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1. Substance-like quantities and the structure of physics

1.1 Balance equations
We start by positioning thermodynamics in the rest of physics. We’ll 
first have to take a little run-up.
The values of a physical quantity usually refer to a certain geometric 
structure. Thus electric field strength, temperature and velocity refer 
to a point. The quantity voltage refers to a line. The force or momen-
tum current, the power or energy current and the electric current re-
fer to surface areas. The quantities we are interested in at the mo-
ment refer to a region of space. They include energy, momentum, 
electric charge, entropy, amount of substance and some others. 
Substance-like quantities play a special role in physics. Let us look 
at some of their properties.
For each substance-like quantity X, an equation of the form

� (1.1)

holds. Also this equation refers to a region of space. It allows the fol-
lowing interpretation, Fig. 1.1: X is imagined to be the amount of 
“something”: the amount of energy, the amount of movement (in the 
case of momentum), the amount of electricity, the amount of heat (in 
the case of entropy) or the amount of a substance.

The term dX/dt represents the temporal change of the amount of X 
in the interior of the region of space. The quantity IX refers to the sur-
face of the region. It can therefore be interpreted as a current 
strength: the strength of the current of the quantity X through the 
surface of the region of space under consideration. The quantity ΣX 
finally refers again to the interior of the space region and can be in-
terpreted as the production rate of X (where negative production 
means annihilation).
In this interpretation, equation (1.1) appears as a balance equation. 
It tells us that the quantity X can change in two ways: 1. by a current 
of X flowing through the surface into or out of the region, and 2. by 
production or annihilation of X taking place inside the region.
For some substance-like quantities, the term ΣX is always equal to 
zero. These quantities can only change their value by an inflow or 
outflow. They are called conserved quantities. These include energy, 
momentum and electric charge. Examples of substance-like quanti-
ties which are not conserved are entropy S and amount of sub-
stance n. Entropy can be created, but not destroyed, while amount 
of substance can be both generated and annihilated.
The interpretation we present here is justified solely by the form of 
equation (1.1). In fact, this interpretation is common for some quanti-
ties, for others less. Everyone is accustomed to imagine the quantity 
Q as an amount of electricity or an amount of charge, and accord-
ingly the quantity I as the strength of a current, the electric current. 
The balance equation for the electric charge reads

�

The balance equation for the energy is

�

and that for momentum

�

It is customary to interpret the last equation differently: It is said that 
a force acts on the area of space, or a body within it, and thereby 
the momentum inside the area changes. However, it is advisable to 
read this equation in the same way as the other balance equations: 
The change of the momentum is caused by a momentum current of 
current strength � . 
Each of the major areas of classical physics is characterized by a 
substance-like quantity. Mechanics is that part of physics which 
deals with momentum and its currents. Electricity deals with electric 
charge and electric currents. Accordingly, pure thermodynamics can 
be defined as that part of physics which deals with entropy and en-
tropy currents. The amount of substances and its currents belong to 
chemistry. 
Energy is a quantity that is not characteristic of any of these areas. It 
is equally important in all areas of physics.
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Fig. 1.1 
The rate of change dX/dt has two 
causes: in- or outflow and creation 
or destruction.



1. Substance-like quantities and the structure of physics

1.2 Energy currents
It is an experience that an energy flow is always linked to the flow of 
another substance-like quantity X. The strength of the energy cur-
rent is proportional to the current strength IX of the other quantity. As 
a general rule we have:

P ~ IX
Concrete examples of this relation are

P ~ F,
which describes the transport of energy through a bicycle chain, for 
example, or

P ~ I,
which applies to the transport of electrical energy. These proportion-
alities are used to define the so-called energy-conjugated intensive 
quantities. 
The electrical potential difference U is defined by

P = U · I (1.2)
and the velocity can be defined by
� (1.3)

We will see that for thermal energy transports the relationship
P ~ IS

holds and that the temperature T is defined by
P = T · IS. (1.4)

Accordingly, for chemical energy transports
P ~ In ,

and the chemical potential μ is defined by
P = μ · In. (1.5)

The uniform structure of equations (1.2) to (1.5) shows that we are 
dealing with an analogy. The areas of physics mentioned before 
have a common structure. The analogy consists in the fact that cer-
tain physical quantities are mapped on each other. From a relation 
valid in one of the subareas, one obtains a relation in another sub-
area by simply replacing the corresponding quantities. Energy, en-
ergy current, position and time are not translated, or in other words, 
they transform into themselves. The second and third columns of 
Table 1.1 show the substance-like and intensive quantities which are 
replaced by each other. The fifth column shows an example of an 
equation in its various analog variants. 

The intensive quantities defined by equations (1.2) to (1.5) play an 
important role in flows associated with “friction” in a more general 
sense, or dissipation. Such processes are 

• mechanical friction;
• “electric friction”, i.e. the process that occurs when an electrical 

current flows through a resistor;
• the process by which entropy flows through a thermal resistor;
• diffusion and chemical reactions that occur spontaneously.

For all these “flows”, the substance-like quantity flows from the high 
to the low value of the corresponding intensive quantity. 
Thus, during mechanical friction processes, momentum always 
flows from the body of the higher velocity to the body of the lower 
velocity. 
In electrical resistors, the electric charge flows from high to low elec-
tric potential. 
Entropy flows from places of high to places of low temperature.
Finally, substances always diffuse from places with high to places 
with low chemical potential. In addition, chemical reactions always 
run spontaneously in the direction of decreasing chemical potential. 
If one wants to run any of these processes in the opposite direction, 
one has to supply energy. 
To transfer momentum from a body of lower to a body of higher ve-
locity, a motor can be used. Electricity is transferred from low to high 
electric potential with the help of a battery or a generator. Entropy is 
pumped with a heat pump from low to high temperature. And a 
chemical reaction is driven in the opposite direction to the sponta-
neous drive, for example in an electrolysis cell.
We are now able to say what thermodynamics is all about. Thermo-
dynamics is more than just the physics of heat. It is  more than just 
the relationship between entropy and temperature. Thermodynamics 
deals with the interplay of thermal, chemical and mechanical pro-
cesses. In addition to the ubiquitous energy, the variables we will be 
dealing with are therefore the thermal variables entropy and temper-
ature and the chemical variables amount of substance and chemical 
potential. In thermodynamics, mechanics usually does not enter with 
its variables momentum and velocity, but with the substitutes volume 
and pressure.

P =
!
v ·
!
F .

Table 1.1
Assignment of physical quantities to sub-areas of physics and chemistry

Extensive quantity Intensive quantity Currentstrength P = ξ · IX

Mechanics momentum p velocity v force F P = v · F 

Electricity electric charge Q elektric potential φ electric current I P = U · I

Heat entropy S temperature T entropy current IS P = T · IS

Chemistry amount of substan-
ce n

chemical potential μ  substance current In P = μ · In
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2. Entropy and temperature

2.1 Entropy as a measure of heat
The entropy S is a quantity for which non-physicists have a good in-
tuitive understanding and with which they intuitively operate correct-
ly. There is probably no other quantity for which the physical term 
matches a colloquial term so well: Most colloquial statements in 
which the word “heat” or “quantity of heat” appears remain correct in 
the sense of physics if these words are replaced by the word “en-
tropy”.
However, in physics the word “heat” is used with a different mean-
ing, namely as the name of the “differential form” TdS, and this does 
not match the colloquial meaning of the word. We therefore  will not 
use the word heat in this sense.
Below are some statements in which the word heat is used in its col-
loquial meaning. These sentences remain correct if the word heat is 
replaced by the word entropy. In this way we get a qualitative under-
standing of the concept of entropy:

If one holds an object, e.g. a piece of iron, over a gas flame, it be-
comes warmer, its temperature increases. Heat (entropy) flows 
into the object. The more heat flows into the object, the higher its 
temperature. If the object is removed from the flame and wrapped 
in polystyrene, the heat (entropy) remains in it. If it is divided into 
two equal parts, each part contains half the heat (entropy) con-
tained in the entire object. The heat (entropy) is thus substance-
like. A heat density (entropy density) can be defined.
When a warm object is brought into contact with a cold one, heat 
(= entropy) flows from the warm to the cold, i.e. from the object of 
higher to that of lower temperature. The greater the temperature 
difference, the easier the heat (entropy) flows. Whether it flows 
quickly from a warm to a cold body also depends on the type of 
contact or connection. If the objects are connected by a piece of 
wood, the heat (entropy) flows more slowly than if they are con-
nected by a piece of copper. So there are good and bad heat con-
ductors (entropy conductors).
If one holds first a container with air and second a container of the 
same size with water over a flame, one notices that the air heats 
up faster, i.e. reaches a certain temperature faster than the water. 
So one has to put more heat (entropy) into the water to reach this 
temperature. Water has a greater heat capacity (entropy capacity) 
than air.
One can also add heat (entropy) to a “system” without heating  it 
up. If boiling water is left on the flame, heat (entropy) flows contin-
uously into the water. But its temperature no longer increases. In-
stread water is constantly evaporated. The steam must therefore 
carry away the heat (entropy). One gram of steam therefore con-
tains (much) more heat (entropy) than one gram of liquid water.
If one leaves an object, which one has previously heated, for a 
while (without a further heating), the heat (entropy) flows out of it; 
it spreads in the environment. In the process, it becomes so dilut-
ed that at the end it is not easy to tell exactly where it has gone. 
Nevertheless, it is somewhere, it has not disappeared in the 
sense of “destroyed”, but only disappeared in the sense of “hid-
den” or “dispersed”.
Heat (entropy) cannot be destroyed, but it can be produced, e.g. 
in a flame, in an electrical resistor or by mechanical friction.
Energy is needed to produce heat (entropy). Since we believe in 
the conservation of energy, we conclude that with the heat (en-
tropy) that flows away from an electrical resistance, energy also 
flows away.
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2.2 Definition of the entropy scale
When introducing a new physical quantity, a scale of the quantity 
must be defined. The scale allows to attribute values to the quantity. 
The definition of a scale includes 1. the specification of the unit and 
2. a rule for constructing multiples of the unit. 
The definition of the unit is essentially a technical problem. 
The specification of multiples, on the other hand, affects the essen-
tial of the quantity. In fact, the definition of multiples is a delicate 
problem in certain cases. There are quantities where this definition 
has changed throughout the history of physics. In the course of time 
the scale has been distorted, or better: rectified. An example is the 
temperature scale.
Let us first consider how to define the unit and the scale of entropy. 
We’ll start with the unit. 
The unit of entropy is the Carnot, abbreviated Ct. We know that en-
tropy is needed to melt ice. With 1 Ct at normal pressure 0.893 cm3 
ice is melted. It could therefore have been decided by law:

„1 Carnot is that amount of entropy with which 0.893 cm3 of ice is 
melted at normal pressure.“

In fact, a different procedure has been preferred as the legal defini-
tion. This procedure is somewhat more complicated in concept, but 
allows a more precise definition of the unit. We’ll come back to this 
later. 
Now to the construction of multiples of entropy values. For sub-
stance-like quantities, the construction of multiples is always trivial. If 
a system contains one unit of a quantity, two units are obtained by 
simply placing an identical system next to the first.
Practical measurement procedures must be distinguished from the 
procedure for defining the unit and the multiples of the values of the 
quantity. In order to determine the values of a quantity practically, 
one needs a procedure, which is not too cumbersome. In principle, 
an amount of entropy could be measured by melting ice and mea-
suring the corresponding change of the volume of the ice. However, 
this procedure is impractical. Why? The entropy to be measured is 
located in any system: a container or a body. From there it must be 
transferred to the ice to be melted. Now it is very difficult to transfer 
entropy from one body to another without creating new entropy. It is 
particularly difficult if the body from which the entropy is taken is at a 
different temperature than the ice. The entropy must then be careful-
ly pumped up or flow down (with the help of a heat pump or a heat 
engine, respectively). There is a more practical way to measure en-
tropy. This makes use of the producibility of entropy. We will get to 
know this procedure later.
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2.3 Entropy and energy – the temperature scale
Before we turn to the definition of the temperature scale, we must 
examine the energy and entropy balances of some simple devices. 
Fig. 2.1 shows an immersion heater. First the entropy balance: En-
tropy comes out of the immersion heater, but no entropy flows into it. 
The entropy is generated in the immersion heater. 

�  
And the energy balance: Energy flows into the immersion heater via 
the cable, and it must come out again. The only possibility for this is 
that it comes out across the outer surface together with the entropy. 
It is also said that the energy enters the immersion heater with the 
energy carrier “electric charge”, and it comes out with the energy 
carrier “entropy”. We conclude that an entropy current is accompa-
nied by an energy current. 
We are now looking for the relationship between the entropy current 
IS and the energy current P. Since both quantities are currents of 
substance-like quantities, the relationship must be:

P ~ IS (2.1)
(One can imagine, for example, operating two immersion heaters 
next to each other. Then both the energy and the entropy current for 
both together are twice as large as for a single one.)
The next system we look at is the entropy and energy balance of a 
thermal engine. Fig. 2.2 shows the corresponding flow diagram, Fig. 
2.3 shows the thermal engine in more detail.

�  

�  
Thermal engines are used in coal-fired and nuclear power plants, 
among others. Entropy flows into the system at high temperature. 
This entropy is obtained by production: by burning coal or by fission 
of uranium and plutonium. The entropy enters the system in the 
steam generator. The steam expands in a turbine. Thereby it be-
comes colder. In the condenser, the steam condenses, releasing the 
entropy that was previously (in the steam generator) absorbed. This 
entropy is transferred to the water of a river or (in a cooling tower) to 
the ambient air. 
The entropy current at the inlet of the heat engine system is equal to 
that at the outlet. If in a real machine, the entropy current at the out-
put is somewhat greater than at the input, this is due to imperfec-
tions of the machine, which in principle can be made as small as de-
sired. 
As the entropy flows through the system, the turbine delivers energy 
via the shaft. This energy must have entered into the machine. The 
only possibility is that the entropy flowing out carries less energy 
than the entropy flowing in. The difference between the energy cur-
rent flowing in with the entropy and that coming out again with the 
entropy leaves the machine via the shaft. There must be a difference 
between the entry and the exit of the entropy. More precisely: The 
proportionality factor that makes the relationship (2.1) an equation 
must have different values for input and output. It must depend on a 
variable that has different values at input and output. Now we know 
that the output of the machine is colder than the input, that the tem-
perature of the output is lower than that of the input, whichever is the 
temperature scale used. 
Since we have not yet defined the temperature scale, we can do it 
now: The proportionality factor that makes (2.1) an equation is called 
temperature. The temperature T is therefore defined as:

� (2.2)

To distinguish T from the temperature measured in °C, this variable 
is also called absolute temperature. 
The definition (2.2) is analogous to that of the electrical voltage. In 
fact, the electrical voltage is defined as the quotient of energy cur-
rent and electric current. (This fact is often formulated differently, for 
example: Voltage equals energy per charge. However, this formula-
tions is equivalent to our version.)
We  write equation (2.2) in the form in which it is usually remem-
bered:

P =  T · IS . (2.3)

entropy

electric charge

energy

Fig. 2.1 
Energy and entropy balance of an 
immersion heater

Heat 
engine

ENERGY

angular momentum

ENERGY

entropy

Fig. 2.2 
Flow diagram of a heat engine

Fig. 2.3 
The heat engine of a power plant 
consists of the steam generator, 
the turbine, the condenser and the 
pump.
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2.4 The units of temperature and entropy
Since the scales, and thus the multiples of energy and entropy are 
defined, equation (2.2) also specifies the multiples of the tempera-
ture. However, we had initially postponed the definition of the unit of 
the entropy. We can now make up for what is still missing. If one 
were to define the entropy unit, the temperature unit would also be 
defined with equation (2.2) (because the energy unit is already 
known from mechanics). In reality, however, we proceed the other 
way round: we define a temperature unit by law and deduce the en-
tropy unit, the Carnot, using equation (2.2). Thus, the temperature 
unit is defined as follows:

The temperature of water at the “triple point” is 273.16 Kelvin. 
The triple point is the temperature at which solid, liquid and 
gaseous water coexist. It is particularly suitable for defining the 
temperature unit, because no additional information about the val-
ues of other variables has to be given. So it does not have to be 
specified: “at a pressure of…”. When water is at the triple point, the 
pressure is inevitably fixed. 
We summarize the somewhat complicated process of defining the 
scales of entropy and temperature. 
The multiples of entropy result simply from the substance-likeness 
of the quantity. The multiples of temperature values are defined by 
equation (2.2). The unit of the temperature is defined by the triple 
point of the water. From this follows the entropy unit via equation 
(2.2):

1 Ct = 1 J/K.
One more remark about the “crooked” value in the definition of the 
temperature unit. It was chosen because a temperature difference 
of 1 Kelvin should be equal to the previously introduced °C (de-
grees Celsius).
The temperature of the phase transition between solid and liquid 
water at normal pressure (the temperature of melting ice) is 
273.15 K. For the relationship between Celsius temperature 𝜗 and 
absolute temperature T, the following applies

�T
K

= ϑ
°C

+ 273.15



2. Entropy and temperature

2.5 Heat engine and heat pump
We can now establish the energy balance of the heat engine. (The 
entropy balance is trivial: just as much flows in as flows out.)
With the entropy (current IS) flowing into the machine at the high 
temperature T2, an energy current

P2 =  T2 · IS 
enters into the machine, and with the entropy flowing out at the low 
temperature T1, an energy current

P1 =  T1 · IS 
comes out.
Thus, a net energy current

P = P2 – P1 =   T2 · IS – T1 · IS 
or

P = (T2 – T1) IS (2.4)
enters the machine. 
It can be seen that the working principle of the heat engine is similar 
to that of a water wheel, compare Fig. 2.4 with Fig. 2.2.

