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Preface

Preface
These lecture notes belong to a lecture on experimental physics. 
What is the difference between experimental and theoretical 
physics? Instead of answering the question directly, we will give 
Maxwell the floor. In his famous Treatise on Electricity & Magnetism 
he makes some remarks about two physicists, one of whom, Fara-
day, can be described as a typical experimental physicist, the other, 
Ampère, as a typical theorist:

�  

The script is divided into two parts, A and B. 

Part A could simply be called electricity. It deals with the electric 
charge and its current. The fact that the electric charge can never 
flow alone, that a charge current is always accompanied by currents 
of other physical quantities, plays an important role here. 
The subject of Part B is a single physical system: the electromagnet-
ic field. First, special classes of this system are treated: the electro-
static field and the magnetostatic field. It turns out that the structure 
of the theories of these two fields is identical. Next, the relationship 
between these fields is described, which is regulated by Amperes' 
Law and Faraday's Law (4th and 3rd Maxwell's equations). The 
treatment of the electromagnetic field is closely related to Maxwell’s 
own account of his theory. Consequently, the field strengths E and H 
are convenient tools for expressing other physically interesting 
quantities of the field: energy, energy current, momentum and mo-
mentum current (mechanical stress). All force laws can be derived 
from Maxwell’s expression for the momentum current density. 
Electrodynamics is full of structures and symmetries. The more of 
these structures one knows, the better one understands electrody-
namics. However, beginners will not try to understand all structures 
at the same time. This lecture makes use of the symmetry in which 
the electric field strength E and the magnetic field strength H corre-
spond to one another. It allows an almost blind transformation of 
many laws of electrodynamics into an analogue. Another symmetry, 
which we call dualism, we had already experienced in mechanics: in 
it, electric current and voltage, inductance and capacitance, junc-
tions and meshes, etc. correspond to each other. We meet it again 
in this script. We leave the treatment of a third symmetry, where the 
charge density and the electric current density correspond, to the 
lecture on theoretical physics.
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1. Electric charge and electric current

1.1 Balance equation of the electric charge
Just like momentum p for mechanics, electric charge is characteris-
tic for the science of electricity.
The symbol of the electric charge is Q, the unit of measurement is 
Coulomb (C).
Like p, also Q is a substance-like quantity, i.e.

• the value of the electric charge refers to a region of space;
• there is a charge density ρQ ;
• there is a charge current intensity IQ (= “electric current”);
• there is a charge current density jQ (= “electric current density”).

If there is no risk of confusion, we omit the index Q, and simply write 
ρ, I or j. In technical jargon, the electric current intensity is simply 
called “electric current” or, even shorter, “current”. The unit of mea-
surement of the electric current is the ampere (A).

1 A = 1 C/s.
The electric current is measured with an ammeter. The measuring 
procedure is the same as for any other current measurement:

• Cut the cable in which the current flows;
• connect the newly created ends to the connections of the meter. 

The current now flows through the meter.
Like momentum, electric charge is a conserved quantity. For any 
given region of space applies

(1.1) 

This is the balance equation for the electric charge. It refers to a re-
gion of space, Fig. 1.1. dQ/dt is the rate of change of the electric 
charge within the region, IQ is the electric current through the out-
wardly oriented boundary surface of the area.

(The signs in equation (1.1) are based on a convention. Closed sur-
faces are oriented outwards. In mechanics we had closed surfaces 
oriented inwards.)
In the next sections we will get to know a “local” version of the bal-
ance equation, the so-called continuity equation.
In the circuit of Fig. 1.2 dQ/dt is equal to zero everywhere (in the 
energy sources dE/dt ≠ 0, but dQ/dt = 0). This simplifies equation 
(1.1) to

for any closed region of space for which dQ/dt = 0. Equation (1.2) is 
called the  “Kirchhoff’s junction rule”.

The physical quantity Q can assume positive and negative values. 
Unfortunately, it is sometimes said that there are “two types of elec-
tric charge”, positive and negative. (Are there also 2 types of velocity 
or two types of momentum?)

dQ
dt

+ IQ = 0

dQ/dt

IQ
Fig. 1.1 
The electric charge inside the re-
gion can only change if a current 
flows through the surface of the 
region.

IQ = IQ , i
i
∑ = 0

Fig. 1.2 
The total current through the dotted 
area is zero.+ 2 A – 1,2 A

– 0,5 A
– 0,3 A

A



1. Electric charge and electric current

1.2 Flux of a vector field – current density
A vector field V(r) is given. The flux of the vector field through the 
area S is the integral

(1.3)

One can easily get an idea of this quantity if the vector field is a cur-
rent density field. The flux of a current density field is simply equal to 
the current(= current intensity). In the case of an electric current, the 
following applies:

(1.4)

This equation allows to calculate the current I flowing through the 
area S from the current density distribution j(r).
In Fig.1.3 the same current flows through the surfaces S1 and S2. As 
expected, the integral (1.4) provides the same value for both sur-
faces, because only the component of dA parallel to j contributes to 
the integral.

The calculation of the integral (1.3) in Cartesian coordinates is done 
according to the following formula

Here Syz is the projection of the surface S onto the y-z coordinate 
plane, Szx is the projection onto the z-x plane and Sxy is the projec-
tion onto the x-y plane.
For some currents, one can imagine that the flowing quantity moves 
at a well-defined velocity at every point of the flow field. Thus, the 
water of a river has a definite velocity at every point of the river, and 
we also say that the mass of the water moves at that velocity. There 
are cases where it is reasonable to assign more than one velocity to 
the flowing quantity at a given position. Thus, in the case of an elec-
tric current in a metallic conductor, a distinction is made between the 
velocity of the so-called mobile and immobile charge carriers. (In the 
reference system of the conductor, the velocity of the immobile 
charge carriers is zero). Finally, there are currents in which it is 
pointless to speak of a flow velocity, although the current density is a 
clearly defined quantity.
If a flow velocity v can be defined, there is a simple relationship be-
tween v and the current density:

jX = ρX v
Here ρX is the density of the flowing quantity X and jX is the current 
density.
We explain this relation with the help of Fig. 1.4. The quantity dX = 
ρX Avdt contained in the space region of the volume Adx  = Avdt 
flows through the small area A in time dt. The current is therefore

The magnitude of the current density is jX = IX/A = ρXv. Since the 
current density vector and the flow velocity vector are parallel, the 
following is obtained

(1.5)

V (r)d A
S
∫

I = j (r )d A
S
∫

S1

current density lines

S2

dA1

dA2

Fig. 1.3 
The currents through surfaces S1 
and S2 are equal.

V d A
S
∫∫ = Vx dy dz +

Syz
∫∫ Vy dz dx +

Szx
∫∫ Vz dx dy

Sxy
∫∫

IX = dX
dt

= ρXAv

Fig. 1.4 
In the time interval dt, the quantity 
contained in the region with the 
volume Adx flows through the sur-
face A.

dx
               ! "# $#

A

jX = ρX ⋅v



1. Electric charge and electric current

1.3. The divergence of a vector field – Gauss’s  
       theorem
The following derivation applies to all vector fields. It is particularly 
easy to understand if one imagines the current density field of an 
electric current: j(x,y,z).
The electric current I through the closed surface S in Figure 1.5 is 

We divide the region enclosed by S into two regions with the bound-
ary surfaces S1 and S2. A part of S1 coincides with a part of S2. It is

because the part of I1, which flows through the common surface of 
S1 and S2, compensates the corresponding part of I2. We now fur-
ther divide the space into smaller and smaller sub-spaces and ob-
tain

where Ii is the the current through the surface Si of the i th subspace. 
We call the volume of the i th subspace Vi. For smaller and smaller 
divisions the Ii become smaller and smaller. The quotient Ii/Vi, on the 
other hand, goes against a limit value:

This limit is called the divergence of the field j at the point to which 
the volume has shrunk.

is a measure of how much of the flowing quantity – here the electric 
charge – flows out of or into the region bounded by S; it is a mea-
sure of the “yield” of the flow. Therefore, div j is also called the 
source density of the j field, even if the j does not refer to a flowing 
substance. We now write the sum:

For Vi → 0 the right side becomes

where VS is the volume of the space enclosed by S. Thus
(1.6)

This is Gauss’s theorem. In words: The current through the surface 
of a region of space is equal to the volume integral over the source 
density within the region. If the field j is given in cartesian coordi-
nates, the scalar field div j can easily be calculated. It is

To prove this, we calculate the current I through the walls of a 
parallelepiped with the edge lengths dx, dy and dz (Fig. 1.6). 
Through the two surfaces perpendicular to the z axis flows (Attention 
– orientation of the surfaces outwards):

For the two surfaces perpendicular to the x axis and those 
perpendicular to the y axis, corresponding expressions are obtained 
so that the total current through all 6 surfaces results:

With the equation defining the divergence it follows:

I = j d A
S
!∫∫

Fig. 1.5 
The space enclosed by S is subdi-
vided.

I = I1 + I2 = j d A
S1
!∫∫ + j d A

S2
!∫∫

I = Ii∑ = j d A
Si
!∫∫

i
∑

dI
dV

= lim
Vi→0

1
Vi

j d A
Si
!∫∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= div j

I = j d A
S
!∫∫

I = Ii
i
∑ = Vi

j d A
Si
!∫∫
Vii

∑

div j dV
VS
∫∫∫

j d A
S
!∫∫ = div j dV

VS
∫∫∫

div j = ∂ j x
∂x

+
∂ j y
∂y

+ ∂ j z
∂z

dIz , below −dIz , above = − j z (x ,y ,z )+ ∂ j z
∂x

dx
2

+ ∂ j z
∂y

dy
2

⎡
⎣⎢

⎤
⎦⎥
dxdy

 + j z (x ,y ,z +dz )+ ∂ j z
∂x

dx
2

+ ∂ j z
∂y

dy
2

⎡
⎣⎢

⎤
⎦⎥
dxdy

= − j z (x ,y ,z )+ j z (x ,y ,z )+ ∂ j z
∂z

dz⎡
⎣⎢

⎤
⎦⎥
dxdy = ∂ j z

∂z
dV

Fig. 1.6 
For calculating the current through 
the walls of a parallelepiped

z

x

(x, y, z+dz)

(x, y, z)

y

(x+dx, y, z)

dI = ∂ j x
∂x

+
∂ j y
∂y

+ ∂ j z
∂z

⎡
⎣⎢

⎤
⎦⎥
dV

div j = ∂ j x
∂x

+
∂ j y
∂y

+ ∂ j z
∂z



1. Electric charge and electric current

1.4 The continuity equation for electric charge
The balance equation for the electric charge reads

�

We replace Q by
�

and, with Gauss’s theorem,
�  

by
�

and obtain

�

Since this equation applies to any region of space, we get for the in-
tegrands:

� (1.7)

This is the balance equation in local form. It is also called the conti-
nuity equation. It says: The sources of the current density field are 
located where the charge density changes over time. A correspond-
ing equation applies to any other conserved quantity.
Fig. 1.7 shows a field whose divergence is everywhere different from 
zero; on the left in vector arrow representation and on the right in 
field line representation.

The divergence of the field of Fig. 1.8 is equal to zero everywhere.

�
Finally, we apply the continuity equation to a mass flow. One can 
easily imagine the corresponding experiment. 
Air is enclosed in a cylinder, Fig. 1.9. The piston (position coordinate  
xK) is moved with the velocity vK. (vK must be small against the 
speed of sound so that the density in the whole cylinder is the 
same). The position coordinate of the air is x, its velocity v(x).

�
From

�

we obtain the velocity field:

�

The mass density is

�

With (1.5) we can calculate the mass current density:

�

This results in the divergence:

�

On the other hand

�

Thus, div jm is equal to – ∂ρm/∂t, as could have been expected.

dQ
dt

+ I = 0

ρdV∫∫∫

I = j dA∫∫

divj dV∫∫∫

∂ρ
∂t
dV∫∫∫ + div j dV∫∫∫ = 0

∂ρ
∂t

+ div j = 0

Fig. 1.8 
Vector arrow and field line representation of a field whose divergence is  zero everywhere

Fig. 1.9 
Applying the continuity equation to 
the mass of air inside a cylinderxK x

vK

v (x )
vK

= x
xK

v (x ) = x
xK
vK

ρm = m
AxK

jm = ρmv = m
AxK

x
xK
vK = m

A
vK
xK2

x

div jm = ∂ jmx
∂x

= ∂ jm
∂x

= m
A
v K

xK2

∂ρm
∂t

= m
A
∂(1/xK )

∂t
= −m

A
1
xK2

∂xK
∂t

= −m
A
vK
xK2

Fig. 1.7 
Vector arrow and field line representation of a field whose divergence is different from  zero 
everywhere
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2. Electric current and energy current

2.1 The relationship between electric current 
      and energy current
An energy current flows from the battery to the lamp in Fig. 2.1. In 
addition, an electric current flows in each of the two wires, from left 
to right in the upper wire and from right to left in the lower wire.

If two circuits are superimposed so that the wires coincide, both the 
energy current and the electric current in each wire are doubled, Fig. 
2.2. The following therefore applies

P  ~  I

Since the total electric current (forward and return lines taken 
together) has the value zero, the relationship between P and I must 
have the following form:

P = –φ1I + φ2I
φ is a quantity that has a certain value for one conductor. For the 
two lines in Fig. 2.1, φ must have different values. Otherwise we 
would obtain

P = 0.
Thus we have

P = (φ2 – φ1)I  . (2.1)
φ is the electric potential. Only potential differences are defined by 
equation (2.1). The zero point of the potential can be defined 
arbitrarily. Usually the potential of the earth is set to zero. Its unit of 
measurement is Volt = Watt/Ampere = Joule/Coulomb. The 
difference U = φ2 – φ1 is called voltage.
The voltage between the two wires of an electric cable thus 
indicates how large is the energy current that is transmitted with a 
given electric current. This fact can also be expressed 
metaphorically: The electric charge “carries” the energy. The voltage 
indicates how much the carrier is “charged” with energy.
Equation (2.1) has the same structure as the equation

P = (v2 – v1)F . (2.2)
That the equations (2.1) and (2.2) have the same structure is no co-
incidence. Every energy transport can be described by an equation 
of this type:

P = ξ · IX . (2.3)
Equation (2.3) states that an energy flow is always accompanied by 
the flow of another extensive or substance-like quantity X, Fig. 2.3a. 
We call the quantity X the energy carrier. The proportionality factor 
is a so-called intensive quantity.

Many energy transports are such that the carrier quantity X flows in 
a closed circuit, so that there is a forward and a return line for X, Fig. 
2.3b. For a net energy flow to result, the intensive quantity in the 
forward and return lines must have different values. The net energy 
flow is then:

P = (ξ2 – ξ1)IX . (2.4)
An example of this is the energy transport with a two-wire electrical 
cable that we are currently discussing.
We will consider two more examples of an energy transport, i.e. two 
more examples of equations of the type (2.3) or (2.4). 
If energy is transferred “in the form of heat” (for example through the 
wall of a poorly insulated house), entropy flows in addition to the en-
ergy. The energy carrier X in equation (2.3) is thus the entropy S. 
The corresponding intensive quantity is the absolute temperature T. 
It is therefore

P = T · IS . (2.5)
The unit of measure of entropy is the Carnot (Ct), that of the abso-
lute temperature the Kelvin (K). From equation (2.5) follows there-
fore

 K · Ct = J
Finally, we consider a system in which a stationary chemical reac-
tion is running, Fig. 2.4. 

The starting materials for the reaction are fed to the reaction vessel 
through one pipe, the reaction products are discharged through an-
other pipe. An energy current flows through surface A. It can again 
be described by an equation of the structure of equation (2.4):

P = (μ 2 – μ 1)In . (2.6)
Here μ is the chemical potential. The chemical potential is a quantity 
that is assigned to a substance or a mixture of substances. n is the 
reaction conversion. The unit of measurement of n is the mole. The 
unit of measurement of the conversion rate In is therefore mol/s. The 
unit of measurement of μ results from equation (2.6) to Joule/mol. 
This unit is sometimes abbreviated by Gibbs (G). So it is

G · mol = J.
The chemical potential of a substance depends on its pressure, 
temperature and state of aggregation. If the substance is dissolved, 
it also depends on the concentration and the nature of the solvent.
Back to electricity. 
We once again put two circuits on top of each other. This time, how-
ever, so that the currents in two of the lines add up to zero, Fig. 2.5. 
From equation (2.1) it follows that the voltage in the last partial pic-
ture must be equal to the sum of the voltages in the first picture.

Since the potential has a certain value in every point of the circuit, 
we can formulate the “mesh rule”

(2.7)

The sum of all voltages in a “mesh” is zero. All voltages within a 
mesh must be counted in the same direction, Fig. 2.6.

Voltages are measured with the voltmeter. The two connections of 
the voltmeter are connected to the two points between which the 
voltage is to be measured. The question of the absolute value of the 
potential is meaningless, just as meaningless as the question of the 
absolute value of a velocity. (A speedometer, like a voltmeter, has 
two connections; it measures the speed difference between car and 
earth). Just as one must select a reference frame, i.e. a velocity 
zero point, to specify a velocity, one must define the “electrical refer-
ence frame”, i.e. the potential zero point, to specify an electrical po-
tential.

Fig. 2.1 
From left to right flows an energy current, and in each wire flows an electric current.

Fig. 2.2 
Two identical circuits (a) are super-
imposed (b) and the pieces of wire 
lying on top of each other are re-
placed by a single wire (c).

a

b

c

1 A

1 A

2 A

2 A

Energiestrom
XI

Energiestrom

X,�����ѧ2ѧ

X,�����ѧ1ѧ

a b

energy current energy current

Fig. 2.3 
(a) In addition to the energy flow, 
there is a flow of an energy carrier. 
(b) The carrier current has a return 
line.

Ui
i
∑ = 0

Fig. 2.5 
Two identical circuits are combined 
in such a way that the currents in 
two lines add up to zero.

a

b

c

5 V

5 V

5 V

5 V

10 V

Fig. 2.6 
The voltages within a mesh must be counted in the same direction.

U3= 6V

U1= –2V

U2= –1V

U4= –1V

U5= –1V

U6= 4V
U7= –5V

0 V +5 V +1 V

+2 V+3 V–3 V

–2 V

In2, μ2

In1, μ1

reaction 
vessel

A
Fig. 2.4 
Reaction vessel with feed line for 
the starting materials and return 
line for the reaction products



2. Electric current and energy current

2.2 Energy dissipation
Energy flows electrically into the device shown in Fig. 2.7. This en-
ergy is completely dissipated in the device. Dissipating energy 
means producing entropy with the help of energy.

�  
The device could be a light bulb, the heating coil of an iron or a 
technical resistor, but not an electric motor or a battery that is being 
charged. Since all the incoming energy U · I is dissipated in the de-
vice, the following applies:

U · I  = T · IS
IS is the entropy current leaving the device and T is its absolute tem-
perature. Figure 2.8 shows the flow diagram of the process.

�
It is a matter of experience that entropy can be created but not de-
stroyed. The process of Fig. 2.8 can therefore not run backwards, it 
is irreversible, Fig. 2.9.

�

Fig. 2.7 
All of the incoming energy is dissi-
pated in the resistor.

P = U · I P = T · IS

Fig. 2.8 
Flow diagram of the electric resis-
torresistorENERGY

Q

ENERGY

S prod

Fig. 2.9 
The inverse of the process, that 
takes place in an electric resistor, 
is impossible.This device

does not
exist.

ENERGY ENERGY

S Q



2. Electric current and energy current

2.3 Voltage as the drive of an electric current
A system in which energy is dissipated is said to have a resistance. 
The word resistance belongs to a pictorial representation of the 
process. According to it, the flow of the current is hindered by the re-
sistor. That the current flows despite the obstruction is due to the 
voltage. It appears as a “drive” or the “cause” of the current. Al-
though this image is very useful, it is just a human invention. One 
could just as well say that the current is the cause of the voltage 
(one often even says that the current causes a voltage “drop”).



2. Electric current and energy current

2.4 Characteristics – Ohm’s law
We look at objects with two electrical connections: Resistors, pieces 
of wire, diodes and other things. If we graphically illustrate for such 
an object the relationship between the electric current flowing 
through it and the voltage between its terminals, we get its charac-
teristic, Fig. 2.10.

For some objects, under certain conditions – constant temperature, 
current density not too high – a particularly simple relationship ap-
plies:

U ~ I .
It is said that Ohm’s law applies to the object. It applies, for example, 
to metal wires (at a fixed temperature). In this case one calls the 
quotient 

R  =  U/I 
the resistance of the object. The unit of measurement of the resis-
tance is the ohm, abbreviated Ω (1 Ω = 1 V/A). 
For an “ohmic conductor” of length l with constant cross-section A, 
the following applies

ρ is called electric resistivity (Attention: the same SI symbol as for 
mass density and charge density). The reciprocal value σ of the re-
sistivity is called electric conductivity.
Ohm’s law makes a global statement about a conductor. We want to 
derive from it a local relationship between the current density and 
the electric potential gradient.
We consider a rectangular volume element in a flow of the length dr 
(in the direction of the flow) and the cross-sectional area dA, Fig. 
2.11.

