equation in both cases.
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10.6 Electrical analogs and dual arrangements
Fig. 10.14 shows the electrical analogs as well as their dual 
arrangements of the systems discussed in Sections 10.3 through 
10.5.


Fig. 10.14 
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10.7 Two coupled spring pendulums

The arrangement of Fig. 10.15, which we will discuss next, provides 
an important basis for problems in atomic, molecular, and solid-state 
physics. The notations can be seen in the figure.


 

In general, the two bodies perform a confusing motion. The mathe-
matical solution of the problem shows that the motion, as well as the 
energy and momentum flows, are simpler than they appear. We ap-
ply the balance equation for momentum to the two regions sur-
rounded by dashed lines in Fig. 10.15:


With


we obtain the two coupled differential equations:


 


By addition (I) + (II) and subtraction (I) - (II) two new differential 
equations are obtained: 


We introduce the new coordinates

q1 = x1 + x2

and

q2 = x1 – x2 

The old coordinates depend on the new ones according to

x1 = (1/2)(q1 + q2)


bzw.

x2 = (1/2)(q1 – q2).


Using the new coordinates, the differential equations are


They are decoupled and can therefore be solved independently. We 
take the solution from section 10.3:


From this the old coordinates can be calculated:


Thus, the oscillation of each of the coordinates is a superposition of 
two harmonic oscillations with frequencies ω1 and ω2.


Discussion
We set the initial conditions 𝜑1 = 0 and 𝜑2 = 0.


Normal modes

If q10 ≠ 0  and q20  = 0, then x1  and x2 oscillate harmonically with the 
frequency ω1 with the same amplitude and phase. If q1,0 = 0 and q2,0  
≠ 0, then x1  and x2 oscillate harmonically with the frequency ω2, with 
the same amplitude but in opposite phase. In these two cases, the 
system is said to perform natural oscillations or normal mode osciall-
tions. Therefore q1 and q2 are also called the normal coordinates of 
the system.

Any state can be described as a superposition of the natural oscilla-
tions of the system.

Figure 10.16 shows the path of momentum and energy for both nat-
ural oscillations in two different oscillation states each.


Simple special case  D ≪D’
If D ≪D’, i.e. if the middle spring is weak against the outer springs, 
the system can be considered as two spring pendulums (one body 
and one spring with D’ each), which are weakly coupled to each 
other by the spring D. If q1,0 =  q2,0 = q0 is chosen as initial condition, 
a simple motion pattern is obtained:


After renaming ω1 = ω – Δω and ω2 = ω + Δω and using the well-
known trigonometric formulas, we get:


Because of D ≪ D’, we have Δω ≪ ω. Therefore, x1 (t ) and x2 (t ) are 
harmonic oscillations of frequency ω modulated with the frequency 
Δω, Fig. 10.17. The energy flows back and forth between the right 
and the left spring pendulums with frequency 2Δω. Within each 
pendulum, it flows back and forth at the high frequency 2ω between 
the body and the corresponding spring. Such an oscillation process 
is called a beat.


 

 
Simple special case  D’ ≪D
From D’ ≪D follows ω1 ≪ ω2 . The system can be considered as a 
spring pendulum consisting of the two bodies and the central spring, 
which is weakly coupled (via D’) to the earth, Fig. 10.18. For D’ → 0, 
the low frequency approaches zero, and the first natural oscillation 
turns into a translation.


Fig. 10.15 
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Fig. 10.19 shows the arrangement. One end of the pendulums is 
driven according to 


Thereby we get 


(instead of F1a = – D’x1). Thus the differential equations become:


Addition (I) + (II) and subtraction (I) - (II) yield the decoupled differ-
ential equations for q1  and q2:


These are two differential equations for common driven oscillations, 
like those in section 10.5 (however, we have assumed that there is 
no damping). If we draw the resonance curve, i.e. vary ω and ob-
serve the oscillation state, we find the following: If ω = ω1, i.e. if ω is 
equal to the frequency of the first normal mode, this first normal 
mode is strongly excited. It is “in resonance with the exciter”. The 
strength of the energy flow from the exciter to the pendulum has a 
maximum. The analog is true if the excitation frequency is ω = ω2.

xQ = xQ0 sin(ωt )

Fig. 10.19 

Arrangement for generating driven oscillations of two coupled spring pendulums
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10.8 Driven oscillations of two coupled
 pendulums
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10.9 Degrees of freedom

The number f of degrees of freedom indicates by how many inde-
pendent time functions a system is described. In the example of sec-
tion 10.7 f = 2, because the system is completely described by x1(t) 
and x2(t) or by q1(t) and q2(t) or by p1(t) and p2(t). Sometimes f is 
also called the degree of freedom.

Often, with a suitable choice of coordinates, each degree of freedom 
can be assigned to a simple motion process: a harmonic oscillation 
(vibrational degree of freedom), a rectilinear uniform motion (transla-
tional degree of freedom), a uniform rotation (rotational degree of 
freedom) …

Examples


• two coupled pendulums, see section 10.7: q1(t), q2(t);

• free masspoint x(t), y(t), z(t);

• further examples, see Fig. 10.20.


Fig. 10.20 

Examples of some systems with 
degrees of freedom of different 
nature3 oscillations


f = 3

2 rotations 
3 translations

f = 2 + 3 = 5

2 rotations 
3 translations 
1 oscillation

f = 2 + 3 +1 = 6

3 rotations 
3 translations 
3 · 1023 – 6 oscillations

f = 3 + 3 + 3 · 1023 – 6  
   ≈ 3 · 1023

solid with 1023  atoms

mass points

massless rod
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10.10 Twelve coupled pendulums

The arrangement of Fig. 10.21a represents a one-dimensional mod-
el of a crystal. The system has 12 degrees of freedom and thus 
twelve normal modes of oscillation. Fig. 10.21b shows the shape of 
the first, second, third and twelfth normal mode. The arrows repre-
sent the length of the traversed paths between two reversal points. 
For the sake of clarity, this paths are shown transverse to the exten-
sion of the chain.


The 12 vibrational states look similar to standing waves, and each 
can be assigned a wavelength λ. One calls


k = 2π /λ
the wave number. The function ω = ω(k) is called the dispersion re-
lation of the arrangement, Fig. 10.22. The curve that can be laid 
through the points breaks off at k = π /a, where a is the distance be-
tween adjacent mass points. The dispersion relation of an arrange-
ment with many more mass points looks almost the same, only the 
points are much closer together and the curve is practically continu-
ous. Also in real crystals one measures dispersion relations which 
have this form.


Fig. 10.21 

(a) One-dimensional model of a crystal. (b) 1st, 2nd, 3rd and 12th normal mode

a

b
exciter

Fig. 10.22 

Graphical representation of the 
dispersion relation of a system of 
12 coupled oscillators

ω

k
π /a
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11. Chaotic processes

The processes we considered in Section 9.3 and in Chapter 10 are, 
from a certain point of view, unrealistic special cases. In fact, they 
have the following peculiarity: if the initial state of the system is giv-
en, one can use the corresponding differential equations to calculate 
the state of the system at a time arbitrarily far in the future and at a 
time arbitrarily far in the past. If one knows the initial state with some 
imprecision, one can also calculate the final state with some degree 
of inaccuracy. It is typical of this type of process that a small varia-
tion in the values of the variables characterizing the initial state re-
sults in a small variation in the final state values.

Actually, real systems almost always behave differently. If one asks 
for a final state which is too far in the future or for an earlier state 
which is far in the past, one finds that a small variation of the values 
of the initial state results in a very large variation of the values of the 
state to be calculated. The magnitude of this variation generally 
grows exponentially with the time interval between the initial state 
and the state to be calculated. Since one can characterize a state in 
principle only with a limited accuracy, it follows that one cannot in 
principle calculate the state at a time far in the future or far in the 
past.

Mathematically, such behavior manifests itself in the fact that the dif-
ferential equation describing the system is non-linear. Such nonlin-
ear systems are said to behave chaotically. In fact, the behavior of 
these systems looks chaotic – in the colloquial sense. But beware. 
Not every process that looks chaotic is also chaotic in the previously 
explained sense. A system of 20 linearly coupled oscillators, for ex-
ample, can perform movements which look completely disordered, 
i.e. chaotic. Nevertheless, the system is not chaotic in the physical 
sense: its later states and its past states can be calculated from a 
given initial state.

Let us consider an example. Fig. 11.1a shows two gliders on an air 
track coupled by a spring. The system is excited so that the gliders 
oscillate against each other, but their center of mass remains at rest. 
Each glider moves sinusoidally, Fig. 11.1b. If an initial state is given, 
the states at any other times can be calculated. The system does 
not behave chaotically.


Fig. 11.2a shows a glider on an inclined air track. At the lower end of 
the track is a spring buffer which is quite hard. The glider moves ac-
celerated to the left, is “reflected”, moves again to the right, reverses 
again, and so on. The displacement-time graph consists of down-
ward open parabolas, Fig. 11.2b. Also this system does not behave 
chaotically.


We now combine the two systems considered before, Fig. 11.3: Two 
coupled gliders as in Fig. 11.1 can move on an inclined air track as 
in Fig. 11.2. 


It turns out that the motion of the system is chaotic. Fig. 11.4 shows 
the displacement-time graph of one of the two gliders.