�  
The entropy corresponds to the water in the water wheel, or more 
precisely, to the mass m of the water, and what is the temperature in 
the thermal engine is the gravitational potential g · h (g = gravita-
tional field strength, h = height) in the water wheel. A mass current 
flows at a great height towards the water wheel, a mass current of 
the same strength flows away from it at a lower height. At the water 
wheel, the mass moves down from a great height to a small height, 
thereby releasing energy. The corresponding energy current is

P = P2 – P1 =   g · h2 · Im  –  g · h1 · Im =  g (h2 –  h1) Im 
Now to the heat pump. The heat pump does just the opposite of 
what a heat engine does: it conveys entropy from low temperature to 
high temperature. Since the entropy flowing away at the high tem-
perature carries more energy than that entering at the low tempera-
ture, the heat pump needs an energy supply. The energy it needs to 
pump is again given by the equation

P = (T2 – T1) IS .
In analogy to this, there is also an inversion to the water wheel: the 
water pump. Its energy demand is given by the equation

P = g (h2 –  h1) Im
Fig. 2.5 shows the flow diagrams of an electric heat pump and an 
electric water pump.

�

Fig. 2.4
Flow diagram of a water wheel
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Fig. 2.5
Flow diagrams of an electric heat 
pump and an electric water pump.
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2.6 Entropy production – reversible and  
irreversible processes

If electricity flows through an electrical resistor – from high to low 
electric potential –, the resistor becomes warm, entropy is produced, 
Fig. 2.6. (See also Fig. 2.1.)

�
The energy flowing to the resistor must be equal to the energy flow-
ing away. It must therefore apply:

(φ2 – φ1) · I =  T · IS prod (2.5)
Here is φ the electric potential, I the electric current and IS prod the 
the time rate of entropy production. We read the equation as follows: 
Towards the resistor, energy flows with the energy carrier electric 
charge and away from the resistor with the carrier entropy. The en-
tropy with which the energy leaves the resistor was produced within 
the resistor. If U = φ2 – φ1, I and T are known, the produced entropy 
can easily be calculated:

IS prod = U · I/T 
It is an important experience that entropy cannot be destroyed. As a 
result, processes in which entropy is produced cannot run back-
wards, they are irreversible. 
Equation (2.3) tells us that energy is needed to carry the produced 
entropy away. We say that this energy is dissipated. Processes in 
which entropy is produced are called dissipative processes. 
There are some standard dissipative processes that have certain 
characteristics in common. One of these is the process just dis-
cussed, in which an electric current flows through an electric resis-
tor.
Another such standard process is mechanical friction, Fig. 2.7: en-
tropy is produced while momentum flows from one body to another 
through a “momentum resistor”, i.e. through the contact surface be-
tween the two bodies.

�
The momentum flows from the body with higher velocity v2 to the 
body with lower velocity v1. The energy flow required to maintain the 
process has the strength

P =  (v2  – v1) · F.
Thus,  the energy balance is:
Δv · F = T · IS prod.

Fig. 2.8 shows the flow diagram of the friction process.

�

Fig. 2.9 shows a third dissipative process. Here, angular momentum 
flows from the shaft with the higher angular velocity to the shaft with 
the lower angular velocity in a slipping clutch.

�  
The energy balance reads:
Δω · M = T · IS prod ,

(ω is the angular velocity and M is the torque or the angular momen-
tum current). The flow diagram is shown in Fig. 2.10.

�
One type of process, which we will not consider until the next chap-
ter, is a free-running chemical reaction. Also here entropy is gener-
ated, and also here an energy balance equation can be formulated, 
which has the same structure as that of the electric resistance:
Δμ · In = T · IS prod .

Here μ is the chemical potential and In the substance conversion 
(measured in mol/s). Δμ is the difference between the chemical po-
tentials of reactants and products.
All the processes we have discussed here have in common that a 
substance-like quantity flows from one point to another or goes from 
one state to another via a kind of resistor. The corresponding inten-
sive quantity – electric potential, velocity, angular velocity, chemical 
potential – has a higher value at the first position, or in the first state, 
than at the second position, or in the second state. The substance-
like quantity flows “from the high value of the intensive quantity to 
the low value”. 
Finally, we consider a dissipative process that has a peculiarity. 
Through a thermal conductor (= resistor), whose ends are at the dif-
ferent temperatures T2 and T1, an entropy current flows from the end 
with the high temperature T2 to the end with the low temperature T1, 
Fig. 2.11.

�
Also in this case entropy is produced. This means that more entropy 
arrives at the cold end than has flowed into the thermal resistor at 
the hot end. The energy balance can be formulated as follows:

T2 · IS2 = T1 · IS1, (2.6)
because the incoming and outgoing energy currents must be equal. 
This equation shows that the entropy current IS1 must be greater 
than IS2 . Since the entropy current flowing out is composed of the 
current flowing in and the entropy produced in the resistor per time, 
IS1 can be written.

IS1 = IS2 +  IS prod ,
Together with (2.6) this results in

(T2 – T1) · IS2 = T1 · IS prod.
If we omit the index 2 for the entropy current flowing in, we get

(T2 – T1) · IS = T1 · IS prod , (2.7)
i.e. again an equation of the type of equation (2.5). 
The process described in equation (2.7) could be called thermal fric-
tion. The peculiarity of the process is that the flowing quantity is of 
the same nature as the produced one.

Fig. 2.6 
Flow diagram of an electric resis-
torelectric
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Fig. 2.7 
Momentum and entropy balance 
for a friction process
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Flow diagram of a friction process
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balance for a slipping clutch
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Flow diagram of a slipping clutch
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2.7 Efficiency
Many devices and machines serve the purpose of transferring ener-
gy from one energy carrier to another. The electric motor receives 
energy with the carrier electric charge and releases it with angular 
momentum. Energy flows into an electric heat pump with electric 
charge, and it leaves it with entropy. Such devices or machines are 
often called energy converters. This way of speaking is not very ap-
propriate. In fact, nothing is converted. The energy only changes its 
companion. We therefore prefer the name energy transloader. We 
say the energy is loaded from one carrier to another.
Every energy transloader has losses. The cause of energy losses is 
always the production of entropy. Part of the incoming energy is 
used or consumed to carry the produced entropy away, according to 
equation (2.3). 
The transport of a substance-like quantity is also associated with 
more or less entropy production. Again, energy is needed, and this 
is also to be recorded as a loss. 
Energy is always lost when entropy is produced. Thus, the motto 
“save energy” should better be replaced by “avoid entropy produc-
tion”.
In fact, any activity that produces entropy can also be realized by a 
process that runs without entropy production. There is no physical 
reason why we consume energy at all. In principle, all production 
and transport services could be managed without energy expendi-
ture. It is technically important to assess whether an appliance, a 
machine, a transport device is wasting energy. We therefore define 
an efficiency η for the equipment in question. 
To define the efficiency, the system to be evaluated is compared 
with another system that provides the same service, but does not 
produce entropy, i.e. with a perfect, ideal system. Let the energy 
consumption of the real machine be Preal and that of an ideal  ma-
chine with the same achievement (whatever it may be) Pideal. We de-
fine the efficiency as

� (2.8)

The definition is such that for a device in which no entropy is pro-
duced, the efficiency η = 1 results. 
We now want to calculate the efficiency of a notorious energy 
waster: an electric heater. The service that we expect from the 
heater is to provide a certain entropy current IS at a certain tempera-
ture  T2. If the heater is used to heat a house, IS is also the entropy 
current that leaves the house through the heat leaks. T2 is the tem-
perature inside the house. 
The real electric heater needs an energy current of

Preal = T2 · IS
A reversibly working machine for heating the house would be a heat 
pump that pumps the required entropy into the house from outside 
the house. The energy consumption of the heat pump is (see sec-
tion 2.5)

Pideal =  (T2 – T1) IS.
This results in the efficiency (2.8):

�

It is interesting that the efficiency can be expressed by only two 
temperatures. The fact that it is a resistance heater is not reflected 
in the equation. In fact, the same equation results for any other 
heater, where all the required entropy is obtained by production. Be-
cause of its universal meaning, this expression has its own name. 
The expression

� (2.9)

is called Carnot factor. 

η = Pideal
Preal

η = Pideal
Preal

= (T2 –T1)IS
T2 IS

= T2 –T1
T2

η = T2 –T1
T2
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2.8 Thermal equilibrium
When entropy flows via a heat conductor from a body A of higher 
temperature into a body B of lower temperature, the temperature TA 
decreases and the temperature TB increases, Fig. 2.12: The two 
temperatures equalize. Finally

TA = TB.

�
When this state is reached, there is no longer any “drive” for the en-
tropy current, the entropy ceases to flow. This state is called thermal 
equilibrium. 
It is analogous to other equilibrium states. Momentum equilibrium 
occurs when two bodies A and B rubbing against each other reach 
the same velocity, Fig. 2.13, i.e. when

vA = vB.

�
Electric equilibrium is reached between two capacitors connected to 
each other by a resistor, Fig. 2.14. In the electric equilibrium is

UA = UB.

�

Fig. 2.12 
Thermal equilibrium establishes 
between the two bodies. entropy

Fig. 2.13 
Momentum equilibrium establish-
es between the two bodies.momentum

Fig. 2.14 
Electric equilibrium establishes 
between the two capacitors.

electric charge
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2. Entropy and temperature

2.9 Measuring temperature and entropy
Measuring temperature
For measuring the temperature, those effects are suitable where 
mechanical, electrical or optical variables depend on the tempera-
ture, e.g.
• thermal expansion of a solid: bimetallic strip (used in ther-

mostats);
• thermal expansion of a liquid: mercury thermometers;
• thermal expansion of gases: gas thermometer;
• thermoelectric effect: an entropy current is coupled to a current 

of charged particles; with an open circuit the particle current 
cannot flow, and a temperature difference causes a difference in 
the electrochemical potential;

• the electric resistance of a material depends on temperature: for 
metals the resistance increases with T, for semiconductors it 
decreases; 

• every body emits electromagnetic radiation; the spectrum of the 
radiation depends on temperature: radiation pyrometer;

• some substances change their color when a certain temperature 
is exceeded.

In most temperature measurement procedures, the measuring in-
strument is brought into thermal equilibrium with the system Y, 
whose temperature is to be determined: an entropy conducting con-
nection allows for an entropy flow from Y to the measuring instru-
ment. The entropy flows until the measuring instrument and system 
Y have the same temperature. The entropy capacity of the instru-
ment must be small compared to that of Y. Furthermore, the measur-
ing instrument should not have a thermal leak, otherwise the entropy 
flow between Y and the measuring instrument never comes to a 
standstill. Analogous remarks apply to the measurement of other in-
tensive quantities. 

Measuring entropy
The fact that entropy can be produced makes its measurement more 
difficult if a method is applied that is analogous to the methods used 
to measure conserved quantities, such as electric charge. Actually, 
however, it facilitates the measurement, since a method can be em-
ployed that is not possible with conserved quantities.
In the following we assume that we do not want to measure the total 
entropy contained in a system, but only the amount by which the en-
tropy content of the system differs in two given states. The measur-
ing task is e.g.: How much more entropy is contained in a certain 
amount of liquid X at 80 °C than at 20 °C, Fig. 2.15?

�   

Method without entropy production  
We orientate ourselves on the measurement of electric charge. One 
transfers the amount of charge to be measured to an electrometer, 
Fig. 2.16a. The electrometer is calibrated, i.e. the relation between 
deflection and charge is known.

�  
Accordingly, the entropy to be measured can be transferred into a 
container filled with water, Fig. 2.16b. The water expands. The verti-
cal pipe is calibrated, i.e. the relation between vertical rise and en-
tropy content of the water is known. However, the procedure is very 
impractical, because in general the entropy to be measured is locat-
ed in a system whose temperature is different from that of the cali-
brated water tank. If the system is at a higher temperature than the 
measuring instrument, the entropy to be measured can be trans-
ferred with a heat conductor. But this produces additional entropy 
and the meter displays too much. If the system is at a lower temper-
ature than the instrument, the entropy does not flow into the instru-
ment at all. This means that a heat pump or a heat engine must al-
ways be installed between the system and the measuring device so 
that the entropy is brought to the temperature of the measuring de-
vice. This procedure is so impractical and inaccurate that it is not 
used. 

Method with entropy production  
With this method it is not possible to determine the amount of en-
tropy already in the system. Instead, the entropy whose value one 
wants to determine is first transferred to the environment and the 
same amount is then produced anew.  
In our case, we will first allow the entire entropy to be measured to 
flow out of our liquid X, which is at 80 °C: We cool the liquid to 
20 °C, Fig. 2.17a. Then we produce the entropy anew and measure 
the incoming energy flow as well as the temperature, Fig. 2.17b. The 
energy current P and the entropy current IS, which flow out of the 
heating device, are related by

P =  T · IS .

�
The temperature is the same throughout the liquid (thanks to the ag-
itator). Energy is supplied until the temperature has risen from 
(273.15 + 20) K to (273.15 + 80) K. The entropy produced in the 
heating resistor is

�

 

Fig. 2.15 
By how many Carnots do the en-
tropy contents differ?

Fig. 2.16
(a) Measuring electric charge. The 
charge to be measured is trans-
ferred to the calibrated electrome-
ter. 
(b) Measuring entropy. The en-
tropy to be measured is trans-
ferred to the calibrated entropy 
measuring instrument.

a

b

liquid X

entropy conductor

a

b

thermometer

wattmeter

magnetic agitator

Fig. 2.17
One lets the entropy to be mea-
sured flow out of the system (a) 
and then produces the same 
amount anew (b).

S = IS (t )dt
t (20°C)

t (80°C)

∫ = P(t )
T (t )

dt
t (20°C)

t (80°C)

∫



2. Entropy and temperature

2.10 The first and the second law
Statements about whether or not a substance-like physical quantity 
is conserved have historically often been regarded as important, if 
not the most important, physical laws at all. This can be seen by the 
fact that these statements often have their own, sometimes quite 
pretentious name.

Newton’s second law: 
Momentum can neither be produced nor destroyed.
The first law of thermodynamics: 
Energy can neither be produced nor destroyed.
The second law of thermodynamics: 
Entropy can be produced, but not destroyed.

These names indicate that the discovery of the respective theorem 
was laborious. The reason for this difficulty is probably that the “sub-
stance-likeness” of these quantities was initially not recognized. The 
theorem of the conservation of the electric charge does not bear its 
own name, since the substance-likeness of the charge (= electricity) 
was recognized first, and shortly afterwards the conservation was 
discovered (Franklin 1747). The situation is similar with the amount 
of substance. Its substance-likeness was clear from the beginning, 
and its non-conservation was so obvious that one felt no need to 
express it in as a new theorem.



2. Entropy and temperature

2.11 Entropy content at absolute zero
If one tries to extract more and more entropy from a body with a very 
good heat pump, one realizes two things: 
• The temperature can be as close as desired to 0 K, but cannot 

be lower. 
• At this temperature, the pump does no longer pump entropy. 

We conclude that, as we approach the temperature of 0 K, the en-
tropy content is approaching zero. So we have:
T → 0 exactly when S → 0. 

In words: Absolutely cold bodies contain no entropy.
But there are cases in which this statement seems to be violated. 
When liquid glasses are cooled down quickly, they release less en-
tropy than when they are cooled slowly. During rapid cooling entropy 
seems to be frozen or trapped.  
We will explain this process later as follows: the glass can be broken 
down into subsystems, and one of these subsystems is not in ther-
mal equilibrium with the rest if it cools too quickly. Although a ther-
mometer indicates that T approaches zero Kelvin, both S and T of 
this subsystem do no longer decrease. The total system has two dif-
ferent temperatures. 
One can also describe the phenomenon like this: Entropy has be-
come immobile, similar to immobile electrical charge.
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2.12 Entropy capacitance
Whether a system contains much or little entropy can be seen from 
various properties, more precisely, from the values of various other 
physical quantities. In particular, the entropy content increases with 
increasing temperature. We call the entropy increase per tempera-
ture increase the entropy capacitance CS  of the system:

�

This quantity is defined in analogy to the electrical capacitance

 �  

and to the mass, which can be interpreted as the momentum capaci-
tance

�

In contrast to CQ and Cp, CS is not defined as a quotient, but as a dif-
ferential quotient of an extensive and an intense quantity.  
We are now addressing a problem that is normally only encountered 
with the entropy capacitance. The entropy of a system depends not 
only on T, but also on other variables, e.g. on the volume V and on 
the amount of substance n. So it is:  

S = S(T, V, n).  
However, it is also possible to choose other independent variables 
for the same system, e.g. T, p and n. S is another function of the 
variables T, p and n. If one wants to determine the entropy capaci-
tance – mathematically or experimentally – i.e. one asks for the 
change of the entropy content for a given temperature increase, one 
has to decide what should happen with the other variables in this 
process. The most natural thing to do is to leave the volume and the 
amount of substance unchanged during the temperature increase. 
The entropy capacitance, that is determined in this way, is

�

To indicate that the volume is constant, we denominate this quantity 
CSV. The fact that n is also kept constant is an implicit convention 
and is not expressed in the symbol. 
So it is

�

Sometimes an entropy capacitance is also useful, which is deter-
mined by a temperature change at constant pressure:

�

We emphasize that S(T,V,n) and S(T,p,n) are different functions. 
With the electrical capacitance one could make quite analog distinc-
tions. Fig. 2.18 shows a “capacitor” consisting of two spheres. We 
can write the charge Q either as a function of the variables U and x 
(distance between spheres): Q = Q(U, x) or as a function of U and F 
(momentum current from one sphere to the other): Q = Q(U, F).

�
Accordingly, two capacitances can be defined

�

To measure CQ F, when charging the capacitor, the distance x must 
be increased so that F remains constant. However, this case has no 
practical interest. When we talk about the (electric) capacitance of 
an arrangement, we always think that the geometry of the arrange-
ment is not modified when the voltage is changed.  
In thermodynamics, molar quantities are often used. We mark them 
with a “roof” above the symbol of the quantity. For homogeneous 
systems, a molar variable depends only on intensive and other mo-
lar variables. Therefore, the molar entropy, i.e. the entropy per 
amount of substance is:
�  

A third variable no longer appears, because the amount of sub-
stance per amount of substance is equal to 1.
We therefore define molar entropy capacitances

� (2.10)

� (2.11)

The values of cS p  and cSV for some substances are listet in Table 
2.1. These molar entropy capacitances do not depend on the size of 
the section from a system that is considered, but only on local vari-
ables: intensive and molar variables. We will discuss their tempera-
ture dependence later.

�
Instead of entropy capacitances, tables usually show the product 
cS · T, which has the dimension of an energy capacitance. This ex-
pression is called molar heat capacitance. Its symbol is cV or cp, re-
spectively:   

cV = cSV · T and cp = c S p  · T
Caution: It is not correct to say that a system contains heat when the 
word heat is used in the sense of physics, because TdS is not a 
substance-like quantity. Therefore, the term heat capacitance is 
somewhat misleading.   
Fig. 2.19 shows the temperature over entropy for copper. It is typical 
for all substances as long as there is no phase transition.