The current dI = | j |dA through this cross-section is given by Ohm’s 
law:

where dΦ is the potential difference between the two surfaces sepa-
rated by dr. From this follows | j | = σ dφ/dr. Since the current flows in 
the direction in which Φ decreases the most, we can write:
j = –σ grad Φ . (2.8)

Fig. 2.10 
Examples for current-voltage char-
acteristic curves

U

I

U

I

U

I

U

I

light bulb

semiconductor 
diode

galvanic cell

resistor

R = ρ l
A
= 1
σ
l
A

Fig. 2.11 
As to the relationship between cur-
rent density and potential gradient

 
!
"#
$# 

!

dA

dr

j dA = dΦ
dR

= dΦ
dr

σdA



2. Electric current and energy current

2.5  The difference of the values of the intensive  
    quantity as a drive of the current of the  
    extensive quantity

For an electrical current to flow through an electrical resistor, it 
needs a drive: an electric voltage, Fig. 2.12. Sometimes I ~ U  (or j ~ 
grad φ) (Ohm’s law). Entropy is produced in the resistor:

T IS,prod = ∆φ · I
Name of the process: Joule heating

For a momentum current F to flow through a mechanical resistor 
(shock absorber, viscous medium), it needs a drive: a velocity differ-
ence, Fig. 2.13. Sometimes F = ∆v/Rp. Entropy is produced in the 
mechanical resistor: 

T IS,prod = ∆v · F 
Name of the process: friction

For a substance current to flow through a “chemical resistor” (e.g. 
gaseous water from one point of a room through the air to another), 
it needs a drive: a difference in the chemical potential μ, Fig. 2.14. 
Sometimes jn ~ grad μ (Fick’s first law). During this process entropy 
is produced:

T IS,prod = ∆μ · In
Name of the process: diffusion

For an entropy current to flow through a thermal resistor (e.g. the 
wall of a house, a copper rod), it needs a drive: a temperature differ-
ence, Fig. 2.15. Sometimes IS ~ grad T. During this process entropy 
is produced:

T IS,prod = ∆T · IS
Name of the process: thermal conduction

We summarize: A difference of the values of the intensive quantity 
represents a drive for a current of the corresponding extensive 
quantity.
The currents of the extensive quantities flow only as long as the 
drive, i.e. the difference of the intensive quantities, is different from 
zero. If this difference equals zero, it is said that there is equilibrium 
with respect to the corresponding extensive quantity, Figs. 2.16 - 
2.19.

�

�

Fig. 2.17 
Rotational equilibrium: There is no more L 
flowing if ω1 = ω2 .

Φ1 Φ2

Fig. 2.16 
Electric equilibrium: There is no more Q flow-
ing if Φ1 = Φ2 .

flywheels

friction clutch

ω1 ω2

Fig. 2.18 
Chemical equilibrium: There is no more sub-
stance flowing if μbread = μcrispbread .

Fig. 2.19 
Thermal equilibrium: There is no more S flow-
ing if T1 = T2 .

μ1

μ2
T1 T2

Fig. 2.12 
Electric potential difference as a drive of an 
electric current

Fig. 2.13 
Velocity difference as a drive of a momentum 
current

v = 0m/s
jp

 
              ! "# $#

Δv = 1m/s = drive of the momentum current

v = 1m/sjQ

 
              ! "# $#

Φ = 5V

ΔΦ = 5V = drive of the electric current

Φ = 0V

Fig. 2.14 
Chemical potential difference as a drive of a 
current of the amount of substance

Fig. 2.15 
Temperature difference as a drive of the  
entropy current
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3. Electric current and substance current

3.1 The chemical potential
Just as an electrical potential difference represents a drive for a Q 
current, a chemical potential difference Δμ represents a drive for an 
n current. The value of the chemical potential always refers to a cer-
tain substance. Therefore, in case of doubt, the substance name is 
written in brackets behind the μ. In order to get a qualitative idea of 
the values of the chemical potential and the relationship between μ 
and other physical quantities, one only has to look from where to 
where substances flow.
A gas or liquid flows in a pipe from places of high pressure to places 
of low pressure. So the chemical potential depends on pressure, it 
grows with increasing pressure.
Water vapor mixed with air “diffuses” from places of high to places of 
low concentration. Likewise, salt dissolved in water diffuses from 
places of high to places of low concentration. μ therefore increases 
with the concentration.
In dry air, a puddle of water evaporates. The chemical potential of 
the water in the puddle must therefore be higher than in the air.
If silica gel is used to dry the air, the chemical potential of the water 
in the silica gel is lower than in the air. The chemical potential of a 
substance therefore also depends on the medium in which the sub-
stance is located.
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3.2 Substances and particles
If the amount of a system doesn’t matter, it is called a substance. 1 g 
air is the same substance as 1 kg air. In order to characterize a sub-
stance, however, the relationship between the values of the sub-
stance-like quantities is important.
So we have, for example

water: m/n = 18 g/mol
free electrons: m/n = 0.55 mg/mol and Q/m = 1.76 · 1011 C/kg
light: E/p = 3 x 108 m/s.

Some of the substance-like quantities are quantized. What does this 
mean? If a system is isolated, i.e. if it cannot release or absorb any-
thing of a quantity, the value of this quantity is an integer multiple of 
an elementary quantum, for example:

�

The quotient F = e/τ = 0.965 · 105 C/mol is called the Faraday con-
stant.
A system for which the amount of substance has the value n = 1τ is 
called a particle. Under certain circumstances one can imagine it as 
a small localizable individual, but often this idea fails.
The particle electron e.g. is a system with
�
Particles with Q ≠ 0 are called charge carriers.
Examples of charge carriers:

free electron
mobile electron in a semiconductor
electron hole in a semiconductor
free positron
Cu++ ion in aqueous solution
myon

Just as an ensemble of the values of all substance-like quantities 
belongs to a certain amount of a substance, an ensemble of flows of 
the corresponding substance-like quantities belongs to the flow of a 
substance. For example, an electron flow includes an electric cur-
rent I, a mass flow Im, a flow of the amount of substance In, an en-
tropie flow IS ... Some of the currents are connected again in a char-
acteristic way for a certain substance. Thus, for a current of free 
electrons we have

I/Im = 1.76 · 1011C/kg.
The substance-like quantities are more or less “coupled to each oth-
er”. Thus, electric charge is firmly coupled to the amount of sub-
stance and to mass. There is no electric current without a mass flow 
and without a flow of the amount of substance. So there is no such 
thing as a purely electric current. It follows from this that a substance 
or particle flow can be driven in different ways.
So one can drive an electron current:

• by creating an electric potential gradient; this potential gradient 
“pulls” at the charge of the electrons;

• by creating a gradient of the chemical potential; this pulls at the 
amount of substance of the electrons;

• by creating a T gradient; this pulls at the entropy of the elec-
trons.

Q = k1 ⋅e e = 1.60 ⋅10−19 C   (elementary charge)

L = k2 ⋅
!
2

! = 1.05 ⋅10−34 Js  (quantum of angular momentum, Planck constant)

n = k3 ⋅τ τ = 1.66 ⋅10−24 mol (elementary amount,1/Avogadro constant)
k1,k2,k3 = integer numbers

n = 1τ , Q = 1e, L = ! /2, E =…, etc.
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3.3 The electrochemical potential
We consider the current of any kind of charge carriers between the 
points a and b of a conductor, Fig. 3.1. 

If all intensive variables have the same value at a and b, except for 
the electrical potential, i.e. if Ta = Tb, μa = μb,… and Φa ≠ Φb, the par-
ticle flow is driven by the electric potential difference ∆Φ = Φa–Φb. In 
the conductor, energy is dissipated according to

P = T · IS,prod = (Φa–Φb)I. 
If all intensive variables except μ have the same value at a and b, 
i.e. if Ta = Tb, Φa = Φb etc. and μa ≠ μb, then the particle flow is driven 
by the chemical potential difference ∆μ = μa – μb, and energy is dis-
sipated in the conductor in accordance with 

P = T · IS,prod = (μa – μb) In. 
This equation can be regarded as a definition of the chemical poten-
tial. The unit of measurement of μ is J/mol, for which the abbrevia-
tion Gibbs (G) is also used:

1 G = 1 J/mol
If both Φ and μ have different values at a and b, the current has two 
drives: ∆Φ and ∆μ. These can “pull” at the electrons in the same di-
rection or in opposite directions.
The dissipated energy is then

P = T · IS,prod = (Φa–Φb)I + (μa – μb) In.
Now I and In are coupled to each other. A particle (n =1τ) carries an 
integer z of elementary charges: 

Q = ze.
For electrons, for example, z = –1.
The electric current and the amount-of-substance current are thus 
connected according to

and with e/τ = F  (= Faraday constant) follows
I = zFIn . (3.1)

So the dissipated energy becomes
P = [(Φa–Φb)zF + (μa – μb)]In 

The quantity
η = μ + zFΦ (3.2)

is called the electrochemical potential of the charge carriers in the 
respective environment. We thus obtain

P = (ηa – ηb) In (3.3)
We see that the total drive of the substance flow is given by the 
electrochemical potential difference
∆η = ηa – ηb 

There is no particle or substance flow if ∆η = 0, or if ηa = ηb. This 
means that 
μa – μb = – zF (Φa–Φb) 

Thus, the state of “no current” is not obtained if the electrical poten-
tial is the same everywhere, but if the electrochemical potential is 
the same.

I
In

= zeτ

Fig. 3.1 
A substance current can have vari-
ous drives.

a b

Φa
Ta
μa

Φb
Tb
μb
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3.4 The contact potential difference
The chemical potential of the electrons in different conductors is not 
the same. Therefore there is a chemical potential difference for the 
electrons in two metals. If it is defined that the chemical potential of 
free electrons in vacuum has the value 0 G, the values in Table 3.1 
apply.

�
Between copper and platinum, for example, there is a chemical po-
tential difference for electrons μ(Cu) – μ(Pt) = 85 kG. The chemical 
potential of the electrons is higher in Cu than in Pt. When a body of 
copper and a body of platinum are brought into contact with each 
other, initially electrons will flow from the copper into the platinum, 
following the chemical potential gradient. This causes the two metals 
to charge electrically, i.e. the copper positively and the platinum 
negatively. Thereby, the electric potential of copper increases and 
that of platinum decreases. The result is an electrical drive in the 
opposite direction to the chemical drive. If 

F∆Φ = ∆μ , 
or ∆η = 0, i.e. if the electrical and the chemical drives are the same 
in the opposite directions, no particle current flows any more. There 
is electrochemical equilibrium.
Between two bodies made of different metals, which are in contact 
with each other, there is an electric potential difference, the contact 
voltage or Volta potential difference. We calculate the contact volt-
age between copper and platinum. 
From 
η = 0 

follows 
∆Φ = (1/F)∆μ. 

With F = 0.965 · 105 C/mol and ∆μ = 85 kG we obtain
∆Φ = Φ(Cu) – Φ(Pt) = 0.88 V.

Despite (or better: because of) this voltage, no electric current flows.
If a closed circuit is built from different metals, no current flows, Fig. 
3.2.

�
The contact voltage cannot simply be measured with a voltmeter. 
Figure 3.3 shows why. A voltmeter always indicates the electro-
chemical potential difference. Only in the case that the chemical po-
tential is the same in the two points between which one measures 
the electrochemical and the electric potential difference are equal 
(except for the factor zF).

�
If one nevertheless pretends that the voltmeter indicates the electric 
potential difference, there is usually no misfortune, because in many 
cases where one believes that one needs the electric potential dif-
ference, one actually needs the electrochemical one; for example, to 
calculate the electric current according to Ohm’s law.
Measuring the electric potential difference between two materials is 
quite difficult. The values in Table 3.1 are therefore subject to uncer-
tainties.

substance μ  (in kG)

Ag –460

Cs –170

Cu –430

Ni –445

Pt –515

W –435

Table 3.1
Chemical potential of the electrons in several metals

Fig. 3.2
Electrical, chemical and electrochemical potential in a closed “circuit”, that consists only of 
three conductors of different metals

Φ

μ

η

metal 1 metal 2 metal 3 metal 1

Fig. 3.3 
The voltmeter does not measure 
the electrical potential difference 
between iron and silver, but the 
electrochemical potential differ-
ence.

Fe Ag

copper wires
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3.5 The functioning of the galvanic cell
Even if the devices or “cells” are constructed differently, the essential 
features of their functioning are the same in all cases. In the follow-
ing we try to understand it by means of a system, which is difficult to 
realize for technical reasons, but which is very transparent, so that it 
is easy to understand how it works.
The cell exploits the chemical potential difference that a gas – in our 
case hydrogen – passes through when it expands, Fig. 3.4.

In the left reservoir there is hydrogen at high pressure, say 10 bar. In 
the right reservoir, the hydrogen pressure is 1 bar.
The left side of the cell has an inlet for the hydrogen at high pres-
sure, and the right side has an outlet for the hydrogen at low pres-
sure. Because of the pressure difference, and thus the chemical po-
tential difference, the hydrogen “wants” to flow from left to right. 
However, this is not easy. 
Behind the inlet is a platinum wall, a so-called electrode. There is 
another one on the outlet-side.
Platinum has the property of being able to absorb hydrogen. Since 
there is not enough space between the platinum atoms for the rather 
large hydrogen molecules, the hydrogen molecules disintegrate into 
electrons and protons, and these particles can move relatively freely 
in platinum.
Between the platinum electrodes there is an acid, e.g. sulfuric acid. 
Acids have the property that they are conductors for protons, but not 
for electrons. 
Now, couldn’t at least the protons follow the chemical drive and flow 
to the right through the acid? In fact, at the very beginning a small 
number of protons flows through the acid from the left to the right 
platinum electrode. However, this causes an electric potential differ-
ence that represents a drive for the protons in the opposite direction. 
After a very short time, the two drives cancel each other and the pro-
ton current ceases to flow. The protons are in a state of electro-
chemical equilibrium. This means that the electric potential of the 
right platinum electrode is higher than that of the right.
It is now easy to open a path from left to right for the electrons as 
well: The two platinum electrodes are connected by a copper wire. 
Copper, like all metals, is a conductor for electrons and a non-con-
ductor for protons. (We had just learned about platinum as an ex-
ception, it conducts both electrons and protons.)
This electron current through the copper can now be routed through 
an electrical energy receiver, Fig. 3.5.

In practice, this cell works very poorly because the platinum is for 
the protons not as good a conductor as we assumed. 
The really good cells use more complicated chemical reactions. 
A chemical reaction is also driven by a chemical potential difference. 
These cells are set up in such a way that the reactants are spatially 
separated from each other. They can only come together if one of 
the substances is broken down into electrons plus ions in or on an 
electrode. Again, the ions pass through the electrolyte, the electrons 
through the outer part of the circuit. 
It is not difficult to calculate the voltage of such a cell if the chemical 
potential difference of the reaction taking place in the cell is known. 
The chemical potentials can be taken from tables. 

Fig. 3.4 
Electrochemical cell. The chemi-
cal potential of hydrogen is higher 
in the left reservoir than in the 
right. H2

10 bar

H2

1 bar

platinum electrodes
electrolyte

H+,e– H+,e–

H+, SO4
– – 

Fig. 3.5 
The electric circuit is closed. 

H+

H+

H+

M

H+

e– e–

e–e–
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3.6 Fuel cell and electrolytic cell
If the chemical reaction

A + B ↔ C + D
is in equilibrium, the sum of the chemical potentials of the left side is 
equal to that of the right side:
μ(A) + μ(B) = μ(C) + μ(D) .

For a reaction A + B → C in equilibrium we have 
μ(A) + μ(B) = μ(C) 

and for a reaction  A + B → 2C it is  
μ(A) + μ(B) = 2μ(C) .

We consider the reaction
2H2 + O2 ↔ 2H2O

From a table it can be seen that the chemical potential of the right 
side at normal pressure and room temperature is 474 kG lower than 
that of the left side. So there is a drive of
Δμ  = (2μ(H2) + μ(O2)) – 2μ(H2O) = 474 kG

This difference is used in the hydrogen-oxygen fuel cell to drive an 
electric current. During electrolysis, i.e. the electrical decomposition 
of water into hydrogen and oxygen, this drive must be overcome.
Figure 3.6 shows the structure of a hydrogen-oxygen cell. The gas 
can enter each of the porous electrodes from one side, and the elec-
trolyte from the other, but neither the gas nor the electrolyte can 
leave the electrode on the other side. The electrolyte is a conductor 
for H+ ions, but not for electrons and oxygen ions.

Within the electrodes there are chemical equilibria, which are de-
scribed by the following reaction equations:

electrode A electrode C
2H2 ↔ 4H+ + 4e– 2H2O ↔ 4H+ + 4e– + O2

2μ(H2) = 4μΑ(H+) + 4μ(e–) 2μ(H2O) = 4μC(H+) + 4μ(e–)+ μ(O2)
The chemical potential of the electrons is the same in A and C, since 
the electrodes consist of the same material. The chemical potential 
of H+, on the other hand, is very different because the oxidation re-
action in C keeps its concentration in C low. We are looking for the 
electric potential difference between A and C. We subtract the right 
equation from the left equation:
     (2μ(H2)+ μ(O2)) – 2μ(H2O) = 4μΑ(H+) – 4μC(H+) 

    = 4(ηA(H+) – FΦΑ) – 4(ηC(H+) – FΦC)
In the last step of the equation η = μ + zFΦ was used. Because the 
H+ ions can flow freely back and forth between A and C through the 
electrolyte, there is electrochemical equilibrium for H+ between A 
and C: ηA(H+) = ηC(H+) . One thus obtains
Δμ = (2μ(H2)+ μ(O2)) – 2μ(H2O) =  4F(ΦC – ΦA) = 4FU

Thus, the voltage between A and C becomes:

(3.4)

where ∆μ is the chemical potential difference of the total reaction of 
the cell. 
With ∆μ = 474 kG and F = 96500 C/mol one obtains U = 1.23 V.
This value applies as long as there is electrochemical equilibrium 
between the electrodes for H+. There is no particle flow and no elec-
tric current.
If the circuit is closed via a load, the chemical drive for the H+ ions is 
larger than the electrical drive, and an H+ current flows from A to C. 
In the electrode C water is produced. The cell works as a fuel cell.
If, on the other hand, an external energy source ensures that the 
electrical drive of the H+ ions from C to A is larger than the chemical 
drive from A to C, then H+ flows from C to A and water is decom-
posed in the electrode C. This is the case when the H+ ions are dri-
ven from C to A by an external energy source. The cell now works 
as an electrolytic cell.
In technical galvanic elements (lead accumulator, Leclanché ele-
ment, Daniell element, Weston element), the electrodes simultane-
ously represent the “fuel reservoir”. The electrode material dissolves 
in the electrolyte. As part of the electrode, it has a different chemical 
potential than in the solution. This chemical potential difference is 
used to drive the electric current.

U = 1
4F

Δµ

Fig. 3.6 
Hydrogen-oxygen cell

M

H2

electrodes electrolyte (conductor for H+)

O2A B C
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3.7 Coupled currents – the Onsager relations 
We want to know the mathematical formalism using a simple exam-
ple: the coupling between an electric current and a current of the 
amount of substance that has already been discussed.
The current of the amount of substance flowing in an appropriate 
conductor can be driven in two ways, Fig. 3.7: 

• by a gradient grad μ of the chemical potential;
• by a gradient grad Φ of the electric potential pulling at the elec-

tric charge, which is firmly coupled to the amount of substance.

Accordingly, a charge current can be driven: 
• by a Φ gradient;
• by a μ gradient.

This can be expressed mathematically:
jn = L11  grad μ + L12  grad Φ (3.5a)
jQ = L21  grad μ + L22  grad Φ (3.5b)

jn and jQ are the current densities of the amount o substance and the 
electric charge. In the following we will consider the case where the 
gradients of μ and Φ are parallel to the x-direction. Equations (3.5a) 
and (3.5b) then simplify: 

(3.6a)

(3.6b)

Since Q is firmly coupled to n, the equations are linearly dependent: 
jQ = zFjn (F = Faraday constant, z = integer). The analog will no 
longer be true if we select other currents, for example if we consider 
the entropy current density jS instead of jn (Section 3.8).
First we interpret the coefficients Lik.
L11 is a measure of the n current caused by a given μ gradient in the 
event that no further drive is present (dΦ/dx = 0). It has the meaning 
of a substance conductivity.
Accordingly, L22 is a measure for the electric current caused by a 
given Φ gradient, as long as no μ gradient is present. For dμ/dx = 0 
we have jQ = L22 dΦ/dx. The comparison with jQ = – σ dΦ/dx (see 
equation (2.8)) shows that L22 = – σ, i.e. equal to the electrical con-
ductivity.
L12 and L21 express that there is a coupling between jn and jQ. L12 in-
dicates how strongly an n-current is driven by a Φ gradient and L21 
how strongly a Q-current is driven by a μ gradient. It is obvious that 
if L12 is large, L21 must also be large, and vice versa. There is a gen-
eral theorem that claims that basically

L12  = L21 (3.7)
always applies if two currents can be written in the form of equations 
(3.6a) and (3.6b). This relation is called Onsager relation after its 
discoverer. It can easily be proved in our concrete case.
The drive of a particle current is given by dη/dx:

Comparing the coefficients with those in equation (3.6a) we obtain:
L11 = L1    and   L12 = L1zF

and thus
L12 = zFL11 .