Fig. 11.4a suggests that this is a chaotic process. However, it might 
be that the process only looks chaotic, but is not chaotic in the 
sense of physics. We therefore repeat the experiment, setting up the 
initial conditions as best we can, exactly as in the experiment of 
11.4a. We obtain the plot of Fig. 11.4b: despite almost the same ini-
tial conditions, a completely different behavior than in the first exper-
iment results. 

It is not hard to simulate the experiment on the computer. One en-
ters initial conditions and runs the simulated process. One repeats 
the simulation with initial conditions that differ very slightly from 
those of the first run. The second time, the behavior is completely 
different. The computer thus confirms that the behavior of the sys-
tem is chaotic.

A clear representation of the motion simulated on the computer is 
shown in Figure 11.5, where the motion of the center of mass and 
the relative motion of the two gliders against each other are plotted 
separately over time. Here, the system has been decomposed into 
two subsystems. The position variable of one of them is that of the 
center of mass, the other one is the distance between the two glid-
ers. At each bouncing, the energy is redistributed between the two 
subsystems.


Fig. 11.1 

(a) Two gliders on the air track 
swing about their common center 
of mass.

(b) Displacement-time graph of the 
two gliders

b

x

a

Fig. 11.2 

(a) A single glider moves like a 
bouncing ball.

(b) Displacement-time graph of the 
glider

a

b

x

t

Fig. 11.3 

Combination of the systems of Fig. 
11.1 and Fig. 11.2

Fig. 11.4 

Displacement-time graph of one of 
the two gliders of Fig. 11.3. The 
graph was recorded twice. The initial 
conditions were chosen the same 
way, as good as possible.

x

x

t

t

Fig. 11.5 

The experiment of Fig. 11.3 was 
simulated twice on the computer. 
The initial conditions differed by 
about 5 %. The center of mass mo-
tion and the relative motion of the 
two gliders are shown separately.

t

t

t
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12. Angular momentum and torque

12.1 Angular momentum as a substance-like  
        quantity

A rotating flywheel is said to have momentum. However, what is col-
loquially called momentum in this context cannot be identified with 
the momentum of physics, because the total momentum of the fly-
wheel is zero. Only its parts have momentum.

As a representative of the flywheel we consider a “dumbbell”: two 
mass points 1 and 2, connected by a massless, rigid rod, Fig. 12.1. 
The masses of the two mass points are equal to each other. The 
dumbbell rotates about an axis which is perpendicular to the straight 
line connecting the two mass points, and which passes through the 
center of mass. The momentums of the mass points are  and . 
In the center of mass system, , i.e. .


 

Is it possible to bring this dumbbell to a rest by letting the momen-
tum of mass point 1 flow through the rod to mass point 2? Or by 
moving the two mass points to the center so that their momentums 
compensate each other? Experience shows that this is not possible. 
(In the case of a “dumbbell” consisting of two opposite electric 
charges, i.e. in the case of an electric dipole, this would certainly be 
possible). One can bring the dumbbell to a state of rest only by let-
ting momentum currents flow between the system “dumbbell” and 
another system. This fact is an indication that we have to do here 
with a new conserved quantity.

This quantity is called angular momentum (or spin) and is abbreviat-
ed . It corresponds to what is colloquially called the momentum of 
the flywheel.

Let’s get to know some of the properties of this quantity.

The flywheel can be carried around in space. This means that one 
can also move the angular momentum around in space. 

Angular momentum can be transferred from one system to another, 
it can flow from one system to another, Fig. 12.2.


 

The angular momentum has a direction, it is a vector. For a flywheel 
rotating around its axis of symmetry, the direction of the  vector is 
identical to the direction of the angular velocity vector .

If the angular momentum  is transferred to a system which has 
the angular momentum , the resulting angular momentum is zero.

We consider a system consisting of many flywheels. We have


where , is the angular momentum of the i-th flywheel. 

Sometimes an angular momentum density can be given, Fig. 12.3. 


We summarize:

The angular momentum 


• is additive when systems are composed; 

• can flow from one system to another; 

• can have a density. 


Thus, angular momentum is a substance-like quantity. 

One finds experimentally that angular momentum is a conserved 
quantity. 

One can use a procedure for measuring angular momentum values 
that is analogous to the procedure for measuring momentum de-
scribed in Section 2.1. 

We will see in the following section that in certain cases one can 
calculate the angular momentum of a system from the momentum 
distribution in the system.

!
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!
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Fig. 12.1 

The dumbbell rotates around an 
axis perpendicular to the straight 
line connecting the two mass 
points.

1

2

!
L

Fig. 12.2 

The angular momentum flows 
through the shaft and the dry clutch 
from the left to the right flywheel.

dry clutch

!
L!ω

–
!
L0!

L0

!
L =

!
Li

i
∑

!
Li

Fig. 12.3 

Sometimes an angular momentum 
density can be defined.
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12.2 The relationship between the angular  
        momentum of a system of mass points  
        and the momentum of the mass points

We consider a particular system: a “swarm” of mass points. The 
mass points can exchange momentum with each other, but no mo-
mentum should be exchanged with the outside environment. The 
distances between the mass points do not have to be fixed, and they 
can fly around arbitrarily. We start with the simplest case: with two 
mass points. Let the masses be m1 and m2, the position vectors  
and .

We now claim that the quantity


 

is constant in time, as long as there is no momentum exchange of 
any of the mass points with the outside world. For the proof we con-
sider the time derivative


 

Since


 

is parallel to  the first vector product on the right-hand is zero, and 
we are left with


 ,


With


 

we obtain


 ,


If, as assumed, no momentum is exchanged with the environment, 
then momentum currents only flow between mass point 1 and mass 
point 2, and we have . Thus


 ,


Experience shows that the force vector  is parallel to the line con-
necting the mass points, i.e. to . So the right side of the last 
equation is zero, and thus the expression


 ,


 is constant in time.

The expression is constant in time as long as no momentum cur-
rents come from the outside or flow to the outside. We could there-
fore identify it with . But we do not, because the expression can be 
different from zero, although the considered system does not rotate 
at all. Instead, we define the angular momentum of the system con-
sisting of two mass points:


 

 are the momentums of the mass points in the center of mass 
system. (In the center of mass system the sum of the momentums is 
equal to zero).

We show that an analogous equation is also valid for three mass 
points. Then the generalization for n mass points is obvious.


 ,


Since again no momentum comes from outside,  represents the 
total strength of the momentum currents between mass point i and 
the other two mass points:


 ,


and we get


 ,


Since momentum is conserved we have , and thus


 ,


Due to the experience that  is parallel to the connection vector 
, the right side becomes zero, i.e. 


 ,


is constant in time and we have for a system of mass points

 .


For the measuring unit of the angular momentum Euler (E) results: 

1 E = 1 Hy · m = 1 N · m · s = 1 J · s.


Table 12.1 shows some typical values of the angular momentum.


Finally a warning: The calculation carried out in this section is not a 
proof of the conservation of angular momentum. Nor is it the der-
ivation of the conservation of angular momentum from that of mo-
mentum. The conservation of angular momentum was inserted into 
the calculation in the form of the following statement: “Experience 
shows that the force vector  is parallel to the line connecting the 
mass points, i.e. to .” This statement tells us that it is impos-
sible to let the two momentums of a dumbbell simply flow to the cen-
ter so that they compensate each other. So this statement is a way 
of formulating the conservation of angular momentum.
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the system earth - sun 3 ·1040 E

earth 7 · 1033 E

flywheel of a big steam engine 104 - 105 E

flywheel of a toy steam engine 5 · 10–3 E

electron 0.53 ·10–34 E

Table 12.1

Values of the angular momentum
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12.3 Balance equation for the angular momentum

A motor sets a flywheel in rotation, Fig. 12.4. As the angular momen-
tum of the flywheel increases, angular momentum must flow through 
the drive shaft. An angular momentum current flows from the ground 
through the shaft into the flywheel.


 

For the strength  of this current applies:


 is called torque. One says: “The motor exerts a torque on the 
flywheel”, or “a torque is transmitted to the flywheel”.

The function of some technical devices can be described like this:


• Shaft: conductor for angular momentum

• Bearing: insulator for angular momentum

• Clutch: switch for angular momentum current

• Brake: switch by which an angular momentum current can be 

directed to earth

• Freewheel: rectifier for angular momentum currents


If an angular momentum current flows through an elastic rod, the rod 
is twisted. The twist angle is a measure of the angular momentum 
current strength.

Since angular momentum is a conserved quantity, its value within a 
region of space can only change by an angular momentum current 
flowing into or out of the region. As in the case of momentum, the 
flow in and out can happen in two ways: either, as in the upper part 
of Fig. 12.5, via a shaft under torsional stress, or, as in the lower part 
of the figure, by angular momentum moving convectively into or out 
of the region.


 Only the first of these two types of current is called torque . If the 
second is denoted by , then the total current is


and we can write the balance equation for angular momentum:


Fig. 12.4 

An angular momentum current 
flows from the ground through the 
motor and shaft into the flywheel.

motor
d
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Fig. 12.5 

Two types of angular momentum 
currents:(a) torque; (b) convective 
current.a

b

!
M!

Mconv
!
IL =

!
M +

!
Mconv

d
!
L
dt =

!
IL
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12.4 The relationship between torque and forces
We calculate for a system of mass points


 .


The mathematical procedure is the same as in section 12.2. We now 
also want to allow forces to act on the system from the outside, but 
still with the restriction


 .


Here   is the force acting from the outside on mass point i. If this 
condition is fulfilled, the center of mass momentum does not 
change. We get


 .


and because of


 .


we have

 .