�

CS = ΔS
ΔT

CQ = Q
U

Cp ≡m = p
v

∂S(T ,V ,n)
∂T

.

CS
V = ∂S(T ,V ,n)

∂T
.

CS
p = ∂S(T ,p,n)

∂T
.

Fig. 2.18 
When charging the capacitor, ei-
ther the distance or the force can 
be kept constant.

dynamometer

CQ
x = ∂Q(U ,x )

∂U
     and     CQ

F = ∂Q(U ,F )
∂U

Ŝ = Ŝ(T ,V̂ )     or     Ŝ = Ŝ(T ,p )

cS
V = CS

V

n
= 1
n
∂S(T ,V ,n)

∂T
= ∂Ŝ(T ,V̂ )

∂T

cS
p = CS

p

n
= 1
n
∂S(T ,p,n)

∂T
= ∂Ŝ(T ,p)

∂T

Table 2.1
Molar entropy capacitances

Substance cS p (Ct · mol–1 · K–1) cSV (Ct · mol–1 · K–1)

Potassium 99

Iron 87

Silver 86

Lead 91

Water 256

Benzene 0.45

Helium 77 46

Air 107 76

Hydrogen 104 74

CO2 101 92
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Temperature over entropy for 100 g 
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2.13 Entropy conductivity
If entropy flows through a material medium, energy is dissipated, 
(additional) entropy is produced, Fig. 2.11. For the entropy to flow, a 
temperature gradient is necessary. 
The temperature gradient can be interpreted as a driving force for 
the entropy current. We consider a section of a heat conductor that 
is so short that the entropy produced in this section is sufficiently 
small compared to the entropy flowing through it.
 Experience shows that

�

Written in differential form the relation reads
IS ~ grad T.  

IS depends on the cross-sectional area A of the heat conductor and 
on the material. We thus can write  
   �

and call σS the entropy conductivity. For the entropy current density 
we thus obtain
�   (2.12)

Tables usually show the thermal conductivity
λ = σS · T  

If equation (2.12) is multiplied by T, we obtain    
�

With 
�

we get the energy current density
� (2.13)

σS (like λ, but also like the electric conductivity and the momentum 
conductivity) depends on temperature. 
Table 2.2 shows the values of σS and λ for some substances.

�
We now want to find a differential equation that allows us to calcu-
late temperature distributions. To derive it, we consider a one-di-
mensional problem: a heat conductor whose temperature changes 
only in the x-direction, Fig. 2.20.

�  
We cut a slice out of the heat conductor  perpendicularly to the x-di-
rection and make the energy balance for this slice. The time rate of 
change dE/dt inside the slice is equal to the difference of the energy 
currents flowing in on the left and out on the right:

� (2.14)

With the help of dE = c ·  n · dT we express the left side by the time 
rate of change of the temperature:

�

Here c is the molar heat capacity, n the amount of substance and ρn 
the density of n. The right side of equation (2.14) can be written

�

Here, first P = jE · A and then  jE = –λ · ∂T/∂x was used. We thus get 
from equation (2.14):

�

or

�

The three-dimensional calculation would have resulted in:

�

With c = T· cS and λ = T· σS we can also write:

�

The structure of this differential equation is the same as that of the 
Schrödinger equation for a free particle

�  

In the steady state we have ∂T/∂t = 0, thus 
ΔT = 0.  

Example: The temperatures T1 and T2 of the ends of a metal rod are 
kept constant over time. Since ∂T/∂t = 0 and the arrangement is one-
dimensional, we obtain

�   

From this follows

�

The temperature profile is therefore a straight line.  
The entropy currents investigated so far were driven by a tempera-
ture gradient. We call them conductive currents.
There are also currents in which a current IX is entrained by a cur-
rent IY. The entire flow is driven solely by the gradient of the inten-
sive variable belonging to Y. We call the current IX a convective cur-
rent. The entropy current in the pipe of a central heating system, for 
example, is a convective entropy current. Conductive entropy cur-
rents are unsuitable for the transmission of large amounts of en-
tropy. How thick would the lines of a central heating system have to 
be if entropy was to be sent conductively through copper rods? The 
earth’s heat balance is also essentially realized with convective cur-
rents. Another type of current, a kind of supercurrent, will be dis-
cussed later: entropy transmission with electromagnetic radiation.

IS ~
T2 –T1
Δx

IS =σS ·A · gradT

!
jS = –σS · gradT

T ·
!
jS = –TσS · gradT = –λ · gradT

T ·
!
jS =
!
jE

!
jE = –λ · gradT

Table 2.2
Entropy conductivity and heat conductivity

Substance σS (Ct · K–1 · s–1· m–1) λ (J · K–1 · s–1· m–1)

silver 1.54 420

copper 1.43 390

iron 0.29 79

lead 132 36

glass 0.003 7 1.0

water 0.000 9 0.25

ethanol 0.000 66 0.18

styrofoam 0.000 13 35

air 0.000 088 25

Fig. 2.20 
Entropy is flowing from left to 
right.
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2.14 Remarks on the history of the concept  
    of heat

Until about 1840, heat was the name of what physicists today call 
entropy, and what non-physicists still today call heat. This concept of 
heat was established in physics in the course of the 18th century. 
We owe the first important contributions to the chemist and physi-
cian Joseph Black (1728-1799). He recognized heat as a substance-
like quantity and distinguished it from temperature which was al-
ready known at that time. Black also introduced the heat capaci-
tance, namely dS/dT, which we now call entropy capacitance.
The next decisive step was taken by Sadi Carnot (1796-1832). In his 
Réflexions sur la puissance motrice du feu (1824) he compares a 
heat engine with a water wheel. Just as water does work when it 
goes down over a water wheel from a greater to a lower height, so 
heat (“calorique” or “chaleur”) does work when it goes from higher to  
a lower temperature in a thermal engine. Expressed in modern lan-
guage we can say that Carnot combines entropy and energy. For 
him, just as for Black, heat, i.e. what we call entropy today, was a 
substance-like quantity. A corresponding idea about what we call 
energy today, did not yet exist. In fact, energy as a substance-like, 
conserved quantity was introduced only 20 years later.
When around the middle of the 19th century energy was introduced, 
it was concluded that Carnot’s work was wrong and that heat was a 
so-called “form” of the energy. Thus “heat” was no longer the name 
of a physical quantity but of a structure of the form ξdX, a so-called 
differential form, just like “work”. A short time later, entropy was rein-
vented by Rudolf Clausius (1822-1888). Clausius’ construction of 
entropy is witty, but unfortunately also very unintuitive. This con-
struction, together with the interchange of names, is the reason why 
entropy still today appears as one of the most abstract physical 
quantities.
Two important names remain to be mentioned. Gibbs (1839-1903) 
has given thermodynamics a form in which it allows to describe 
much more than pure thermal phenomena. The analogies we keep 
coming across here are based on Gibbs’ work.
Boltzmann (1844-1906) tried to trace thermodynamics back to me-
chanics by explaining thermal phenomena through the movement of 
small particles. Temperature and entropy were interpreted  mechani-
cally. He invented statistical physics. Its significance goes far be-
yond the mechanical models used to derive it.
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3. Amount of substance and chemical potential

3.1 Substances and basic substances
As one describes the location of a point in space by three coordi-
nates in a spatial reference system, so one can characterize a mate-
rial by its coordinates in a reference system of substances. To the 
coordinate axes we  assign basic substances. The value of a coordi-
nate Xi of substance S indicates the amount of basic substance i 
contained in S. In Fig. 3.1, a specific solution of common salt in wa-
ter is represented by a point in an mwater - msalt coordinate system. 
(Here we use mass as a measure of the amount of the substances.) 
The values of all other coordinates, e.g. mIron or mAlcohol are zero. All 
mixtures of water and salt can be displayed in this coordinate sys-
tem, from pure water to pure common salt.

�
The same substance manifold “saline solution” can also be de-
scribed in a different coordinate system obtained from the first by 
linear combination, Fig. 3.2. However, in this case negative quanti-
ties of the substances must also be permitted. Pure water, for ex-
ample, then “consists” of one-molar salt solution and a negative 
amount of common salt.

�  
Which and how many substances are chosen as basic substances 
is largely a question of expediency. There must not be too many – 
otherwise the coordinates of a substance are no longer unambigu-
ous. With our saline solution, for example, we must not take water, 
common salt and a one-molar saline solution. If there are too few, 
two things can happen.
• A substance cannot be represented in these coordinates. For ex-

ample, a quantity of gasoline cannot be described by the coordi-
nates “amount of common salt” and “amount of water”.  

• Different substances have the same coordinates. If we take “elec-
trons”, “protons” and “neutrons” as basic materials, for example, 
many substances that the chemist wants to distinguish have the 
same coordinates.

When speaking of a substance, one usually abstracts from the total 
amount. Instead of the amounts of the basic substances, it is there-
fore customary to indicate numerical proportions of the substances. 
If A, B, C... are the basic substances, a substance is represented by 
the “molecular formula” 

Aν1 Bν2 Cν3 …
where we have 

nA : nB : nC : … = ν1 : ν2 : ν3 : …
The chemist’s basic substances are the approximately 100 chemical 
elements. They have the special feature that their quantities in pure 
substances behave like small integers. 
Here, too, it is often not sufficient to specify the coordinates in a 
substance coordinate system to characterize a substance. Two dif-
ferent substances can have the same molecular formula, e.g. am-
monium cyanate and urea: CH4ON2. This proves that the sub-
stances are not microscopically homogeneous. In order to distin-
guish them, the chemist indicates the spatial linkage of the atoms, 
Fig. 3.3.

�
Some “pure” substances do not exist at all, e.g. carbonic acid H2CO3 
exists only in aqueous CO2 solution, or FeO exists only together with 
Fe2O3. 
What for chemists appears to be a uniform substance proves to be a 
mixture of even “purer” substances: there are different isotopes for 
each basic chemical substance. If one wants to consider the differ-
ent isotopes in the characterization of a substance, one has to deal 
with about 2000 nuclides of these elements instead of 100 chemical 
elements.
The nuclides, on the other hand, can be described by only three ba-
sic substances e, p and n, which, however, have no substance 
names. Their elementary proportions are called electron, proton and 
neutron. In order to break down the nuclides into these basic sub-
stances, higher energies have to be applied than those that the 
chemist uses to break down his substances into basic substances. 
The substances e, p and n do not exist in pure form in large quanti-
ties on earth, but small quantities can easily be produced. The fila-
ment of an incandescent lamp is surrounded by a thin layer of pure 
e. A p-gas is obtained by an electric gas discharge in hydrogen. 
Pure n also exists on Earth, but in much larger quantities in certain 
celestial bodies, the neutron stars.
Using very high energies, however, substances can be produced 
that are outside the e-p-n coordinate system. New basic materials 
have to be added: Antiprotons, antineutrons and many different 
mesons... But also these substances can again be described by 
fewer, even more elementary basic substances: Quarks and leptons, 
and at this level of the hierarchy the same thing happens as before: 
By using higher energies, the number of new basic substances in-
creases again and ... of course, one is looking for even more ele-
mentary basic substances.
A material coordinate system is used to bring order to the variety of 
substances. One chooses the coordinate system in such a way that 
the amount of each basic substance remains constant during the re-
actions that one examines. Thus, chemists limit themselves to reac-
tions in which the quantity of each chemical element is conserved. 
By selecting the coordinate system, the description of the chemical 
reactions becomes very simple: The amounts of the chemical ele-
ments are conserved quantities in all chemical processes. 
In the following we will mostly use the coordinate system of the 
chemists. In fact, this coordinate system contains one more coordi-
nate than just the chemical elements. The chemists also operates 
with substances called ions. They speak of the amount of [Na]+ ions 
or [CO3]2– ions. To describe these substances, it is sufficient to intro-
duce one more basic substance in addition to the chemical ele-
ments. Which one is to be taken is again largely a question of expe-
diency. One possibility would be the electrons e. Thus, we would ob-
tain 

[Na]+ = Na1 e–1      [CO3]2–  = C1 O3 e2.
But one could just as well take the protons p = [H]+ as new basic 
substance, then we would have

[Na]+ = Na1 H–1 p1    [CO3]2–  = C1 O3 H2 p–2 .
In both cases there are negative coordinates.

Fig. 3.1 
A given saline solution as a point 
in a mwater - msalt- coordinate sys-
tem
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Fig. 3.2 
The same saline solution as in 
Fig. 3.1 in another coordinate sys-
tem
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Fig. 3.3 
Ammonium cyanate and urea 
have the same molecular formula, 
but the molecules have different 
structures.
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3.2 The amount of substance
A measure of the amount of a substance should provide information 
on how much of one substance is equivalent to a given amount of 
another. Since different substances are to be compared, equiva-
lence will only refer to certain properties, depending on the choice of 
the quantity. If the mass is used as a measure for the amount, equal 
amounts are equivalent with respect to their inertia and their weight. 
Certain physical laws are substance-independent when the mass is 
used as a measure of the amount, for example
�

or
�

There is another quantity which in certain cases is a more conve-
nient measure of the amount of a material than the mass: the 
amount of substance n, There are physical laws that become sub-
stance-independent if they are formulated with n instead of m. An 
example of this is the ideal gas law 

pV = nRT. 
If one would use m instead of n, the universal gas constant R would 
have to be replaced by a substance-dependent constant. 
Another substance-independent statement is

Two portions of different substances with the same amount of 
substance n contain the same number of particles. (3.1)

However, the statement that a relationship is substance-independent 
is only interesting, i.e. a statement that can be tested in an experi-
ment, if the quantity n was not defined by the relationship. If we use 
the ideal gas law to define n, the proposition (3.1) is a statement that 
can be tested in an experiment, it is a law of nature. If, on the other 
hand, the quantity n is defined as a certain number of particles, the 
fact that the ideal gas law is substance-independent is an interest-
ing, verifiable fact.
The proposition (3.1) tells us that one can obtain a simple idea of n: 
n is a measure of a number of items. It describes what ten mole-
cules, ten photons, ten apples, ten cars and ten stars have in com-
mon.
The unit of measurement for the quantity n is the mol. It is defined 
as follows:

1 mol is the amount substance of a portion of the carbon isotope 
�  whose mass is 12.000 g.

Since we know how many atoms are contained in 12 g of carbon, 
proposition (3.1) can be formulated as follows:

A portion of a substance has the amount of substance   
n = 1 mol if it consists of 6.022 · 1023 particles.  (3.2)

NA = 6.022 ·1023 mol–1 is called the Avogadro constant.
The propositions (3.1) and (3.2) express an important property of the 
quantity n: n is quantized, just like the electric charge Q and the an-
gular momentum L. Its value is an integer multiple of its natural unit. 
The elementary quantum of the amount of substance is: 
τ  = 1.66 ·10–24 mol

τ corresponds to the elementary charge e, the elementary quantum 
of angular momentum ħ and the elementary quantum of the entropy 
k:

e = 1.6022 · 10–19 C  
ħ = 1.0546 · 10–34 Js  
k = 1.380 · 10–23 Ct 

Products or quotients of these elementary quanta are again natural 
constants. So,
Φ0 = π · ħ/e = 2.06 · 10–15 Vs

is the elementary quantum of the magnetic flux, or half of the ele-
mentary quantum of the magnetic charge.

F = e/τ = 0,.965 · 105 C/mol
is the Faraday constant, and 

R = k/τ = 8.324 Ct/mol
is the gas constant. 
Since substances can be produced and destroyed, n is not a con-
served quantity. In 3.1, however, it had already been said that basic 
substances are selected in such a way that their quantities are con-
served in the processes of interest.
If different substances A, B,... are present simultaneously, several 
amount-of-substance variables nA, nB… are used. However, one 
should not conclude from this that  nA and nB are different physical 
quantities. They are no more so than the masses mA and mB or the 
entropies SA and SB of the substances. 
In a chemical reaction, the quantities of the reactants are in certain 
integer ratios. If, for example, hydrogen combines with oxygen to 
form water, the three quantities of substances n[H2], n[O2] and 
n[H2O] behave like this: 
 n[H2] : n[O2] : n[H2O] = 2 : 1 : 2
This is also expressed in the reaction equation:

2H2 + O2 →  2H2O (3.3)
The same reaction can also be described as follows

4H2 + 2O2 →  4H2O .
If the reaction equation is written with the smallest integers, as equa-
tion (3.3), it is in the standard form.
To describe how far a reaction has progressed, it is not necessary to 
specify the amounts of all substances involved. It is sufficient to 
specify a single molar number, the conversion n(R) of the reaction. 
The conversion is defined as follows:
Multiplying the standard form of the reaction equation by x mol gives 
a reaction equation describing the conversion of n(R) = x mol.

Example:
A conversion

4 Al + 3 O2 → 2 Al2O3

of 200 mol is to be realized.
We multiply the standard form with 200 mol:

800 mol Al + 600 mol O2 → 400 mol Al2O3

Thus, 800 mol Aluminum must react with 600 mol Oxygen whereby  
400 mol Aluminium oxide is produced.