If the case with dΦ/dx = 0 is considered, with jQ = zFjn, equations 
(3.6a) and (3.6b) become

Dividing one equation by the other we get:
L21 = zFL11.

Thus we see that L12 = L21   q. e. d.
If we divide equation (3.6b) by equation (3.6a), after setting dμ/dx = 
0, we get

L22 = zFL12

We can now express all 4 coefficients Lik by the electrical conductivi-
ty σ and the Faraday constant F:

We now describe the coupling strength between the Q and the n 
current by a dimensionless constant m:

The first factor expresses how strongly n is dragged by Q if there is 
no proper drive for n (dμ/dx = 0), the second factor is corresponding-
ly a measure for how strongly Q is dragged by n. From equations 
(3.6a) and (3.6b) follows

We use the terms for L21, L12 and  L22:

In our case with a firm coupling, m = 1. For other currents, we ex-
pect smaller values for m.

jn = L1
dη
dx

= L1
d (µ + zFϕ )

dx
= L1

dµ
dx

+L1zF
dϕ
dx

jn = L11
dµ
dx

jQ = zFjn = L21
dµ
dx

L22 = −σ L12 = L21 = − σ
zF

L11 = − σ
z 2F 2

m = jn
jQ

⎛
⎝⎜

⎞
⎠⎟ dµ/dx=0

⋅
jQ
jn

⎛
⎝⎜

⎞
⎠⎟ dΦ /dx=0

m = L12
L22

⋅L21
L11

= L12
2

L11L22

m = σ 2 / (zF )2

−σ / (z 2F 2 )⎡⎣ ⎤⎦(−σ )
= 1

jn = L11
dµ
dx

+L12
dϕ
dx

jQ = L21
dµ
dx

+L22
dϕ
dx

Fig. 3.7 
Since n is coupled to Q, both the n 
current and the Q current can be 
driven by a Φ or a μ gradient.grad Φ

grad μ

jQ
jn
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3.8 Coupling between electric current and en-
tropy current

The coupling between n and Q is a trivial special case. The equa-
tions (3.6a) and (3.6b) in the previous section can be replaced by a 
single equation:

jQ is calculated from jn simply by multiplying by zF.
If there is a temperature gradient in addition to the η gradient, we 
can no longer do without equations of the type of equations (3.6a) 
and (3.6b):

(3.8a)

(3.8b)

Of course, the coefficients Lik now have different meanings than in 
the previous section. To interpret the equations, we will look at some 
special cases:

(1) dT/dx = 0, dη/dx ≠ 0
dT/dx = 0 means: The temperature of the conductor is the same 
everywhere. Equation (3.8a) says what we already knew: An η gra-
dient results in a substance flow, e.g. an electron current. Equation 
(3.8b) now says that this substance current drags along an entropy 
current.

(2) dη/dx = 0, dT/dx ≠ 0
Equation (3.8b) tells what we already knew: A T gradient results in 
an S current (see section 2.5). Equation (3.8a) claims that a T gradi-
ent drives an electron current even though there is no electrochemi-
cal (and no electrical) potential difference. 

(3) jn = 0
We prevent the flow of a particle current by simply not installing the 
conductor in a circuit. From equation (3.8a) follows:

A T gradient thus causes a gradient of the electrochemical potential.
We now look for the relation between the Lik and the material coeffi-
cients, which can be found in tables.
We compare equation (3.8a) for dT/dx = 0 with the equation valid for 
dT/dx = 0

and obtain

(We mark the electric conductivity with the index Q to distinguish it 
from the entropy conductivity σS).
Experimentally one finds the relationship:

(See also section 2.5).
σS is the entropy conductivity. Tables usually give the “thermal con-
ductivity” λ =T σS. Comparison with equation (3.8b) for dη/dx = 0 re-
sults in

L22 = – σS

The quantity

(3.9)

is called thermovoltage or thermoelectric emf. Its values can be 
found in tables. It indicates the electrochemical potential difference 
per degree K (unit V/K) between two points in the case that the cur-
rent is zero. From equation (3.8a) follows:

We also calculate the coupling strength m:

Table 3.2 shows the values of σQ, σS and α for some metals at ambi-
ent temperature (≈ 300 K).
What does it mean that some α are positive and some are negative? 
In equation (3.9) the factor

is always negative because the temperature gradient builds up an 
opposite electrochemical potential gradient. α < 0 therefore means z 
< 0, i.e. the charge carriers are negative – they are electrons. If α > 
0 we have z > 0. The charge carriers are positive. They are called 
“defect electrons”.
The quotient σQ/σS (last column of Table 3.2) is almost temperature-
independent, although σQ and σS separately depend strongly on T. 
In addition, σQ/σS is almost the same for all metals. This fact is 
called Wiedemann-Franz law. One can conclude that the conduction 
of Q and S is realized by the same carriers.
For the order of magnitude of m we obtain:

m ≈ 2,5 ⋅ 10–12 ⋅ 4,5 ⋅ 107 ≈ 10–4

Thus, the coupling between entropy and mass flow is very weak.

jn = − σ
z 2F 2

dη
dx

dη /dx
dT /dx

= −L12
L11

jn = −
σQ

z 2F 2
dη
dx

L11 = −
σQ

z 2F 2

jS = −σS
dT
dx

L12
L11

= −αzF

m = jn
jS

⎛
⎝⎜

⎞
⎠⎟ dη/dx=0

⋅ jS
jn

⎛
⎝⎜

⎞
⎠⎟ dT/dx=0

= L12
L22

⋅L21
L11

= L122

L11L22

m = α 2 σQ

σS

dη /dx
dT /dx

⎛
⎝⎜

⎞
⎠⎟ jn=0

Table 3.2 
Electric conductivity, entropy conductivity and thermovoltage for some metals

α = − 1
zF

dη /dx
dT /dx

⎛
⎝⎜

⎞
⎠⎟ jn=0

jn = L11
dη
dx

+L12
dT
dx

jS = L21
dη
dx

+L22
dT
dx

Metal 10–7σQ (Ω–1m–1) σS (JK–2m–1s–1) 106α (VK–1) 10–7σQ/σS (K2V–2)

Ag 6.29 1.43 +1.5 4.4

Al 3.77 0.79 –1.7 4.8

Cs 0.5 0.12 +0.1 4.2

Cu 6.0 1.34 +1.86 4.5

Fe 1.03 0.27 +16.6 3.8

Hg 0.10 0.028 +8.6 3.6

Mg 2.25 0.52 +4.3 4.3

Na 2.38 0.47 –8.7 5.0

Ni 1.46 0.303 –20.0 4.8

Pb 0.48 0.118 –1.26 4.1

Pt 0.94 0.239 –5.13 3.9
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3.9 Thermocouple and Peltier heatpump
According to equation (3.8a), there is an electrochemical potential 
difference between the ends of a copper wire which are at different 
temperatures T1 and T2 (Fig. 3.8).

 
If the temperature difference is not too large, so that one can neglect 
the T dependence of σ, we have

and it follows
Δη = –zFαΔT

We try to measure ∆η with the voltmeter. But the result is ∆η = 0. 
Figure 3.9 shows why.

We now replace the second connection between the high and the 
low temperature with another metal, Fig. 3.10. 

We then have
ηA – ηB =  – zFαCu (T1 –T2)     

and     
ηB – ηC =  – zFαAl (T2 –T1)

It follows
ηA – ηC  =  (ηA – ηB) + (ηB – ηC) =  – zF (αCu – αAl) (T1 – T2)

So between points A and C there is a measurable electrochemical 
potential difference. Such an arrangement of two conductors made 
of different materials is called a thermocouple. It is used, among 
other things, to measure temperatures.
The same voltage is found when the circuit is interrupted at any oth-
er point, Fig. 3.11. The decisive factor is that the contact points be-
tween the two metals have different temperatures T1 and T2.

If the two metals are joined to form a closed circuit, Fig. 3.12, a cur-
rent flows. Its strength depends on the resistance, i.e. the cross-sec-
tion and length of the conductors.

If an electric energy consumer is connected instead of the voltmeter, 
the arrangement works as an “energy converter”. An energy current 
of the strength T2IS2 flows into the contact of the high temperature 
T2. At the low temperature contact an energy current T1IS1 < T2IS2 
flows out. The difference flows out through the wires “in the form of 
electric energy”. Because of the weak coupling between S and n, 
entropy essentially “slips down” the T mountain, thereby producing 
new entropy, instead of driving the electric current. Thermocouples 
are therefore highly irreversible energy converters. Their efficiency is 
much lower than that of a steam turbine plus generator, for example.
The thermocouple can also be operated in reverse: One “pumps” 
with an electrical energy source a particle current by the two con-
tacts, Fig. 3.13.

Since the particle flow in the two materials drags the entropy differ-
ently well, a net entropy flow occurs between the two contacts. If the 
contacts are thermally insulated against the environment, one of 
them heats up while the other cools down. This process is called the 
Peltier effect. Although such a heat pump is simple and robust, its 
efficiency is poor.
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4. Charge and polarization as sources of the electric field

4.1 The relationship between electric field 
      strength and electric charge
There is always an electric field attached to electrically charged par-
ticles. The system electric field is recognizable by 

• the forces it exerts on electrically charged bodies;
• the energy contained in it. 

The electric field is a subsystem of the electromagnetic field: its 
states form a partial manifold of the states of the electromagnetic 
field.
If one brings into a given field at a certain position a very small elec-
trically charged body, then a force acts on this “point charge” (one 
recognizes it by the fact that the momentum of the charged body 
changes). If the value of the charge Q is doubled, the value of the 
force F is also doubled:

F ~ Q .
The vectorial factor of proportionality is thus characteristic for the 
field in the absence of the additional point charge. It is called the 
strength of the electric field. The SI symbol of the electric field 
strength is E, the unit is N/C = V/m:

F = EQ (4.1)
The E vector field describes the electric field unambiguously. From 
E, the mechanical stress (momentum current density) and the ener-
gy density can be calculated. The energy current density in the pure-
ly electric field is zero.
The E field distribution of a point charge Q follows from Coulomb’s 
law

(4.2)

r is the distance vector from the point charge, and 
ε0 = 8.854 · 10–12 C/(Vm)

is the electric field constant. If another charge distribution ρ2(r ) is 
added to a charge distribution ρ1(r ), the associated field strength 
distributions add up vectorially:
ρ(r ) = ρ1(r ) + ρ2(r )    ⇒    E(r ) = E1(r ) + E2(r )   .

The flux of an arbitrary vector field V(r ) through the area S is the in-
tegral

If V(r ) is a current density, the flux is the corresponding current in-
tensity.
We calculate the flux of the E field of a point charge through a 
closed spherical surface whose centre lies at the position of the 
point charge, Fig. 4.1:

For the calculation it was assumed that dA is parallel to r every-
where.
The flow through another arbitrarily shaped closed surface, which is 
placed around the point charge, has the same value, since field lines 
do not begin or end anywhere outside the charge.
We now place another charge distribution inside the closed surface 
and approximate it by a set of point charges. Since the field 
strengths add up when the charges are added, the following applies

∑Qi is the total charge that is located inside the area S. If we now 
describe the charge inside the surface by the charge density distrib-
ution ρ(r), then

(4.3)

With the Gauss’s theorem

(4.3) becomes

Since this relationship is correct for any area of space, the following 
must apply

(4.4)

Equations (4.3) and (4.4) express the fact that the electric charge is 
the place where the electric field is “attached” to matter.
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4. Charge and polarization as sources of the electric field

4.2 The relation between the electric potential 
      and the electric field strength
Let there be a point charge. We want to show that the value of the 
integral

only depends on the start and end points, but not on the integration 
path.
The contribution to the integral on the path between the radii r and 
r’, Fig. 4.2, is

E dr  =  |E | |dr | cos α .

We also have 

|dr | is the magnitude of the vector dr, dr is the difference r’ – r of the 
radii. The magnitude of the field strength vector E is denoted by |E | 
in order to avoid confusion with the energy E.
Thus

E dr = |E | dr .
The contribution therefore depends only on the two radii r and r', but 
not on the direction of the integration path. The entire integral con-
sists of such contributions. Its value thus depends only on the dis-
tance of the points A and B from the point charge. In particular, the 
integral over the path S’ in Fig. 4.3 has the same value as that over 
the path S.

Thus we get

One can now imagine any charge distribution replaced by a collec-
tion of point charges. Since the field strengths of these point charges 
add up to the total field strength, the general rule applies

We can thus define a potential function Φ(r): 

(4.5)

However, hereby only Φ differences are defined. The zero point of Φ 
can still be set arbitrarily. 
For a point charge we get

If we set Φ(r = ∞) = 0 we obtain for the point charge

 (4.6)

As a result of the definition equation (4.5) we get
E(r) =  – grad Φ(r) (4.7)

Φ(r) = const defines a set of surfaces. Each E-field line runs orthog-
onally to the corresponding surface at each point. We call these sur-
faces field surfaces. The field surfaces are thus surfaces of constant 
electric potential. Therefore they are also called equipotential sur-
faces.
(We will later look at fields for which no potential can be defined, but 
which can still be graphically represented with the help of field lines 
and field surfaces. So the term field surface is more general than the 
term equipotential surface.) 
Fig. 4.4 shows the E field lines and the sections of the field surfaces 
with the drawing plane for two bodies with a spherically symmetrical 
charge distribution.

On a charged particle (charge Q), which is in the electric field of the 
strength E of other charges, the field exerts a force F = QE. If the 
particle is moving in the field, the energy flow into the particle is 

P = vF = QvE
This energy can be extracted during the movement. If the particle 
moves dissipatively, i.e. in an electrical conductor with resistance, 
the energy is used to produce entropy. If the particle moves from a 
point A to a point B, this energy amounts to

If an entire particle current, and thus an electric current, is flowing 
from A to B, then the energy flow

P = I (Φ(rA) – Φ(rB) )

is dissipated.
The electric potential that is defined here is therefore identical to that 
defined by equation (2.1). We see, however, that not only an electri-
cal conductor can be assigned a potential, but that every point of a 
static electric field has a potential.
With E = – grad Φ we can simplify the equation j = – σ grad Φ
(Ohm’s law, equation (2.8)):

j = σE   (4.8)
Ohm’s law applies in this form:
• only for isotropic media; in general σ is a tensor; 
• only if the electrochemical potential can be replaced by the electric 

potential, i.e. for conductors with a constant chemical potential.
From div E = ρ/ε0 and E = – grad Φ follows a relationship between  
ρ and Φ:

div grad Φ = –ρ/ε0 .
The operator div grad is abbreviated by ∆; it is called the Laplace 
operator. So we can write
∆Φ = –ρ/ε0 .  

This equation is called Poisson’s equation. In Cartesian coordinates 
the Laplace operator is:

Often the charge distribution ρ(r) is known and the field strength dis-
tribution E(r) is wanted. 

Example: Spherically symmetric charge distribution
The E-field is radially symmetrical, Fig. 4.5.

The field strength can be calculated by applying equation (4.3) to a 
sphere with radius r. The left side is

The right side is the total charge Q(r ) within the sphere of radius r. 
So it is

The field strength at the distance r from the center of the distribution 
thus depends only on the total charge within the sphere of radius r, 
but not on how the charge density depends on r. Even if the entire 
charge inside the sphere were concentrated in the center of the 
sphere, the field strength would be the same. The field strength is 
therefore the same as that of a point charge located at the center. If 
the charge density inside the charge distribution between r = 0 and r 
= r0 is equal to zero, then this entire interior space is field-free.

Example: Field between two infinitely extended parallel metal plates
The charge per surface area ρA is the same everywhere. However, 
the charge of one plate has the opposite sign of the charge of the 
other. For the dotted area in Figure 4.6, the following applies

and

With (4.3) we get

and 

(4.9)

The E field between two oppositely charged parallel metal plates of 
finite extension is approximately homogeneous. The smaller the 
plate spacing against the lateral extension of the plates, the more 
homogeneous it is. 
 
Example: Field of a homogeneous metal body
If an electric conductor that is electrically insulated from its sur-
roundings is charged, the charge displaces until electrochemical 
equilibrium is achieved, i.e. until η has the same value everywhere. 
If the material composition of the object is homogeneous, e.g. if it 
consists of a single metal, the chemical potential has the same value 
everywhere and it follows from η = const that also Φ = const. 
So all points of the object are on the same electric potential. In par-
ticular, its surface is an equipotential surface, Fig. 4.7. 

If the material composition is not homogeneous, the surface is only 
a surface of constant electrochemical potential. Since the deviation 
of the surface from an equipotential surface is only a few volts, the 
surface can practically be identified with an equipotential surface 
when dealing with high voltages.
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4. Charge and polarization as sources of the electric field

4.3 Capacitance
We’re looking at a charged, electrically conductive object. Its poten-
tial is Φ1. There should be no other charged objects in its environ-
ment. For large distances from the object, the field strength goes 
towards zero, the potential towards a constant value: Φ(r → ∞) = Φ∞.
If the charge density everywhere on the object is changed by the 
factor k from ρ0 to ρ = k ρ0, the following changes occur

• the total charge from Q0 to Q = kQ0;
• the field strength in each point of the field by the same factor k;
• the voltage between any two points by the same factor k.

The new charge distribution is again an equilibrium distribution, be-
cause for the object there is still Φ = const.
The voltage U = Φ1 –Φ∞ has also changed by the factor k. So we 
have Q/Q0 = U/U0, or U ~ Q, or Q = CU.          
The factor of proportionality C, which is independent of Q, is called 
the capacitance of the object. It expresses how much charge sits on 
the object for a given voltage between the body and a point infinitely 
far away.
We now consider two electrically conducting objects whose total 
charge is always zero, Fig. 4.8. 

If we change the charge of each individual object by the factor k, the 
field strength changes everywhere by the factor k and also the volt-
age between the objects:

Q = CU  (4.10)
C is the capacitance of the arrangement. If this capacitance is large 
compared to that of the two objects individually, the arrangement is 
called a capacitor.
Fig. 4.9 shows a plate capacitor. 
Since its E field is approximately homogeneous, the following ap-
plies to it

�

Here, d is the distance between the plates. With equation (4.9) we 
obtain 

Q = ε0AU/d, 

and with (4.10) finally

�

E d r
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Fig. 4.9 
Field of the plate capacitor

Fig. 4.8 
Field of two bodies of equal and 
opposite charge
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4. Charge and polarization as sources of the electric field

4.4 Dipoles, dipole density and polarization
An arrangement as in Fig. 4.10 of two point-like bodies with electric 
charges of equal magnitude but opposite sign is called a dipole.

We call
p = Qa  (4.12)

the electric dipole moment. (Compare: L = ∑ri ×pi is the angular 
momentum). Attention: The symbols of the momentum and the elec-
tric dipole moment are identical!
Just as it is mathematically particularly easy to deal with point 
charges, it is also easy to operate with point dipoles. One obtains a 
point dipole from a “real” dumbbell-shaped dipole by approaching a 
→0 and simultaneously increasing Q so that p remains constant. 
For distances that are large compared to the distance between the 
dumbbell’s point charges, the fields of the dumbbell and the point 
dipoles are identical.
We calculate the field of a point dipole by superposing the fields of 
two point charges and making the transition a →0 with p = const.
For r → ∞ the potential is defined to be zero. With equation (4.6) for 
the potential in point A (Fig. 4.11) the following results

For a → 0  we have  r2 – r1 = a cos α and  r1 · r 2 ≈ r 2,  thus

The equipotential surfaces (field surfaces) are shown in Fig. 4.12.

Just as in a field of field strength E a momentum current F = QE 
flows into a point-like body of charge Q, an angular momentum cur-
rent

M = p × E
enters a point-like body with the electric dipole moment p. (Attention 
p is the electric dipole moment, not momentum.)
Proof: First we imagine the dipole to be extended, Fig. 4.13.  

We have

and with  2r1Q = p
M = p × E (4.13)

Many substances consist of molecules whose dipole moments are 
different from zero. If a body consisting of such molecules is brought 
into an “external” field, its dipoles are partially aligned. In some sub-
stances, the dipole moment vectors are parallel by nature. 
We investigate the field of a piece of such polarized matter. Each 
molecule has the dipole moment pi. The field of a small volume ele-
ment is obtained by superposing the fields of the n elementary 
dipoles located in it. At a sufficiently large distance, it is the same as 
a single dipole with the dipole moment dp = npi. We define the di-
pole moment density P (or dipole density for short):

dp  =  P dV (4.14)
P is also called electric polarization. P corresponds to a point of a 
body. P(r) is therefore a vector field.
We can replace the polarized matter in the volume element dV by 
non-polarized matter, which is oppositely charged at the two front 
faces, Figure 4.14.

 
If one places electric charges |PdA| and –|PdA| respectively, on the 
surfaces, the new matter element has the same field as the original 
polarized matter element. Now we build a macroscopic body out of 
many volume elements. The result is a body which is neutral inside, 
but whose base and top surface is charged, Fig. 4.15.