If the system consists of only two mass points, , i.e. the 
two force vectors are equal and opposite:


In this case the torque


is called  force couple. 

Table 12.2 shows some typical torque values.


We now calculate the quantity  for a single mass point, where 
 is the position vector in an arbitrary coordinate system, and  is 

the momentum of the mass point. We denote the origin of the coor-
dinate system by O. We calculate the time derivative


 

One often calls

 the angular momentum of the mass point with respect to O; 
 the torque exerted on the mass point with respect to O.


However, these two quantities must be treated with caution, be-
cause their values depend not only on the choice of the velocity co-
ordinate system, but also on that of the spatial coordinate system.
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Some values of the torquepowerful ship engine 106 E/s

car engine 100 E/s

toy motor 10–2 E/s
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12.5 The moment of inertia

The faster a body rotates around a certain axis, the larger its angular 
momentum: the larger  the larger . The exact mathematical rela-
tionship between  and  can be quite complicated. It depends on 
the spatial distribution of the mass of the body under consideration, 
and it depends on the axis about which the body is rotating. We start 
the investigation of the  relation with a simple special case: 
with a dumbbell rotating around its axis (through the center of mass 
and perpendicular to the straight line connecting the two mass 
points).

The angular momentum of the dumbbell is:


 
Indices 1 and 2 refer to the two mass points. 

With  we get


 

Since  is perpendicular to , we obtain for the magnitude of 
:


L = 2rp.

Here r is the magnitude of , i.e. the distance of the mass 
points from the axis, and p is the magnitude of  and of .

With p = mv = mωr we get


L = 2r 2mω,

or as a vector


(12.1)

We see that the angular momentum and angular velocity vectors are 
parallel and their magnitudes are proportional to each other. The 
proportionality factor is called moment of inertia. The moment of in-
ertia tells us whether a body rotating at a given angular velocity con-
tains much or little angular momentum. We can think of it as the an-
gular momentum capacity of the system. It is thus a measure of the 
inertia of a body with respect to rotational motion. A large moment of 
inertia means that the body must be supplied with a large amount of 
angular momentum in order to increase its angular velocity.

Equation (12.1) has the same structure as the velocity-momentum 
relation


or the relationship between voltage and electric charge

Q = CU.


For the moment of inertia of the dumbbell we have found

J = 2r 2m

It depends not only on the mass of the dumbbell, but also on where 
the mass is located. The further away it is from the axis, i.e. the 
larger is r, the larger is also J, the more inert is the dumbbell (with 
regard to rotational movements).

We now investigate the ω-L relation for a more complicated body, a 
body which is central symmetric with respect to an axis. It is sup-
posed to rotate around this symmetry axis. We decompose the body 
in our minds into small mass elements. The extension of each of 
these mass elements should be small against the radial extension of 
the body. Each mass element can be treated as a mass point. Be-
cause of the central symmetry of the body, the mass elements can 
be grouped into pairs, each of which forms a dumbbell whose axis 
coincides with the axis of rotation of the body, Fig. 12.6.


If the body rotates around its axis with the angular velocity ω, each 
dumbbell also rotates with this angular velocity and makes a contri-
bution


2ωri 2Δmi 


to the total angular momentum. The dumbbells are numbered with 
the index i. Δmi is the mass of each of the two mass elements of 
dumbbell i, and ri is the distance of these mass elements from the 
axis of rotation.

We can also say that each half dumbbell, i.e. each mass element, 
provides the contribution


ΔLi  = ωri Δmi 

to the total angular momentum.

The total angular momentum is the sum of all these contributions:

  	  

or in vector notation


If one makes the decomposition into mass elements, that are small-
er and smaller, one obtains as a limit value


(12.2)


We see: Again,  and  are proportional to each other.

We next realize that, in general, one cannot get along with just one 
number if one wants to characterize the inertia of a body with re-
spect to rotational motions. We consider a body which is central 
symmetric with respect to several axes, e.g. the one in Fig. 12.7. We 
can use equation (12.2) to calculate three moments of inertia: one 
for the rotation about each of the three axes of symmetry. Of course, 
in general, a different value is obtained for each direction of rotation.


So we see that J is not simply a single number characteristic of the 
body. Rather, the moment of inertia has different values for different 
directions of rotation. But it is becoming even more complicated.

Again we let a barbell rotate, but this time around an axis that is no 
longer perpendicular to the line connecting the mass points, but 
forms an oblique angle to it. However, it should still pass through the 
center of mass, Fig. 12.8.


 

Again we look for the  relation. We calculate:


 
For this purpose we place the origin of the position vectors for the 
sake of convenience in the center of mass of the barbell, so that 

. In addition,  anyway. Therefore it becomes


 
Thus, the angular momentum vector is perpendicular to the momen-
tum vectors and perpendicular to the straight line connecting the 
mass points of the barbell, Fig. 12.9.


 

Therefore,  does not have the same direction as . The  vector 
moves with angular velocity  on a cone surface about the -direc-
tion. We see that the relation  is no longer valid here.

Nevertheless, we can say that the relation between the vectors  
and  is linear. If we change the magnitude of the angular velocity 
by a certain factor, but not its direction, the magnitude of the angular 
momentum changes by the same factor, while the direction of  
does not change.

Mathematically, such a “linear transformation” of a vector into anoth-
er is described by a tensor. One says that the moment of inertia is a 
tensor quantity and writes the relation between  and 

The tensor J can be represented analytically by a 3×3 matrix con-
taining the 9 “components” of the tensor. If one also represents the 

 vector by its components, one can multiply J and  and obtain  
in component notation. Only 6 of the 9 components of the inertia 
tensor (= moment of inertia tensor) are independent of each other. 
This means that the inertial behavior of a body with respect to rota-
tional motions is characterized uniquely by 6 numbers. The body 
can have an arbitrarily complicated distribution of its mass density –
its rotational inertia is always determined by 6 numerical values.

These numbers, i.e. the components of the inertia tensor, behave 
similarly to the components of a vector. The components of one and 
the same vector have, depending on the coordinate system, differ-
ent values. In the same way, the components of a tensor have dif-
ferent values, depending on the coordinate system.

Now there is a special choice of the coordinate system in which the 
components have a particularly visual meaning. It is the coordinate 
system in which the matrix representing the tensor has diagonal 
form. This means: If one lets the body rotate around one of the co-
ordinate axes, i.e. if the angular velocity vector points in one of the 
three coordinate axis directions, the angular momentum vector also 
points in this direction:  and  are parallel to each other. This is 
true for all three coordinate axis directions. For each of these direc-
tions the following applies


To each of these directions belongs a value of the moment of inertia. 
The axes of rotation corresponding to these three directions are 
called principal axes of inertia. The corresponding values of the 
moment of inertia are the principal moments of inertia. It now be-
comes plausible why 6 numbers are needed to characterize the iner-
tial behavior of a body: 3 numbers define the directions of the princi-
pal axes of inertia and 3 other numbers define the values of the 3 
principal moments of inertia. 

If a body rotates with constant angular velocity about an axis other 
than a principal axis of inertia, its angular momentum changes con-
stantly. The components of the angular momentum which are per-
pendicular to  change sinusoidally. The corresponding inflow and 
outflow of angular momentum usually occurs through the bearings 
and is easy to observe or measure.
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The body can be decomposed into 
many dumbbells.
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The body is centrally symmetric 
with respect to three axes.

Fig. 12.8 

The dumbbell rotates around an 
axis that is not perpendicular to the 
line connecting the mass points.
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12.6 The decomposition of angular momentum  
        – spin and orbital angular momentum
We show this decomposition for a simple case: for a system of 4 
mass points, Fig. 12.10. The entire system A is decomposed into 
two spatially separated systems a and b.


 


We ask for the relation between the angular momentum  of the 
entire system and the angular momentums  and  of the subsys-
tems. We first specify , and  separately:


 

 

 

Here  is the momentum of mass point i in the center of mass 
frame of system x, Fig. 12.11. A somewhat tedious calculation yields 
a simple and obvious result.


 

With 


we get	

 
We use 


and the corresponding relations for mass points 2 to 4, and we re-
arrange:


 

With (center of mass momen-
tums of systems a and b), and with  and 

 (definition of the centers of mass of Sa and Sb) we 
get


The last 4 summands are just equal to . We thus obtain


Thus, the total angular momentum of system A is equal to the sum 
of the angular momentums of the subsystems a and b plus the an-
gular momentum of a third system a-b. a-b is the system which 
is created when the mass of system a is united in the center of mass 
Sa and that of system b in Sb. So we have decomposed A into the 
three subsystems a, b and a-b. 

Such a decomposition is often made when a and b are rigid bodies, 
but also with the atom, where for example a is an electron and b is 
the atomic nucleus. In these cases one calls and the intrinsic 
angular momentum or spin of system a and b, respectively.

If one of the systems a and b has a much larger mass than the oth-
er, e.g. mb ≫ ma, the distance  of the center of mass Sb from 
the total center of mass SA is much smaller than . If we place 
the origin of the position vectors in SA, in the sum


the contribution of system b is much smaller than that of system a.

Unfortunately, it has therefore become customary to call  the or-
bital angular momentum of system a in this case.

Fig. 12.10 

The system A is decomposed into 
subsystems a and b.
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12.7 Angular momentum and energy

Angular momentum current and energy current
An energy current can flow through a shaft. For an energy current to 
flow, it is necessary that


• the shaft is rotating, i.e. ;

• an angular momentum current is flowing, i.e. .