!
F =m ·

!
g

!
p =m ·

!
v

12
6C
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3.3 The chemical potential
Just as there is an associated intensive variable Φ to the substance-
like quantity Q and an intensive variable T to the substance-like 
quantity S, there is also an intensive variable μ which corresponds 
to the substance-like quantity n: the chemical potential.
Before we discuss the construction of the μ scale, we want to get a 
qualitative idea of the quantity. (For the temperature this was not 
necessary, as everyone already has such an idea  of the tempera-
ture.) 
Just as a temperature difference can be seen as a driving force for 
an entropy current, a difference in the chemical potential represents 
a drive for an n-current. Entropy flows from high to low “thermal po-
tential” T, amount of substance flows from high to low potential μ. If 
a substance flows through a kind of resistor from a place A to a 
place B and no other driving force is present, i.e. no electrical volt-
age ΔΦ and no thermal drive ΔT, we can conclude that the chemical 
potential of the substance at A is higher than at B; between A and B 
there is a chemical potential difference Δμ. 
If one pours a few drops of ether at one point of the room, it evapo-
rates and spreads evenly throughout the room. This propagation 
process is called diffusion. It is driven by differences in the chemical 
potential.
The value of the chemical potential usually refers to a certain sub-
stance, in our case to ether. The chemical potential of the air in the 
room has a different value. However, this does not imply that 
μ[ether] and μ[air] are different physical quantities: They are the val-
ues of the same quantity on two different systems. (Compare the 
corresponding remarks about n).
Since substances can be produced and destroyed, Δμ plays yet an-
other role than that of the drive for a current from one point A to one 
point B. If a substance A can transform into substance B, and vice 
versa, i.e. if the reaction A ↔ B can take place, the chemical poten-
tials of the two substances μA and μB tell us in which direction the 
reaction will proceed. If μA > μB, then A transforms into B, if μB > μA, 
B changes into A. If μA = μB, there is no reaction. It is said that there 
is a chemical equilibrium. For example, if the relative humidity is less 
than 100%, the chemical potential of liquid water is greater than that 
of gaseous water. The liquid water evaporates.
In fact, these two examples – diffusion and evaporation – are not as 
different as they look at first. The case of diffusion can also be seen 
as a reaction: “Ether at location A is transformed into ether at loca-
tion B”. Thus  μA can be understood in general as the drive of a sub-
stance A to disappear. However, since certain conservation laws 
have to be satisfied, substance A cannot disappear without a trace: 
Its disappearance is accompanied by the formation of a substance B 
with a lower chemical potential. Substance B can either be the 
“same” substance as A, but at a lower pressure, in a lower concen-
tration, in another physical state, in another phase, or it can be what 
is called another substance. 
However, these are far from all the possibilities for how a substance 
can disappear: A substance can also disintegrate into two or more 
other substances, or it can react with other substances. In general: 

A + B +…↔  U + V +…

Whether such a reaction runs from left to right or from right to left 
depends on the values of the chemical potentials of all substances 
involved. If
μA + μB +… > μU + μV +…,

the reaction runs from left to right: the substances A, B,... disappear, 
and the substances U, V,... are formed. If
μA + μB +… < μU + μV +…,

the reaction runs from right to left. If finally
μA + μB +… = μU + μV +…,

there is no drive to the reaction. It won’t run at all. There is chemical 
equilibrium.
It is remarkable that so many different processes are described by 
the values of a single physical quantity. The chemical potential is 
therefore a very useful quantity.
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3.4 The scale of the chemical potential
We define the μ scale in a similar way as the T scale. Like an en-
tropy current, a substance current flow is accompanied by an energy 
current, and the following must apply

P ~ In
We define the μ scale by

P =  μ · In
Thus, the unit of measurement of the chemical potential is J/mol, 
and we abbreviate

1 J/mol = l Gibbs (G).
When a substance flow is realized, not only the quantity n flows, but 
also other substance-like quantities, i.e. S, Q,... Accordingly, the en-
ergy current is

P =  μ · In + T · IS + …
If one wants to determine μ via P/In, the terms T · IS etc. must be 
subtracted from the total energy flow before. In order to avoid this 
difficulty, we first consider a procedure that specifies μ differences 
directly: We consider an energy transloader, into which energy en-
ters together with amount of substance and which it leaves with an-
other carrier, e.g. with angular momentum P = ω · M or with electric 
charge P = U · I. The machine should be well constructed, i.e. no en-
tropy should be produced in it. 
We also limit ourselves to those energy transloaders in which reac-
tions of the type A → B take place, i.e. not A → B + C or A + B → C 
+ D..... Such devices may not be of great practical importance, but 
that is not the point here. An example of such an energy transloader 
is a compressed air engine, Fig. 3.4: The air flows in at high chemi-
cal potential μ2 (and thus at high pressure) and out at low potential 
μ1 (and at low pressure).

�  
Thus the net energy current that flows into the machine is

P2 – P1 = (μ2 – μ1) · In
This energy current can be measured as it leaves the machine me-
chanically through the shaft. So it is

Pmech  = ω · M = (μ2 – μ1) · In
However, this balance equation is only correct if no further energy 
flows are involved. Since a substance flow is always linked to an en-
tropy flow, it is important that the substance flowing in has the same 
temperature as the substance flowing out, the machine must oper-
ate isothermally. It must also be taken into account that the entropy 
capacity of the substance flowing in and out is different. Such a ma-
chine must generally have another input or output for the entropy.
Another example of such an energy transloader is the galvanic cell 
described elsewhere. Hydrogen flows into the cell at high chemical 
potential and out of it at a lower potential. Therefore, the cell releas-
es energy electrically. So the following applies

U · I = (μ2 – μ1) · In
Of course, one can also consider a machine or galvanic cell in which 
a more complicated reaction takes place, e.g. a combustion. It would 
allow to determine the chemical potential difference of the combus-
tion reaction.

Fig. 3.4 
Compressed air engine, schemati-
cally

S  – S1 2

T T

T

S2 S1

n 2 n1
μ 2 μ1
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3.5 The zero point of the chemical potential
Like temperature, the chemical potential has an absolute zero point. 
The value follows from the equation P = μ  ·  In. We consider a sub-
stance flow. We have

Ptotal =  μ · In + v · F + T · IS +…
If the substance in question has a rest mass different from zero, i.e. 
if it is not electromagnetic radiation, P is, except in extreme cases, 
very large compared to the terms v · F,  T · IS etc., i.e.  μ · In in these 
cases is almost identical with Ptotal, and we have

�

The absolute value of μ is therefore very high for substances with a 
rest mass different from zero, Table 3.1.

�
Now chemical potential differences Δμ in chemical reactions, i.e. in 
the processes of interest to us, are of the order of 100 kG, i.e. much 
smaller than the uncertainty with which the absolute values of μ are 
known. Therefore, in normal chemistry (but not in nuclear chemistry) 
and in the physics of low energies one operates only with differ-
ences of the chemical potential. As long as one considers only those 
processes in which the atomic numbers of all chemical elements are 
conserved, i.e. as long as no nuclear reactions take place, one can 
define a zero point of the chemical potential for each of the chemical 
elements  separately. This can be seen in the example of the simple 
reaction

A + B →  AB.
We decompose the chemical potentials
μA = μA0 + μA´
μB = μB0 + μB´
μAB = μA0 + μB0 + μAB´

The chemical potential difference of the reaction
μA  + μB – μAB = μA´  + μB´ – μAB´

results from the absolute values μA, μB and μAB of the chemical po-
tentials, as well as from the primed values μA´, μB´ und μAB´. We 
now are free to choose μX0 arbitrarily for each chemical element. 
One chooses μX0 so that μX´ becomes zero for a standard state that 
can easily be reproduced. Usually the chemical potential μX´ of sub-
stance X will be set to zero if the substance is in its most stable 
modification at 298 K and 1.01 bar. For dissolved substances (also 
ions) a one-molar solution (1 mol dissolved in 1 l solution) is chosen 
as the reference state. From now on we will omit the prime.

µ = P
In

= E
n
= m
n
c 2 = m̂c 2

Table 3.1
Absolute values of μ for three substances

Substance μ (kG)

hydrogen H1 90.5791 · 109

helium He4 359.737 · 109

oxygen O16 1437.555 · 109
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3.6 Values of the chemical potential
For a given substance, the chemical potential does not have a fixed 
value that remains constant in all states of the substance; rather, it 
depends on
• whether the substance is solid, liquid or gaseous, which is its crys-

tal modification and whether it is dissolved in another substance;
• the temperature T;
• the pressure p;
• the density ρn of the amount of substance.
We will look more closely at these dependencies in Chapter 5. In the 
vicinity of the standard state p0, T0 however, the T- and p-depen-
dence can be approximated linearly:
μ(T,p0) = μ(T0, p0) + α · (T – T0)
μ(T0,p) = μ(T0, p0) + β · (p – p0)

For the solution of many problems it is therefore useful and sufficient 
to know the temperature coefficient α and the pressure coefficient β 
in addition to the value of the chemical potential in the standard 
state μ(T0, p0).
The pressure coefficients β are always positive. This is easy to un-
derstand when one remembers that a chemical potential difference 
represents “driving force” for a substance flow. As is well known, 
substances flow from places of high to places of low pressure.
However, it is not so easy to understand that the temperature coeffi-
cient is negative. This seems to contradict the experience that water 
vapor diffuses in a heated room from warm places to cold, for ex-
ample to the cold windows. However, the drive for this substance 
flow is not the difference of the chemical potential but that of the 
temperature: The temperature difference “pulls” at the entropy of the 
water vapor.
Table 3.2 lists the chemical potentials, and the pressure and tem-
perature coefficients for some substances.
By definition, the chemical elements have the chemical potential 
zero at standard conditions in their most stable form. So μ[H2] = 0 
and not μ[H] = 0. Furthermore one defines μ[H+] = 0.
Substances with a negative chemical potential do not spontaneously 
disintegrate into the elements they are made of.

�

Table 3.2
Chemical potential μ, temperature coefficient α and pressure coefficient β for some sub-
stances

Substance μ
(kJ/mol)

α
(kG/K)

β 
(G/bar)

iron 0 -27 0.71

limestone -1129 -93 3.69

sugar -1544 -0.360 21.70

water -237 -0.070 1.81

ethyne 209 -0.201 2446

CO2 -394 -0.214 2446

NO2 51 -0.240 2446

ClO2 122 -0.257 2446

Al2O3 -1582 -0.051 2.56

Fe2O3 -744 -0.087 3.04

Au2O3 164

H2 0 -0.131 2446

H 203 -0.115 2446

graphite 0 -0.0057 0.541

diamond 2.9 -0.0024 0.342

Ca(OH)2 -897 -0.076 3.32

CaO -604 -0.040 1.65

H+ 0 0 0.02

NaCl -384 -0.072 2.70

Na+ -262 -0.059 -0.16

Cl- -131 -0.056 1.80

AgCl solid -110 -0.096 2.58

AgCl dissolved -73 -0.154

Ag+ 77 -0.073 0.17

HCl gas -95 -0.187 2446

HCl dissolved -131 -0.056 1.82

NH3 gas -16 -0.193 2446

NH3 dissolved -27 -0.111 2.41

Ca++ -553 0.055

Pb++ -24 -0.010 -1.78

Zn++ -147 0.11 -2.6

Ba++ -561 -0.013 -1.24

CO3 -- -528 -0.057 0.35
S -- 86 -0.015

J - -52 -0.111 3.66

PbCO3 -626 -0.131 4.05

ZnCO3 -732 -0.082 2.82

CaCO3 -1129 -0.093

BaCO3 -1139 -0.112 4.46

CaC2 -68 -0.07

PbS -99 -0.091 3.19

ZnS -201 -0.058 2.39

BaS -461 3.99

PbJ2 -173 -0.175 7.61

ZnJ2 -209 -0.161 6.74

BaJ2 -598 7.60

H2O solid -236.59 -0.0448 1.973

H2O liquid -237.18 -0.0699 1.807

H2O gas -228.59 -0.1887 2446
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3.7 Examples of dealing with the  
  chemical potential
1. Stability of oxides:
The table shows directly that under normal conditions the oxides 
CO2, Al2O3 and Fe2O3 are stable, whereas ClO2, Au2O3 and NO2 are 
not. (ClO2 gas even decays explosively, whereas NO2 decays very 
slowly; it is said to be metastable.) 

2. Setting of mortar: Ca(OH)2 + CO2 → CaCO3 + H2O

�

The chemical potential of the reactants (–1291 kG) is greater than 
that of the products (–1366 kG). 

3. Production of ethyne: CaC2 + 2 H2O →  Ca(OH)2 + C2H2

When calculating the chemical potential difference of this reaction, it 
is important to note that water occurs in twice the amount of the oth-
er substances. So the chemical potential difference is

(μ[CaC2] + 2μ[H2O]) – (μ[Ca(OH)2] + μ[C2H2])

�

The chemical potential difference is 146 kG. Notice that the reaction 
takes place although the chemical potential of the ethyne is > 0. All 
the same the reaction takes place because μ[Ca(OH)2] is strongly 
negative. 

4.  Making Diamond: Cgraphite → Cdiamond

Under normal conditions, the chemical potential of diamond is 
greater than that of graphite, so diamond is metastable. However, 
since 
βgraphite > βdiamond 

by increasing the pressure it is possible to cause the chemical po-
tential of graphite to be greater than that of diamond. We calculate 
the pressure at which the chemical potentials are equal 
(G = graphite, D = diamond):
μ0G  + βG · Δp = μ0D  + βD · Δp

�

With 
μ0G = 0  
μ0D = 2.9 kG 
βG = 0.541 kG/kbar 
βD = 0.342 kG/kbar 

we obtain

�

5. Melting of ice: Ice (E) →  liquid water (W)
The table shows that under normal conditions, i.e. at 25 °C and 
1 bar, the chemical potential of liquid water μW is smaller than that of 
ice μE – in accordance with the fact that ice does not exist under 
these conditions. Since αE   > αW , however, at low temperatures ice 
must be the stable and liquid water the unstable state. We calculate 
the temperature at which μE = μW, i.e. for which there is chemical 
equilibrium between the solid and liquid phase. This is the melting 
temperature.
μ0E  + αE · ΔT = μ0W  + αW · ΔT

�

The melting temperature should therefore be 25 °C – 23.5 °C = 
1.5 °C. Despite the linear approximation, we got quite a good result. 

6. Freezing-point depression of water by changing the pressure
If the pressure is increased, the freezing point of water decreases. 
We calculate Δp/ΔT. (W = liquid water, E = ice). At the freezing point 
there is always μE = μW. Therefore:
μ0E  + βE · Δp + αE · ΔT = μ0W  + βW · Δp + αW · ΔT

Since μ0E  = μ0W we obtain

�

With the values of the table we get
ΔT/Δp = –0.0066 K/bar. 

7. Freezing-point depression by dissolving a foreign substance
At the freezing point of the water, the chemical potentials of ice and 
liquid water are equal. If some salt is added to an ice-water mixture, 
the salt dissolves and thereby the chemical potential of the liquid 
water decreases. Therefore, ice melts and the temperature de-
creases. Finally, a temperature is reached at which the chemical po-
tential of the ice is equal to that of the saline solution.

µ(kG)
Ca(OH)2
CO2

−897
−394

⎫
⎬
⎪⎪
⎭⎪⎪
−1291

CaCO3

H2O
−1129
−237

⎫
⎬
⎪⎪
⎭⎪⎪
−1366

µ(kG)
CaC2

H2O
−68
−237 ⋅2

⎫
⎬
⎪⎪
⎭⎪⎪
−542

Ca(OH)2
C2H2

−897
+209

⎫
⎬
⎪⎪
⎭⎪⎪
−688

⇒Δp = µ0G−µ0D
βD−βG

Δp = 0−2.9
0.342−0.541

kbar≈15kbar

⇒ΔT =−µ0E−µ0W
αE−αW

=−
236.59−237.18
0.0448−0.0699

K=−23.5K

ΔT =− βW−βE
αW−αE

Δp
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3.8 Reaction resistance
In the previous section we asked for the values of the chemical po-
tential of the reactants and the products of a reaction, i.e. for the 
chemical potential difference. If the chemical potential difference is 
different from zero, the reaction can take place; if it is zero, it does 
not take place. However, a non-zero chemical potential difference is 
a necessary but not yet sufficient condition for a reaction to take 
place, for a phase transition to take place or for a substance to flow 
or diffuse from one location to another -– just as a non-zero electric 
potential difference is necessary for the flow of an electrical current, 
but not sufficient.
If an electric current is to flow, the resistance must not be too high, 
Fig. 3.5. If the resistance is infinitely high, then we say the electric 
current is inhibited.(“The electricity wants to flow, but it cannot.”) 
There is also a resistance to chemical reactions, and chemical reac-
tions can also be completely inhibited, i.e. they do not take place 
despite a non-zero chemical potential difference. The verbal descrip-
tion of these inhibitions varies depending on the type of reaction.

�

Conductors and nonconductors
Just as conductors and non-conductors are required as the most 
important components for the realization of electrical circuits, sub-
stance conductors and non-conductors are required for the realiza-
tion of substance transports. However, since there are many differ-
ent substances, it is desirable to have selective conductors and non-
conductors: A component should allow substance A to pass through, 
but not substance B.
A simple but not very selective substance conductor is a pipe: It 
“conducts” uncharged liquids and gases.
Water is a conductor for many ions, but also for other substances 
that dissolve in water, e.g. sugar. It is a non-conductor for electrons.
Metals conduct electrons well, but virtually no other substances. (An 
exception is platinum that conducts H+ ions quite well.)
Glass lets pass visible light, but not air (or other gases and liquids).
Gases are permeable for other gases, although not very good.
A liquid A is permeable to a liquid B if A and B are “miscible”. For ex-
ample, water is permeable to alcohol.
A solid wall that is permeable to certain types of ions but not to oth-
ers is called a diaphragm. 

Diffusion
A substance transport is called diffusion if
• a substance A flows through substance B, where A is a gas, 

whereas B can be gaseous, liquid or solid;
• the drive for the current is a gradient of the chemical potential.
Diffusion is a dissipative process, entropy is produced. 
The substance diffuses from one point to the other until the concen-
tration, and thus its chemical potential, is the same everywhere; until 
there is chemical equilibrium.
Suppose a substance is present in a higher concentration at one 
point than at another, e.g. manganate ions dissolved in water, Fig. 
3.6. The substance diffuses from one point to another until the con-
centration, and thus its chemical potential, is the same everywhere: 
there is chemical equilibrium.

�
The substance flow density is proportional to the gradient of the 
chemical potential:
�

The “substance conductivity” is related to the diffusion constant D:

�

Thus the substance current depends
• on the cross-sectional area of the flow channel
• on its length (the longer it is, the smaller grad μ will become for  a 

given chemical potential difference)
• on σn.
Diffusion can be inhibited, for example, by making the distance be-
tween the two sites of different chemical potentials very large. 

Phase transitions solid ↔ liquid ↔ gaseous

The phase transitions solid ↔ liquid and liquid ↔ gaseous usually 
proceed completely uninhibited, i.e. no chemical potential difference 
builds up between the phases. The phases are almost in equilibri-
um. It is only with difficulty that chemical potential differences can 
build up. Doubly distilled water can be heated up to 140 °C without 
evaporating (boiling delay). The chemical potential of the liquid wa-
ter is then greater than that of the gaseous water. Conversely, steam 
can also be supercooled (supersaturated steam); the chemical po-
tential of the steam is then greater than that of the liquid. According-
ly, liquids can be supercooled. A small amount of dust-free water can 
be cooled down to –30 °C without solidifying. 