A uniformly polarized body thus carries charges at its base and at its 
top surface, where

|QP| = |P |A .
It is common to distinguish this polarization charge QP from the ordi-
nary charge Q. Since QP cannot move freely, it is called bound 
charge.
The last equation can be generalized to (Fig. 4.16):

(4.15)

In this form it also applies when the dipole density is no longer uni-
form. The relationship |QP| = |P|A results from this as a special case.
We want to transform equation (4.15) into a relation that is locally 
valid.
With

(ρP = density of polarization charge) equation (4.15) becomes:

We transform the right side with Gauss’s theorem:

Since this equation applies to every region of space, we have:
ρp = – div P (4.16)

We can now generalize the equation div E = ρ/ε0 (Equation 4.4). 
Here, ρ is only the density of the free charge, i.e. the polarization 
charge is not contained in ρ. Therefore, in the case of polarized mat-
ter the term ρP/ε0 has to be added to the right side of equation (4.4):

We thus obtain 

(4.17)

If there is no free charge, then there is 

div E = – (1/ε0) div P. 

This means that at a position where the E field has sources, the P 
field has sinks and vice versa. It is common to give equation (4.17) 
another form. First we write

div (ε0 E + P) = ρ

We now abbreviate the sum after the div sign:

D = ε0E + P . (4.18)

The quantity D is called the electric displacement. This makes equa-
tion (4.17) shorter and more memorable:

div D = ρ (4.19)

Integration and application of the Gauss’s theorem yields

Using

we obtain
(4.20)

This equation is Maxwell’s 1st equation. 
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4.5 Distortion polarization, orientation  
polarization, electrostatic induction

In the following we investigate the behavior of a piece of matter that 
is brought into an electric field originating from other bodies. In order 
to obtain a situation that is as transparent as possible, we always 
select the arrangements in such a way that homogeneous fields are 
created: The field-producing bodies are two infinitely extended, op-
positely equally charged plates, whose charge per surface has a 
value fixed once and for all. The piece of matter to be examined is 
an infinitely extended plate, which is located between the capacitor 
plates, Fig. 4.17.

Between the capacitor plates there is first a plate of polarized matter, 
Fig. 4.18. We are looking for the electric field strength within the 
matter.

 
The electric field strength in the matter free space between the ca-
pacitor plates is (equation (4.9)):

Sources of the P field sit at the surface of the piece of matter, but no 
free charges. Therefore div (ε0E + P ) = 0. It follows that the 
expression ε0E + P has the same value on both sides of the surface 
of the matter, i.e. inside (i) and outside (o). Since outside P = 0, we 
have

and

(4.21)

We are now dealing with the question of how the polarization of mat-
ter comes about. Polarized matter, like the one we have talked 
about so far, is normally not encountered at all: the polarization 
charges at the end surfaces are compensated by the ubiquitous free 
charges. On the other hand, it is possible to polarize matter by plac-
ing it in an electric field and inducing polarization. Depending on the 
material, this happens in different ways.
Distortion polarization: The positive charge within matter is shifted 
slightly against the negative charge under the influence of the E 
field. As long as E is not too large, the displacement, and thus the 
polarization, is proportional to the field strength in the matter.

P = ε0 χeE . (4.22)
The dimensionless factor χe is called electric susceptibility. The 
larger χe is, the stronger the polarization is for a given E field 
strength.
Orientation polarization: Some substances consist of molecules that 
have a dipole moment different from zero but are generally disor-
dered, e.g. water. When an electric field is applied, these dipoles are 
partially aligned. Here, too, equation (4.22) applies approximately.
Displacement and orientation polarization can only be found in non-
conductors. Here the electric field strength is not zero, the field lines 
run through the matter. Non-conductors are therefore also called Di-
electrics (from δια = through).
The values of χe are situated between 2 and 10 for most non-con-
ductors. The value for water is unusually high, it is 80. This value is 
caused by the large dipole moment of the water molecules.
Electrostatic induction: If electrically conductive matter, i.e. a sub-
stance containing free charge carriers, is brought between the ca-
pacitor plates, Fig. 4.19, the charge shifts until the field strength 
within the matter equals zero.

Although this process is similar to the polarization of a non-conduc-
tor, it has a different name. The process is called induction and is 
not described by a P-field. Rather, it is said that there are true 
charges at the boundary surfaces of the material.

Fig. 4.17 
A plate of the material to be exam-
ined is located between the plates 
of a capacitor.
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4.6 The capacitance of a capacitor filled with  
      matter
We now make the plate of polarizable material in Fig. 4.18 thicker 
and thicker, so that it finally fills the whole space between the capac-
itor plates, Fig. 4.20.

 
The field strength in the space not yet filled with matter remains 
constant during this process. According to equation (4.9) there is al-
ways

After the region has been filled with matter, the field strength there 
has decreased to the value given by equation (4.21). If we designate 
the field strength at a point before the insertion of matter with Eb and 
afterwards with Ea, then we have:
Ea = Eb  –  (1/ε0) P 

        =  Eb – χe Ea 
It follows
Eb = Ea + χe Ea = (1 + χe) Ea 

The factor
ε = 1 + χe ,

by which the field strength decreases is called the dielectric con-
stant. (The material constant increased by 1 has its own name and 
its own symbol! Fortunately this is not usual in physics).
Because of U = ∫Edr = |E |d the voltage decreases by the same fac-
tor:

Ub = εUa .
Since Q = CU, and since Q remains constant, the capacitance in-
creases by ε:

Ca = ε Cb  .
We can thus generalize equation (4.11), which only applied to the 
matter-free capacitor:

(4.23)

In addition, equation (4.9) becomes
ρA = εε0 |E | (4.24)

If the matter is placed into a capacitor whose voltage is kept con-
stant, its charge increases by the factor ε, Fig. 4.21, due to Q = CU:

Qa = εQb .

Fig. 4.20 
The field strength is reduced by 
inserting the dielectric.

+ Q/A

– Q/A

+ Q/A

– Q/A

E = 1
ε0
Q
A

C = εε0
A
d

Fig. 4.21 
If a dielectric is placed in a capaci-
tor at a constant voltage, its charge 
increases.

V V



4. Charge and polarization as sources of the electric field

4.7 Piezo and pyroelectric effect
Materials whose crystal structure is sufficiently asymmetrical are po-
larized when they are deformed. Deformation creates an electrical 
voltage between two opposite faces. This effect is called piezoelec-
tric effect. Conversely, a deformation of the crystal results when a 
voltage is applied between the corresponding surfaces.
Crystals with even lower symmetry show the pyroelectric effect: 
When the temperature changes, the polarization changes; an elec-
trical voltage is generated between two opposite faces.



4. Charge and polarization as sources of the electric field

4.8 The force exerted by one capacitor plate on 
the other

We want to calculate the force that one capacitor plate exerts on the 
other using equation (4.1):
 F  =  QE
We consider one of the plates, plate A, in the field of the other, plate 
B. Plate A carries the charge QA, the strength of the field of plate B is 
EB. However, is this equation applicable here at all? The condition 
for using equation (4.1) is that we are dealing with a single field 
strength value EB. And this means that the field strength at all posi-
tions over which the charge QA extends had the same value before 
the charge was brought there.
Now this is the case with our capacitor. The field of the left plate 
alone is shown in Fig. 4.22.

�  
Everywhere to the right of this plate, the field has the strength EB, 
where EB is half as large as the field strength E in the complete ca-
pacitor:

�

This can be found by using equation (4.3). One then obtains for the 
force:

�

With equation (4.24) and Q = ρΑA it becomes

� (4.25)

Fig. 4.22 
Contribution of one of the two 
plates of a capacitor to the total 
field

B A

field strength EB charge QA

EB = E2

F = E ⋅Q
2

F = Q 2

2εε0A



4. Charge and polarization as sources of the electric field

4.9 The energy within the field of the capacitor
The energy is obtained by moving one plate against the other per-
pendicularly to the plane of the plate with the charge held constant, 
Fig. 4.23.

�  
The space between the plates should remain completely filled with 
matter. Therefore, the dielectric is best imagined to be a liquid in 
which the whole arrangement is immersed.
From 

dE = F dx.
with (4.25) we get

�

Integrated from x = 0 to x = d the total energy in the field becomes

� (4.26)

With (4.23) we finally obtain

� (4.27)

Fig. 4.23 
Energy is needed to move the right 
plate to the right. 

dielectric
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5. Energy density and mechanical stress in the electric field

5.1 The energy density
According to equation (4.26), the energy in the homogeneous field 
of a capacitor is determined by the plate spacing d and the plate 
surface A:

We replace the charge Q with equation (4.24) and with ρA = Q/A:

Since V = A · d is the volume of the field, the energy density is

(5.1)

E = Q 2

2εε0A
d

E = εε0
2
E 2 ⋅A ⋅d

ρE = εε0
2
E 2



5. Energy density and mechanical stress in the electric field

5.2 Tensile stress in the direction of the field lines
According to equation (4.25), the force exerted by one capacitor 
plate on the the other is:

�

But this force is not only exerted by one of the plates on the other, 
but also by one plate on the field immediately in front of it, and this 
region of field exerts it on the next, and so on. This means that there 
is a mechanical tensile stress within the field in the direction of the 
field lines. Its value can be obtained by dividing the force by the 
plate area A

�

The positive sign means that it is a tensile stress.
With eq. (4.24) we finally get

� (5.2)

From the fact that electric field lines always begin or end at charges, 
we conclude that the electric field is pulling at charged matter. 
If a soap bubble is electrically charged, it becomes larger. The elec-
tric field pulls the liquid lamella outwards, Fig. 5.1.

�
But how can the repulsion between two bodies with charges of the 
same sign be explained? Fig. 5.2 shows the answer to this question. 
We look at the left body: the field pulls at all parts of its surface. 
Since the field strength is greater on the left than on the right, it pulls 
more strongly to the left than to the right, resulting in a net force to 
the left. Correspondingly, the same applies to the right body.

�
Instead of “Bodies with like charges repel each other”, it would be 
more correct to say:
Bodies with like charges are pulled away from each other by the 
electric field. 
We interpret Fig. 5.3 in a similar way. Again, the field pulls on the left 
body in all directions. This time, however, the field strength to the 
right of the body is greater than to the left, resulting in a net force to 
the right. So instead of “Bodies with opposite charges repel each 
other” we say more correctly:
Bodies with opposite charges are pulled towards each other by the 
electric field.

�

F = Q 2

2εε0A

σ || =
Q 2

2εε0A
2 = 1

2εε0
ρA

2

σ || =
εε0
2
E 2

Fig. 5.1 
The electric field pulls at the sur-
face of the soap bubble. 

Fig. 5.2 
Two bodies with charges of the 
same sign are pulled away from 
each other by the electric field.

Fig. 5.3 
Two bodies of opposite charges 
are attracted to each other by the 
electric field.



5. Energy density and mechanical stress in the electric field

5.3 Compressive stress perpendicular to the  
      field lines
We consider two small bodies that carry equal and opposite 
charges, Fig. 5.4.

 
We now think of an infinitely extended surface, which is situated in 
such a way that one of our charged bodies lies on one side of it, the 
other body on the other side (left dashed line in Fig. 5.4). The net 
force that the field on one side exerts on the field on the other side 
of the surface must be a compressive force. However, it will general-
ly be composed in a complicated way of the compressive and tensile 
stress contributions of the various surface elements of our interface.
Now there is one separating plane surface where things are simpler: 
the plane of symmetry between the two bodies (right dashed line). 
Here, all field strength vectors lie within the surface. They are per-
pendicular to the straight line that connects the two bodies. From the 
fact that there is a net compressive force in this surface, we can 
conclude that in the electric field there is compressive stress trans-
verse to the field lines. We want to calculate this stress as a function 
of the field strength.
The plates of the capacitor in Fig. 5.5 can be pulled apart so that 
their area y0z0 increases to y0(z0 + dz0). Hereby the charge is kept 
constant. When they are pulled apart, the energy of the field de-
creases.

From equation (5.1) the energy of the field is

 (5.3)

(Attention: E stands for energy, E for the electric field strength). We 
now want to express the field strength by means of the charge, be-
cause the charge remains constant during the process under con-
sideration. To do this we use (4.24)

With (5.3) we get

With a displacement dz0 the energy changes by

Comparing with dE = Fz dz0 yields the force that the field exerts on 
its suspension, i.e. the plates

We again replace Q with |E | using equation (4.24)

The mechanical stress σ⊥ = Fz /(x0 y0) becomes

(5.4)

Thus there is a compressive stress of the magnitude εε0|E|2/2 per-
pendicular to the electric field lines.

Fig. 5.4 
In the symmetry plane there is pure 
compressive stress.

Fig. 5.5 
When increasing the plate area, 
the field releases energy.dz0
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2
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E = Q 2
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6. The sources of the magnetic field

6.1 The magnetic field strength
The phenomena of magnetostatics are formally very similar to those 
of electrostatics. However, apart from the structural similarity, there 
seems to be no connection between these two areas if one limits 
oneself to static phenomena. However, a difference between elec-
tricity and magnetism follows from the fact that no isolated magnetic 
charges have been observed so far. Thus, it is only possible to op-
erate with magnetic polarization charge, i.e. the analogue to the 
electric bound charge. However, handling bound magnetic charge is 
much more convenient than handling bound electric charge. Perma-
nent electric dipoles are difficult to preserve because they are quick-
ly neutralized by free charges. Since there is no free magnetic 
charge, permanent magnets can be stored very well.
Magnetic or magnetized matter consists of magnetic dipoles that 
cannot be decomposed. Here even the point-shaped dipole is real-
ized: Electrons, for example, have a magnetic dipole moment (= 
magnetic moment) and sometimes behave like point-like particles. 
Electrons also have an angular momentum different from zero with-
out having a spatially extended momentum distribution. The angular 
moment vector and the magnetic moment vector are antiparallel.
We designate the magnetic charge by Qm (no SI symbol; the quanti-
ty is also called pole strength). Its SI unit is Weber (Wb), with 1 Wb = 
1 Vs. The unit of the magnetic moment m is therefore Wb · m.
One notices that there appear electrical units of measurement. We 
can justify this fact only later when the relationship between electrici-
ty and magnetism is dealt with. We anticipate that magnetic units 
are obtained by replacing volts with amperes in the unit of the ana-
log electrical quantity and vice versa. The unit of electric charge be-
ing As (abbreviated Coulomb), we obtain the unit of the magnetic 
charge to be Vs (abbreviated Weber).
That Part of a magnet which carries positive magnetic charge (Qm > 
0) is called the north pole, the negatively charged region (Qm < 0) 
south pole. A typical value of the (bound) magnetic charge at one 
pole of a permanent magnet is  10–4 Wb. The magnetic moment of 
an electron is 1.166766 · 10–29 Wb · m.
If one brings a “magnetic point charge Qm” (e.g. the end of a very 
long and thin bar magnet) at a certain point in a given magnetic field, 
a force acts on it, Fig. 6.1. If the value of the charge is doubled, the 
value of the force is also doubled:

F ~ Qm .

The vectorial factor of proportionality is thus characteristic for the 
field without the point charge. It is called the magnetic field strength 
H:

F = H Qm   (6.1)
The measuring unit of H is A/m.
Coulomb discovered not only the law of the force of electric point 
charges on each other, named after him, but also the corresponding 
magnetic law:

(6.2)

μ0 is the magnetic constant:
 μ0 = 4π · 10–7 Vs/Am = 1.2566 · 10–6 Vs/Am 
From (6.2) follows the H field distribution of a magnetic point charge:

In analogy to the electric dipole moment (equation (4.12)) we define 
the magnetic dipole moment 

m = Qma.
Attention: In the literature the definition of m is not standardized! As 
an exception, we do not follow the SI convention.
Just as a force acts on a single magnetic pole, a torque acts on a 
magnetic dipole:

M = m × H
Compare with equation (4.13).

Fig. 6.1 
To determine the strength of the 
field, one measures the force on 
the magnetic pole of charge Qm.

Qm

F = 1
4πµ0

Qm1Qm2

r 2
r
r

H = 1
4πµ0
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r
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6. The sources of the magnetic field

6.2 Magnetization
The atomic constituents of some materials have a magnetic moment 
different from zero. Sometimes the magnetic dipoles are aligned so 
that their dipole moment vectors are parallel. Then a macroscopic 
body also has a dipole moment different from zero. Such a body is 
called a magnet. We define the density M of the magnetic dipole 
moment (compare with equation (4.14)):

dm  =  M dV   (6.3)
The quantity M is called magnetization. M(r) is a vector field. The 
measuring unit of M is the Tesla (T). One finds 1 T = 1 Wb/m2.
(Our M is μ0 times the magnetization defined by the SI, just as our m 
is μ0 times the magnetic dipole moment defined by the SI; different 
books use different names for the same quantity, give the same 
name to different quantities and use different symbols for the same 
quantity; this disagreement exists only for the magnetic pole 
strength, the magnetic dipole moment and its density; for the electric 
field quantities, as well as for H and the quantity B still to be intro-
duced, there is agreement.)
Just as the bound electric charge at the ends of an electrically polar-
ized body is the source of an E field, the magnetic charges at the 
ends of a magnet are the source of the H field. The mathematical 
formalism describing the relationship between sources and field is 
identical in both cases, and we can directly adopt the equations from 
Section 4.4, applying the following translation rules:

E   ⇒  H
ε0  ⇒  μ0      
P   ⇒  M
ρ   ⇒  zero      (because there is no free magnetic charge.).

From equation (4.17) we get

(6.4)

or
div (μ0H + M) = 0,

and with the abbreviation 
B = μ0H + M (6.5)

(analogous to (4.18)) we obtain the relationship analogous to (4.19)

div B = 0 (6.6)

The quantity B is called magnetic flux density. Its measuring unit is 
the same as that of the magnetization, namely Tesla. 
Equations (6.4) and (6.6) state that the H field has its sources where 
the M field has its sinks, and vice versa. Using Gauss’s theorem, we 
transform the local equation (6.4) into an integral relation:

Correspondingly, (6.6) becomes

(6.7)

This equation is called Maxwell’s 2nd equation.

Figure 6.2a shows the magnetization of a bar magnet. Bar magnets 
are manufactured in such a way that the magnetization lines run 
parallel to the longitudinal direction of the magnet, so that the poles 
are located at the end faces.

Figure 6.2b shows the H field line image. (The magnetic equipoten-
tials are also shown, see Section 6.3). If the magnetic charge at the 
end faces is replaced by electric charge, an electric field is obtained 
whose field lines are the same as in the figure. 
Figure 6.3 shows the magnetization lines and magnetic field 
strength lines for a horseshoe magnet.

 
Figure 6.4 shows a ring magnet with a gap. The left partial image 
shows how it has been magnetized by the manufacturer. In the right 
partial picture one can see that the H field is practically concentrated 
on the region of the gap. 

Figure 6.5a shows a ring similar to that in Figure 6.4a, but this ring 
has no gap. What can be said about the H field and the B field? Fig-
ure 6.5b shows a magnetized spherical shell; on the inner surface 
there is a south pole (negative) charge, on the outer surface there is 
north pole (positive) charge. What can be said about the H field and 
the B field?

divH = − 1
µ0

divM

H dA!∫∫ = − 1
µ0

M dA!∫∫

BdA!∫∫ = 0

a

b

Fig. 6.2 
Bar magnet; (a) Magnetization lines; (b) H field lines and magnetic equipotentials

a b

Fig. 6.3
Horseshoe magnet; (a) Magnetization lines; (b) H field lines and magnetic equipotentials

Fig. 6.5
(a) Ring magnet without gap; (b) Magnetized spherical shell. What can be said about the mag-
netic field strength and the magnetic flux density?
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Fig. 6.4
Ring magnet; (a) Magnetization lines; (b) H field lines and magnetic equipotentials



6. The sources of the magnetic field

6.3 The magnetic potential
Just like

�

in the electrostatic field, the integral

�

in the magnetostatic field is independent of the integration path.
Therefore a magnetic potential Φm(r) can be defined (compare with 
equation (4.5)):

� (6.8)

Um is the magnetic potential difference between A and B. From the 
last equation further follows (compare with equation (4.7)):
H(r)  = – grad Φm(r)

The measuring unit of the magnetic potential is Ampere. Um is an SI 
symbol; for the magnetic potential there is no standardized symbol.

E dr
A

B

∫

H dr
A

B

∫

H dr
A

B

∫ = – Φm(rB )−Φm(rA )[ ] =Um



6. The sources of the magnetic field

6.4 Induced magnetization
We’re investigating how matter behaves in a magnetic field. We 
suppose the field to be homogeneous and to have a constant value 
outside of the matter. Such a field is realized, for example, by bring-
ing a plate-shaped piece of matter into the narrow gap between the 
wide poles of a homogeneously magnetized magnet, Fig. 6.6.