The energy current strength P is therefore a function of  and . 
We ask for the relation . Let a momentum current flow 
through each of the two ropes in Fig. 12.12.


 

The force vectors are equal and opposite to each other. So the force 
in both ropes together is zero. But there is an angular momentum 
current of the strength 


 .
The energy current flowing through both ropes together to the wheel 
has a strength of


 .
With  we get


.

According to the rules of vector calculus we obtain


and with 
(12.3) 

Energy transmission by means of shafts

In Fig. 12.13, the angular momentum flows in a closed circuit be-
tween the energy source (turbine) and the energy receiver (genera-
tor): one part of its path is through the shaft, the other through the 
machine housings and the foundations. The energy accompanies 
the angular momentum only on a part of its path: only through the 
conductors for which .


 

Energy storage in a flywheel
A rotating flywheel has more energy than one at rest. To calculate 
this energy difference, we charge it with energy and with angular 
momentum. Thereby, an energy current and an angular momentum 
current flow into the flywheel. The currents are related to each other 
via equation (12.3). We apply the balance equations of energy and 
angular momentum to the flywheel:


So we get


or


and with 

or
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Both energy and momentum flow 
through each of the two ropes.
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Energy transfer through a shaft. 
Energy as well as angular momen-
tum are flowing through the shaft.
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12.8 Parallel axis theorem

Let a body a of mass m rotate about an axis A fixed to the earth, Fig. 
12.14. Suppose that the following is known:


• the angular velocity ω;

• the moment of inertia J of the body. 


How much angular momentum and how much energy contains

• the body a;

• the system body-earth?


Since the earth is rigid and heavy compared to the rotating body, we 
can imagine it to be replaced by a body b of infinite mass at the po-
sition of the axis of rotation, Fig. 12.15.


 


We now decompose the total system into subsystems as shown in 
Table 12.2. The total angular momentum L and the total kinetic en-
ergy Ekin are the sums of the corresponding values of the subsys-
tems. 


We call 


the “moment of inertia of body a with respect to the axis of rotation 
A”. The relation between J and JA is called parallel axis theorem. In 
fact, JA is the sum of the moments of inertia of body a and the sys-
tem a-b.

Fig. 12.14 

Body a rotates around axis A.

a

A

ω

Fig. 12.15

The earth was replaced by an in-
finitely heavy body b at the location 
of the axis of rotation.

b

ra

center of  mass of a

L =ωJ +ωmra2 =ω(J +mra2 ) =ωJA

Ekin =
1
2
(J +mra2 )ω 2 = JA

2
ω 2

JA = J +mra2

Table 12.2

subsystem angular  
velocity

moment  
of inertia

angular  
momentum

kinetic  
energy

body a ω J Jω

body b 0 not relevant 0 0

system a-b of the centers of 
mass of a and b

ω 1
2
mra2ω 2

J
2
ω 2

ωmra2mra2
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12.9 The analogy between electromagnetism,  
        translational mechanics and rotational  
        mechanics
The analogy is shown in table 12.3.  It is more far-reaching than this 
table would suggest. In particular, a dualism exists also within rota-
tional mechanics. Moreover, one could have introduced a second 
column referring to electricity, with the electric dipole moment at the 
top, the analog to the “momentum moment” . However, this col-
umn would be less interesting, because the electric dipole moment, 
in contrast to the angular momentum, is not a conserved quantity.


Let us consider two examples of the analogy which we need in the 
next section, Figs. 12.16 and 12.17. In the systems of Fig. 12.16, the 
substance-like quantity X (Q or  or ) oscillates back and forth be-
tween system 1 and system 2.


 

In the systems of Fig. 12.17, X flows from the system where the in-
tensive quantity ξ has the larger value into the system where ξ has 
the smaller value. The current stops flowing when the value of the 
intensive quantity has become equal in both systems. This state is 
called equilibrium with respect to the current of magnitude X.


!
L

Table 12.3

electromagnetism translational mechanics rotational mechanics
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The substance-like quantity (Q or 

 or ) flows back and forth be-
tween subsystems 1 and 2.
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12.10 Appropriate decompositions into  
         subsystems; the tides; spin-orbit coupling
We return to Section 12.6. One can often decompose a system into 
subsystems in different ways. The total angular momentum is in any 
case equal to the sum of the angular momentums of the subsys-
tems. Sometimes angular momentum flows from one subsystem into 
another (in technical jargon: the subsystems are “coupled” to each 
other). Two extreme cases can be distinguished.

The angular momentum current between two subsystems can be 
dissipative. In this case, it flows until the ω-values of the two subsys-
tems have become equal. In this case, there is equilibrium with re-
spect to the angular momentum current or “rotational equilibrium”. 
An example of this is the angular momentum current flowing from 
the system “earth” into the system formed by the centers of mass of 
earth and moon. Such a current comes about because of the tides. 
(The systems moon and moon-earth are already in equilibrium, they 
already have the same angular velocity).

The angular momentum current between the subsystems can also 
be non-dissipative. Then it flows constantly back and forth between 
the subsystems. An example for this are the atoms. In the hydrogen 
atom, for example, angular momentum constantly flows back and 
forth between the subsystem electron and the subsystem formed by 
the centers of mass of the electron and the nucleus. This back and 
forth flow of angular momentum is called spin-orbit coupling.

Atoms with many electrons can be divided into subsystems in many 
ways. It is useful to do this in such a way that strong angular mo-
mentum currents occur only within the subsystems, but not between 
one subsystem and another. The angular momentum of each of the 
subsystems chosen in this way is then almost constant.
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12.11 Torque equilibrium
We have seen in Chapter 4 how the junction rule for momentum cur-
rents can be used to solve a certain types of static problems. Fig. 
12.18 shows a problem that cannot be solved in this way. The mass 
of the load and the geometry of the arrangement are given. The 
forces on the two supports P and Q are looked for. 


Since the three force vectors occurring in the problem are parallel, 
the decomposition of the weight force  into the forces on the sup-
ports is not unique. The lower drawing shows two of the infinitely 
many possibilities. The problem can be solved, however, if for the 
beam, in addition to the momentum balance


the angular momentum balance for the beam is established:


We place the origin of the position vectors  in such a way that the 
calculation is as simple as possible. We place it in the point Q. Thus, 
the  are perpendicular to the force vectors and the vector products 
become products of the magnitudes of the vectors. Furthermore, the 
term  is omitted since . So there remains


–aFP + bFW = 0

With FW = – mg  and  FP + FQ + FW = 0  we get


Fig. 12.18 

The decomposition of  into two 
parallel forces is not unambiguous.
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13. Stress – momentum current density

We consider a piece of matter clamped between the jaws of a screw 
clamp so that a force acts in the x direction, Fig. 13.1. We place a 
vertical cross sectional area A anywhere through the piece of matter. 
The part on the left of the sectional area now exerts a force on the 
part on the right, or in other words, a momentum current flows 
through the cutting area.


 

Often it is convenient to describe this situation locally. For this pur-
pose one uses the quotient


This quantity is called mechanical stress or stress for short or mo-
mentum current density. (A current per area is always called current 
density.) The quantity describes the local stress state of the matter. If 
σ is greater than zero at a point, a compressive stress prevails 
there, if σ is smaller than zero, there is tensile stress.

However, the stress state of a piece of matter is not yet unambigu-
ously described by the specification of a single value of the stress. 
Independently of the force in the x direction considered first, there 
can also be a force in the y and in the z direction, Fig. 13.2. Matter 
can therefore be under three different stresses in three mutually 
perpendicular directions. In order to describe the local stress state 
completely, one must therefore specify:


• the direction of a right-angled tripod in which the stress compo-
nents are independent of each other;


• the σ values belonging to the three independent directions.


When discussing the moment of inertia, we had learned that a phys-
ical quantity which can be described in this way is a tensor. Thus, 
also mechanical stress is a tensor.  By the way, the name “tensor” 
comes from this physical realization.

While the inertia tensor is associated with a whole body, the stress 
tensor is a local quantity, it refers to a single point. Its components 
can have different values at each point of a system.

Fig. 13.1 

The clamped body is under com-
pressive stress in the x direction.x

σ = F
A

Fig. 13.2 

The clamped body is under differ-
ent compressive stresses in the x 
and y directions.

x

y
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14.1 Fields and distributions

Fields are physical systems. There are several different kinds of 
fields. We consider here only the electromagnetic field and the gravi-
tational field. So far, we have known the following properties of 
fields:


• in fields momentum currents are flowing (fields transmit forces);

• fields contain energy;

• in fields energy currents are flowing (however, we have ob-

served these only as long as a field is changing).

So far a field was for us something similar to a spring in black box, 
from which only two “hooks” peek out: electric charges magnetic 
poles or masses. We had noticed the existence of the fields only by 
balancing: “Here ends the visible conductor of a momentum current, 
so here must begin an invisible conductor through which the mo-
mentum can continue to flow.” We now want to look into the box and 
answer different questions:

• How does the strength of the momentum current from one “hook” 

to the other, i.e. from one mass to another or from one charge to 
the other, depend on the values of the masses or charges and on 
their distances?


• What is the momentum current distribution within the field, what 
path do the momentum currents take in the field?


• How is the energy distributed in the field?

The air above the earth’s surface has different temperatures T, dif-
ferent pressures p, different mass and entropy densities ρm and ρS, 
and different chemical compositions at different positions. One can 
assign a T, p, ρm and ρS, value to each position, as well as concen-
tration values of the different substances contained in the air.