Chemical reactions
The reaction resistance can be increased by spatially separating the 
reaction partners. If they are brought together, however, the resis-
tance is not necessarily small. For some reactions it becomes small, 
for others it remains large.
A reaction that runs spontaneously and very quickly is

2 Na + 2 H2O  → 2 NaOH + H2

μ[Na] = 0 kG, μ[H2O] = –237 kG, μ[NaOH] = –380 kG,  
μ[H2] = 0 kG, Δμ = 143 kG

For most reactions, the resistance is high; the reactions are inhibit-
ed. So the reaction

2 H2 + O2 →  2 H2O
does not run by itself despite a high chemical potential difference.
The reaction resistance can be reduced in various ways
• by increasing the temperature
• with catalysts.
A catalyst acts like a “chemical switch”. If a suitable catalyst is avail-
able, an otherwise inhibited reaction can take place. The catalyst is 
not altered in the reaction.
In biological systems thousands of reactions take place. Most of 
them are normally inhibited. Their onset and progression is con-
trolled by catalysts, the enzymes.
In order to synthesize a substance according to a given reaction 
equation, two conditions have to be met:
• The chemical potential difference must drive the reaction in the 

desired direction. This can be achieved by a suitable selection of 
temperature and pressure.

• The reaction resistance of the desired reaction must be small, that 
of competing reactions large. This can be achieved with catalysts.  

Nuclear reactions
When considering nuclear reactions, the zero point of the chemical 
potential may no longer be freely chosen for each chemical element. 
The μ values of the chemical elements are coupled to each other by 
the nuclear reactions. Most chemical elements – more precisely: 
those with large and those with small atomic numbers – are 
metastable. The reaction, i.e. the decay of the heavy and the fusion 
of the light, is strongly inhibited. The nuclear reactor and fusion reac-
tor serve to reduce the reaction resistance.

Fig. 3.5 
An electric potential difference is 
necessary, but not sufficient for the 
flow of an electric current.

Fig. 3.6 
The manganate ions go from 
places of higher to places of lower 
chemical potential.

low MNO4– concentration

high MNO4– concentration

!
jn = –σ n· grad µ

σ n =
D ⋅ρn
R ⋅T
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3.9 Reversibly running reactions  
  – electrochemical reactions
Fuel cells, accumulators, monocells and various other types of bat-
teries are energy transloaders. The energy is delivered with the car-
rier amount of substance and leaves the cell with the energy carrier 
electricity. In most of these cells, the reactants are located inside the 
cell from the outset. They are introduced into the cell during the pro-
duction process. Only in the fuel cell the reactants are constantly 
supplied from the outside. 
Fig. 3.7 shows the flow diagram of a fuel cell.

�
The energy balance equation is
Δμ · In(R) = U · I . (3.4)

Here

�

is the conversion rate of the reaction. 
There is also the counterpart to the fuel cell: a cell that receives en-
ergy with the carrier electricity and releases it with the amount of 
substance, Fig. 3.8. Examples of this are electrolytic cells and the 
accumulator while it is being charged.

�  
The reactions that take place in such cells, whether forward or 
backward, are called electrochemical reactions.
In an electrochemical reaction, the conversion rate In(R) is firmly cou-
pled to the electric current I. We look at the electrolysis of water as 
an example.
The reaction

2 H2O → 4 H+ + 4 e– + O2

takes place at the anode of the electrolytic cell and 
4 H+ + 4 e– → 2 H2.

at the cathode.
With each mole converted, 4 moles of electrons flow through the 
outer circuit. Now, for electrons, the charge per amount of substance 
is equal to the negative Faraday constant:

�  

This means that 4  · 9,6  · 104 C flow through the circuit per mole of 
reaction conversion, i.e.

I = 4 · F · In(R)

For other reactions, another small integer z stands instead of the “4”:
I = z · F · In(R) (3.5)

We insert (3.5) into the energy balance equation (3.4) and obtain:
Δμ = z · F · U . (3.6) 

This equation tells us that the chemical potential difference can be 
determined by measuring an electric potential difference. If, on the 
other hand, the chemical potential difference is known, the electric 
potential difference of the corresponding electrochemical cell can be 
calculated using equation (3.6). For a hydrogen-oxygen fuel cell one 
obtains:

�

Fig. 3.7
Flow diagram of the fuel cell

fuel cellENERGY

electric charge

ENERGY

n (products)

n (reactants)

In(R) =
n(R)
t

Fig. 3.8
Flow diagram of the electrolytic 
cellelectrolytic

cell
ENERGY ENERGY

electric charge

n (products)

n (reactants)

Qelectron

nelectron
= –e

τ
= –F = –9.6 · 104  C/mol

U = Δµ
4F

= 474.36 ⋅103G
4 ⋅9.6 ⋅104C/mol

= 1.24V
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3.10 Irreversibly running reactions – entropy  
        balance of chemical reactions
Most chemical reactions are free-running: All the energy released 
during the reaction is used to produce entropy. This is the case, for 
example, when coal, heating oil, petrol or natural gas is burned in 
power stations or domestic heating systems. 
The energy balance equation is:
Δμ · In(R) = T · IS prod .

The entropy produced can be calculated according to

�  

One might expect that every free-running reaction “warms up”, i.e. 
the temperature of the products is higher than that of the reactants,  
or entropy is released from the reaction products. But this is not al-
ways the case. 
First, we consider a reaction that is not free-running, i.e. no entropy 
is produced (as is the case in an ideal electrochemical cell). During 
the reaction, the reactants disappear and the products are formed. 
The reactants contain a certain amount of entropy, and this must be 
taken over by the products. However, this amount of entropy does 
not correspond to the same temperature for the reactants and the 
products. Thus, in some reactions the temperature of the products 
will be lower, in others it will be higher than that of the reactants. If 
the reaction is free-running, i.e. completely irreversible, new entropy 
is created. This contribution to the entropy balance increases the 
temperature of the reaction products. However, there are reactions 
whose reaction products have such a low temperature if they run re-
versibly, that the entropy generated in the irreversible process is not 
sufficient to bring the reaction products back to the initial tempera-
ture.
If such a reaction is to be carried out at constant temperature, en-
tropy must be added. These reactions are called endothermic. Re-
actions in which entropy is released are called exothermic. 
This means that entropy is also produced in endothermic reactions. 
However, the reaction products have such a large entropy capaci-
tance that the produced entropy causes only a relatively small tem-
perature increase.
An example of an endothermic reaction is

Ba(OH)2 · 8 H2O + 2 NH4NO3 → 2 NH3 + 10 H2O + Ba(NO3)2

Ba(OH)2 · 8 H2O and NH4NO3 are crystalline solids. The reaction 
products form an aqueous solution. The low temperature of the 
products is easy to understand: The water of crystallization of the 
barium hydroxide transforms into ordinary liquid water. This is a kind 
of melting process, and entropy is known to be needed for melting.

IS  prod =
Δµ ⋅In (R)

T
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4. Energy differential, characteristic function, equilibria

4.1 Physical system and state
Physics describes real objects in an abstract way: by the relation-
ship between the physical quantities of the object. To describe a de-
sired class of processes, one must therefore first select the variables 
that do what is required. To describe a capacitor, for example, the 
variables Q, U, E (energy), � (electric field strength), etc. are cho-
sen. Normally one does not choose S, T, p or � (magnetic field 
strength), because one gets along without them. There can be sev-
eral reasons why certain variables are not needed: either because 
these variables are constant during the processes of interest, or be-
cause their values have no influence on the values of the variables 
of interest. In future, when we speak of “the” variables of a system, 
we mean only the variables of interest.
We say that a system is in a certain state when all variables have 
certain values. By “system” in a strict sense we no longer under-
stand the object, but the set of all its states. The choice of variables 
already contained arbitrariness. What we call a system contains 
even more arbitrariness, because we can restrict the set of states 
under consideration as we wish. One often pretends to mean with 
the system “capacitor” all the states that are defined by the relation-
ship 

Q = C · U
Realistically, however, one will restrict oneself to a tiny part of this 
diversity of states, because even the best capacitor does not toler-
ate arbitrarily high voltages.

!
E !

H
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4.2 The energy differential
We had seen that a flow of energy can always be described by an 
expression of the form 

P = ξ IX
In general, several substance-like quantities are involved in an en-
ergy flow. At first we only look at energy flows with a single “energy 
carrier”.
We make energy flow into a system, so that the energy accumulates 
within the system. We want to describe the energy change of the 
system.
Two things can happen with the quantity X, which accompanies the 
energy current. Either it accumulates in the system (like the energy), 
or it passes through the system and only discharges the energy 
within the system. We consider successively different realizations of 
the relation P = ξ IX, i.e. energy transports with different energy car-
riers X. 

1. Energy supply with the carrier entropy
A body is warmed up, Fig. 4.1. An energy current

P = T · IS
flows into the body:
With the balance equations P = dE/dt und IS  = dS/dt we get

�

and from that the energy differential
dE = T dS. (4.1)

This differential tells us by how much the energy of a body changes 
when an amount of entropy dS is supplied to it.

�  

2. Energy supply with the carrier momentum 
a) With accumulation of momentum
A vehicle is accelerated, Fig. 4.2. An energy current
�   

flows into the vehicle.
With the balance equations P = dE/dt and �  follows

�

and from this the energy differential
� (4.2)

The equation tells us by how much the energy of a body changes 
when the amount of momentum �  is supplied to it.

�

b) Without accumulation of momentum
A spring is stretched, Fig. 4.3. An energy current
�   

flows into the spring. 
The momentum does not accumulate within the spring, it just flows 
through. With P = dE/dt and �  we get

�

and from this
� (4.3)

�
A variant of this is shown in Fig. 4.4, where the energy is stored in a 
gas in the cylinder. We express the force �  and the displacement
�  by the pressure p and the volume change dV:

F = – A · p and ds = (1/A )· dV,
and obtain the energy differential

dE = – p dV. (4.4)
The minus sign indicates that the energy increases with decreasing 
volume.

�  

3. Energy supply with the carrier amount of substance
Energy flows into a container with a substance current, Fig. 4.5. 
Since each substance also carries entropy, the energy current is

P = μ · In + T · IS.
If one ensures that the entropy flows off again simultaneously, then 
with the help of the balance equations P = dE/dt and In = dn/dt one 
gets

�  

and from this
dE = μ dn. (4.5)

�

4. Energy supply with the carrier electric charge
A capacitor is charged, Fig. 4.6 An energy current 

P = U · I.
flows into the capacitor.
The net amount of the electric charge Q of the capacitor does not 
increase. For the charging of a single plate, however, I = dQ/dt ap-
plies. Together with the balance equation for the energy follows

�  

and from this
dE = U dQ. (4.6)

�
All the differentials (4.1) to (4.6) have the same structure.

dE = ξ dX.
We call the quantities X extensive quantities and the quantities ξ in-
tensive  quantities. To a given extensive quantity always belongs a 
well-defined intensive quantity.
In the processes considered so far, only one extensive quantity 
changed at a time. In general, one must expect several extensive 
quantities to change their value simultaneously. Then the energy dif-
ferential reads
� (4.7)

Of course, the system can also have several independent variables 
S1, S2,… or V1, V2,…etc.. Then the expression has even more 
terms. It has as many terms as the system has independent vari-
ables.

dE
dt

=T dS
dt

Fig. 4.1 
The energy and entropy content of 
the body increase.
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entropy

P =
!
v ·
!
F

!
F = d

!
p /dt

dE
dt

=
!
v d
!
p
dt

dE =
!
v d
!
p

d
!
p

Fig. 4.2 
The energy and momentum con-
tent of the vehicle increase.
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Fig. 4.3 
The energy content of the spring 
increases, the spring becomes 
longer.
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Fig. 4.4
The energy content of the gas 
increases, the volume decreases.energy

momentum

momentum

dE
dt

= µ dn
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Fig. 4.5 
The energy and amount of sub-
stance in the container increase.energy

amount of  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dE
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Fig. 4.6 
The energy within the capacitor 
and the electric charge on one of 
its plates increase.
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4.3 Characteristic functions
Suppose the energy differential (4.7) for a system is

dE = TdS – pdV + μ dn + ...
If each of the extensive variables S, V, n,... is given a value, E also 
has a well-defined value. E is therefore a function of the extensive 
variables

E = E(S, V, n,…)
This function characterizes the system completely. Two systems for 
which these functions are the same are identical systems in the 
sense of physics. We call such a function a characteristic function. 
Table 4.1 lists the characteristic functions of some simple physical 
systems.

�

Only for few systems a characteristic function is known as an analyt-
ic expression.
For any system, in addition to 

E = E(S, V, n,…).
there are also other characteristic functions. 
They are all equivalent and can be derived from one another (by 
“Legendre transformation”), Table 4.2. 

�
Apart from the above-mentioned relation, in which the independent 
variable is the energy, the quantities on the left hand side of the oth-
er characteristic functions are rather unintuitive: the enthalpy, the 
free energy and the free enthalpy. Fortunately, we will get along with 
the first one alone, where the independent variable is the energy.  
The characteristic functions are also called thermodynamic poten-
tials. By the way, such functions are also used in mechanics. These 
are the Hamilton function and the equivalent Lagrange function.

Table 4.1
Some characteristic functions

System extensive  
variable

energy differential characteristic function

capacitor Q dE = UdQ

capacitor with a 
variable plate 
distance

Q, x dE = UdQ – Fdx

spring x dE = – Fdx

mass point p

E(Q ) = Q
2

2C
+E0

E(Q,x ) = Q 2x
2εε0A

+E0

E(x ) = D
2
x 2 +E0

E (
!
p) =

!
p 2

2m
+E0dE =

!
v d
!
p

Table 4.2
Several types of characteristic functions

Name Definition of the quantity characteristic function

energy E E = E(S,V,n)

enthalpy H = E + p · V H = H(S,p,n)

free energy F = E – T · S F = F(T,V,n)

free enthalpy G = E + p · V – T · S G = G(T,p,n)

Hamilton function E

Lagrange function L = –E +
!
p ·
!
v

E = E (
!
p ·
!
q )

E = E (
!
v ·
!
q )
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4.4 The decomposition of a system
In general, the characteristic function E = E(X1, X2,…Xn) is a compli-
cated function of the variables X1, X2,…Xn of the system. Some-
times, however, there is a simple structure, at least in certain ranges 
of values of the variables: Some characteristic functions break down 
into terms which have no variables in common:

E = EA(X1, X2,…Xk) + EB(Xk+1,…Xn)
In this case, not only dE is a complete differential, but also dEA and 
dEB taken separately. The system described by E = E(X1, X2,…Xn) 
behaves like two independent systems. It can be decomposed. The 
individual terms EA and EB often have names of their own.
As an example, we consider a capacitor that can be moved, heated, 
and of course charged. Its variables are  S, and QS. Thus, its en-
ergy differential is
�

The characteristic function of this system is

�

Each of the three terms depends on only one variable. 
The terms are called

E1 = kinetic energy
E2 = electric field energy
E0 = internal energy

Sometimes a system can be decomposed simply because it con-
sists of spatially separated subsystems, Fig. 4.7.

�  
The characteristic function of the system in the dashed box is

�

Often the decomposition is only an approximation. For example the 
decomposition into kinetic and internal energy is only possible in 
non-relativistic approximation. The relativistic characteristic function 
of a body is:

�

Only for � it decomposes into

�

Let us compare two more systems, Fig. 4.8, which have the same 
variables and thus the same energy differential, namely

dE = U dQ – F dx , (4.8)
one of which can be decomposed (Fig. 4.8a) and the other one can-
not (Fig. 4.8b).

�
We start with the uncoupled system. The characteristic function is

�

We calculate the differential dE:

�

Comparison with (4.8) provides

� .

And now the coupled system. Its characteristic function is

�

It follows

�

and by comparison with (4.8):

�

While in the first case each intensive variable depends only on its 
own conjugated extensive variable 

U= U(Q)      F = even constant
we have in the second a coupling between the variables of the two 
terms of the energy differential:

U = U(Q,x)         F = F(Q)

!
p,

dE =
!
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!
p +TdS +UdQ
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!
p,S,Q ) =

!
p2

2m
+ Q

2

2C
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!
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Fig. 4.7 
The system within the dashed box 
can be decomposed for trivial rea-
sons: It consists of two sub-sys-
tems that are spatially separated.
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Fig. 4.8 
Two systems with the same energy 
differential. One (a) can be decom-
posed, the other (b) not.
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4.5 Energy forms
To the name energy often attributes are added. There is kinetic, po-
tential, electric, chemical, free, nuclear, thermal, rest and radiant en-
ergy and many more. However, the classification of energy into dif-
ferent “forms of energy” is not based on a uniform principle, but on 
different criteria. Some of the attributes are simply intended to identi-
fy the system or object that contains the energy. So by radiation en-
ergy we mean nothing more than the (total) energy of the radiation 
in question – just as the electron charge means the charge of an 
electron and solar mass means the mass of the sun. In most cases, 
however, there is a more far-reaching intention when indicating a 
form of the energy.
The need to classify energy into forms arose around the middle of 
the 19th century, immediately after the introduction of the concept of 
energy. At that time it was found that a new physical quantity could 
be introduced, although there was no general characteristic of this 
quantity, and there was no general rule for obtaining its values. The 
energy manifested itself in different systems and processes in very 
different ways. The fact that in the various cases one had to deal 
with the same quantity was only deduced from the observation that 
certain combinations of other physical quantities changed in a cer-
tain ratio during certain processes. There were, so to speak, fixed 
exchange rates between these combinations of quantities, the so-
called equivalents. The best known of these exchange rates was the 
“mechanical heat equivalent”. It was a great scientific achievement 
to recognize these combinations of quantities as manifestations of a 
single, new physical quantity.
On the one hand, the new quantity had the beautiful characteristic of 
being very general in nature. It played a role in various sub-fields of 
physics. It created a link between the various physical sub-disci-
plines. On the other hand it had a flaw: it did not always show up in 
the same way as one would have expected from a well-behaving 
physical quantity. There was no characteristic by which one could 
always recognize it, by which one could determine its value in every 
case. For this reason, some physicists also considered it as nothing 
more than a mathematical aid. In any case, it seemed reasonable to 
call the various combinations of quantities that represented the dif-
ferent appearances of energy the forms of energy. The energy did 
not always show up in the same way, but in one form or another. 
This was the state of the art until around the turn of the 19th and 
20th centuries. We will see later that the concept of energy form is 
superfluous in the light of 20th century physics, just as superfluous 
as the concept of momentum or entropy forms would be. However, 
since the concept of the energy form has survived to this day, we 
would first like to make a few comments on the physical principles of 
the classification. 
It is important to note that a distinction must be made between two 
classification procedures.
• One method is used to classify energy changes and energy flows. 