 
Because of div (μ0H + M) = 0, the expression μ0H + M has the same 
value on both sides of each surface of the piece of matter, i.e. inside 
(in) and outside (out). Since outside M = 0 we have

and thus

(6.9)

If the matter is not a magnet itself, i.e. if it is not magnetically polar-
ized (= magnetized) from the outset, it is found that it is magnetized 
under the influence of an H field. Approximately we have

M = μ0 χm H (6.10)
χm is the magnetic susceptibility. With (6.9) we obtain

H in = Hout – χmH in

and
Hout = (1 + χm)Hin 

Now the matter is to fill the whole space between the magnetic 
poles, Fig. 6.7.

If one compares the H field strength before the insertion of matter 
(b) with that after (a), then

Hb = (1 + χm)Ha  .
The field strength is thus changed by a factor of 1 + χm by the inser-
tion of matter. This factor μ is called the permeability of the material:
μ = 1 + χm.

Because of Um = ∫Hdr, the magnetic potential difference between the 
two magnetic poles also changes by this factor: Um,b = μUm,a. The 
magnetic potential difference is less commonly used than the elec-
trical potential difference because it is harder to measure. All volt-
meters make use of the fact that there is freely displaceable electric 
charge. Thanks to the displaceability of Q, a potential value can be 
easily transmitted by means of a wire. On the other hand, the mag-
netic field strength H is easier to measure than the electric field 
strength (e.g. with a Hall probe).
As in the case of the electric polarization, there are also different 
mechanisms for the magnetic polarization by an H field. 
The electron has a magnetic moment. In many materials, the elec-
trons of each atom or molecule adjust in such a way that the atom or 
molecule as a whole has a magnetic moment of zero. In other mate-
rials the molecules have a resulting magnetic moment. These are 
called paramagnetic substances. If they are brought into a magnetic 
field, the magnetic moments are oriented in the direction of the field 
(the paramagnetic polarization in the H field corresponds to the ori-
entation polarization in the E field). Table 6.1 lists the susceptibility 
values of some paramagnetic substances.

χm increases with decreasing temperature. The orientation of the 
magnetic moments at normal temperature is far from complete.
But even the substances whose molecules normally have no result-
ing magnetic moment become magnetic in the H field, namely in 
such a way that M and H point in opposite directions, so χm is nega-
tive. This process is called diamagnetic polarization. It also occurs in 
paramagnetic materials, but is overcompensated by the paramag-
netic polarization. Table 6.2 contains the χm values of some diamag-
netic substances.

magnetic polesmatter

Fig. 6.6 
Magnetizable matter between the 
poles of a magnet

H out = H in +
1
µ0
M

H in = H out –
1
µ0
M

magnetic polesmatter

Fig. 6.7 
By inserting magnetizable matter, 
the field strength is reduced.

Substance χm

Oxigen (under normal conditions) 0.14 · 10-6

Liquid oxigen 360 · 10-6

Aluminum   1.7 · 10-6

Manganese    80 · 10-6

Sodium   0.5 · 10-6

Platinum  19.3 · 10-6

Table 6.1
Examples of paramagnetic 
materials

Substance χm

Lead – 0.12 · 10–6

Gold   – 3.1 · 10–6

Copper   – 0.8 · 10–6

Silver   – 1.5 · 10–6

NaCl      – 1 · 10–6

Water  – 0.72 · 10–6

Bismuth    – 14 · 10–6

Table 6.2
Examples of diamagnetic materials
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6.5 Ferromagnetism
There are substances whose atoms have a resulting magnetic mo-
ment, and in which the magnetic dipoles of all atoms adjust them-
selves parallel. In these cases M ≠ 0, even though H = 0. Since the 
orientation of the elementary magnetic moments is complete (in con-
trast to paramagnetic materials), M is very large.
These substances are called ferromagnetic. They include Fe, Ni, Co 
and alloys of these and other substances. 
The reason that an ordinary piece of iron has no magnetic moment 
is the fact that the atomic dipoles are aligned in small differently ori-
ented regions. These regions are called magnetic domains. Since 
they are oriented differently no magnetization can be detected 
macroscopically.
Fig. 6.8 shows the magnetization as a function of the field strength.

�
If one starts with a non-magnetic piece of iron and lets the field 
strength increase, one moves on segment 1 of the curve. If one then 
lets H decrease up to negative values, one follows segment 2. When 
H increases again, curve 3 is followed. The magnetization MR re-
maining at H = 0 is called remanence, the field strength  HC, which is 
necessary to bring the material back to zero magnetization, is the 
coercivity.
The magnetization at a given moment thus depends on the field 
strength at earlier times. The material thus has a “memory”. Such a 
phenomenon is called “hysteresis”. The effect is used for data stor-
age.
The M-H relationship is different for different ferromagnetic materi-
als. Figure 6.9 and 6.10 show two examples.
Fig. 6.9a corresponds to a hard magnetic material. It is suitable for 
manufacturing permanent magnets. A permanent magnet should not 
change its magnetization when exposed to a magnetic field. Fig. 
6.9b shows only the section marked by the blue box. It can be seen 
that in the corresponding H range the magnetization is independent 
of the field strength. (Of course you can change the magnetization 
“by force”, as can be seen in fig. 6.9a.)
Today, values of MR up to over 1 T and of HK up to more than 
150 kA/m can be achieved.

 Figure 6.10 shows the M-H relationship for a soft magnetic material 
(soft iron, Mu-metal). As long as M is small compared to the satura-
tion magnetization, M is proportional to H, i.e. M = μ0χmH, just as for 
diamagnetic and paramagnetic materials. However, χm is much larg-
er here, namely a few tens of thousands. If such a material is 
brought into a magnetic field that originally had the value Hb, then 

Hb = (1 + χm)Ha     ⇒   Ha ≈ 1/104 Hb.
The field strength in the material thus becomes practically zero. 
Thus, a body made of a soft magnetic material expels the magnetic 
field from its interior.

Thus, a soft magnetic material behaves in the H field analogously to 
electrical conductors in the electric field. Just as the surface of an 
electrical conductor constitutes an electrical equipotential surface, 
the surface of soft iron is almost a surface of constant magnetic po-
tential (see sections 4.2 and 4.5).
At a temperature characteristic of each ferromagnetic substance, the 
Curie temperature, ferromagnetism disappears. Above this tempera-
ture ( for iron 1047 K), the material is an ordinary paramagnet.
With the help of components made of magnetically soft material, the 
field of a permanent magnet can be changed in a comfortable way. 
We suppose that the permanent magnet and the soft magnet are 
made of an ideal material. Figure 6.11a shows an example, Figure 
6.11b shows the electrical analogue.

�
As in Figure 6.11b the wires are at constant electrical potential, the 
soft iron parts in Figure 6.11a are at constant magnetic potential. 
The electric field strength in the wires in Fig. 6.11b is zero and the 
magnetic field strength in the soft iron parts in Fig. 6.11a is nearly 
zero.
In Fig. 6.11b it is

�

and in Fig. 6.11a

�

Since the path PQ is much longer than the path P’Q’, the field 
strength E or H respectively, on the path P’Q’ is much greater than 
on the path PQ. Therefore the largest part of the induced electric 
charge or the magnetic polarization charge is located on the sur-
faces to the right. The field in the slit on the right side is almost ho-
mogeneous. 
With the help of the soft iron pieces we have turned the originally in-
homogeneous field of the rod magnet into a strong homogeneous 
field.

Fig. 6.8 
M-H relation with hysteresis
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Fig. 6.11 
Magnetic arrangements and its 
electric analogue.
Red and green: Positive and nega-
tive magnetic charge.
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Fig. 6.10 
M-H relationship for a soft magnet-
ic material. As long as the material 
is not saturated, it expels the mag-
netic field from its interior, i.e. the 
field strength is very small.

Fig. 6.9 
(a) M-H relationship for a hard 
magnetic material.
(b) The blue box in (a) corresponds 
to the H range in which the materi-
al is normally used. 
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6.6 Magnetic capacitance
In analogy to C = Q/U one could define a magnetic capacitance: 
Cm = Qm/Um. The unit of measurement of the magnetic capacitance 
is Wb/A = Henry (H). This quantity is not commonly used, although 
the example of the ring magnet in the previous section shows that it 
is a meaningful quantity. We will later learn about a quantity of the 
same dimension (measuring unit), the inductance. In order to obtain 
a well-defined space of high magnetic field strength, a magnetic ca-
pacitor can be built and connected to a permanent magnet (or elec-
tromagnet) via magnetic lines. The capacitance of the lines must be 
small compared to that of the “capacitor”. Since Cm = μ0A/d (analo-
gous to  C = ε0A/d), the lines are laid in a large arc to the capacitor, 
i.e. in such a way that d is as large as possible for the lines. Fig. 
6.12 shows how not to do it: the (magnetic) line capacitance is too 
large.

�

Fig. 6.12 
The capacitance of the supply lines for the magnetic capacitor is too high.

permanent
magnet

lines magnetic 
capacitor
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7. Energy density and mechanical stress in the magnetostatic field

7. Energy density and mechanical stress in the  
    magnetostatic field
We can translate the arguments of chapter 5 almost literally. We just 
have to replace:
E  → H
P  → M
χe → χm
ε0 → μ0 

In analogy to equation (5.1) we get the energy density
 (7.1)

Parallel to the field lines of the H field there is a tensile stress (com-
pare with (5.2))

(7.2)

and perpendicular to the field lines a compressive stress (see also 
(5.4))

(7.3)

Since magnetic field lines always begin or end at magnetic poles, 
we conclude that the magnetic field always pulls at magnetic poles. 
Magnetic poles of equal sign are pulled away from each other by the 
magnetic field, poles of opposite sign are pulled towards each other.

ρE = µµ0

2
H 2

σ || =
µµ0

2
H 2

σ ⊥ = − µµ0

2
H 2
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8. Maxwell’s equations

8.1 Ampère’s law
In 1820, Oersted discovered that an electric current exerts a torque 
on a magnetic dipole. Ampère described the mechanical interaction 
between wires in which an electric current is flowing by means of an 
elegant theory. Faraday recognized that these phenomena could be 
used to infer the existence of a field. Maxwell finally generalized 
Ampères and Faraday’s thoughts. In modern language, Oersted’s 
discovery can be described as follows: A conductor in which electric 
charge is flowing is surrounded by a magnetic field which has no 
sources or sinks, i.e. div H = 0, Fig. 8.1. The H field lines have nei-
ther a beginning nor an end.

From Ampère’s theory follows the relationship between current and 
H field:

Ampère’s law (8.1)

In words: The integral ∫Hdr over a closed path is equal to the electric 
current flowing through this surface. This equation is based on the 
convention that the closed integration path together with the surface 
to which the current refers defines a right-hand screw.
This can also be formulated with the “right-hand rule”: If the thumb of 
the right hand points in the direction of the electric current (= 
direction of the current density vectors), the curved fingers indicate 
the direction of the magnetic field lines, Fig. 8.2.

With  I = ∫∫jdA Ampère’s law becomes:

Attention: In an H field caused by an electric current, ∫Hdr is not in-
dependent of the integration path. Therefore, a potential can only be 
defined in limited regions of space.

Fig. 8.1 
Magnetic field of a conductor tra-
versed by an electric current

electric 

current

field lines

H dr!∫ = I

Fig. 8.2 
If the thumb of the right hand 
points in the direction of the electric 
current, the curved fingers indicate 
the direction of the magnetic field 
strength.

magnetic field 
lines

electric  

current

H dr!∫ = j dA∫∫



8. Maxwell’s equations

8.2 Calculation of magnetic field strengths
The straight conductor
The integration path is chosen to be a circle of radius r perpendicu-
lar to the direction of the wire, with its center at the center of the 
wire, Fig. 8.3.

 
Because of the symmetry, the absolute value of H is constant along 
the entire integration path. The direction of H must be tangential to 
the circle, otherwise the H field would have sources or sinks on the 
wire, which is not the case. So it is

 

The long solenoid
As an integration path, we choose the path shown dashed in Fig. 
8.4: Inside the coil, we follow a field line; outside the coil, the field 
strength is very small, we neglect its contribution to the integral:

N = number or turns that cross the integration path.

It follows

H does not depend on the position within the coil. In particular it 
does not depend on the position within a given coil cross-section. 
The H field is therefore homogeneous. In addition, H does not de-
pend on the cross-sectional area of the coil, and given a certain 
number of turns per length, it does not depend on the length of the 
coil. 

The toroidal coil
The radius R of the ring is supposed to be large against the “tube 
radius” r, Fig. 8.5. Then the field is almost homogeneous. The field 
strength outside the coil is zero. For the inside, one obtains by inte-
gration over a circular path of the length l = 2π R:

The ring-shaped electromagnet
The distance between the plane pole surfaces is small in compari-
son to the lateral expansion of these surfaces. The H field between 
the poles is therefore almost homogeneous, Figure 8.6. We calcu-
late the field strength Hout between the poles and the field strength 
H in in the soft iron core.

 
With 

div B = 0
we obtain
μ0Hout = M + μ0H in 

With M = μ0 χm H (equation (6.10)) we get 
μ0Hout = μ0χmH in  + μ0H in  = μ0(1 + χm)H in 

Since χm >> 1 we have
μ0Hout ≈ μ0χmH in

and thus

We integrate over the red dashed path. The path section inside the 
iron has the length  lin, the section outside has length lout.

H in lin + Hout lout = N · I
Here we do not neglect H in against Hout, because of the factor lin in 
front of H in, which is big against lout.
Replacing H in with the help of the penultimate equation results in:

With H in = Hout/χm we get the field strength within the iron core

We consider two extreme cases.

If the gap is not too narrow, the field in the gap is just as strong as if 
the entire coil were wound over the short length lout. In the iron the 
field strength is very small.

The field strength within the iron is the same as in a toroidal coil with 
the same number of turns. In the gap, H is greater by a factor of χm. 

The long electromagnet (coil with iron core)
Since the field is inhomogeneous, it is harder to calculate. The effect 
of the iron core can be described qualitatively as follows, Fig. 8.7: 
With an empty coil, the largest contribution to ∫Hdr comes from in-
side the coil. If the coil is filled with a soft magnetic material, H be-
comes very small inside. Since ∫Hdr = NI has the same value as be-
fore, the external field must now make a large contribution. The out-
er field is thus strengthened by the iron core.

Fig. 8.3 
Integration path for the calculation 
of the magnetic field strength 
around a straight wire

r
conductor

integration path

H dr!∫ = H 2πr = I ⇒ H = I
2πr

H dr!∫ =H ⋅ l =N ⋅I

Fig. 8.4 
Integration path for calculating the 
magnetic field strength in a long 
coil

l

⎫

⎬
⎪⎪

⎭
⎪
⎪

H = N ⋅I
l

H dr = H ⋅ l =N ⋅I ⇒ H =!∫
N ⋅I
l

Fig. 8.5 
Toroidal coil

r

R

Fig. 8.6 
Electromagnet with narrow gap. The 
field lines correspond to the magnet-
ic flux density B.

H in =
Hout

χm

Hout =
NI

lin
χm

+ lout

H in =
NI

lin + χmlout

lin
χm
≪ lout ⇒ Hout =

NI
lout

, H in =
NI
χmlout

lin
χm
≫ lout ⇒ Hout =

NI
lin

χm, H in =
NI
lin

Fig. 8.7 
The iron core expels the magnetic 
field from the coil.

field

field



8. Maxwell’s equations

8.3 Maxwell’s forth equation
Ampère’s law is only a provisional solution, valid only as long as the 
circuit is closed. In the case of Figure 8.8, where a line is interrupted 
by the empty space between the plates of a capacitor, it leads to an 
inconsistency. A current of constant strength I flows through the 
conductor so that the capacitor is charged.

While this current is flowing, the integral ∫Hdr has a well-defined, 
non-zero value on the dashed red line. But the right side of Am-
père’s law, ∫∫jdA, has different values depending on how the surface 
whose edge is the dashed line is chosen. If the surface cuts the wire 
(upper partial image) we have ∫∫jdA = I. If it runs through the space 
between the capacitor plates (lower partial image) we get ∫∫jdA = 0. 
In this second case ∫Hdr cannot be equal to ∫∫jdA. This problem oc-
curs only if the circuit is not closed, i.e. if j has sources or sinks. 
Maxwell therefore generalized Ampère’s law by adding two terms to 
∫∫jdA on the right:
� (8.3)

With equation (4.18) the last two summands can be combined: 
� (8.4)

The ordinary electric current ∫∫jdA has been supplemented by two 
further terms that contribute to the magnetic field:

• Ip = dQp/dt = ∫∫(∂P/∂t)dA is the current caused by the displace-
ment of polarization charges.

• Even if no polarizable matter is present, the space between the 
capacitor plates contributes to the magnetic field. This term be-
haves like an electric current as far as the magnetic field is con-
cerned. It is, apart from the factor ε0, the time derivative of the 
flow of the E field through the surface S.

Does this remove the inconsistency mentioned above? We calculate 
the right side of Maxwell’s 4th equation for the case that the integra-
tion area lies between the capacitor plates. Since j = 0 and ∂P/∂t = 0, 
only the term ε0 ∫∫(∂E/∂t)dA remains.
With  |E | = Q/(ε0A) and Q = I · t we get

�

So it is ∫Hdr = I, in agreement with the result one gets when the in-
tegration surface intersects the wire.
Maxwell also interpreted the contribution ∫∫(∂D/∂t)dA as an electric 
current and called it displacement current.
He called the sum I + ∫(∂D/∂t)dA the true current. According to this 
idea, there are only closed circuits at all. If the current density of the 
true current is referred to as C, the 4th Maxwell equation simplifies:
�

According to this view, the cause for ∫Hdr is always an electric cur-
rent.
The right-hand rule applies to all contributions to the current in equa-
tion (8.3).

H d r
border 
line of S

!∫ = j d A
S
∫∫ + "P d A

S
∫∫ + ε0

!E d A
S
∫∫

H d r
border
line of S

!∫ = j d A
S
∫∫ + "D d A

S
∫∫     Maxwell’s 4th equation

ε0 !E dA∫∫ = ε0
!Q

ε0A
dA = I∫∫

H dr!∫ = C dA∫∫

Fig. 8.8 
Two possibilities for the choice of 
the integration surface with fixed 
boundary line



8. Maxwell’s equations

8.4 Maxwell’s third equation
Faraday recognized the structural similarity of electrical and magnet-
ic phenomena. This insight led him to discover the law of induction. 
He did not find this law by chance, but consciously searched for it. 
The search took more than 10 years. If he had available that part of 
Maxwell’s formalism that we have dealt with so far, his search would 
have gone faster. He could have found the law of induction simply 
by formally translating Maxwell’s 4th equation (8.3):

�

The only mistake in this formal translation is a sign error: the equa-
tion turns out to be correct if a minus sign is placed in front of ∫Edr. 
(If the sign of the electric or magnetic charge had been defined the 
other way round, the minus sign would appear in Maxwell’s 4th 
equation. However, it must be in one of the two, otherwise there is a 
conflict with the law of energy conservation.)
Since there are no isolated magnetic charges, there is no magnetic 
conduction current, so we can omit the term ∫∫jmdA. (As soon as 
someone discovers a magnetic monopole particle, we add it again).
So it remains
�         (8.5)

With equation (6.5) the two integrals on the right side can be sum-
marized:

         (8.6)

Like Maxwell’s 4th equation, the 3rd also makes a statement about a 
surface. More precisely: about a relationship between the edge and 
the interior of the surface. The integral ∫Edr over the boundary 
comes about through two contributions:

• the time rate of change of the flow of M through S
• the time rate of change of the flow of H (times μ0) through S.

Here, too, the right side can be interpreted as a displacement cur-
rent: a magnetic displacement current. We can thus say that around 
a magnetic current an electric field with is created, whose field lines 
surround the magentic current.
Attention: In an E field caused by induction, ∫Edr is not independent 
of the integration path. A potential can therefore only be defined in 
limited regions of space. 
In order to obtain the direction of the electric field strength of the in-
duced field, a hand rule can be applied again; but because of the 
minus sign in the equations (8.5) and (8.6) it is not a right-hand but a 
left-hand rule: If the thumb of the left hand points in the direction of 
the magnetic current (i.e. in the direction of ∂B/∂t), the curved fingers 
indicate the direction of the electric field lines. 

H d r!∫ = j d A∫∫ + "P d A∫∫ + ε0
!E d A∫∫              Maxwell’s 4th equation

E d r"∫ = jmd A∫∫ + !M d A∫∫ + µ0
!H d A∫∫   ?? 

not quite correct
version of
Maxwell’s 3rd equation

⎧
⎨
⎪

⎩⎪

− E d r
border
line of S

!∫ = "M d A
S
∫∫ + µ0

!H d A
S
∫∫     

− E d r
border
line of S

!∫ = "B d A
S
∫∫   

Maxwell’s 3rd equation
(Faraday’s law of induction)  
⎧
⎨
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8. Maxwell’s equations

8.5 Electric conductors in the induced electric  
   field

To verify the electric field described by Maxwell’s 3rd equation, a 
“test charge” could be used. However, such a demonstration is diffi-
cult because E, and consequently F = EQ, is very small in a typical 
experimental setup. We therefore place an electric conductor in the 
region to be investigated. We then recognize the E field indirectly by 
an “induced voltage” appearing between the ends of the conductor, 
or by an “induced current” flowing in the conductor.
In order to obtain a mathematically manageable situation, we con-
sider a magnetic field Ho (Fig. 8.9),

• which is homogeneous;
• whose field strength increases at a constant rate (e.g. in an elec-

tromagnet whose electric current strength increases at a con-
stant rate): ∂Ho/∂t = const 

We consider two special cases. 