It is said that the set of all T values T(x,y,z) forms a temperature 
field, that of the p values p p(x,y,z) a pressure field and so on. The 
word field is used here in a different meaning than we had explained 
above. To distinguish the two meanings we will avoid the term “field” 
in this second sense. Instead of temperature field we say tempera-
ture distribution, instead of pressure field we say pressure distribu-
tion, and if the quantity is the field strength, we speak of the field 
strength distribution.

We will see that a physical field can usually be described by such 
distributions. If the local physical quantities we use to describe the 
field have the same value at all points in space, the field is called 
homogeneous. The situation is the same as if we have air in a con-
tainer and T, p, ρ, etc. have the same value everywhere in the con-
tainer. Then it is enough to give a single T value, p value, etc. to 
completely describe the state of the air.
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14.2 The physical quantity field strength
We consider an arbitrary distribution of small bodies B1, B2, B3,… 
with masses m1, m2, m3, …. We place another body B0 of mass m0 
at a position  and find that a force is exerted on B0, i.e. that a mo-
mentum current flows through the field to this body, Fig. 14.1.


We now double the mass of B0 to 2m0 and find that the force on B0 
also doubles. It is as if we had simply placed two bodies with mass-
es m0 next to each other. The force of the field on the first one does 
not seem to disturb the force of the field on the second one. We 
conclude that  is proportional to m:


(14.1)

The vectorial factor of proportionality  is independent of m. It char-
acterizes the field which the bodies B1, B2, B3,… generate at the 
place where body B0 is located. We call it the strength of the gravita-
tional field of the masses m1, m2, …mn. Note that   is the 
strength of the field in the state where body B0 is not yet at the posi-
tion .
All this applies analogously to static electric fields: The force exerted 
by an electric field on a small body with charge Q is proportional to 
Q. The proportionality factor  is called the strength of the electric 
field of the other charges, i.e. all charges except the “point charge” 
under consideration:
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Fig. 14.1 

If the mass is doubled from m0 to 2m0, the force on the body with m0 is also doubled.
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14.3 Newton’s law of gravitation – Coulomb’s law

Newton’s law of gravitation (1687)
The position of two mass points m1 and m2 is given by the position 
vectors  and , Fig. 14.2.


 

Newton showed that the force  exerted by the mass point m1 on 
the mass point m2 is given by


Here is


a universal constant, the gravitational constant, and  is the 
distance vector between m1 and m2. From this, one obtains the field 
strength  of the field of m1 alone:


If we consider m1 and the corresponding field alone, we can omit the 
index 1. We thus obtain the field strength distribution of the field of a 
mass point of mass m:


Thus, a vector  is assigned to each point of the field. The field 
strength vector arrows point to the mass point m, Fig. 14.3.


Coulomb’s laws (1785)
One hundred years after the publication of the law of gravitation, 
Coulomb showed that a similar relation holds for the force  exert-
ed by a point charge Q1 on a point charge Q2, and exerted by a 
(point) magnetic pole of pole charge Qm1 on one of charge Qm2. We 
start with the law for the electrostatic forces:


Here


is the electric constant 

For the electric field strength  of the field of Q1 alone we get


or if we omit the index 1


If the charge is positive, the field strength vectors point away from 
the charge. If it is negative, they point towards the charge.

The corresponding magnetic laws are


and


where


is the magnetic constant.
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The field strength arrows point to 
the mass point m.
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14.4 Field line pictures – divergence-free fields

A particularly practical way to represent field strength distributions is 
the field line diagram. Instead of the field strength arrows one draws 
continuous lines, in such a way that the field strength vector arrows 
are tangents to the lines. In the case of the field of a mass point m0, 
the field lines are straight lines running radially outward from m0, as 
shown in Fig. 14.4.


 

In this figure, however, another agreement has not yet been taken 
into account: The density of the lines, i.e. the number of lines Z per 
area A perpendicular to the lines, is chosen to be proportional to the 
field strength:


Let us calculate how the number of lines depends on the distance r 
from the center. We calculate the number Z(r) of lines that pierce a 
spherical surface with radius r.


The number of lines is therefore independent of r. Each spherical 
surface is pierced by the same number of lines. This means that the 
field lines are continuous: They run from the mass point radially 
outwards. Now we assign a direction to each field line: the same di-
rection as the field strength vectors which are tangential to the line. 
So the field lines come from outside and run radially towards the 
mass point, Fig. 14.5.


This statement is much more general than it seems from our der-
ivation. Actually it holds true:

The field lines of static gravitational fields end on masses.

At places of the field, where the mass density is zero, no field lines 
begin or end. One also says: The field is divergence-free at 
places with . Mathematically this fact is expressed as fol-
lows


Thus, the field lines of the gravitational field have a property similar 
to that of the streamlines of a water flow. They suggest that some-
thing is flowing. But in fact they are no streamlines. In particular they 
represent neither the streamlines of the momentum nor the stream-
lines of the energy.

Everything said in this section applies mutatis mutandis to the elec-
tric field. In particular:

The electric field lines start at positive charges and end at negative 
charges.

Fig. 14.4 

The vector arrows have been re-
placed by lines to which they are 
tangents.
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14. Static fields

14.5 Superposition of field strength distributions

The strength of the field in the vicinity of a mass point m0 is 


(14.2)


If the mass of the mass point is doubled from m0 to 2m0, the field 
strength is doubled at each position . But doubling the mass is the 
same as if one had put 2 mass points of mass m0 at the same place. 
The strength of the field associated with the two mass points is 
therefore equal to the sum of the two field strengths, Fig. 14.6.


Experience tells us that this is also true in a much more general 
way: the strength of the field at a point P of two mass points located 
at arbitrary positions is equal to the vector sum of the strengths of 
the fields that each mass point would produce at point P if it were 
present alone, Fig. 14.7.


Therefore, one can construct the gravitational field strength of a 
mass distribution from the field strengths belonging to the individual 
masses. The analogous is valid for the electric field strength.

Attention: From the fact that the field strengths behave additively, it 
does not follow that all other quantities of the field also behave addi-
tively. In particular, the substance-like quantities of the fields do not 
behave additively.

Let us again look at the relationship


We apply it to the body 0 in Figure 14.8.


 is the strength of the field, which the bodies 1 to 4 create at the 
position . It is the strength which the gravitational field would have 
there if the body 0 were not present.  is therefore not the 
strength of the actually existing field. The field that is actually 
present is quite different because of the presence of body 0. Figures 
14.9a and 14.9b show this for the example where  originates 
from a single mass point.


Fig. 14.9a shows the field line diagram of the field whose field 
strength must be substituted into  if one wants to calculate 
the force  which mass point m1 exerts on mass point m0. Fig. 
14.9b shows the field line diagram of the actually existing field.

The mass in  is often called test mass, the charge in

 correspondingly test charge, because one likes to imagine 
that one uses this mass or charge only to measure the field strength 
which would be present without it. Thus one takes it out again after 
the measurement, so that now the field strength actually has the 
value which one has determined with the help of the test mass or 
test charge.
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The strength of the field produced 
by 2m0 at any point is twice that of 
the field produced by m0.m0
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The strength of the field of m1 and 
m2 is equal to the vector sum of the 
field strengths of the fields of m1 
and m2 separately.
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Applying the relation  to 
body 0,  is the strength of the 
field of bodies 1 to 4.
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(a) The field strength distribution to be substituted into . (b) The field strength distribu-
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14. Static fields

14.6 Examples of field strength distributions

(a) The field strength distribution of an infinitely extended plate ca-
pacitor
The field lines of a uniformly electrically charged plate run perpen-
dicular to the plate to both sides for reasons of symmetry, Fig. 
14.10a and 14.10b. The field strength in a plate capacitor is ob-
tained by adding the field strength of a positively charged plate and 
a negatively charged plate offset from the first, Fig. 14.10c. The re-
sulting field has zero field strength everywhere outside the plates. 
Between them it is homogeneous. 


In the case of two similarly charged plates or an arrangement of two 
flat parallel mass plates, the space between the plates is field-free, 
the field strength is zero here. Outside, the field is homogeneous, 
Fig. 14.11.


 


(b) The field strength distribution of the field of two point charges 
and of two mass points
The picture is obtained from that of the two separate point charges 
or masses by graphical addition of the field strength vectors. Fig. 
14.12 shows the field of two point charges of the same magnitude 
but different sign.


Fig. 14.13 shows the field strength distribution of two point charges 
of the same magnitude and the same sign. It is identical to that of 
two mass points of the same mass.


 


c) The field strength distribution of the field of a spherically symmet-
rical charge or mass distribution
For reasons of symmetry, the field lines must run radially outwards, 
Fig. 14.14. We place a spherical shell around the center in our mind, 
so that there are no sources (charges or masses) outside. The field 
line density here is determined by the total charge (resp. mass) in-
side the spherical surface. The field strength is therefore the same 
as if the whole charge resp. mass would be concentrated in the cen-
ter of the sphere.


From this follows e.g. that the field strength of the gravitational field 
at the earth’s surface is the same, as if the whole mass of the earth 
would be concentrated in the earth’s center. Thus it holds equation 
(14.2):


where for m0 the mass and for r the radius of the earth is to be in-
serted. With m0 = 5.977 · 1024 kg and r = 6.371 · 106 m we get


Substituting this value into equation (14.1), we obtain the weight at 
the earth’s surface, compare section 4.4.