We have seen that every flow of energy is accompanied by a flow 
of another extensive quantity. Depending on which quantity this is, 
we speak of an energy transport or exchange in one form or an-
other,Table 4.3.
• The other method is to assign a name to stored energy, i.e. the 

energy contained in a system or subsystem. We had mentioned 
the procedure in the previous section. If the characteristic function 
of a system breaks down into terms without common variables, the 
terms are often given their own names like kinetic energy, potential 
energy, tensional energy (of a spring) or internal energy.

�
It is unfortunate to call the results of both classification procedures 
by the same name, namely “energy form”. In fact, the two types of 
energy forms are often confused in the literature. 
The clearest way to deal with the problem is to avoid the names al-
together. In fact, from today’s perspective, the concept of the energy 
form is not only superfluous, but also misleading. To speak of forms 
of energy suggests that these are different physical quantities, with 
the strange property that one can convert one into the other. It also 
suggests that energy in different forms has different properties. Of 
course, this is not the case.
Since we know the special theory of relativity, we know that energy 
is a physical quantity in its own right, and not just a derived quantity. 
Talking about forms of energy is therefore just as unfounded today 
as talking about different forms of electric charge, depending on 
whether the charge is carried by electrons, protons or muons. The 
theory of relativity tells us what general characteristics energy has. 
From the energy-mass equivalence it follows that the energy has 
exactly those properties that we know from the mass: Gravity and 
inertia.
In order to distinguish between the different energy transports in Ta-
ble 4.3, it is not necessary to speak of different forms of energy; it is 
sufficient to specify which quantity is transmitted together with the 
energy. Instead of e.g. talking about energy in form of heat, one 
simply says that beside the energy current there is also an entropy 
current. Or, as we have often done here, the accompanying quantity 
is referred to as the energy carrier. 
Similar arguments hold for the terms of the characteristic function. 
Also here the name energy form is misleading. After all, these terms 
always represent subsystems. If one wants to refer to such a term, it 
is almost always clearer to name the subsystem to which the it be-
longs, instead of adding an adjective to the energy. So it is more cor-
rect to speak of the energy of the field of a capacitor instead of the 
potential energy of one capacitor plate in the field of the other.

Table 4.3
Forms of energy exchanges

energy exchange 

work

P = T · IS heat

P = U · I electric energy

P = μ · In chemical energy

�P =
!
v ·
!
F
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4.6 Equations of state
We calculate the differential of the energy  E(S, V, n,…):

�

Comparing with
dE = TdS – pdV + μdn

we obtain

� (4.9)

� (4.10)

�

Knowing the functions T = T(S, V, n), p = p(S, V, n) and μ(S, V, n) is 
equivalent (apart from a constant term) to knowing the characteristic 
function. These three functions are called equations of state. They 
play an important role in thermodynamics, because often not all 
equations of state of a system are known, and therefore its charac-
teristic function is not known either. For many purposes, however, 
knowledge of a single equation of state is sufficient. 

Example: Solid materials and gases
Figure 4.9 shows the state functions S(p,T) and V(p,T) for solids and 
for gases for fixed n.

�

�

dE = ∂E(S,V ,n)
∂S

dS + ∂E(S,V ,n)
∂V

dV + ∂E(S,V ,n)
∂n

dn

∂E (S,V ,n)
∂S

=T (S,V ,n)

∂E (S,V ,n)
∂V

= −p(S,V ,n)

∂E (S,V ,n)
∂n

= µ(S,V ,n)

Fig. 4.9 
The state functions S(p,T) (above) and V(p,T) (below) for a solid (left) and a gas (right)
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4.7 Maxwell relations and flip rule
The equations of state are not independent of each other. Here is 
how one can see it. With equations (4.9) and (4.10) we obtain

�

and

�

Since the left sides are equal, it must be:

�        (4.11a)

This is a condition which the two equations of state T(S, V, n) and 
p(S, V, n) must fulfill. 
The following two relationships are obtained in a similar way:

� (4.11b)

� (4.11c)

Equations of this type are called Maxwell relations. There are more 
of them. We will derive three more. We proceed in a similar way as 
above, however we do not start from the differential of the energy, 
but of

G = E + pV – TS
We have

�    (4.12)

Moreover,
dG = d(E + pV – TS)  
= TdS – pdV + μdn + pdV + Vdp – TdS – SdT  
= Vdp – SdT + μdn

Comparison with equation (4.12) results in:

�

We thus have obtained the state equations
S = S(T, p, n) 
V = V(T, p, n)  
μ = μ(T, p, n) 

Also these are equivalent to the knowledge of any of the characteris-
tic functions. These three functions are particularly popular because 
the variables T, p and n can easily be measured. 
S = S(T, p, n) is obtained directly from the entropy capacity at con-
stant pressure � , which can be measured. The relationship 
V = V(T, p, n), the so-called ideal gas law, can also be easily ob-
tained by measurement. This function has the special feature that it 
has a very simple, universal form for diluted systems, namely:

�

Here R is the gas constant (see also section 3.2):
R = 8.31441 Ct/mol.

Also these state functions are not independent of one another. The 
following Maxwell relations apply:

� (4.13a)

� (4.13b)

� (4.13c)

The auxiliary quantity G, which we used for the derivation, is no 
longer included in these relations. The Maxwell relations are very 
simple, but sometimes surprising. For example, equation (4.13b) 
says that the change of the chemical potential with temperature is 
equal to the change of the entropy with the amount of substance, i.e. 
equal to the molar entropy, except for the sign. 
If we look more closely at the structure of equations 4.11 and 4.13, 
we notice that they are “knitted” according to a simple principle; 
there is a simple procedure that allows one to express any given dif-
ferential quotient through another one. We will give the rules without 
proving them, but we will check their validity on the relationships 
4.11 and 4.13 calculated above.
We start from the energy differential of the system under considera-
tion. Since we do not want to restrict ourselves to a specific system, 
we write it in the general form

dE = ξ1dX1 + ξ2dX2 + ξ3dX3 +… (4.14)
We are interested in a differential quotient that can be formed from 
any two of the variables on the right, for example

dξ1/dX3 
or 

dξ1/dξ3 
or 

dX1/dX3 .
We only exclude quotients where both variables come from the 
same term in equation (4.14), for example dξ1/dX1.
Now a new differential quotient is obtained as follows:
1. The numerator and denominator are interchanged, and each of 
the two variables is simultaneously replaced by its “conjugate”, i.e. 
intensive by extensive, and extensive by intensive. Here are our 
three examples:

�

�

�

2. If the quantities in the numerator in the denominator are both in-
tensive or both extensive, a minus sign must be added: 

�

�

�

Thus we obtain

�

Make sure that the term pdV contains a minus sign from the outset, 
which must be taken into account. One can imagine that this minus 
sign is a part of the variable “volume”. 
This rule is called the flip rule.
Verify that the 6 equations 4.11 and 4.13 can be obtained by using 
the flip rule.

Example: Capacitor with variable plate spacing
The system cannot be decomposed. We call the plate spacing x.
One characteristic function is:

�

Comparing with the energy differential 
dE = UdQ – Fdx

we find

�

The state functions U(Q,x) and F(Q,x) are not independent from one 
another. The following Maxwell relationship applies:

�

The two sides are equal, but not equal to zero. The variables Q and 
x are coupled to each other. Fig. 4.10 shows U(Q,x) and F(Q,x).
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Fig. 4.10 
The state equations U(Q,x) and 
F(Q,x) of a capacitor with variable 
plate spacing
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4.8 Linear approximation of  
  the characteristic function
The knowledge of the characteristic function Y(X1,  X2,…  Xn) is 
equivalent to the knowledge of n equations of state. Here, “knowl-
edge” does not necessarily mean that an analytical expression must 
be known. The knowledge can also be expressed in a table of val-
ues or in a diagram.
Of course, a characteristic function or the corresponding state func-
tions of an object are only known within a limited range of values of 
the variables.
For many purposes it is sufficient to know the state functions in a 
small interval, so that all relations between the variables of the state 
functions can be approximated by linear functions.
We suppose the equations of state to be V(T,p) and S(T,p). If S and 
V are given for a pair of values {T0,p0}, i.e. V(T0,p0) and S(T0,p0), 
then the volume and the entropy  can be calculated in the vicinity of 
this independent coordinate point if the derivatives

�  

at the point {T0,p0} are known.
Now the first and the last of these differential quotients are the same 
because of the Maxwell relation (4.13a) (except for the sign). 
Therefore in a small vicinity of the point {T0,p0} the knowledge of two 
values (V(T0,p0) and S(T0,p0)) and three derivatives, i.e. five num-
bers, is equivalent to the knowledge of the characteristic function. It 
is advisable to eliminate the size or extension of the system by divid-
ing the derivatives by extensive quantities. The coefficients thus ob-
tained have special names and are listed in tables:

�

Instead of the last of these three coefficients, more frequently one 
uses

�

Of course, other derivatives can be given. Altogether, however, only 
three are independent of each other (as long as we remain with two 
independent variables). Thus, for example, the pressure coefficient

�

can be expressed by the compressibility and the volumetric thermal 
expansion coefficient:

�  

Moreover, it can be shown that

�

In section (3.6) we had already made use of the linear approxima-
tion of the state function μ(T,p).
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4.9 Cyclic processes
The task we are confronting is to “transload” energy arriving with 
one carrier X1 to another carrier X2. For this we need a system 
whose energy differential has two terms:

dE = ξ1dX1 + ξ2dX2

However, this condition is not yet sufficient for the system to be an 
energy transloader. In addition, the variables 1 must be coupled to 
the variables 2.
Let’s start with a simple example from mechanics. The system con-
sists of 2 levers and 3 springs, Fig. 4.11. Its energy differential is:

dE = F1dx1 + F2dx2

and its characteristic function is:

�

It can be seen that the system cannot be decomposed.

�
We want to supply energy to it via lever 1 and extract it via lever 2. 
This can be done in a cyclic process, a sequence of 4 sub-process-
es, which bring the system back to its initial state. The 4 states are 
A, B, C and D in Fig. 4.12.

�
It is appropriate to represent circular processes in two ξ-X diagrams, 
Fig. 4.13.

�
The area of each of the two closed curves represents the energy 
that flows into the system via input 1 and leaves it through output 2 
when the cycle process is completed once.
In this mechanical structure, the middle spring D’ is responsible for 
the coupling. Without it, the characteristic function could be decom-
posed and the system could not work as an “energy transloader”. 
The energy that enters at input 1 could only be taken out again at 
input 1. The device would represent two independent energy stores.
As a second example of a cyclic process we consider a capacitor 
with variable plate spacing. It represents an electromechanical en-
ergy transloader, Fig. 4.14.

�
Fig. 4.15 shows the process in the U-Q and in the F-x diagram.

Finally, we consider a heat pump as a third example. The working 
system is a gas of a fixed amount of substance, Fig. 4.16. We as-
sume that we do not know the characteristic function and instead 
use the four empirical coefficients �  �  α and β (one of which 
depends on the other three).

�
Fig. 4.17 shows the cyclic process in a p-V and in a T-S diagram.
The coupling between the variables is expressed by the fact that the 
slopes of the T-S curves for p = const and V = const are different, 
that is, � and �  are different. A solid is not suitable as a working 
substance for a heat engine or heat pump, because its volume can 
practically not be changed, so its energy differential is dE = TdS.

�

E(x1,x2 ) =
D
2
x12 +

D ′
2
(x1 − x2 )2 +

′′D
2
x22

Fig. 4.11 
Simple mechanical “energy 
transloader”. Input 1 and output 2 
are coupled by the spring D’ .

Fig. 4.12 
Cyclic process. After four steps, the system returns to its initial state. It absorbs energy via lever 
1 and releases energy via lever 2.
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x1 = 0 F1 = 0  
x2 = 0 F2 = 0

x1 = Δx F1 = (D + D’)Δx 
x2 = 0 F2 = –D’Δx

Fig. 4.13
The cyclic process of Fig. 4.12 in 
a F1-x1 and a F2-x2 diagram
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pulling apart the plates at constant charge

charging at constant plate spacing

reducing plate spacing at constant charge

discharging at constant plate spacing

Fig. 4.14 
Cyclic process with a capacitor with variable plate spacing
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Fig. 4.16 
Cyclic process with a gas
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Fig. 4.17
Cyclic process of Fig. 4.18 in a p-
V- and in a T-S-Diagramm

Fig. 4.15
The cyclic process of Fig. 4.14 in 
a U-Q and in a F-x diagram



4. Energy differential, characteristic function, equilibria

4.10 Why the energy form heat is not contained  
 in a system
We had already stressed that giving the term TdS its own name was 
an unfortunate move. It is a consequence that there are certain ex- 
pectations that can’t be fulfilled – especially the following: 

“If a system absorbs heat, the heat must be contained in it after 
being absorbed.” 

To convince ourselves that this proposition is wrong, we look at a 
gas and bring it from an initial state A to a final state C in two differ- 
ent manners, Fig. 4.18: once passing by B, and once by D, and we 
ask both times for the absorbed energy. 

On the A-B-C path, the gas absorbs the amount of heat correspond- 
ing to the hatched area in Fig. 4.18a, as this area represents ∫TdS. 
In addition, the gas does (or yields or delivers) work, that is given by 
the hatched area in Fig. 4.18b. 
On the A-D-C path, the gas absorbs the amount of heat correspond- 
ing to the pink area in Fig. 4.18a and does the work corresponding 
to the pink area in Fig. 4.18b. 
Initial and final state are the same for both process paths, but the 
absorbed heat is different. By how much has the heat of the gas in- 
creased? Obviously a meaningless question. The same applies to 
the work. 
On the other hand, all questions about the values of the normal 
physical quantities, the “state quantities”, make sense: 
By how much has the entropy or the volume increased? 
How much have the temperature and pressure values changed? 
In the case of substance-like quantities, the question may and 
should even be formulated as follows: “How much of it is within the 
system?” or “How much is contained in it?”.

Fig. 4.18 
On the way A-B-C the gas absorbs 
less heat than on the way A-D-C. 
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 4.11 Equilibria
We consider two systems A and B, whose energy differentials have 
a term ηdY in common, i.e. it is 

dEA = ηAdYA +… 
dEB = ηBdYB +….

The two systems are now coupled to each other in such a way that 
the sum of the extensive variables is constant:

YA + YB = const   ⇒    dYA = – dYB = dY

The energy differential of the overall system is therefore:
dE = (ηA – ηB) dY +….

Fig. 4.19 shows three examples.

�
Let us now consider processes in which dE < 0 and in which the  re-
leased energy is used to produce entropy, Fig. 4.20.

�
In practice, the “dissipators” shown in the three figures (damper, 
electric resistor and brake) can also be omitted, because possibili-
ties for entropy production are almost always present anyway. 
If we include the dissipator in our system, the energy differential be-
comes zero and we have

(–pA + pB)dV + TdS prod = 0
(UA – UB)dQ + TdS prod = 0
(TA – TB)dS + TdS prod = 0

or in general: 
(ηA – ηB)dY + TdS prod = 0

Since these processes are associated with entropy production, they 
run by themselves, but only if (ηA – ηB)dY is not zero.
In this product, the second factor, dY, could be zero. That would 
simply mean that the process is inhibited. We assume that this is not 
the case. At some point, however, the first factor (ηA – ηB) becomes 
zero, and the process comes to a halt: there is equilibrium between 
the subsystems with regard to the variable Y.
In other words, equilibrium exists between two subsystems only with 
respect to the exchange of a certain extensive variable. There is no 
equilibrium per se. One must therefore distinguish between different 
types of equilibria, Fig. 4.21.

�
The total energy of the two subsystems, without the dissipator, 
decreases during the process of establishing the equilibrium. The 
state of equilibrium is therefore a state of minimum energy. 
Dissipation often takes place within systems A and B. Then the 
dissipator can no longer be separated, the produced entropy 
remains stuck in the system. In this case dE = 0 and dS > 0, the 
equilibrium state is now the state of maximum entropy.
Equilibria are particularly important for the number of independent 
variables in a system.
The system in Fig. 4.22a has two independent variables: Uabove und 
Ubelow. In Fig. 4.22b the two capacitors are always in electrical 
equilibrium, the system has only one independent variable left: 
Uabove = Ubelow. We make constant use of this property, for example 
when we specify only a single voltage for a capacitor and not 2 or 
100, Fig. 4.22c.

�
Also if we say that the gas in a container has the temperature T, we 
make use of the fact that all spatial areas of the gas are in thermal 
and pressure equilibrium with each other. Sometimes several sub-
systems are in the same place and they are either in equilibrium or 
they are not: electrons and phonons (lattice vibrations) of a solid are 
normally in thermal equilibrium, the solid has a single temperature. 
However, the subsystems can be brought out of equilibrium so that 
they have different temperatures.
The existence of equilibria is the reason why the state of a gas con-
sisting of 1023 molecules and correspondingly many variables can 
be described with only 3 independent variables, namely S, V and n.