Short circuit
The conductor is a closed ring, Fig. 8.10. Because of the E field, an 
electric current flows in the conductor, which causes a magnetic field 
of strength H i. We apply Maxwell’s 3rd equation:

Now H i is still unknown. But it is easy to find a consistent solution. 
We assume that ∂ H i/∂t = 0, i.e. H i is constant in time. Then E is also 
constant in time everywhere and with j = σE also the electric current 
in the wire and consequently also H i, as we had assumed. Thus

 

So the equation has the same structure as if there were no conduc-
tor in the magnetic field. The conductor causes an additional mag-
netic field which is constant in time but has no influence on the in-
duction process. 

Open circuit
The conductor loop is interrupted, no electric current can flow, Fig. 
8.11. The fact that no current flows means that the electric field 
strength in the wire is zero, since j = σE. How can this be reconciled 
with Maxwell’s 3rd equation? It cannot originate from the right side 
of the equation, i.e. the H field, because no current is flowing that 
could modify the H field. 

As soon as the experiment begins, charges displace in such a way 
that the E field strength within the conductor material becomes zero 
everywhere. Instead, an E field appears between the open ends of 
the loop, Fig. 8.12. This is just so strong that the integral over the 
path S in the gap between A and B equals
μ0 ∫∫(∂H/∂t)dA 

If one calculates ∫Edr over the closed, dashed path, then only this 
section S makes a contribution. This integral is called induced volt-
age Uind.

The induced voltage can be measured between the leads with a 
voltmeter. In this case the 3rd Maxwell equation can be formulated 
as follows

or if χm ≠ 0, more generally

The integral

is called magnetic flux. We thus obtain

Figures 8.13 to 8.17 show some induction experiments.

In the arrangement shown in Fig. 8.18b, the conductor loop is 
moved instead of the magnet. The voltmeter reading is of course the 
same as in Fig. 8.18a, because the only difference between right 
and left is that a different reference frame has been chosen for the 
description. While the 3rd Maxwell equation is used to describe the 
left figure, the 4th Maxwell equation is required to describe the right 
one, where the H field of the permanent magnet is constant. How-
ever, the description using the 3rd Maxwell equation is more conve-
nient; one will therefore choose the reference frame in such a way 
that the conductor loop is at rest.

Also in the arrangement shown in Fig. 8.19 the H field is constant in 
time. Therefore, the induced voltage is calculated in the reference 
frame in which the conductor loop is at rest and the magnet rotates.

E d r = −µ0
!H d A∫∫ =!∫ − µ0 ( !H o + !H i )d A∫∫

Fig. 8.10 
Short-circuited conductor loop in a 
magnetic field whose strength in-
creases at a constant rate

E d r =!∫ − µ0
!H od A∫∫

Fig. 8.11 
Open conductor loop in a magnetic 
field whose strength increases at a 
constant rate

Fig. 8.12 
Inside the conductor the electric 
field strength is zero.

U ind = −µ0
!H dA∫∫

U ind = − !BdA∫∫

φ = BdA∫∫

U ind = − !Φ

a b c

Fig. 8.13 
(a) The permanent magnet is moved, the circuit is open. 
(b) The permanent magnet is moved, the circuit is closed.
(c) The induced voltage is proportional to the number of turns.

Fig. 8.14 
The induced voltage is caused by a change of 
the magnetization.

Fig. 8.15 
The H field change is achieved by closing an 
electric circuit.

Fig. 8.16
The principle of operation of the transformer

Fig. 8.17 
The change of the B field distribution is 
caused by the displacement of the soft mag-
netic core of the coil.

a b

Fig. 8.18 
Depending on the reference frame, either the third (a) or the forth (b) Maxwell equation is need-
ed for the description.

Fig. 8.19 
The H field is constant in time. To 
calculate the induced voltage, one 
better goes into the reference 
frame in which the conductor loop 
is at rest.

Fig. 8.9 
The field in the gap of the electro-
magnet is homogeneous and in-
creases at a constant rate.

soft iron
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8.6 Inductance
Inductance is a quantity of great technical importance. It character-
izes a single-loop circuit in which the electric current has no sources 
or sinks. The circuit defines a surface S through which the flux 
passes. 
∫∫BdA = ∫∫(µ0H + M)dA 

passes.
According to Maxwell’s 4th equation, the field strength at each loca-
tion is proportional to the electric current I in the circuit. As long as M 
~ H, also M is proportional to I everywhere. It follows that both the 
flux  ∫∫HdA and ∫∫MdA are proportional to I:

We write this relationship
Φ = L · I (8.8)

The factor of proportionality L is called the inductance of the circuit. 
The unit of measurement is Vs/A = H (Henry). Since there are no 
real magnetic currents, there is also no electric analog to L.
With Maxwell’s 3rd equation (8.6), we get

(8.9)

If there is a resistor in the circuit, i.e. a short section whose resis-
tance is large compared to that of the rest of the circuit, Fig. 8.20, 
only this section contributes to ∫Edr, and the voltage over this resis-
tor is

Often a circuit can be decomposed into parts as shown in Figure 
8.21. There are two nearly closed surfaces and the flux caused by 
one part does not pass through the other. In this case, the induc-
tance can also be decomposed and each part can be assigned its 
own inductance.
In the case of a coil with N turns, each B field line passes N times 
through the surface of the circuit. It thus contributes N times to the 
integral ∫∫BdA. Figure 8.22 shows that the surface of the circuit is 
penetrated 8 times by 4 field lines: All four subpictures are topologi-
cally equivalent.

Let us calculate the inductance of a long coil. Inside the coil we have 
H = (N/l )I. With B = μ0H we find for the B flux which crosses the total 
area of the coil

By comparison with Φ = LI we get

If one designates the flux through a single cross-sectional area A 
with Φ’, then Φ’ = Φ/N, and from (8.8) we get:
 NΦ’ = LI
If the coil is winded on a closed iron core, then (see section 8.2) 
H = (N/l )I, M = μ0χmH and consequently

We thus get

(8.10)

Finally, we calculate the energy content of the field of a coil with a 
closed iron core. The field is located within the iron core, and thus 
also the energy. With equation (7.1) and with H = (N/l )I and 
V = A · l (where V is the volume) we obtain

Using (8.11) we get

(8.11)

The range of validity of this equation is greater than it would appear 
from our derivation. It always applies when we are dealing with the 
magnetic field of a single-loop circuit.

Φ = B d A
S
∫∫ = (µ0H +M )d A

S
∫∫ ∝ I

E dr!∫ = –L !I

Fig. 8.20
The resistance of a small section of the circuit 
is large against that of the rest.

Fig. 8.21 
The inductance of the circuit can be decom-
posed into two parts.

Φ = µ0 ⋅N ⋅A ⋅H = µ0
N 2A
l
I

L = µ0
N 2A
l

B = µ0H +M = µ0(1+ χm)
N
l
I = µ0µ

N
l
I

L = µµ0
N 2A
l

E = ρE ⋅V = µµ0

2
N 2

l2
I 2Al = µµ0

2
N 2A
l
I 2

E = L
2
I 2

U = –L I·

Fig. 8.22
The area defined by the circuit is crossed twice by each field line.
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8.7 Reference frames
This issue will only briefly be addressed here. A detailed treatment 
would lead directly to the theory of relativity.
1. We consider a uniformly electrically charged wire which is at rest 
in the reference frame S, Fig. 8.23. In this reference frame an elec-
tric field different from zero is observed, while H is equal to zero 
everywhere. In the reference frame S’, which moves relative to S in 
the direction of the wire, the charge is moving. Thus, an electric cur-
rent is flowing and we find H ≠ 0.

2. Consider a bar magnet resting in the reference frame S, Fig. 8.24. 
In S, H ≠ 0, but E is zero everywhere. In the reference frame S’ the 
H flux through the surface σ changes with time, so ∫Edr over the 
edge of this surface is not equal to zero. Thus in S’ the electric field 
strength is different from zero.

These two examples show that E and H are not only linked by some 
physical law, such as F and Q in Coulomb's Law. E and H rather 
transform into each other upon a change of the reference frame. 
The electric field and the magnetic field do not represent two differ-
ent physical systems, but only one: the electromagnetic field. The 
values of the field strengths depend on the reference frame.
3. Finally, we consider a third situation in two different reference 
frames: A sphere that carries positive electric charge and that is at 
rest in a homogeneous magnetic field between the poles of a mag-
net, Figure 8.25a. Now, the sphere is to move relative to the magnet 
and perpendicular to the image plane. We consider the process in 
two different reference frames.

Once the magnet is at rest, and the sphere moves out of the image 
plane. The moving electric charge corresponds to a current and to 
this belongs a magnetic field. The left partial image of Fig. 8.25b 
shows the two magnetic fields that have not yet been combined: the 
field of the magnet and that of the moving sphere. In the right partial 
picture the field strengths were summed. The resulting field is 
stronger at the left side of the sphere than at the right. Since there is 
a compressive stress perpendicular to the field lines, the sphere is 
pushed to the right. For this interpretation we have used Maxwell’s 
4th equation.
We now go into the reference frame of the sphere. The sphere is at 
rest and the magnet moves into the image plane. Thereby an elec-
tric field is induced which is almost homogeneous in the area be-
tween the poles. The left partial image of Fig. 8.25c shows the two 
electric fields that have not yet been combined: the field of the 
charged sphere and the electric field caused by the movement of the 
magnet. In the right partial picture the field strengths were added. 
The resulting electric field is stronger to the right of the sphere than 
to the left. Since there is tensile stress in the field line direction, the 
sphere is pulled to the right. We used Maxwell’s 3rd equation to in-
terpret the experiment.
Thus, depending on the reference frame, the same phenomenon is 
explained once by the fourth and once by the third Maxwell equa-
tion. If one interprets such an experiment with the help of Maxwell’s 
4th equation, the force that appears is called Lorentz force.

Fig. 8.23 
In reference frame S only the elec-
tric field strength is different from 
zero, in reference frame S’ also the 
magnetic field strength.

Fig. 8.24 
In reference frame S only the mag-
netic, in reference frame S' also the 
electric field strength is different 
from zero.

a

b

c

Fig. 8.25 
(a) A charged sphere is at rest between the poles of a magnet. 
(b) The magnet is at rest; the sphere moves out of the image plane. 
(c) The sphere is at rest; the magnet moves into the image plane.
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8.8 Summary of the equations
We want to compile the most important equations of electrodynam-
ics once again. First there are the equations (4.20) and (6.7), which 
we already knew as Maxwell’s 1st and 2nd equation. In addition we 
have equations (8.4) and (8.6), i.e. Maxwell’s 4th and 3rd equation. 
The four Maxwell equations control the interaction of electric and 
magnetic fields and their sources.

�

Here we have written the equations in their integral form. For Max-
well’s 1st and 2nd equation, we had already previously given a local 
or “differential” formulation, namely the equations (4.19) and (6.6). 
The 3rd and the 4th equations can also be formulated locally using 
the curl operator. We thus have

�

D d A!∫∫ = ρdV∫∫∫ Maxwell’s 1st equation

B d A!∫∫ = 0 Maxwell’s 2nd equation

– E d r"∫ = #B d A∫∫ Maxwell’s 3rd equation

H d r"∫ = j d A∫∫ + #D d A∫∫ Maxwell’s 4th equation

divD = ρ Maxwell’s 1st equation
divB = 0 Maxwell’s 2nd equation
–curlE = !B Maxwell’s 3rd equation
–curlH = j + !D Maxwell’s 4th equation
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9. Forces on moving charge carriers

9.1 The pressure of the magnetic field on an 
electric conductor

A field pushes or pulls on matter whenever the field “is attached to 
the matter”; in other words: when the sources of the field reside with-
in the matter. In chapters 4 and 6 we got to know the electric and 
magnetic charge as sources of the electric or magnetic field and in 
chapters 5 and 7 we found that the fields on electrically or magneti-
cally charged matter always pull.
In the previous chapter we got to know currents as further sources 
of fields: the electric current j + ∂D/∂t and the magnetic current ∂B/∂t. 
So fields must also exert forces on matter through which a current 
flows.
The situation is particularly simple when the electric current flows in 
a cylindrical waveguide in the direction of the cylinder axis (Fig. 
9.1a). The magnetic field inside is zero. Outside it is unequal to zero. 
The field lines are parallel to the cylinder surface, the field surfaces 
are perpendicular to it, Fig. 9.1b. Because of equation (7.3) the field 
is pushing on the conductor.

We conclude that the magnetic field always pushes on an electric 
conductor.
The two wires shown in Fig. 9.2a in cross-section “attract” each oth-
er. We can now explain this fact: Let us look at the left wire. The 
magnetic field pushes on the wire from all sides. But to the left of it 
the field surfaces are denser than to the right. This results in a net 
force to the right. Correspondingly, the right wire. In the same way 
we explain why the wires of Fig.9.2b repel each other. Again we look 
at the left wire. The magnetic field pushes on it from all sides, but 
stronger from the right than from the left. This results in a net force 
to the left.

We can thus formulate the following rules.
Two wires in which an electric current flows in the same direc-
tion are pushed towards each other by the magnetic field. If the 
currents flow in opposite directions, the wires are pushed away 
from each other by the field.

F
j

field surfaces

field lines

a

b

Fig. 9.1 
(a) Hollow cylinder through which 
an electric current is flowing.  
(b) Cross-section with field lines 
and field surfaces

Fig. 9.2 
The two wires are pushed towards 
each other (a) or away from each 
other (b) by the magnetic field.

a

b



9. Forces on moving charge carriers

9.2 The Lorentz force
Equation (7.3) is only suitable for calculating the force on a conduc-
tor if the field distribution is geometrically simple, as in the case of 
Fig. 9.1. In many other cases it is easier with another formula to 
achieve the result. We want to derive this other formula.
We choose again an arrangement that is geometrically simple, Fig. 
9.3: an infinitely extended plate through which an electric current 
with a homogeneous current density distribution is flowing (current 
density in z direction, current intensity by width = I/b). 

We bring the plate into a magnetic field of strength H, the direction 
of which is parallel to the plate and perpendicular to the current di-
rection. The susceptibility of the medium, and thus μ, is the same on 
both sides of the plate. In this configuration, only the x component of 
H, the y component of the force F and the z component of the cur-
rent density j are different from zero. We therefore limit the calcula-
tion to these components and omit the indices x, y, and z.
We calculate the force that acts on the plate:

F = (σ r – σ l)A
(“l” means left, “r” right.)
To calculate σ = –(μμ0/2)H2 we need the actual field strength on the 
left and right. This is composed of the field strength H of the “exter-
nal” field and the strength H’ of the field whose source is the electric 
current in the plate.
We calculate the field strength H’ caused by the plate using Max-
well’s 4th equation, Fig. 9.4:

H’rb r + H’lb l = (I/b) b
and with b r = b and b l = –b we get H’r – H’l = I/b. Because of the 
symmetry we also have H’r = –H’l . So we obtain 

H’r = I/(2b) and H’l = –(I/2)b.

For the total field strength we get
left  H l = H – I/(2b)   and right  Hr = H + I/(2b).
With this the difference of the mechanical stresses is obtained

and with A = l · b
F = – (σ r – σ l)A = μμ0IlH

This equation is a special case of the vector relationship
F = μμ0I(l × H) = I(l × B)  (9.1)

The vector l  has the same direction as the electric current density. 
Equation (9.1) does not only apply under the simple conditions of 
our calculation. It always describes the force acting on a conductor 
in which an electric current is flowing and which is located in a mag-
netic field. The field strength H to be inserted into the equation is the 
strength of the field that would be present in the absence of the con-
ductor. The force calculated with equation (9.1) is called the Lorentz 
force.

Fig. 9.4 
Calculating the path integral over 
the magnetic field strength

x

y
brbl

σ r −σ l = − µµ0

2
(Hr

2 −H l
2 ) = − µµ0

2
4HI
2b

⎡
⎣⎢

⎤
⎦⎥
= −µµ0H

I
b

Fig. 9.3 
In an external magnetic field a 
force is exerted on a flat conductor 
through which an electric current is 
flowing.
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9. Forces on moving charge carriers

9.3 Examples of the Lorentz force
Force on a conductor with an electric current (Fig. 9.5)

The galvanometer, Fig. 9.6, is based on this principle. It was used in 
analog current, voltage and resistance meters. 

Force between parallel conductors in which an electric current is 
flowing

We consider wire 2 in the field of wire 1, Fig. 9.7, and apply equation 
(9.1). In our case we have F = μ0I2lH1. With H1 = I1/(2πr), we get

(9.2)

If the direction of the electric current in the two wires is the same, 
the wires attract each other, otherwise they repel each other. 

Force on moving charged particles
We assume, the electric current within a conductor is due to the mo-
tion of electrically charged particles with the uniform velocity v :

Then the Lorentz force will be

Since the vector v has the same direction as l, we can write 
F = Q(v × B) (9.3)

In this equation there is no longer any geometric variable of the con-
ductor. It therefore also applies to individual charge packages, and 
thus also to particles. If the particle is an electron, then
F = – e(v × B) (9.4) 

Electrons in a homogeneous magnetic field
Let an electron move at velocity v in a magnetic field which would be 
homogeneous without the presence of the electron and would have 
the field strength H. Let v be perpendicular to H. On the electron 
acts the force F = – e(v × B). This results in a change of the mo-
mentum. Since F is perpendicular to v, it is

dp/dt = –mω2r.
r is the radius of curvature of the circular path of the electron, ω is 
the corresponding angular frequency.
With the momentum balance equation 

dp/dt = F 
we get

–mω2r = –e(v × B)
or

mω2r = evB     
With v = ωr we finally obtain the so-called cyclotron frequency:

 

Explanation of the induction process using the Lorentz force
A conductor loop is moved into a magnetic field as shown in Fig. 9.8. 
The magnetic field is constant in time. Nevertheless, an induced 
voltage occurs. This is easy to understand by looking at the process 
in the reference frame in which the conductor loop is at rest.

Instead, the process can also be explained in the reference frame in 
which the magnet is at rest by using the Lorentz force: We consider 
the segment PQ of the conductor loop. Within the wire there are 
mobile charge carriers. They move in the magnetic field to the left 
with the velocity v. Therefore, the Lorentz force is acting on them 
FL = Q(v × B) 

This shifts the charge carriers until FL is compensated by Fel = QE. 
Thus, an electric field of field strength is generated:
E = v × B

E has the direction of the conductor. 
 
The Hall effect
In an electric conductor which is placed in a magnetic field, an elec-
tric current is flowing, Figure 9.9.

If the charge carriers move at velocity v, they are subjected to the 
Lorentz force FL = Q(v × B), perpendicular to the direction of the 
conductor. Since no electric current can flow in this direction, electric 
charge accumulates on the sides of the conductor, just in such a 
way that FL is compensated by Fel = QE. The voltage between the 
two sides of the conductor that is generated in this way is called the 
Hall voltage UH. We have

Q(v × B) = QEH   ⇒   EH = v × B    or    |E |H = v · B .

With  v = I/(ρdb)  and  UH = |E |Hb we get

By measuring I, B, UH and d the density of the mobile charge carri-
ers can be determined. In particular, the sign of the charge of the 
mobile charge carriers is obtained. 

Forces on induced currents
If a closed conductor loop is moved into a magnetic field, Fig.9.10, a 
current is induced in the conductor loop. The Lorentz force in the 
magnetic field acts on the wire in which an electric current now 
flows. It is directed in such a way that it “tries to prevent” the move-
ment of the conductor loop.

Also, when a metal plate is moved into the magnetic field, an electric 
current is induced. Since the path of this current is not determined 
by the geometry of the conductor, it is called eddy current. Other-
wise, however, the same applies as for the conductor loop: a 
Lorentz force acts on the metal plate, trying to prevent the move-
ment.

Fig. 9.6 
Galvanometer

Fig. 9.5 
The magnetic field pushes the wire to the 
left.

S

N
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rotating-
coil

pointer

electric connection

electric connection

Fig. 9.7 
Wire 2 in the field of wire 1
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Fig. 9.9 
The Hall effect

UH = vBb = 1
ρ
IB
d

Fig. 9.8 
In the reference frame of the per-
manent magnet the induction can-
not be explained with Maxwell’s 
3rd equation.

Fig. 9.10 
Lorentz force on an induced current (a) in a conductor loop and (b) in a metal plate
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10. Superconductivity

10.1 The superconducting phase
There are substances that differ significantly in their electromagnetic 
properties from those previously considered: superconductors. 
There are numerous variants of superconductivity. Here we limit 
ourselves to the consideration of a simple ideal case, which is real-
ized by the so-called type-I superconductors. 
Superconductivity is a state which is not irrevocably attached to the 
substance under consideration, but in which the substance is only 
under certain conditions, similar to the ferromagnetic state, or the 
solid, liquid or gaseous state. In particular, the temperature must not 
exceed a certain value; otherwise the substance loses its supercon-
ducting property. Just as a substance is only solid if the temperature 
is not higher than the melting temperature, or ferromagnetic as long 
as the temperature does not exceed the Curie temperature, a mater-
ial is only superconductive if its temperature is not higher than the 
so-called critical temperature or transition temperature. Not all elec-
trons that are responsible for electric conduction in the normal state 
participate in the phenomenon of superconductivity, but generally 
only some of them.