(d) The field strength distribution for a source distribution of the 
shape of a spherical shell
Outside of r0 the field strength is the same as if the sources were 
concentrated in the center of the sphere. Inside the spherical shell, 
the field lines could only run radially for reasons of symmetry. If they 
would run like this, there would have to be a source in the center, 
which is not the case. Consequently, the field strength is zero 
everywhere inside the sphere, Fig. 14.15.


If the electric charge is homogeneously distributed on a very thin 
spherical shell of radius r0, the charge per area is


Since the field strength just outside the spherical surface is


we get


This is a local statement about a point of the surface of the charged 
sphere. It is always valid if the field lines run away from a charged 
surface perpendicularly in only one direction.

In an analogous way we calculate the relation between the mass per 
area m/A and the field strength . With


and


we obtain


Fig. 14.10 

The field inside the capacitor (c) 
results from the superposition of 
the fields of the plates (a and b).a
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The field between two similarly 
charged plates or between two 
mass plates (c) results from the 
superposition of the fields of the 
plates (a and b).
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field lines of the field of two point 

charges of the same magnitude 
and opposite sign.
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14. Static fields

14.7 Mechanical stress in static fields

We consider the charge of plate 2 in Fig. 14.16 as a test charge in 
the field of plate 1.


 

Since the validity of the equation  is limited to one point, 
we decompose plate 2 into many small segments of equal size, 
each carrying the charge Q2i. Its total charge is


On each of these segments Q2i Plate 1 exerts the force


Since  has the same value at all the locations of all the charges 
Q2i, and all Q2i are equal to each other, the total force  on plate 2 
becomes


Because of the homogeneity of the field of plate 1, this formula is the 
same as if Q2 were a point charge.

If  is the field strength in the complete capacitor, we get


And thus


According to section 14.7 (d) it is 


since to the right of plate 2 the field strength is zero. We therefore 
obtain


But this is not only the force that plate 1 exerts on plate 2. It is also 
the force that plate 1 exerts on the field immediately in front of plate 
1, and it is the force that the field immediately in front of plate 2 ex-
erts on plate 2, and it is also the force that the left half of the field 
exerts on the right half. In momentum current terms,  is the mag-
nitude of the momentum current flowing from plate 1 to plate 2. It 
doesn’t matter, of course, whether one considers the current at the 
location of plate 1 or plate 2, or anywhere in between: It has the 
same strength everywhere, Fig. 14.17.


The fact that a momentum current flows through the field or that one 
part of the field exerts a force on another part is equivalent to the 
field itself being under mechanical tension. Since one part of the 
field pulls on the other, it is a tensile stress. The mechanical stress 
σx in the x-direction is obtained by dividing the force by the area:


Therefore, there is tensile stress within the capacitor in the direction 
of the field lines, regardless of whether the left plate is positive and 
the right plate negative or vice versa. A small section of an electric 
field does not show by which arrangement the field is generated. It is 
therefore generally valid:


Within the electric field, there is tensile stress in the direction of 
the field lines.


We now consider the electric field of two equally charged plates, as 
well as the gravitational field of two parallel mass plates, Figs. 
14.18a and 14.18b.


We had already found the field lines in section 14.7. The space be-
tween the plates is field-free. Thus, no momentum current flows 
here. In the figure the momentum is conducted between the plates 
by springs. In the electric case, the springs and the field outside the 
plates are under tension. In the gravitational field, the springs are 
under compressive stress. Therefore, there must be compressive 
stress in the field as well:


Within the gravitational field, there is compressive stress in the 
direction of the field lines.


We calculate the value of the mechanical stress σx in the gravita-
tional field like that of σx in the electric field.


If we denote the field strength outside the pair of plates by , then


With this and with


we get


and


Therefore, equally charged bodies are not pushed away from each 
other by the field, but pulled away from one another. Likewise, two 
masses, for example the earth and the moon, are not pulled towards 
each other by the field, but are pushed towards each other from the 
outside.

In the electric field as well as in the gravitational field there is also a 
mechanical stress perpendicular to the field lines: in the electric field 
a compressive stress and in the gravitational field a tensile stress. It 
is easy to understand that in the electric field of a plate capacitor 
there is a compressive stress transverse to the field lines. The plates 
of the capacitor in Fig. 14.19 are under tensile stress in the y-direc-
tion. Thus, a y-momentum current flows within the plates from top to 
bottom. It can only flow back through the field. In the field, therefore, 
it flows from bottom to top. This means that there is a compressive 
stress in the field. The tensile and compressive stresses in electro-
magnetic fields were discovered by Faraday around 1840.


We give the mechanical stresses transverse to the field lines without 
proof. If the field strength vector is in the x-direction, then:


Fig. 14.16 

The charge of plate 2 is considered 
as a test charge in the field of plate 
1.
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The momentum current flows 
through the field from one plate to 
the other. The field is under tensile 
stress in the x-direction.
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(a) The like charged plates are pulled away from each other by the electric field. (b) The mass 
plates are pushed towards each other by the gravitational field.
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14. Static fields

14.8 The energy distribution in the static electric  
        field and in the static gravitational field

If one plate of a charged capacitor is moved against the other, as 
shown in Fig. 14.20, energy flows into the field of the capacitor ac-
cording to


P = v · F


With P = dE/dt (for the field between the plates) and v = dx/dt we get

dE = Fdx

The total energy that is within the capacitor when the plate spacing 
is x0 is obtained by integrating from x = 0 to x = x0:


With


(where A is the area of a capacitor plate) results in


The product of area and plate spacing is equal to the volume of the 
field. Therefore, the energy density ρE = E/V becomes:


To calculate the energy density of the gravitational field, we consider 
two parallel mass plates. The calculation is analogous to the previ-
ous one:


With 


we obtain for the amount of energy flowing to the plates


However, this amount of energy is not accompanied by the genera-
tion of field, but by the annihilation of the field between the plates. 
We can take this fact into account by saying that the energy density 
in the field is negative:


So one can imagine that energy is needed to “build up” gravitational 
field free space.

Fig. 14.20 
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14.9 The gravitational potential

The field strength distribution for a mass point is given by equation 
(14.2). The same equation is valid for any other spherically symmet-
ric mass distributions, but only outside the region where the mass 
distribution is located. 

We consider the field of a spherically symmetric mass distribution of 
total mass m0. We bring a small body of mass m to the location . 
Let the origin of the position vectors lie in the center of symmetry O 
of the mass distribution m0. We now move the body of mass m to 
another position , Fig. 14.21. If this position is farther away from O 
than , energy must be supplied for the displacement. This energy 
is transferred into the gravitational field common to both masses m0 
and m.


We calculate the amount of energy to be supplied:


(14.3)


The greater the distance to which m is brought, the more energy is 
required.

We now divide this energy by the mass m of the body we are mov-
ing. This energy per mass


is independent of m. It only depends on the mass m0 of the mass 
distribution. It is therefore a function of , describing the field of m0 
alone. We call the quantity


the gravitational potential.

Using (14.3), we can write the potential of the spherically symmetric 
mass distribution:


This equation defines the gravitational potential only up to an arbi-
trary additive constant. This means that the zero point of V can be 
chosen arbitrarily. One often defines


With that we get


The description of a field using the potential distribution  is 
equivalent to the description using the field strength distribution 

. One can be calculated from the other. We have shown the 
connection between the two by the example of the field of the spher-
ically symmetric mass distribution. In general we  have


The condition defines a surface of constant potential. 
For different values Vi different equipotential surfaces result. The 
equipotential surfaces of the field of a spherically symmetric mass 
distribution are spherical surfaces, Fig. 14.22.


The equipotential surfaces of a field are perpendicular to the field 
lines at every point. The graphical representation of the equipotential 
surfaces is therefore just as suggestive as that of the field lines.

Fig. 14.23 shows field lines and equipotential surfaces of two spher-
ically symmetric bodies of different mass.
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14. 10 The two-body problem

We ask for the motion of two bodies attached to each other by a 
field, Fig. 14.24. 


During the movement, momentum currents flow through the field be-
tween the two bodies. The field cannot absorb any momentum. Its 
momentum therefore does not change. 

In addition, energy currents flow during the movement. Since the 
field can store energy, the energy of the field temporarily increases 
at the expense of the energy of the bodies and vice versa, Fig. 
14.25a.


There is an important special case: the mass of one body is much 
larger than that of the other, i.e. m1>>m2. 

Examples:
• sun – earth: msun >> mearth

• earth – moon: mearth >> mmoon

• deflection coils of a cathode-ray tube – electron: mtube >> melectron

• atomic nucleus – electron: mnucleus >> melectron

• earth – apple: mearth >> mapple

In these cases, the energy practically only flows back and forth be-
tween the field and the light body, Fig. 14. 25b. Moreover, the mo-
tion, i.e., the velocity, of the heavy against that of the light is negligi-
ble. Why?

We consider the energy of the bodies in the center of mass system. 
From


follows 


If momentum flows from one body to the other, it is . 
Furthermore, . This gives


dE1 and dE2 have the same sign: If E1 increases, then E2 also in-
creases. The energies dE1 and dE2 both come from the field. But 
because of m1 >> m2c we have dE1 << dE2, i.e. dE1 is negligible 
against dE2. Thus, the energy practically only flows back and forth 
between the field and the light body 2. Because of


 
with m1 >> m2 also  is negligible against . So in the center of 
mass system velocity and kinetic energy of the heavy body are prac-
tically zero.