Fig. 4.19 
Three systems consisting of cou-
pled subsystems.

dE = (–pA + pB) dV +…

dE = (UA – UB) dQ +…

dE = (TA – TB) dS +…
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Fig. 4.20 
The systems shown in Fig. 4.19 
each with a dissipator.

damper

electric  
resistor

brake

Fig. 4.21 
Several types of equilibrium

elektrisches Gleichgewicht: dQA= – dQB  
   UA = UB 

chemisches Gleichgewicht: dnA = – dnB  
   μA = μB 

Impulsgleichgewicht: dp1 = – dpB  
    vA = vB 

Kräftegleichgewicht: dxA = – dxB  
  FA = FB 

magnetisches Gleichgewicht: dΦA = – dΦB  
     IA = IB 

thermisches Gleichgewicht: 
    dSA = – dSB + dSerz 
      TA = TB 

Druckgleichgewicht: dxA = – dxB  
  FA = FB 

electric equilibrium:

chemical equilibrium:

momentum equilibrium:

force equilibrium:

magnetic equilibrium:

thermal equilibrium:

 

pressure equilibrium:

superconducting  
coils

(gravitational field)

(spring)

inelastic collision

salt nA dissolved
salt nB

Fig. 4.22 
(a) System with two independent 
variables. 
(b) Both capacitors are always in 
electric equilibrium. 
(c) The parts of the capacitor are 
always in electric equilibrium. 

ba c
Uabove Uabove Uabove
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4.12 Flow equilibria
When an equilibrium is establishing, entropy is produced as much 
as the system allows. Once the equilibrium is reached, no further 
entropy production is possible, and the entropy production rate ΣS 
becomes zero. 
However, it often happens that a system goes through states and fi-
nally comes to a standstill in a state in which ΣS is not equal to zero. 
The term “standstill” means that all variables of the system assume 
constant values over time. Such a state is called a steady state or  
sometimes flow equilibrium. 

Steady state:  
Values of variables are constant over time, but ΣS ≠ 0

Since the entropy production rate is not zero, the system must be 
constantly supplied with energy:

P = T · ΣS 
An equilibrium is always established between subsystems. We con-
sider the simplest case, namely that there are only two subsystems, 
Fig. 4.23. Two resistors are connected in series to a power supply 
unit which delivers a constant voltage U0. 

�
When the switch is closed, the voltage is distributed over the 
resistors:

U0 + U1 + U2 = 0 (4.15)
As is well known, it is distributed in such a way that the following 
applies

� (4.16)

From equations (4.15) and (4.16) together we obtain the values of 
U1 and U2:

� (4.17) 

Now the distribution of the voltage  U0 over the two resistors can be 
considered a process. In a real circuit, the capacitances between the 
different parts of the circuit are not zero, and we can draw a more 
precise picture of the circuit by taking into account two of these ca-
pacitances, Fig. 4.24.

�  
The distribution of U0 over R1 and R2 is now time-dependent:
 U0 + U1(t) + U2(t) = 0
The steady-state voltages adjust with the time constant

�

So we obtain

�

The state reached for t → ∞ is a steady state, because all physical 
quantities have time-constant values, whereas in the resistors en-
tropy is produced.
It is now found that the energy dissipated in the two resistors, and 
thus the total entropy produced, reaches a minimum value in the 
steady state (compared to the states that are passed through when 
the equilibrium is establishing). We will prove this claim. 
The energy dissipated per time in the two resistors taken together is 

�

With equation (4.15) we get

�

In order to obtain � , for which P admits a minimum value, we set 
dP/dU1 = 0:

�

and obtain

�

and with (4.15)

�

i.e. the same expressions as (4.17).
The result can be generalized to more than two resistors connected 
in series:

A voltage distributes over resistors connected in series in such a 
way that the total entropy production becomes minimal.

Analogue statements can be formulated for other “driving forces”, 
i.e. differences of intensive quantities. 
In addition, a similar consideration results in

An electric current distributes over resistors connected in parallel 
in such a way that the total entropy production becomes minimal.

Here, too, we have a steady state. Also this statement can be 
translated to other currents.

Fig. 4.23 
When the switch is closed, the 
voltage U0 is distributed over the 
resistors so that U1/R1 = U2/R2.

U1

R1

= U2

R2

U1 = − R1

R1 +R2

U0

U2 = − R2

R1 +R2

U0

Fig. 4.24
More realistic representation of 
the circuit shown in Fig. 4.23. Two 
capacitances are shown. It can be 
seen that the values of the volt-
ages at the two resistors result 
from the establishment of an equi-
librium.
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5.1 The ideal gas law
For a diluted gas, the relation between p, V, n and T is experimental-
ly found to be:
 p · V = R · n · T       
where 

R = 8.31441 J/(mol · K)
This relationship is called the ideal gas law. Because of its universal 
character it is also called the general gas equation. Any substance 
can be brought in two ways into states where it fulfills the ideal gas 
law:
•  by sufficient dilution;
•  by a sufficiently high temperature.
In both ways, the mean interaction energy of the particles becomes 
small against their mean kinetic energy. However, raising the tem-
perature can cause the substance to disintegrate (e.g. atoms are 
ionized) and thus n increases. This does not change the fact that the 
substance fulfills the gas equation – but then at higher temperatures 
one does not have the same substance as at lower temperatures. 
The different dependencies contained in the equation have been 
discovered by different researchers and have different names:

�
Avogadro’s discovery was not simply that for a substance the vol-
ume is proportional to the amount of substance – this is trivial be-
cause of the homogeneity of the gases –, it was the insight that the 
proportionality factor depends only on p and T, and not on the na-
ture of the gas. For the volume of an ideal gas of 1 mol under nor-
mal conditions, i.e. at

p = 101 325 Pa,  T = 273.15 K
we obtain

�

With ρn = n/V we can write the ideal as law in such a way that it 
does no longer contain substance-like quantities but only local quan-
tities:

p = ρn · R · T
Some of the coefficients introduced in section 4.8 can be calculated 
from the gas law:

�

For ideal gases β = α  · p. It is easy to verify that the general rela-
tionship β = α/κ is fulfilled.
From

�

we get

�

Gay - Lussac’s law, was not discovered by Gay - Lus-
sac (1778 - 1850), but by Amontons (1663 - 1705)

Avogadro’s law (Earl Amedeo di Quaregna e di Cerreto 
1776 - 1856)

Boyle-Mariotte law (Robert Boyle 1627 - 1691, 
Edmé Mariotte 1620 - 1684)p ∼ 1

V

V ~ T

V ~ n

V =R n ⋅T
p

= 8.31441 J/(mol ⋅K) ⋅1 mol ⋅273.15 K
101 325 Pa

= 0.02241 m3

κ = − 1
V

∂V (T ,p)
∂p

= 1
V
RnT
p2 = 1

p

α = 1
V

∂V (T ,p)
∂T

= 1
V
Rn
p

= 1
T

β = ∂p(T ,V )
∂T

= Rn
V

= p
T

CS
p −CS

V =Vα
2

κ

CS
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5.2 Consequences of the ideal gas law
We study the quantities E, S and μ as a function of p and V at fixed 
temperature and at fixed amount of substance. Therefore, we use V, 
T and n or p, T and n as independent variables. For the sake of clar-
ity, we sometimes omit the variable n in expressions such as 
E(T, V, n); we simply write E(T, V). 
 
Energy as a function of volume and pressure at constant tempera-
ture
We first ask for the V dependence of energy. With the rules of differ-
ential calculus (Falk-Ruppel p. 401, Job p. 51) we get:

�

With equations (4.1) and (4.2) (section 4.6) we can write:

�

By using the flip rule (section 4.7) we replace

�

and obtain

� (5.1)

With the ideal gas law the second term on the right side becomes

�

So equation (5.1) becomes
�  (5.2)

or
E(V, T) – E(V0, T) = 0

We now obtain (with the rules of differential calculus)

�

Since ∂E(T,V)/∂T ≠ 0, with (5.2) we get

�

Thus, for E = const the temperature of an ideal gas is independent 
of the volume, or in other words, the temperature remains constant 
during an isoenergetic expansion or compression of an ideal gas. 
Isoenergetic means: The energy has the same value in the initial 
and final state, no matter how the process is realized:

�
• Let the gas push a piston in a cylinder, Fig. 5.1. Thereby it 

releases the energy dE = vdp. It obtains this energy with entropy 
that enters the cylinder: dE = TdS.

• A historically important realization of the isoenergetic expansion is 
the free expansion carried out by Gay-Lussac, Fig. 5.2: The gas in 
the left tank expands into the empty right tank. The temperature is 
the same at the end as at the beginning.

�
Finally, we obtain the dependence of the energy on pressure at 
constant temperature. With the chain rule and with (5.2) we get

�

or
E(p,T) –  E(p0,T) = 0

Entropy as a function of volume and pressure at constant tempera-
ture
For the calculation of the volume dependence of the entropy we 
again consider the isoenergetic expansion, realized reversibly as in 
Fig. 5.1. The energy flowing into the gas together with entropy is 
equal to the energy flowing out with momentum. So it is 

dE = TdS – pdV = 0
or

TdS = pdV
With the ideal gas law we have

�

and from this

� (5.3)

Thus, for T  =  const the entropy increases logarithmically with the 
volume. With the ideal gas law we also obtain from (5.3)

�

The chemical potential as a function of volume and pressure at con-
stant temperature
With the ideal gas law we calculate:

�

and with the Maxwell relation (4.5c) (section 4.7): we obtain

�

Integration gives

�

Thus, at T = const the chemical potential increases logarithmically 
with pressure. With the ideal gas law we also obtain

�

∂E(T ,V )
∂V

= ∂E(S,V )
∂V

+ ∂E(S,V )
∂S

⋅ ∂S(T ,V )
∂V

∂E(S,V )
∂V

= −p(S,V )

∂E(S,V )
∂S

=T (S,V )

∂S(T ,V )
∂V

= ∂p(T ,V )
∂T

∂E(T ,V )
∂V

= –p +T ⋅ ∂p(T ,V )
∂T

T ⋅ ∂p(T ,V )
∂T

=T ⋅Rn
V

= p

∂E(T ,V )
∂V

= 0

∂E(T ,V )
∂V

= − ∂E(T ,V )
∂T

⋅ ∂T (E,V )
∂V

∂T (E,V )
∂V

= 0

Fig. 5.1 
The gas gives off energy via the 
piston with the energy carrier 
momentum and absorbs energy 
via the walls with the carrier en-
tropy.

Fig. 5.2 
Gay-Lussac experiment: The gas 
expands into the vacuum.

∂E(p,T )
∂p

= ∂E(T ,V (p,T ))
∂p

= ∂E(T ,V )
∂V

⋅ ∂V (p,T )
∂p

= 0

dS = n ⋅R ⋅ dV
V

S(V ,T )−S(V0,T ) = n ⋅R ⋅ lnV
V0

S(p,T )−S(p0,T ) = n ⋅R ⋅ lnp0
p

∂V (T ,p,n)
∂n

= RT
p

∂µ(T ,p,n)
∂p

= RT
p

µ(T ,p)− µ(T ,p0 ) =RT ln
p
p0

µ(T ,V )− µ(T ,V0 ) =RT ln
V0

V
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5.3 Dissolved substances as ideal gases
The ideal gas law always applies when a substance is sufficiently 
diluted. It does not matter how the dilution is achieved. We had pre-
viously assumed that the substance existed as a pure gas of low 
density. The material was diluted in vacuum, so to speak. However, 
the validity of the gas law does not change if a substance is diluted  
in a material solvent. Sugar in an aqueous sugar solution, Na+ ions 
in an aqueous saline solution, alcohol dissolved in water or water 
dissolved in alcohol also obey the ideal gas law 

p · V = n · R · T.
In the case of a solution the molar density

�

is called concentration.
The experimental proof of the validity of the gas law is, however, 
somewhat more difficult for these gases than for gases in a vacuum: 
In order to measure the pressure of the solute (the dissolved sub-
stance) alone, the so-called osmotic pressure, a wall is required 
which is permeable to the solvent but impermeable to what is dis-
solved. Such a diaphragm has the unpleasant property of having a 
high flow resistance even for the material it lets through. Therefore, 
the pressures establish only slowly. In the experiment shown in Fig-
ure 5.3, the pressure of the gas “sugar” is given by the difference Δp 
of the pressure gauge readings.

�  
We have

p left = pwater left + psugar left 

pright = pwater right

Since the diaphragm is permeable for water, it must be 
pwater left = pwater right

Thus
Δp = p left – pright = psugar left 

The equation for the chemical potential derived in the previous sec-
tion also applies here. The chemical potential of the dissolved sub-
stance as a function of the (osmotic) pressure of the dissolved sub-
stance is

�

With c = n/V and p = (n/V) · R · T we obtain

�

ρn =
n
V

= c

Fig. 5.3 
The left pressure gauge shows a 
value higher by the osmotic pres-
sure than the right one.

permeable for water
impermeable for sugar

p rightp left

water
water

+
sugar

µ(T ,p)− µ(T ,p0 ) =RT ln
p
p0

µ(T ,c )− µ(T ,c0 ) =RT ln
c
c0
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5.4 Mixtures of ideal gases
There is a mixture of several ideal gases in one container. In the gas 
equation  p · V = R · n · T we have to write
�

i.e. the amount of substance n is the sum of the amounts ni of the 
gases i. The quantities

�

are called the partial pressures of the gases. So we can write
pi · V = R · ni · T

For each gas i alone a gas equation applies, if the partial pressure of 
the gas is used. Each gas i behaves as if it were alone in the con-
tainer. The two situations 1 and 2 shown in Fig. 5.4 are physically 
identical.

�
Besides the amount of substance, energy and entropy are simply 
given by the sum of the partial energies or entropies:
�

A mixture of two gases can also be described as follows: It repre-
sents two gases in the same region of space, which are in thermal 
equilibrium. They are in thermal equilibrium because entropy can 
pass from one to the other. They are not in pressure equilibrium, be-
cause the volume of each of the gases is fixed, and they are not in 
chemical equilibrium, because one cannot transform into the other.
The chemical potential of each gas depends only on the partial 
pressure of that gas:

�

We consider the mixing process shown in Fig. 5.5: In the initial state 
(1) the gases A and B are separated and have the same pressure  
pA1 = pB1.

�
Then the separating wall is pulled out (b), so in the final state (2) it is 

V2 = VA1 + VB1.
The mixing process is an isoenergetic expansion of both gases to 
the final volume V2, which is nothing new. Therefore, T remains con-
stant during mixing and the entropy increases (see equation (5.3), 
section 5.2):

�

Since the pressures of the gases are the same before mixing, we 
have

�

and we obtain

�

The quotient xi = ni/n is called the mole fraction. With this we obtain 
the entropy of mixing
�

We will encounter this relationship again in statistical physics and 
information theory.
Although the relation between the variables of one partial gas is as if 
there were no other gases present, one can well distinguish be-
tween a free expansion into the vacuum and a free expansion into 
another gas: The second process is a diffusion process, it has a 
much greater reaction resistance than the first.
The last equation makes a statement that may be perceived as 
paradoxical (Gibbs’ paradox): If the two gases A and B (Fig. 5.5) are 
identical, pulling out the wall does not result in any process at all. If, 
on the other hand, the gases differ in the smallest conceivable char-
acteristic, ΔS assumes a value independent of this characteristic. 
But can’t one type of gas be transformed into another by continuous-
ly changing one characteristic? Thermodynamics teaches us that 
the answer is “no”. It thus requires the quantization of physical quan-
tities. One of the gases could be e.g. orthohydrogen, the other 
parahydrogen. There can be no continuous transition between or-
tho- and parahydrogen, i.e. no type of hydrogen whose nuclear spin 
has a sharp value between 0 and ħ (but ≠ 0 and ≠ ħ ).

n = ni
i
∑

pi = p
ni
n

Fig. 5.4 
The two situations are identical 
from the point of view of physics.

n = ni
i
∑ E = Ei

i
∑ S = Si

i
∑

µi (T ,pi )− µi (T ,p0i ) =RT ln
pi
p0i

A and B

A Ba

b

Fig. 5.5 
The process of mixing is an isoen-
ergetic expansion of both gases.

ΔS =R ni
i
∑ lnV2

Vi1

p
RT

= ni
Vi1

= n
V2

ΔS =R ni
i
∑ ln n

ni

ΔS = −nR xi
i
∑ lnxi
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5.5 The law of mass action
For the sake of clarity, we limit ourselves to four reaction partners A, 
B, C and D. The generalization of the following calculations is 
obvious.
All partners of the reaction

aA + bB → cC + dD 
are supposed to be ideal gases or exist in a diluted solution. 
In chemical equilibrium the chemical potential difference
Δμ(T,pA,pB, pC,pD)  

               = aμA(T,pA) + bμB(T,pB) – cμC(T,pC) – dμD(T,pD) 
is zero. Here, pA, pB, pC and pD are the partial pressures of the gas-
es A, B, C, and D. We express every chemical potential on the right 
side by

�

and obtain (for the case of chemical equilibrium)

�

We call Δμ'(T,  p0) the chemical potential difference in the case that 
each reaction partner  has the partial pressure p0, and obtain

�

The expression on the left side only depends on temperature, but 
not on the partial pressures pA, pB, pC and pD. We designate it K(T) 
and obtain the law of mass action:

�

If three partial pressures are given (or n – 1 if n substances are in-
volved), the fourth (n-th) follows from the law of mass action.

µi (T ,pi ) = µi (T ,p0 )+RT ln
pi
p0

aµA(T ,p0 )+bµB(T ,p0 )−cµC(T ,p0 )−dµD(T ,p0 )
Δ ′µ (T ,p0 )! "######### $#########

+RT a lnpA
p0

+b lnpB
p0

−c lnpC
p0

−d lnpD
p0

⎛
⎝⎜

⎞
⎠⎟
= 0

exp − Δ ′µ (T ,p0 )
RT

⎛
⎝⎜

⎞
⎠⎟ =

pA
p0

⎛
⎝⎜

⎞
⎠⎟

a

⋅ pB
p0

⎛
⎝⎜

⎞
⎠⎟

b

pC
p0

⎛
⎝⎜

⎞
⎠⎟

c

⋅ pD
p0

⎛
⎝⎜

⎞
⎠⎟

d

pA
p0

⎛
⎝⎜

⎞
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a

⋅ pB
p0

⎛
⎝⎜

⎞
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b

pC
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⎛
⎝⎜

⎞
⎠⎟

c

⋅ pD
p0

⎛
⎝⎜

⎞
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5.6 The second equation of state S = S(T, p, n)
A system with the energy differential

dE = TdS – pdV + μdn
is characterized by three state functions, e.g. V  =  V(T, p, n), 
S = S(T, p, n) and μ = μ(T, p, n). We have dealt with the first of these 
and now turn to the second one, namely S = S(T, p, n). It is deter-
mined by further experience. However, the p-dependence of 
S(T, p, n) is already known because of the Maxwell relation (4.5a)

�

With the ideal gas law (our first equation of state) we get

�

and by integrating

� (5.4)

Only the n- and T-dependence of S are yet unknown. Both are ob-
tained from the experiment.
The n-dependence results from the homogeneity of the gas: If the 
amount of the gas is increased by a factor k while leaving T and p 
constant, the entropy increases by the same factor k. One can imag-
ine that one has simply placed a new system next to the old one, 
Fig. 5.6.