�
There are many substances that have a superconducting phase. 
Table 10.1 lists the transition temperatures for some chemical ele-
ments. There are also alloys and chemical compounds with much 
higher transition temperatures.
Here are the properties of the type-I superconductors:
(1) Their electric resistance is zero. Instead of the equation 
j = σ · E

the 1st London equation applies

jS is the electric current density of the superconducting charge carri-
ers, Λ measures a material property. The equation says that an elec-
tric field that is constant in time does not result in a constant electric 
current, but in a current whose intensity increases, a “uniformly ac-
celerated current” so to speak.
(2) Superconductors expel magnetic fields from their interior. This 
property is called the Meissner-Ochsenfeld effect. The superconduc-
tor achieves the field displacement by electric currents flowing at its 
surface. The magnetic field of these currents is just such that it 
compensates the field inside the superconductor to zero. Just as an 
electric field penetrates into a body with free charge carriers to a 
certain depth if the charge carrier concentration is not very high, so 
the magnetic field penetrates into a thin surface layer of a supercon-
ductor. The thickness of this layer can be calculated using the 2nd 
London equation
Λ rot jS = –B

Since Λ depends on the concentration of the superconducting 
charge carriers, the thickness of this layer also depends on it.

Substance Critical temperature (K)

Hg 4.15

La 4.8

Nb 9.2

Ta 4.39

Tc 7.8

V 5.3

Table 10.1
Critical temperatures of some chemical 
elements

Λ ⋅ djS
dt

=E



10. Superconductivity

10.2 Ideal magnetic materials
Previously we had learnt about two ideal forms of magnetism: the 
magnetism of ideal soft magnetic materials and the magnetism of 
ideal hard magnetic materials. Superconductors are a third ideal 
magnetic material. Let us compare the three materials. 
All three of them lose their magnetism at sufficiently high tempera-
tures. 
The soft magnetic material can be understood as the ideal form of 
the paramagnetic material, the superconductor as the ideal form of 
the diamagnetic material.
Soft magnetic and superconducting materials have in common that 
they do not allow a magnetic field inside them. However, they pre-
vent the penetration of magnetic fields in different ways. 
The soft magnet compensates a field that actually wants to be inside 
it by forming poles on its surface. The superconductor achieves the 
same result by allowing currents to flow on its surface. The conse-
quence for the field strength distribution on the outside is very differ-
ent in both cases.

 
Fig. 10.1a shows the field strength distribution that results when a 
single magnetic pole approaches the flat surface of a soft iron body. 
The field strength distribution outside the iron is the same as when 
the iron is replaced by a magnetic “mirror charge”, a charge of the 
same magnitude as the first point charge, but of opposite sign, Fig. 
10.1b. 
Fig. 10.1c shows the magnetic pole in front of the flat surface of a 
superconductor. The currents at the surface cause the magnetic 
field lines to bend so that they are tangential to the surface. The 
same field strength distribution is obtained by replacing the super-
conductor by a mirror pole of the same magnitude and sign, Fig. 
10.1d.
Fig. 10.2 shows two experiments analogous to each other. The soft 
iron piece in Fig. 10.2a has a temperature above its Curie tempera-
ture. It is therefore (almost) non-magnetic. The temperature is now 
lowered. As soon as the temperature decreases below the Curie 
temperature, the soft iron piece is attracted by the permanent mag-
net, Fig. 10.2b.

The temperature of the “superconductor” in Fig. 10.2c is higher than 
the transition temperature. Therefore, the material is not yet super-
conducting. Its temperature is now lowered. As soon as it has de-
creased below the transition temperature, the superconductor jumps 
up and remains suspended above the permanent magnet.

Fig. 10.1 
A single magnetic pole is placed in front of the flat surface of a soft iron body (a). The field 
strength distribution remains the same if the soft iron is replaced by a mirror pole of opposite 
sign (b).  A single magnetic pole is placed in front of the flat surface of a superconductor (c).  
The field strength distribution remains the same if the superconductor is replaced by a mirror 
pole of the same sign (d).

a

b

c

d

softmagnetic material superconductor

N N

N N

S N

Fig. 10.2 
The temperature of the soft iron piece is above the Curie temperature (a). The temperature of 
the soft iron piece has been lowered below the Curie temperature (b). The temperature of the 
superconductor is above the transition temperature (c). The temperature of the superconductor 
has been lowered below the transition temperature (d).

soft iron

liquid  nitrogen

superconductor

a b
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11. Energy current and momentum in the electromagnetic field

11.1 The energy current density
When a capacitor is charged, energy flows into the space between 
its plates. If an electromagnet is switched on, energy flows into the 
space between the poles. While an electric motor is running, energy 
flows into the rotor and then away through the motor shaft. With the 
generator it is the other way round. In all these cases, energy flows 
within the matter-free space: within the electromagnetic field. Since 
the field is unambiguously described by E and H (and P and M ), it 
must be possible to calculate the energy flow from these quantities. 
Since E and H are local quantities, it must be possible to calculate 
the local quantity energy flux density or energy current density jE.
We start with the well-known equation for the energy current

P = U · I .
It is valid for the case that the energy flow is accompanied by a cur-
rent of the electric charge. In principle, this equation cannot make 
any statement about the location where the energy flows, because it 
only contains “integral” quantities. To replace these by local quanti-
ties, we consider a geometrically particularly simple arrangement: 
the electric current flows through two flat, parallel conductors whose 
distance is small compared to the lateral extension, Fig. 11.1.

�
The relationship between voltage and electric field strength is ob-
tained by applying equation (4.5):

U = |E | · d
and between electric current and magnetic field strength by applying 
equation (8.1):

I = |H | · b (11.1)
We thus get

P = |E | · d · |H | · b    
and with    |jE| = P/(db)

|jE| = |E| · |H| .
The energy flows perpendicular to E and to H, i.e. in the figure 
backwards. In our case it is
jE = E × H. (11.2)

This equation applies to every electromagnetic field, not only under 
the simple conditions of our calculation. The quantity S = E × H is 
also called the Poynting vector.
Equation (11.2) only contains local quantities. It not only makes a 
statement about whether and how much energy is flowing, it also 
says where it is flowing. jE(r ) is a vector field. The streamlines of this 
field illustrate the energy flow just as the jQ streamlines illustrate the 
flow of the electric charge.

Fig. 11.1 
To calculate the energy flux density

H

E

d
j

b

+ –



11. Energy current and momentum in the electromagnetic field

11.2 Examples of energy currents
Energy transmission with cables
A galvanic cell is connected to a resistor via two ideally conducting 
wires. The starting point of the energy is thus the cell, the terminat-
ing point is the resistor. We qualitatively describe the path of the en-
ergy between these two locations. Figure 11.2 shows the E and H 
fields. The jE lines are perpendicular to E and perpendicular to H. 
Three jE lines are shown. It can be seen that their sources are lo-
cated in the cell and their sinks in the resistor.

 
The incoming energy is dissipated in the resistor, i.e. entropy is gen-
erated. If the supply lines do not have zero resistance, the electric 
field strength has a component in the direction of the wire and some 
jE lines terminate in the supply lines. 

The energy flow when charging a capacitor
The electric current density decreases from the point where the 
supply lines of the capacitor plates are fixed, in such a way that it is 
zero at the edges of the plate, Fig. 11.3. The magnetic field therefore 
also decreases towards the edges, and thus also the energy current 
density jE. The energy current density therefore has sinks between 
the capacitor plates. This must be the case, because this is where 
the energy is deposited.

The moving capacitor
A capacitor with a charge per area Q/A = ρA is moved parallel to its 
plate planes at velocity v, Fig. 11.4. We are interested in the jE field. 
For this purpose, E and H must be calculated.

Everywhere between the plates according to equation (4.9) we have

and according to equation (11.1) 

First we calculate I as a function of the known quantities. ρA is the 
charge per surface, ρAb therefore the charge per length (in the direc-
tion of the motion). The current is charge per length times velocity:

I = ρAb v
We thus get

|H | = ρA v
and finally with (11.2)

If we express the charge per unit area by the electric field strength, 
we obtain  

|jE| = ε0 E2 |v |
This result is surprising, because if we assume that the field energy 
of the capacitor is simply shifted with the velocity v, we get just half 
the value for the energy flux density, namely

What happens to the other half? It flows mechanically back through 
the plates. The plates are under tensile stress and are moving. So 
an energy current

P = v F 
 is flowing through them.  

The energy flow in the motor in the generator
The description depends on the choice of the reference frame. We 
choose the reference frame in which the magnet is at rest and the 
conductor is moving.
(a) Generator
The rod-shaped conductor c, Fig. 11.5, is moved to the right so that 
it slides on the two conductors a and b. Initially, the circuit is open. 
The Lorentz force acts on the free charge carriers in c, which we as-
sume to be positively charged, and pushes them in the direction of 
conductor b, so that the electric potential of b increases in relation to 
that of conductor a. Between a and b there is now an electric field. 
The field lines run from b to a. We now introduce an energy receiver: 
a resistor whose resistance is large compared to the remaining re-
sistance of the circuit. So, the voltage between a and b remains un-
changed and an electric current is flowing through c against the 
electric field.

Figure 11.6 shows qualitatively the E, H and jE fields. The energy 
flows out of the moving rod and through the electromagnetic field 
into the resistor.

(b) Motor
We replace the resistor with an electric energy source. The source is 
current stabilized. The current flows first through a, then through c 
and through b back to the source. A Lorentz force acts on the mov-
ing charge carriers in conductor c, the direction of which is parallel to 
the conductors a and b. Thus conductor c begins to move to the left. 
If c moves, then a Lorentz force acts on the charge carriers in c, 
which is directed parallel to c towards a. Thereby an electric field is 
generated, the field lines of which run from a to b.
The resulting jE field lines run from the source to the conductor c, 
Fig. 11.7.

Fig. 11.2 
Electric field strength, magnetic 
field strength and energy current 
density in a simple circuit: on the 
left the galvanic cell, on the right an 
ohmic resistor.

Fig. 11.3 
(a) Electric field strength and ener-
gy current density; (b) charge cur-
rent densitya

b

supply line

supply line side view

from above

Fig. 11.4 
A capacitor together with its energy 
is moved parallel to the plate direc-
tion.

E = ρA

ε0

H = I
b

jE = ρA
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ε0
v
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E 2 v

Fig. 11.5 
Conductor c is moved to the right; 
it is sliding on conductors a and b.

resistor

Fig. 11.6 
E, H and jE field for the generator
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Fig. 11.7 
E, H and jE field for the motor
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11.3 Energy transmission with magnetic  
displacement currents

In the equation P = U · I, instead of I, there should actually be the to-
tal electric current in Maxwell’s sense, namely I + ∫∫(∂D/∂t)dA.
This can be seen from Fig. 11.8. The energy current flowing through 
the dotted surface is to be calculated. We consider the time shortly 
after the switch-on when the capacitors are not yet charged. The to-
tal potential difference of the source is then still at the resistor, and 
thus the total energy current coming from the source flows to the re-
sistor. Its value is obtained with

Energy can also be transmitted by means of magnetic displacement 
currents, and the analog equation applies:

Figure 11.9a shows an example. A permanent magnet at A induces 
magnetic charges in a magnetic conductor (soft iron). If the perma-
nent magnet is rotated, a magnetic alternating current flows in the 
soft iron. This causes the magnetic capacitor at B to be charged with 
an alternating sign. As a result, the permanent magnet at B is set in 
rotation.

The energy current transmitted by the soft iron conductors is given 
by the above equation. Each of the two magnetic conductors is at a 
spatially almost constant magnetic potential. Um is the potential dif-
ference between them. Since

µ0∂H/∂t ≪ ∂M/∂t
the equation simplifies to

The integral extends over a cross-sectional surface of one of the two 
conductors.
Also this equation makes no statement about the path taken by the 
energy flow. This path is again given by jE = E × H. There are closed 
electric field lines around each of the two conductors according to 
Maxwell’s third equation. Magnetic field lines run from one conductor 
to the other. The jE lines run from A to B, Fig. 11.9b.
If one of the two magnets is replaced by a coil through which an al-
ternating current is flowing, Fig. 11.10a, an electric motor is ob-
tained. If both magnets are replaced by coils, Fig. 11.10b, we get a 
transformer. In any case, the energy is transferred from left to right 
with the help of magnetic displacement currents, and the jE current 
lines essentially run outside the magnetic conductors.

P =U ⋅ !DdA∫∫
Fig. 11.8 
Generalization of the equation  
P = U · I

P =Um ⋅ !BdA∫∫

P =Um ⋅ !M dA∫∫

a b

Fig. 11.10 
Energy transmission using magnetic conductors; (a) electric motor; (b) transformer

Fig. 11.9 
Energy transmission with magnetic 
displacement currents.  
(a) Magnetic potential difference 
and magnetic current; 
(b) E, H and jE field

a

b
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11.4 Closed energy circuits within the  
electromagnetic field

A positive electric and a positive magnetic “point charge” are located 
next to each other, at rest, Fig. 11.11. Everywhere in the vicinity of 
the two charges is E ≠ 0 and H ≠ 0, and E and H are nowhere paral-
lel to each other, apart from the line connecting the two charges. So 
there is everywhere jE ≠ 0. The jE field lines form concentric circles 
around the connecting line of the two charges. So the jE field has no 
sources or sinks. This needs to be the case, because there is no 
other system whose energy decreases or increases.

�

Fig. 11.11 
Electric and magnetic point charge.  
(a) E and H field in side view;  
(b) jE field in perspective
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11.5 Momentum within the electromagnetic field
A charged capacitor is located in a homogeneous magnetic field, 
Fig. 11.12. The left plate is fixed, the right plate is moved to the right 
with constant velocity v. As it moves, a force consisting of two com-
ponents must be exerted on the right plate.

�  
One component is parallel to the field strength vectors of the electric 
field. It is compensated by the electrostatic force exerted by the left 
plate on the right plate. The second component is parallel to the 
plate surface and points backwards in the figure. It balances the 
Lorentz force. In fact, a Lorentz force acts on the plate, because an 
electrically charged body is moved through a magnetic field. Here, 
however, there is no other body on which this force is exerted. 
Rather, it is the new field created during the movement that absorbs 
the corresponding momentum. So we conclude that the electromag-
netic field between the plates has momentum. Since its volume in-
creases linearly with time during the movement, its momentum also 
increases linearly with time. Let us calculate this momentum.
Since the relevant vectors are all parallel or perpendicular to each 
other, it is sufficient to calculate with the absolute values.
The momentum increase of the field in the time Δt is
Δp = FΔt 

With the equation for the Lorentz force
F = Q · v · B

and 

we get

 
We replace

Q = ε0EA
and

B = μ0H
and obtain

p = ε0EA · μ0H · Δs =  ε0E · μ0H · ΔV.
Here 
ΔV = A · Δs

is the volume increase of the field. The momentum density thus be-
comes
ρp =  ε0μ0EH.

For vectors of an arbitrary orientation the cross product of the two 
field strengths is to be used

� (11.3)

The momentum density is therefore, except for a constant factor, 
equal to the energy current density.

Fig. 11.12 
As the right plate is moving to the 
right, the volume and the momen-
tum of the electromagnetic field 
between the plates increases. 
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ρp = ε0µ0(E ×H )
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p =Q ·B · Δs
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· Δt =Q ·B · Δs
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11.6 Summary
We now have equations for the densities and current densities of 
both the energy and the momentum of the electromagnetic field. The 
energy density and the energy current density are given by equa-
tions (5.1), (7.1) and (11.2). The momentum current density is iden-
tical to the mechanical stress. It is given by equations (5.2), (5.4), 
(7.2) and (7.3). Finally, the momentum density is calculated by equa-
tion (11.3). Let us summarize these equations.

Thus we have all components of the so-called energy-momentum 
tensor of the electromagnetic field, which plays an important role in 
the theory of relativity.

 

ρE = εε0

2
E 2 ρE = µµ0

2
H 2 energy density

jE = E ×H energy current density
ρp = ε0µ0(E ×H) momentum density

σ || =
εε0

2
E 2 σ || =

µµ0

2
H 2 mechanical stress parallel

to the field lines
⎧
⎨
⎩

σ ⊥ = − εε0

2
E 2 σ ⊥ = − µµ0

2
H 2 mechanical stress perpendicular

to the field lines
⎧
⎨
⎩
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12. Structures within electromagnetism

12.1 The energy differential of the  
electromagnetic field 

We consider a region of space of volume V in which there is a ho-
mogeneous electromagnetic field. From the energy density

�

we get
dE = V(ε0EdE + μ0HdH)

This relationship tells us by which amount dE the energy changes 
when the electric or magnetic field strength is changed.
We want to express this energy change by nonlocal quantities and 
first consider the magnetic term

dE = Vμ0HdH. 
If dE is the change of the energy within a solenoid, we have 

�

If, on the other hand, dE is the change of the energy in a “magnetic 
capacitor”, then with Um/d = H and Qm/A = μ0H we get

�

So in general we can write
Vμ0HdH = I dΦ + UmdQm.

Similarly, the local expression for the change of the energy of the 
electric field can be replaced by a nonlocal expression

Vε0EdE = ImdΦel + UdQ ,
where Φel is the flux of D.
Thus, together we get

dE = I dΦ + UmdQm + ImdΦel + UdQ .
We call a relationship of this kind an energy differential.
Now two terms in this equation are not important:
UmdQm is rarely important because magnetic capacitors are not 
used as technical components.
ImdΦel is practically not realizable because it is difficult to realize 
magnetic currents.
Therefore, in practical applications usually only the expression

dE = I dΦ + UdQ .
is relevant.
It describes, for example, the energy change in a solenoid (1st term) 
or in an electrical capacitor (2nd term). This expression no longer 
has the symmetry between electric and magnetic quantities that we 
had considered previously, because the analog ImdΦel to IdΦ and the 
analog UmdQm to UdQ is missing.
However, between IdΦ and UdQ there is a symmetry of another 
kind. This is exactly the symmetry that was exploited in the Physics I 
course and that we had called “dualism” (and that has its analogue 
in mechanics). In this mapping, not only quantities are to be re-
placed in an electric circuit, but also topological relationships, such 
as “junction ⟷ mesh”, “parallel ⟷ series”. Finally, also some quanti-
ties are to be replaced by their reciprocal value, namely “resistance 
⟷ conductance”, and from this follow the replacements “short circuit 
⟷ open circuit”, and “conductor ⟷ insulator”.
While the consideration of the symmetry, in which E and H corre-
spond to one another, is particularly helpful for understanding the 
physical fundamentals, the dualism, in which U and I correspond to 
each other, is useful for technical applications.

E
V

= ρE = ε0
2
E 2 + µ0

2
H 2

dE =Vµ0HdH =VHdB =V NI
l
dφ
NA

= Idφ

dE =V Um

d
dQm

A
=UmdQm
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12.2 The analogy between charge density and 
 current density 

Another analogy is very useful in theoretical physics. It is based on a 
comparison between ρQ and jQ. Just as ρQ is the source of the E 
field, jQ is the source of the B field. So here, E and B correspond to 
each other. In analogy to the electrical potential Φ the vector poten-
tial A is defined:

B = curl A .
In analogy to the Poisson equation
Δ Φ = – ρ/ε0

it is (without proof)
ΔA = – μ0j .
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13. Electromagnetic oscillations – alternating currents

13.1 The mesh rule in a circuit with inductance
In circuits in which a direct current is flowing, or in which induced 
voltages can be neglected against other voltages, ∫Edr is zero on 
any closed path, particularly along any “mesh”. A potential can be 
defined and the mesh rule (equation (2.7) applies:
�

However, the mesh rule no longer applies when inductances are 
present in the circuit. For the circuit shown in Fig. 13.1 we have to 
write (Equation (8.9)):

�  

�

But since the mesh rule is very convenient, one can save it with the 
help of a trick. In the circuit of Fig. 13.1 the full contribution to the in-
tegral ∫Edr is due to the resistor. It is
�

or
�

One now acts as if there is a potential in the circuit; one acts as if 
the negative of (–L∂I/∂t), i.e. L∂I/∂t, is a voltage that is due to an 
electric field in the coil. So the equation RI + L∂I/∂t = 0 can be inter-
preted as follows: There is a potential drop Ures = R I at the resistor, 
and a potential drop Ucoil = L∂I/∂t at the coil.
With this agreement we get

�

Ui = 0
i
∑

E d r
circuit
!∫ = −L "I ≠ 0

Fig. 13.1 
Circuit with inductance

−L !I =RI

RI +L !I = 0

Ui = 0
i
∑

generalized mesh rule is valid
if we set U coil = +L !I  
⎧
⎨
⎩
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13.2 LC circuits
Figure 13.2 shows an electrical resonant circuit or LC circuit.