Since body 1 does not move, the contribution of body 1 to the field is 
constant in time. Therefore, it is also said, “The field of body 1 is 
constant in time.” Obviously, here by “field” is meant the field 
strength distribution .

Fig. 14.24 

Two-body problem

Fig. 14.25 

Energy and momentum flow in the system body-field-body.  
(a) The masses of the two bodies are of the same order of magnitude.  
(b) The mass of one body is much larger than that of the other.
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14. Static fields

14.11 The planetary motion
We apply the angular momentum conservation law to a two-body 
system. Let us imagine that one body is the sun (index ⊙), the other 
one a planet (index P).


(14.4)


Here  and  are the momentums in the center of mass 
system. So we have

Furthermore, let the zero point of the spatial coordinates  and  
be the center of mass, so that the following applies


or


Substituting into equation (14.4) results in


Therefore


With  we get


or


Now  is the area “swept” by the position vector  in the  
time interval dt. Therefore, because of , the area swept per 
time is constant in time. For the planet this means that its tangential 
velocity is small on that part of its orbit which is far from the sun, on 
the part which is close to the sun it is large, Fig. 14.26.


Kepler discovered this fact before the law of gravitation or the law of 
angular momentum conservation were known. It is called Kepler’s 
second law.

The trajectories of a planet in the field of the sun or more generally, 
of a body in a 1/r 2- field can be calculated analytically. But the calcu-
lation is quite tedious. We describe here simply the result: The plan-
et moves on a conic section (ellipse, hyperbola, parabola, circle, 
straight line), with the sun in one of the two foci of the conic section. 
This was also discovered by Kepler (more precisely: that planets 
move on elliptical orbits). This is Kepler’s first law.

The orbits of the planets of the sun are ellipses, whose eccentricity 
(with the exception of Mercury and Pluto) is very small, thus almost 
circular orbits. They lie approximately in a single plane, the revolu-
tion sense of all planets is the same.

For circular orbits in the 1/r 2- field one can easily calculate a relation 
between orbital period and orbital radius. For a planet moving with 
angular velocity ω on a circular orbit with radius r, (see section 4.5) it 
is


This change of momentum is caused by the gravitational force


We thus have


The mass mP of the planet drops out, and we are left with


The expression ω2r 3, and also r 3/T 2 (T = orbital period), has there-
fore the same value for all planets of the sun


This relation is also valid for elliptic orbits, if one uses the great 
semi-axis of the ellipses for r. It was also discovered by Kepler and 
is called Kepler’s third law. 

We still calculate the kinetic energy of a body of mass m in the 1/r 2- 
field of the sun for some special cases.

(a) The body is released from rest at a large distance r0 from the 
sun. It approaches the sun and receives the energy ΔE from the 
gravitational field. Thus, its kinetic energy at the end of its falling mo-
tion is ΔE. According to equation (14.3) it is


If r0 is very large compared to r, then


(b) The body moves on a circular orbit with the radius r. In this case 
 writes


From this follows


Thus, the smaller the circular orbit, the greater the kinetic energy. 
However, it is always half as large as the kinetic energy it would 
have if it had fallen down freely from infinity to this radius. 

If the kinetic energy of the body at r = ∞ is greater than zero, it can-
not move on a closed trajectory.
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14.12 Weightlessness

That the person in Fig. 14.27 feels heavy, means that he feels his 
own weight. For example, in the legs he feels the weight of his head, 
upper body and arms.  So the person feels the momentum currents 
flowing through his body.


Fig. 14.28 shows a model person consisting of 2 blocks. Through 
the interface between the upper and lower block flows the momen-
tum which has entered the upper block from the gravitational field. 
Through the boundary surface between the lower block and the 
earth additionally flows the momentum which has entered the lower 
block from the field.


To get rid of the feeling of heaviness, it is necessary to do something 
so that the momentum currents within the body disappear. There are 
two methods for this. 

The one is to let no momentum flow in from the gravitational field. To 
achieve this, one must go to a place where there is no gravitational 
field of any planet or star. 

The other method is much easier to realize: One simply prevents the 
outflow of the momentum that enters the various parts of the body 
from the gravitational field. For this it is enough to cut off the connec-
tion with the earth. In other words, one lets oneself fall freely. Fig. 
14.29 shows the situation for our model person. Into each of the two 
blocks, and at each place of each block, momentum enters from the 
gravitational field. However, this momentum does not flow around 
within the matter of the blocks. In particular, it does not flow from the 
upper into the lower block. Therefore, the lower one no longer feels 
the weight of the upper one.


While the blocks standing on the ground are under compressive 
stress, the free-falling blocks are stress-free. 

By the way, the general theory of relativity shows that there is no dif-
ference in principle between the two realizations of weightlessness.

Fig. 14.27 

The person feels heavy because 
momentum currents are flowing 
through him.

Fig. 14.28 

Model person

Fig. 14.29 

The momentum coming from the 
gravitational field can no longer 
flow away.
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14.13 Tidal forces

We make a thought experiment. A kind of dumbbell, consisting of 
two bodies A and B of the same mass m and a light connecting rod, 
is in free fall in the inhomogeneous gravitational field, Fig. 14.30. 
Body A is located at a place of higher gravitational field strength than 
B. Therefore, a stronger momentum current flows from the gravita-
tional field into A than into B. 


The corresponding current strengths are


Since A and B are linked, the momentums of A and B can only 
change at the same rate:


In order for the momentum changes of A and B to be equal, momen-
tum must constantly flow through the rod from A to B. We call the 
corresponding current FT. The total momentum current flowing into 
body A must be just as strong as that flowing into B. Therefore the 
following must be valid:


FA = FB.

With


we get


From this we can calculate the strength of the momentum current in 
the rod:


Since dg/dr < 0, FT is positive: positive momentum flows from A to B. 
(The positive momentum direction is towards the earth.) This means 
that the rod is under tensile stress. A exerts a force on B via the rod. 
This force is called a tidal force, because it is also responsible for 
the tides on earth. 

The tides are caused mainly by the inhomogeneity of the gravita-
tional field of the moon in the region of space occupied by the earth. 
(Only to the smaller part the sun is also involved in the occurrence of 
the tides). So the earth is under tension in the direction of the con-
necting straight line to the moon. The water on the earth’s surface 
can cede to this tension and forms “flood mountains” on opposite 
sides of the earth, Fig. 14.31.


 

As the earth rotates, the flood mountains move relative to the earth’s 
surface. This movement is associated with friction. Therefore, the 
inherent rotation of the earth is slowed down by the tides. Where 
does the angular momentum go?

Fig. 14.30 

From the gravitational field, a 
stronger momentum current flows 
into body A than into body B.
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The earth rotates beneath the flood 
mountains.

earth

moon
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15.1 Preliminary remarks
The previous chapters covered Newtonian mechanics. It is valid as 
long as all occurring velocities are small compared to 300 000 km/s. 
Relativistic mechanics abandons this restriction. One can develop 
relativistic mechanics from Newtonian mechanics by a single addi-
tional assumption. Historically, the development went like this: In an 
experiment (Michelson-Morley) it had been found that the velocity of 
light is independent of the reference frame. Einstein showed with the 
special theory of relativity that the resulting consequences go far be-
yond this special experiment. In particular, the whole Newtonian dy-
namics had to be corrected. The correctness of relativity was con-
firmed in the meantime in many experiments. We do not put at the 
beginning the invariance of the speed of light, but a fact, which has 
resulted historically as a consequence of it.
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15.2 The identity of mass and energy

Newtonian mechanics knows four substance-like quantities, each of 
which satisfies a conservation law: momentum , angular momen-
tum , mass m, and energy E. Relativity now claims that one of 
these quantities is superfluous, because it holds:


E = k · m
where k  = 9.00 · 1016 J/kg is a universal natural constant.

Sometimes it is said that this equation tells us that mass can be 
transformed into energy and likewise energy into mass. However, 
this does not really capture the point. Since k is a universal natural 
constant, the equation tells us that mass and energy are the same 
physical quantity. It says that systems which we have previously as-
sumed to have only energy but no mass, e.g. the electrostatic field, 
also have mass, and it says that systems which Newtonian mechan-
ics assumes to have only mass but no energy, e.g. a body at rest, 
also have energy.

The relation E = k · m also tells us that the properties we have 
known so far of the mass are also properties of the energy:


1. Mass is momentum capacitance. A body is inert, it changes its 
velocity only if momentum is added to it. So also energy is mo-
mentum capacitance, and we have:


 (15.1)


This relation tells us that, for example, the energy in an electrosta-
tic field is inert. But because of the large factor k this effect is not 
easy to measure.

2. Mass is the source of a gravitational field. So also energy, e.g. 
the energy in an electrostatic field, is the source of a gravitational 
field.


Actually, the relation E = k · m also tells us that mass has the proper-
ties which we knew so far from the energy. Thereby we realize that 
up to now we did not know such properties at all. Only now we learn 
which general properties are measured by the energy: Inertia and 
gravity.

Since the energy of a body increases with the velocity, it follows 
from (15.1) that a body becomes more and more inert as the velocity 
increases. It becomes more and more difficult to accelerate it. For v 
→  0, relation (15.1) becomes that of Newtonian mechanics. The 
mass of Newtonian mechanics, which from now on we will denote by 
m0, is thus the smallest value that the quantity m = E/k can assume. 
m0, is called the rest mass and E0 = k · m0 the rest energy or internal 
energy of a system. 