 
For the mathematical treatment we use the generalized mesh rule:

We derive the equation with respect to time and use dQ/dt = I (the 
relationship between a capacitor’s charge and the charging current):

Finally, we divide by L:

This is a differential equation for damped oscillations. The solution 
follows the known recipe.
For R = 0, the oscillations are undamped, and we get

 ω is called the angular frequency. With U = L∂I/∂t we obtain

With the relation

which is obtained from (4.10) and (4.27) and with equation (8.11)
 

we get

 

and

We see that the sum

is constant in time. 
The energy is flowing back and forth between the solenoid and the 
capacitor with the frequency 2ω. This can also be seen in the ener-
gy flow: 

For R ≠ 0 we have

The amplitudes of the electric current and the voltage decay accord-
ing to

and that of the energy flow according to

Figure 13.3 shows the resonant circuit obtained by “dual translation”: 
C ↔ L, R ↔ 1/R, parallel ↔ in series. 

Instead of calculating this circuit with the junction rule (which is dual 
to the mesh rule) we can simply translate the results of the previous 
calculation. The frequency, for example, becomes:

Fig. 13.2 
LC circuit (series circuit)

L !I +RI +Q
C

= 0

L!!I +R !I + I
C

= 0

!!I + R
L
!I + I
LC

= 0

I = I0 sinωt      with       ω = 1
LC

U =U0 cosωt    with     U0 =
L
C
I0

E cap =
C
2
U 2

E sol =
L
2
I 2

E cap =
C
2
U0

2 cos2ωt = L
2
I02 cos2ωt =

L
2
I02

1
2
(1− cos2ωt )

E sol =
L
2
I02 sin2ωt =

L
2
I02

1
2
(1+ cos2ωt )

E cap +E sol =
L
2 I0

2 +C2U0
2

P =U ⋅I = I0 ⋅U0 ⋅sinωt ⋅cosωt = I0U0
1
2
sin2ωt

ω = 1
LC

− R
2

4L2

e
– R
2L
t

e
−R
L
t

ω = 1
LC

− 1
4R 2C 2

Fig. 13.3 
LC circuit (parallel circuit)
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13.3 Alternating current and alternating voltage
If the current (or the voltage) changes in time according to a sine 
function, i.e. if I(t ) =  I0 sin(ωt + φ) (or U(t ) = U0 sin(ωt + φ)), we 
speak of an alternating current (or an alternating voltage). The alter-
nating current (AC) has a great technical importance for various rea-
sons.
High frequency alternating current is used as a data carrier and low 
frequency alternating current (usually 50 or 60 Hz) as an energy car-
rier.
The advantages of AC are largely due to the fact that the laws de-
scribed by Maxwell’s 3rd and 4th equations become relevant, be-
cause these equations contain time derivatives. Since the time de-
rivative of a harmonic function is again a harmonic function, the rela-
tionships between the various electrical quantities are particularly 
simple.
If two points A and B of an electrical network are connected to each 
other by any arrangement of ohmic resistors, capacitors and sole-
noids, Figure 13.4, and if there is an alternating voltage 

U = U0 sin ωt 
between A and B, an alternating current of the same frequency

I = I0 sin(ωt + φ). 
will flow in the network.

In general, the current is not in phase with the voltage. We will see 
that I0 is proportional to U0.
In the following we investigate the relationship between U(t ), I(t ) 
and P(t ) for

• an ohmic resistor
• a capacitor
• a solenoid
• Resistor, capacitor and solenoid connected in series
• Resistor, capacitor and solenoid connected in parallel.

Fig. 13.4 
Electrical network with solenoids, 
capacitors and resistorsA

B
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13.4 Resistance and reactance
(a) Ohmic Resistor
Ohm’s law is

U = RI .
The alternating voltage U(t) = U0 sin ωt is applied between the ends 
of the resistor. The consequence is an alternating electric current

where I0 = U0/R.
The current of the energy that is dissipated in the resistor is 

The time average of P(t) is

What value Urms would have to have a DC voltage that causes the 
same dissipation in the resistor?

The corresponding electric current would be

Urms and Irms are the root mean square values of the alternating volt-
age or alternating current. Alternating current and alternating voltage 
measuring instruments are calibrated in rms values. Therefore, the 
measured values can be used to calculate the average energy cur-
rent as the product of (rms) voltage and (rms) current by using the 
formula P = UI.
The 220 V of the socket also represent the rms voltage. 

(b) Capacitor
For a capacitor, equation (4.10) applies:

Q = CU .
Derivation with respect to time and insertion of I for dQ/dt results in

We apply the voltage U(t) = U0 sin ωt and get an electric current

where I0 = ωCU0.
If the voltage on the capacitor changes harmonically, the current 
through the capacitor also varies harmonically. However, I(t) is 
phase-shifted by π /2 against U(t): U(t) lags behind I(t) by π /2.
The quotient

is the reactance of the capacitor.
We still calculate the energy current flowing into the capacitor:

Energy is alternately flowing into and out of the capacitor. The time 
average of the energy flow is zero.  

(c)  Solenoid
For the solenoid the equation

applies. With I(t) = I0 sin ωt we get

If the current flowing through the solenoid changes harmonically, the 
voltage between its connections also varies harmonically. However, 
U(t) is phase-shifted by π /2 against I(t): I(t) lags behind U(t) by π /2.
The reactance of the solenoid is

The energy current flowing into the solenoid is:
P(t) = U(t) I(t) = ωLI02 sin ωt  cos ωt

Energy is alternately flowing into and out of the solenoid. The time 
average of the energy current is zero. 

(d) Ohmic resistor, solenoid and capacitor in series, Fig. 13.5

The electric current is the same in all three elements:
I(t) = I0 sin ωt .

We are interested in the voltage 
U(t) = UR(t) + UC(t) + UL(t). 

Since U(t) is the sum of three harmonic voltages of the same fre-
quency, it must have the following form

U(t) = U0 sin (ωt – Φ) .
We want to calculate U0 and Φ.

A comparison of the factors in front of sinωt and cosωt provides
U0 cos Φ = I0R

and  

Thus we get

and

and finally

Sometimes the square root after I0 is abbreviated

The total energy current into the arrangement turns out to be
P(t) = U0sin(ωt – Φ)I0 sinωt = U0I0 sinωt (sinωt cosΦ – cosωt sinΦ)

Its time average is

The factor cosΦ tells us which fraction of the product Urms · Irms is 
dissipated within the circuit. 
 
(e) Ohmic resistor, solenoid and capacitor in parallel, Fig. 13.6

The voltage is the same in all three elements:
U(t) = U0 sin ωt

We are interested in the electric current
I(t) = IR(t) + IC(t) + IL(t). 

Since I(t) is the sum of three harmonic currents of the same fre-
quency, it must have the following form

I(t) = I0 sin (ωt – Φ) .
We want to calculate I0 und Φ.

A comparison of the factors in front of sinωt and cosωt provides

and  

Thus we get

and

and finally

We again abbreviate

We could have avoided this calculation if we dually translated the 
results of section (d). 
The time average of the energy current is again

I(t ) = U0

R
sinωt = I0 sinωt

P(t ) =U(t ) ⋅I(t ) =U0I0 sin
2ωt = U0

2

R
sin2ωt

P(t ) = 1
2
U0

2

R
= 1
2
U0I0

U rms
2

R
= 1
2
U0

2

R
⇒ U rms =

U0

2

Irms =
U rms

R
= U0

2R
= I0

2

I =C !U

I(t ) =ωCU0 cosωt =ωCU0 sin ωt + π
2

⎛
⎝⎜

⎞
⎠⎟ = I0 sin ωt + π

2
⎛
⎝⎜

⎞
⎠⎟

P(t ) =U(t ) ⋅I(t ) =ωCU0
2 sinωt cosωt =ωCU0

2

2
sin2ωt

U = L !I

U(t ) =ωLI0 cosωt =ωLI0 sin ωt + π
2

⎛
⎝⎜

⎞
⎠⎟ =U0 sin ωt + π

2
⎛
⎝⎜

⎞
⎠⎟

XL =
U0

I0
=ωL

Fig. 13.5 
Ohmic resistor, solenoid and ca-
pacitor in series

UC(t)

U(t)

UL(t)UR(t)

U0 sin(ωt −φ) =UR (t )+UC (t )+UL(t )

=RI0 sinωt −
1

ωC
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⎛
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⎞
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⎤
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⎞
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Fig. 13.6 
Ohmic resistor, solenoid and ca-
pacitor in parallel
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13.5 The description of alternating current  
        networks with complex quantities
If the frequency of an alternating current circuit is fixed once and for 
all, only two values are needed to characterize an alternating cur-
rent: the amplitude and the phase. The same applies to AC voltages. 
The description by the time function 

I0 cos(ωt + Φ) 
is unnecessarily cumbersome. Now there is a calculus which oper-
ates only with these two numbers, namely amplitude and phase. 
This representation of alternating currents and alternating voltages 
is using complex numbers, and it is particularly simple.

I(t) = I0 sin (ωt + Φ)       is represented by   I = I0eiΦ

U(t) = U0 sin (ωt + Φ)    is represented by   U = U0eiΦ

We thus have

Now we know that with the addition of two complex numbers, real 
parts and imaginary parts add up individually. Thus we get a simple 
method to graphically add currents (or voltages) which are phase-
shifted against each other. We represent the currents (or voltages) 
in the complex plane by vector arrows and add them according to 
the rules of vector addition, Fig. 13.7.

 
The representation of the time derivative of such a variable in com-
plex notation is also very convenient. We consider

I(t) = I0 cos(ωt + Φ)
and thus   

I = I0eiΦ

The time derivative of I is

In complex notation the time derivative becomes

So we get the time derivative by multiplication with iω.
The relationship between current and voltage can also be described 
with complex numbers. We define the complex electrical resistance 
or impedance Z:

For an ohmic resistor we get
ZR  = R .

For a capacitor at which the voltage U = U0 cosωt is applied we have
U = U0

and

thus

For a solenoid through which a current of strength I = I0 cosωt flows, 
the following applies we have

I = I0
and

thus
ZL  =  iωL

If several elements 1, 2, 3 … with the impedances Z1, Z2, Z3, ... are 
connected in series, the complex total voltage is

U = U1 + U2 + U3 +… = Z1I + Z2I + Z3I +… = (Z1 + Z2 + Z3 + … )I
Therefore the total impedance is

Thus, the impedances add up when connecting in series. They can 
therefore also be added together in the complex number plane. For 
example, the impedance of the arrangement of Figure 13.8:

The absolute value of the impedance of an arrangement of ohmic 
resistors, capacitors and solenoids is equal to the quantity X that 
was introduced in the preceding section. For the three devices con-
nected in series we have

I = Re Ie iωt⎡⎣ ⎤⎦      and     U = Re Ueiωt⎡⎣ ⎤⎦

Fig. 13.7 
Representation of the sum of two 
alternating currents in the complex 
plane
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Fig. 13.8 
Adding impedances in the complex 
number plane
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13.6 The transformer
We use the complex representation of AC voltages, AC currents and 
AC resistances to calculate the transformer. A transformer consists 
of two coils wound on a common iron core, Fig. 13.9, so that the to-
tal magnetic flux Φ (flux of the B field) of one coil passes through the 
other coil, and vice versa. 

The inductance of the two individual coils is (equation (8.10)):

(13.1)

(13.2)

If a current I1 flows through coil 1, then a flux Φ2 also results through 
coil 2:

The quantity

(13.3)

is called mutual inductance.
If a current I2 flows through coil 2, a magnetic flux is also induced in 
coil 1:
Φ1 = L21I2

with
L21 = L12

The induced voltages are

In addition to an inductive resistance, the coils also have an ohmic 
resistance R1 or R2 respectively. This resistance behaves as if it 
were connected in series with the inductive resistance (why?), Fig. 
13.10.

 
Therefore for the complex voltage at the two coils we obtain

(13.4a)
(13.4b)

The primary coil of the transformer is now connected to a source 
which supplies an alternating voltage U1 of constant amplitude (and 
of course also of constant frequency). An ohmic load of resistance R 
is connected to the secondary coil, Fig. 13. 11, so that

U2 = – R I2 (13.5)

We are looking for the relationship between U1 and U2 and between 
I1 and I2.
We replace U2 in (13.4b) with (13.5):

0 = – iωL12I1 + (R + R2 + iωL2)I2 
and obtain

(13.6)

We now ask for the quotient I1/I2 of the amplitudes of the currents. 
This is equal to |I1/I2|, i.e. equal to the magnitude of (13.6):

Usually transformers are constructed in such a way that at the fre-
quency used the following applies:

R1 << ωL1          and            R2 << ωL2 (13.7)
(This is achieved by making the number of turns sufficiently large. 
The resistance R goes linear, the inductance L however quadratic 
with the number of turns.)
So we get

If the load resistance is also small compared to the inductive resis-
tance of the secondary coil, i.e.

R << ωL2,
we get

(13.8)

We now eliminate I1 and I2 in (13.4a) using (13.5) and (13.6):

Using L1L2 = L122, which follows from equations (13.1), (13.2) and 
(13.3), we obtain

Again we ask for the quotient of the amplitudes of the expression:

With (13.7) this becomes approximately

  

If the coil resistances can be neglected, the relationship is further 
simplified. This simplification is possible if the following two inequali-
ties are fulfilled

Under these conditions we get

(13.9)

Equations (13.8) and (13.9) apply simultaneously if

L1 = µµ0
N1

2

l
A

L2 = µµ0
N2

2

l
A

φ2 =N2B1A =N2µµ0
N1

l
I1A = L12I1

L12 = µµ0
N1N2

l
A

in coil 1 (primary coil) L1
!I1 −L12

!I2
in coil 2 (secondary coil) L2

!I2 −L12
!I1

Fig. 13.10 
Equivalent circuit of the trans-
former
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Fig. 13.11 
The transformer is connected to a 
source of voltage U1 and a load of 
resistance R.L1 L2
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Fig. 13.9 
Iron core of a transformerA
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14.1 Kinematics of harmonic waves
If the temporal variation of the value of a physical quantity f at any 
position x is the same as at x = 0, but shifted by x/v in time

�

then this is called a wave. If f is a sine function, i.e. if 
f(t,x) = f0 sin [ω(t  – x/v)] = f0 sin (ωt – kx), 

 then the space-time distribution of f represents a harmonic wave.
If one looks at a fixed position x1, then f(t,x1) describes a harmonic 
oscillation with the angular frequency ω, Fig. 14.1.

�
For another value of x2 or x3 it describes a sine oscillation of the 
same frequency, but phase-shifted against f(t,x1).
We now consider the variation of f at a certain instant of time t1, Fig. 
14.2. f(t1,x) represents a sinusoidal variation of f with the position x.

�
k = 2π/λ is the wavenumber, λ is the wavelength. If we take two 
“snapshots” at a time interval Δt, we obtain twice the same variation 
as a function of x, only shifted in x direction by Δx = vΔt.
If many snapshots are taken one after the other, the sequence of 
these snapshots shows an apparent movement of the sine function 
in the x direction with the phase velocity

�

f (x,t ) = f (t − x
v
)

Fig. 14.1 
The functions corresponding to 
the three positions x1, x2 and x3 
are phase-shifted against each 
other.

x1 x2 x3

t

f(t)  T

Fig. 14.2 
The functions corresponding to 
the three instants t1, t2 and t3 are 
phase-shifted against each other.

t1 t2 t3

x

f(x)  λ

v = ω
k
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14.2 Harmonic waves as solutions of the Maxwell  
        equations
The Maxwell equations have, among other things, harmonic waves 
as a solution. We try the solution
E(z,t) = (Ex(z,t),0,0)     Ex(z,t) = E0 cos (kz – ωt)
H(z,t) = (0,Hy(z,t),0)   Hy(z,t) = H0 cos (kz – ωt)

We check this solution by inserting it into the forth and third Maxwell 
equation. We integrate over the paths and surfaces shown in Figure 
14.3.

 
We assume that jQ = 0 and χe = χm = 0, so that the Maxwell equa-
tions simplify to

and

4th Maxwell equation 

(14.1)

3rd Maxwell equation 

(14.2)

From (14.1) and (14.2) follows

(14.3)

c = ω/k is the phase velocity of the wave.
It is

Furthermore, from (14.1) and (14.2) follows
ε0E02 = μ0H02 (14.4)

Our trial solution therefore satisfies the Maxwell equations, i.e. the 
Maxwell equations have harmonic waves as a solution, for which the 
relations (14.3) and (14.4) apply. These waves are called electro-
magnetic waves. They form a class of states of the system “electro-
magnetic field”. We now discuss this solution of the Maxwell equa-
tions.  

(a) Velocity
It turns out that the expression (14.3) is equal to the “propagation 
velocity” of the light. This is the strongest indication that light is an 
electromagnetic wave. The combination of optics with the theory of 
the electromagnetic field is Maxwell’s merit. The first sections of his 
electromagnetic theory of the light are reproduced in section 14.4. 

(b) Phase relation between E and H
The electric and magnetic field strengths are in phase. E and H are 
perpendicular to each other. The wave is perpendicular to the direc-
tion of E and H. It is said to be “transverse”. 

(c) Energy density, energy current density, momentum density and  
momentum current density
From equation (14.4) it follows that the electric field and the magnet-
ic field contribute equally to the energy density of the wave. The en-
ergy density also constitutes a harmonic wave, its frequency is 2ω, 
the wave number is 2k.
The energy current density vector jE is perpendicular to E and H and 
points in the direction of propagation of the wave. The energy there-
fore flows in the same direction in which the phase of the wave is 
travelling. Also jE forms a harmonic wave with the frequency 2ω and 
the wave number 2k.
The momentum density is identical to the energy current density ex-
cept for the factor 1/c2.
A momentum current flows in the direction of travel of the wave. (Ad-
jacent areas of the wave “exert forces on each other”.) The associ-
ated current density is

This momentum current corresponds to a compressive stress; it is 
also called radiation pressure.

Fig. 14.3 
Integration paths and surfaces for 
the verification of the wave solution

4th Maxwell equation

3rd Maxwell equation
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14.3 Emission of Electromagnetic Waves –  
        the Hertzian Oscillator
There are many ways to generate electromagnetic waves. Here we 
describe a possibility that is physically and technically particularly 
important. However, their computational treatment is more difficult 
than that of other methods, and we leave the calculation to the lec-
ture of theoretical physics. The method works as follows: The point 
charges of an electric dipole are sinusoidally moved back and forth, 
so that the dipole moment varies according to

p(t) = p0 sin ωt (14.5)
Heinrich Hertz not only demonstrated the electromagnetic waves 
experimentally for the first time, he also calculated the field distribu-
tion for the vibrating dipole. We present here only a partial result of 
his calculations: We imagine the vibrating dipole to be infinitely 
small; this is equivalent to the fact that in the case of a dipole that is 
not infinitely small one only asks for the so-called far field. In polar 
coordinates with the dipole is oriented in z direction we get

E = (Er,Eϑ,Eφ)
Er ≈ 0

Eφ = 0

H = (Hr,Hϑ,Hφ)
Hr = 0
Hϑ = 0 

We discuss this result.
 
(a) Local properties
Locally this field cannot be distinguished from that of the plane wave 
of section 14.2: E and H are perpendicular to each other, and E and 
H are both perpendicular to the direction of propagation. In addition, 
ε0E2 = µ0H2 applies everywhere. 

(b) Distribution of E and H in space
The phase, i.e. the argument of the sine function, has a constant 
value on spherical shells (dipole in the centre of the sphere). The H 
field lines form closed “parallels of latitude”, Fig. 14.4.
 

The E field lines follow “meridians” except near the poles. They turn 
back in places of weak field strength. 

(c) Distribution of the energy current density
The jE vectors point radially outwards. Their magnitude is

(14.6)

The amplitude decreases towards the outside with 1/r 2, in accor-
dance with the law of energy conservation.
The ϑ dependency for a fixed value of r, Figure 14.5, is such that |jE |  
is maximum in the equatorial plane. In the direction of the dipole 
axis, the energy current density is zero. 

(d) Frequency dependence of the energy current density
|jE| is proportional to ω4, equation (14.6), i.e. the radiated energy in-
creases strongly with the oscillation frequency of the dipole, or in 
other words: If the dipole oscillates slowly, it does not radiate. A 
slowly oscillating dipole simply builds up and reabsorbs the dipole 
field known from electrostatics. The energy that is put into the field 
when it is built up is recovered when the field is removed.
A closer look shows that the second time derivative of the dipole 
moment is responsible for the radiation. It follows from this that for 
the generation of electromagnetic waves a harmoniously oscillating 
dipole moment is not necessary, but that a uniformly accelerated 
charged particle also generates an electromagnetic field in which 
energy constantly flows away from the particle. 

(e) Magnetic dipole radiation
One can also generate electromagnetic waves with a vibrating mag-
netic dipole. The field looks the same as that of the electric dipole, 
but the electric and magnetic field strengths are reversed. So one 
can tell from the field distribution whether a field originates from an 
electric or a magnetic dipole.
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Fig. 14.4 
E and H field of the radiating dipole

Fig. 14.5 
Directional dependence of the en-
ergy current density of the dipole 
oscillator
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14.4 Maxwell’s remarks on the electromagnetic  
theory of light
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