There is a field of physics where the designation of the quantities dif-
fers from those chosen here: particle physics. Here it is an important 
concern to characterize the particles by values which are indepen-
dent of the state of motion: electric charge, spin, leptonic and bary-
onic charge. One such characteristic of a particle species is also the 
rest mass. In particle physics it is simply called mass.  

In Newtonian mechanics, E and m are different quantities. In the 
light of relativity we should say that the energy consists of two parts: 
the internal energy and the remainder. Newtonian mechanics as-
sumed that conservation laws apply separately to both parts. The 
theory of relativity teaches us that the two quantities individually do 
not satisfy a conservation law. There is only one conservation law 
for the sum of both. We call this sum energy.

!
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15.3 The E-p relationship

In the theory of relativity the relation


remains valid. 

With the balance equations for energy and momentum we get:


(15.2)

In Newtonian mechanics, the relationship between energy and mo-
mentum is as follows


Here m0 is the mass and E0 a constant term, whose value Newton-
ian mechanics does not specify. We now derive the relativistic ener-
gy-momentum relation. We substitute relation (15.1) into (15.2)


It follows


and


and further


Thus we have


and


(15.3)


As can be seen, E0 is the energy of the system for . Therefore, 
E0 is the internal energy and thus equal to km0. Fig. 15.1 shows the 
E-p relation for particles of different rest mass.


 

The energy E – E0, which the system has in addition to its internal 
energy, is called kinetic energy


(15.4)


Limiting cases

(a) The system is a body with little momentum, i.e. . With


we obtain


and with E0 = k · m0

(b) The system is light. For light m0 = 0 and E0 = 0. From this follows


(c) The system is a body with a very large momentum, i.e.  
. Thus


The energy only depends on the momentum, but no longer on the 
rest mass. The E-p relation is the same as for light.
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15.4 The v-p relationship

From (15.1) and (15.3) follows


and with

E0 = k · m0


we get


(15.5)


Fig. 15.2. shows the graph of this function.


For increasing momentum, the velocity approaches a limit value.


The absolute value of this velocity is called the terminal speed c. 
Just like k, it is a universal  constant.


Particles whose rest mass is equal to zero, photons for instance, al-
ways move with the velocity c. That is why c is also called the speed 
of light. 

For small values of the momentum, i.e. for


we get the well known relation


or
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Relationship between velocity and 
momentum for two particles of dif-
ferent rest masses
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15.5 Examples

Charged particle in homogeneous electric field
Rest mass of the particle: m0

electric charge of the particle: Q
Strength of the electric field without the particle: 
The energy, momentum and velocity of the particle as a function of 
time are wanted.


The momentum increases linearly with time, as in Newtonian me-
chanics, Fig. 15.3a. It grows without limit.


For large t values, the energy increases linearly with time, Fig. 
15.3b.


For small t, the velocity grows linearly with time. For large t

v approaches c asymptotically, Fig. 15.4c.

Thus, for large values of t, E and p increase linearly with t, while v 
remains constant.


Falling light
We consider a certain amount of light coming out of the lamp at the 
ceiling and moving downwards. Since the light has energy (= mass), 
a momentum current flows into the light from the gravitational field. 
The momentum of the light increases:


dp = Fdt

With F = mg = (E/k)g we get


and with dt = – dz/c

Since gdz is equal to the change dV of the gravitational potential V, 
it follows


With E = cp we obtain the relative energy change dE/E of the light


The energy of the light increases, just like the energy of any other 
falling body or particle. With the light this manifests itself in the in-
crease of the frequency, because energy and frequency ν are con-
nected about


E = Zh ν
(Z = number of photons, h = Planck constant)

On the earth the effect is very weak, but has been measured in the 
laboratory. For dz = 10 m results:


The fact that light coming from places of higher gravitational poten-
tial has a higher frequency at its place of arrival, i.e. at the place of 
lower gravitational potential, has a curious consequence. We can 
imagine that the light at the high gravitational potential is emitted by 
an oscillating system. Let the oscillation time of this system be T = 1/
ν, where ν is the frequency of the light. We can now conceive the 
oscillating system as a clock that emits signals at the time intervals 
T . We call this clock C2. We now place at the place of the lower 
gravitational potential another clock C1, which is constructed in ex-
actly the same way as C2. 

An observer at the low gravitational potential now notices that the 
signals of C2 arrive in shorter time intervals than those of his own 
clock C1. He concludes that time runs faster on the high gravitational 
potential.

Accordingly, an observer at the high gravitational potential will notice 
that the clock C1 runs slower than his own clock C2, so that the time 
at the low gravitational potential runs slower than his own time.


The binding energy

During the reaction of 2 mol of atomic hydrogen to 1 mol of molecu-
lar hydrogen, energy is released, the binding energy. At the same 
temperature, the energy of atomic hydrogen is greater than that of 
molecular hydrogen. Accordingly, 1 mol H2 weighs less than 2 mol 
H. However, this difference in weight is extremely small.

If, however, atomic nuclei react with each other, the binding energy 
per mole is five orders of magnitude greater and can be measured in 
the mass spectrometer. In the reaction


the energy released per mol is


Expressed in units of mass this is


With


we obtain


This mass difference is called mass defect.


The reason for building storage rings

High-energy physics deals with particle reactions that require a high 
amount of energy to take place. A given reaction between particle A 
and particle B takes place only when a minimum amount of energy 
is available, an amount that generally far exceeds the internal ener-
gy of the individual particles.

Since in the reaction between A and B the total momentum and thus 
the kinetic energy in the center of mass system is conserved, it is of 
no use to increase the kinetic energy of the system. Only the energy 
in the center of mass system A-B, i.e. the internal energy of the sys-
tem A-B (see chapter 7), is available for the reaction. (One sees 
here the inappropriateness of the expression rest energy).

In some high-energy experiments, one only increases the energy of 
the particle species A. This is done by “accelerating” them. Particles 
B remain at rest, they form the “target”. For the system A-B this 
means that not only its internal but also its kinetic energy is in-
creased. This kinetic energy is lost for the reaction of A with B. We 
want to calculate what fraction of the energy introduced into A is 
available as internal energy in the center-of-mass system of A-B for 
the reaction. For simplicity, let A and B be particles of the same kind. 
So they have the same internal energy E0.

From equation 15.4 follows


Since particles B are at rest before the reaction, the momentum of A 
before the reaction is equal to the momentum of A-B after the reac-
tion:


According to the law of energy conservation, we have


and

 .	


We enter into the momentum balance equation and resolve for 

Thus, for high energies , the energy available for the 
reaction grows only with the square root of the expended energy 

.

For example, if protons of 30 GeV are made to react with protons at 
rest, only 7 GeV are available for the reaction. Therefore it is better 
to charge both kinds of particles with momentum and energy in such 
a way that the momentum of the system A-B is zero. Then all the 
energy is available for the reaction. 

This is realized by first charging the particles A with energy and mo-
mentum and “parking” them in a storage ring. Then the particles B 
are charged with E and p with the same accelerator and finally 
brought to the reaction with the particles A. 


The light pressure of the sunlight
The energy current density jE of the sunlight on the earth is about 
1 kW/m2 (= solar constant).

With dE = cdp we get


P = cF
and


jE = cσ
Therefore the pressure σ of the sunlight is


 


If all the sunlight falling on the earth were absorbed, this would result 
in a momentum current of about 4.3 · 108 N to the earth. In fact, it is 
more, because the reflected light has momentum of the opposite 
sign than the incoming light.
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Momentum (a), energy (b), and velocity (c) of a charged particle in a homogeneous electric field 
as a function of time.
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15.6 Mass and inertia

In the framework of classical mechanics, we have seen mass being 
a measure of the inertia of a body. The mass had a fixed value and 
accordingly the inertia was a property characterizing the body. This 
changes when we turn to velocities which are no longer small com-
pared to the terminal velocity. 

First let us explain what we mean by inertia. A body is very inert if 
we have to supply it with a great amount of momentum in order for 
its velocity to change by a desired value. We therefore define inertia:


T := dp/dv
So the inertia is the slope of the function p(v). This is just the inverse 
of the function v(p), equation (15.5). We thus get


see Fig. 15.4. Thus, T is given by the slope of the curve, see for ex-
ample the red tangent to the curve. Obviously, this slope is velocity-
dependent. Only at the beginning, in “classical approximation”, the 
slope dp/dv is equal to p/v, and thus equal to the rest mass, see the 
blue tangent.


 
Fig. 15.4. The inertia of a body is given by the slope of the function p(v). It de-

pends on the velocity.


But isn’t it a pity about the beautiful interpretation of mass as a uni-
versal measure of inertia?

A pity perhaps – but why should mass be better off than other physi-
cal quantities? Let us remember:


• When we construct or invent a new theory, we are happy if the 
variables it contains measure simple properties known to us from 
our everyday experience. Most of the time, however, this does 
not quite work. Think of force, for example, or heat. 


• The inertia behaves similar to some electrical quantities. The re-
sistance characterizes an object: a resistor. If somebody says 
that the resistor has a resistance of 10 kΩ, then one is informed. 
However, this is only possible if the current is proportional to the 
voltage. But what if it is not? How do we characterize for exam-
ple a semiconductor diode? In this case it is not enough to give 
one number. One has to give the U-I characteristic curve. The 
same applies to the capacitance. And we are in the same situa-
tion with the inertia. Inertia cannot be described by a single 
number; one needs a characteristic curve, Fig. 15.4.
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