�  
Experience shows that the new and the old system do not influence 
each other. In mathematical symbols:

� (5.5)

The T-dependence of S finally contains the whole individuality of the 
gas; it is complicated. Under certain conditions, however, a simple 
analytical expression can also be specified for it. In addition to

�

we also consider

�

For the ideal gas, the knowledge of � is equivalent to that of � , 
because the following applies (see section 5.1)

�

Now, the experiment shows

�
For cV and cp we thus obtain (see section 2.12)

�
and for all gases we have

cV – cp = R (5.6)

Thus,  cp and cV are temperature-independent, and we can write

�

and integrate:

� (5.7)

From (5.4) and (5.7) we get

� (5.8)

and with (5.5)

�

In an analogue manner one gets

� (5.9)

and

�

− ∂S(T ,p,n)
∂p

= ∂V (T ,p,n)
∂T

∂S(T ,p,n)
∂p

= −Rn
p

S(T ,p,n) = n ⋅R ⋅ lnp0
p

+S(T ,p0,n)

Fig. 5.6
For fixed temperature and fixed 
pressure the entropy is proportion-
al to the amount of substance.
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temperature range)
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5.7 Isothermal, isentropic, isobaric and isochoric 
processes of the ideal gas
We are looking for the p-V relationship at constant temperature and 
constant entropy: isotherms and isentropics. Again we always con-
sider processes with n = const. To obtain the isotherms, we write the 
ideal gas law in the form

�

or

�

To calculate the isentropics, we introduce an abbreviation:

�  

and transform equation (5.9) with the aid of (5.6)

� (5.10)

From this follows with the ideal gas law:

�

and finally

�

or

�

Since γ >1, the isentropic is steeper than the isothermal at every 
point of the p-V diagram.
To calculate the isochorics (V = const) of the ideal gas, we eliminate 
the temperature in (5.10)

�

or

�

In a similar way we get from (5.8)

�

or

�

Fig. 5.7a shows an isothermal and an isentropic in the p-V diagram, 
Fig. 5.7b shows an isobaric and an isochoric in the T-S diagram.
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Fig. 5.7 
(a) Isothermal and Isentropic in the  
p-V diagram. 
(b) Isobaric and Isochoric in the  
T-S diagram
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5.8 The third equation of state: μ = μ(T, p, n)
Two derivatives of this function are already determined by the Max-
well relations (4.5b) and (4.5c), as well as by the equations of state 
discussed so far:

�

�

The third derivative must be obtained from the experiment. Now, be-
cause of the homogeneity of the system, μ can no longer depend on 
n if T and p are fixed. So we have

�

By integrating we obtain: 
�

     (5.11)

We finally obtained the T dependence of the chemical potential. 
However, it looks so complicated that one cannot recognize at first 
sight whether μ increases or decreases with T. The behavior of μ as 
a function of T can best be seen by looking at the Maxwell relation

�

The right side simply represents the entropy per amount of sub-
stance, and this must always be positive. Thus, the derivative 
∂μ(T,p,n)/∂T is negative; for p = const and n = const the chemical 
potential decreases with increasing temperature.

− ∂µ(T ,p,n)
∂T

= ∂S(T ,p,n)
∂n

=R lnp0
p

+cp ln
T
T0

+ Ŝ(T0,p0 )

∂µ(T ,p,n)
∂p

= ∂V (T ,p,n)
∂n

= RT
p

∂µ(T ,p,n)
∂n

= 0

µ(T ,p,n) =RT ln p
p0

−cpT ln
T
T0

+ cp − Ŝ(T0,p0 )( )(T −T0 )+ µ(T0,p0 )

− ∂µ(T ,p,n)
∂T

= ∂S(T ,p,n)
∂n
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5.9 Simple cyclic processes with ideal gases
Cyclic processes of particular technical importance are those in 
which the energy carrier X1, with which the energy arrives, flows into 
the machine at constant potential ξ1in and flows out of the machine 
at constant potential ξ1out, Fig. 5.8. The ξ1-X1 diagram is a rectangle.

We examine three examples. In the first, X1 is the entropy, the cor-
responding cyclic process is called the Carnot cycle. In the second, 
X1 is the amount of substance. Finally, the third is a combination of 
the first and the second.
We carry out the three cycles with an ideal gas. The second exten-
sive variable X2 is the volume in all cases (the corresponding energy 
carrier is the momentum). 
 
Carnot cycle with the ideal gas
Fig. 5.9 shows the machine schematically, Fig. 5.10 shows the 
process in the T-S and in the p-V diagram. The process cycle con-
sists of two isothermals and two isentropics. 

�

�

Isothermal compressed air engine
Fig. 5.11 shows the engine schematically, Fig. 5.12 shows the 
process in the μ-n, p-V and T-S diagrams.

�

�
In addition to the extensive quantities n and V, the entropy of the 
gas also changes. However, as can be seen in the T-S diagram, the 
entropy always remains at the same thermal potential T, i.e. the en-
ergy that it carries does not change.
For processes with constant μ and constant n, the technical jargon 
has not reserved its own “iso word”. In process step AB entropy is 
carried convectively into the cylinder with the inflowing gas, in step 
BC entropy flows through the cylinder wall into the cylinder. In step 
CD it is transported out again convectively. 

Isentropic compressed air engine (steam engine)
The just described cyclic process is difficult to realize, because en-
tropy conduction is a slow process. Real engines (compressed air 
engines or steam engines) operate mainly isentropically, Fig. 5.13 
and 5.14.

�

�  
The temperature decreases in the expansion step BC. Therefore the 
chemical potential μ is higher at C compared with the isothermal en-
gine. The air (or steam) leaving the engine could still be used: A 
thermal engine could be operated between the atmospheric air and 
the air leaving the compressed air engine. This would deliver an 
amount of energy (in one cycle) that corresponds to the dark area in 
Fig. 5.14.

Fig. 5.9 
Carnot engine

heat conductor
heat switch

Fig. 5.10 
T-S diagram and p-V diagram of 
the Carnot cycle

Fig. 5.11 
Isothermal compressed air enginefrom compressed 

air reservoir

to the atmosphere

entropy exchange

Fig. 5.12
μ-n , p-V  and T-S diagram of the 
isothermal compressed air engine

Fig. 5.13 
Isentropic compressed air enginethermal insulationfrom compressed 

air reservoir

to the atmosphere

Fig. 5.14
μ-n, p-V and T-S diagram of the 
isentropic compressed air engine

Fig. 5.8 
ξ1-X1 diagram of a typical cyclic 
process
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6. Liquid and solid materials

6.1 The chemical potential
Liquids and solids have a particular property: their density can be 
changed only with difficulty by a change of pressure or by a change 
of temperature. The following considerations apply to solids only if 
the problem is isotropic. Both, the coefficients characterizing the sol-
id as well as the mechanical stresses must be direction-indepen-
dent. Experience shows that

�

With the Maxwell relation (4.5a)

�

we obtain

�

Thus entropy is almost pressure-independent. This does not mean 
that S is also independent of the volume. In fact, another Maxwell 
relationship reads

�

and experience shows that ∂p(T,V,n)/∂T is large. The fact that S 
cannot be changed by changing the volume is simply because the 
substances under consideration are difficult to compress.
In addition, for liquids and solids we have cp ≈ cV (the lower the tem-
perature, the better they coincide). We therefore simply write c in-
stead cp or cV.
With the Maxwell relation (4.5c)

�

we calculate the pressure dependence of the chemical potential. 
Because of α ≈ 0 and κ ≈ 0 the quotient

�  

is nearly independent of temperature and pressure and we obtain
� (6.1)

We apply equation (6.1) to an example. 

Lowering of the chemical potential of a liquid by adding a small 
amount of a foreign substance
If a small amount of a foreign substance (a solute) is dissolved in a 
liquid (the solvent), the chemical potential of the solvent decreases. 
We look at the experiment in Fig. 6.1.

�
We assume the solvent to be water. For the water chemical equilib-
rium between the left and the right of the diaphragm will establish:
�

This means that no more water passes through the diaphragm and 
the liquid columns on the left and right no longer change their height. 
The pressure to the right of the diaphragm must now be equal to the 
sum of the pressure on the left and the pressure of the solute.

p2 = p1 + psolute

(Two forces act on the surface area A of the liquid on the right: the 
force p1 · A, which liquid 1 exerts on liquid 2 through the diaphragm 
and the force psolute · A, which the diaphragm itself exerts on the liq-
uid 2. 
Now the water on the right of the diaphragm differs from the water 
on the left in two respects: first, its pressure is higher and second, a 
foreign substance is dissolved in it. So its chemical potential is

�

The second summand on the right side of the equation describes 
the change of the chemical potential due to the increased pressure, 
the third summand Δμ(nsolute) is the change of the chemical potential 
due to the foreign substance. In order for the chemical potentials to 
be equal on the left and right, both “corrections” must add up to 
zero, i.e. it must be

�

With the ideal gas law psoluteV = RnsoluteT and with p2 = p1 + psolute we 
get

�

Now, nsolute/n is equal to the mole fraction x, and we obtain
Δμ(nsolute)  = – xRT

The formula tells us that the chemical potential of water in the Rhine 
is higher than that of water in the North Sea. One could therefore 
operate a power plant at the mouth of the Rhine in which the Rhine 
water is lowered to the low North Sea potential and electric charge is 
pumped up to a high electric potential.

κ = − 1
V

∂V (T ,p,n)
∂p

≈ 0

α = 1
V

∂V (T ,p,n)
∂T

≈ 0

∂V (T ,p,n)
∂T

= − ∂S(T ,p,n)
∂p

∂S(T ,p,n)
∂p

≈ 0

∂S(T ,V ,n)
∂V

= ∂p(T ,V ,n)
∂T

∂V (T ,p,n)
∂n

= ∂µ(T ,p,n)
∂p

∂V (T ,p,n)
∂n

=V̂ (T ,p)

µ(p)− µ(p0 ) =V̂ ⋅(p − p0 )

water

diaphragm

water + 
solute

Fig. 6.1 
On the left (1) of the water-per-
meable diaphragm there is pure 
water, in the water on the right (2) 
a foreign substance is dissolved. 
The chemical potential of water is 
the same on both sides.

µH2O, 1 = µH2O, 2

µH2O, 2 = µH2O, 1 +
V
n (p2 − p1)+ Δµ(nsolute )

Δµ(nsolute ) = −Vn (p2 − p1)

Δµ(nsolute ) = −V
n
RnsoluteT
V



6. Liquid and solid materials

6.2 The entropy of solid materials
It is convenient to decompose in our mind a solid material into sub-
systems: a lattice system, an electron system, a spin system... Each 
of these subsystems can contribute to the entropy. For many pur-
poses, these systems can be considered separately. Sometimes 
one of them “does not exist”: Its amount of substance is zero. By 
“electron system” we mean the so-called free electrons. An electrical 
insulator has no electron system in this sense.
First we look at the lattice system (the word comes from the fact that 
the atoms or ions of solids form a crystal lattice). Experience shows 
that the molar heat capacity for all solids at low temperatures follows 
Debye’s law, Fig. 6.2:

�

�

With

�

we get

�

Thus, also the molar entropy increases with the 3rd power of T, Fig. 
6.3.

�
A specific substance is thus characterized solely by TD, the Debye 
temperature. Some TD values are listed in Table 6.1.

�
The experiment shows that c exhibits a simple behavior also for high 
temperatures: For crystals consisting of a single type of atom, c ap-
proaches asymptotically 3R for increasing temperature, Fig. 6.2:

c = 3R    for    T ≫TD .
This is the Dulong-Petit law.
The entropy of the electron system is only noticeable at very low 
temperatures (if the substance has free electrons at all, i.e. if it is a 
metal). It is proportional to T and the molar entropy is therefore iden-
tical to c:
�

c = 12
5
π 4R T

TD
⎛
⎝⎜

⎞
⎠⎟

3

for T <<TD

Fig. 6.2
Specific heat capacity as a function 
of temperature for some solid ma-
terials

C (diamond)
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c = dÊ
dT

=T dŜ
dT

Ŝ = c
T
dT

0

T

∫ = 12
5
π 4 R
TD

3 T 2dT
0

T

∫ = 12
5
π 4 R

3
T
TD
⎛
⎝⎜

⎞
⎠⎟

3

= c
3

Fig. 6.3
Entropy of the electron system and the lattice system as a function of temperature for solids
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T/TDT/TD

SL
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Table 6.1
Debye temperatures

substance TD (K)

Pb 88

Ag 215

Cu 315

Fe 453

KBr 177

NaCl 287

Ge 360

diamond 1860

Ŝ = c ∝T
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7. Phase transitions

7.1 Phases
The word phase has a meaning similar to the word substance. How-
ever, since people do not like to say that ice and liquid water are dif-
ferent substances, they prefer to talk about different phases. We do 
not speak of two different phases if, for example, we have liquid wa-
ter at 10 °C and liquid water at 20 °C.
In order to pass from one phase to another, the values of any vari-
ables undergo discontinuous changes: in the transition of liquid wa-
ter → gaseous water, for example, the variables molar entropy and 
molar volume make a jump. But one should not take this definition 
too seriously: one can avoid the jump in the quoted example by 
passing around the so-called critical point.
The best known phases are the solid, liquid and gaseous phases, in 
which many substances can be found. In addition, especially solids 
exist in countless other phases: different crystal modifications; 
phases in which one part of the crystal lattice (one type of ion) is sol-
id, another is liquid; phases characterized by different states of order 
of the atomic magnetic or electric moments; phases of the electron 
system (normal and superconductivity) and many others.
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7.2 Phase transitions
Phase transitions are reactions. If the reaction can run uninhibited, 
there is chemical equilibrium during the phase transition from phase 
I to phase II, it is
μI( p,T) =  μII( p,T)

This equation defines a relationship between pressure and tempera-
ture p = p(T). If the function is displayed in a p-T coordinate system, 
it is referred to as a phase diagram. For pairs of p-T values that lie 
on the coexistence curve p(T), both phases can exist simultaneous-
ly. Outside the curve, only one phase is stable. The p(T) curve that 
separates the gaseous from the liquid phase is called the vapor 
pressure curve of the substance. In this case, the pressure p(T) is 
called the vapor pressure (or equilibrium vapor pressure) of the liq-
uid at temperature T. The vapor pressure curve ends at the critical 
point (at T = Tcr and p = pcr). Figures 7.1 and 7.2 show the phase di-
agram of water in two different scales.

�  

�

Fig. 7.3 shows the phase diagram of sulfur.

�

In triple points, the chemical potentials of three phases have the 
same value. This is a condition that defines values for p and T. So 
when a substance is brought into the state in which three phases 
coexist, a well-defined temperature will establish: a fixed point of 
temperature. The unit of temperature is defined by the triple point of 
water (see section 2.4).  

Table 7.1 shows the vapor pressure values of water at different tem-
peratures. Table 7.2 lists the vapor pressures of some substances at 
20 °C.

�

�
Whether a substance is normal or superconducting at a certain tem-
perature depends on the magnetic field. Fig. 7.4 shows the H-T 
phase diagram of lead.

�

Fig. 7.1 
Phase diagram of watercritical point

solid

liquid

gaseous

273.16 K

610.6 Pa

Fig. 7.2 
Phase diagram of water

liquid

Fig. 7.3 
Phase diagram of sulfur
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Table 7.1
Vapor pressure of water

𝜗 (°C) pD (Pa)

0 613

20 2333

40 7373

60 19.92·103

80 47.3·103

100 101.3·103

150 4.76·105

300 8.59·106

350 1.65·107

Table 7.2
Vapor pressure of some substances at 20 °C

substance pD (Pa)

ethanol 5.88·103

methanol 1.25·104

benzene 1.00·104

mercury 0.16

Fig. 7.4 
H-T phase diagram of lead
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7.3 ξ-X diagrams
In order to better understand how the various variables change dur-
ing a phase transition, we look at the gaseous-liquid phase transi-
tions in different representations. 
First, we decrease the volume of the gas at a fixed temperature, Fig. 
7.5.

�
In this process, at first the pressure increases, see the path in the p-
T diagram. When this path reaches the vapor pressure curve, lique-
faction begins. In the p-V diagram we are at the point α. From now 
on the pressure does no longer change despite the reduction of the 
volume. The liquefaction continues until in the point β the whole 
substance has become liquid. A further reduction of the volume is 
accompanied by a sharp increase in pressure. In the p-T diagram 
we leave the vapor pressure curve. During the transition liquid → 
gaseous the molar volume changes by a finite amount. Its value is 
characteristic for the substance, but depends on the temperature. 
Table 7.3 lists the molar volumes of liquid water (index L) and water 
vapor (index V) for different temperatures.

�
We now supply entropy to the liquid at fixed pressure, Fig. 7.6.

�
In the process, at first the temperature increases, see the path in the 
p-T diagram. When this path reaches the vapor pressure curve, 
evaporation begins. In the T-S diagram we are at the point γ. From 
now on the temperature does no longer change despite the supply 
of entropy. Evaporation continues until at the point δ the whole sub-
stance is gaseous. A further entropy supply is accompanied by an 
increase in temperature; we leave the vapor pressure curve in the p-
T diagram. During the transition liquid → gaseous the molar entropy 
changes by a finite amount. Its value is characteristic for the sub-
stance, but still depends on the temperature. Table 7.3 shows in col-
umn 4 this change in the molar entropy of water at different temper-
atures.
 �  is called the molar heat of evaporation.

Fig. 7.5 
Phase transition at constant temperature

vapor pressure  
curve

gaseous gaseous 
+ liquid

liquid

α and β 
coincide gaseous + liquid

p

T

p

V

α
gaseous

liquid

β

Table 7.3
Molar volume of liquid water and water vapor, as well as the change of the entropy of the water 
during the transition

T (K)

312 1.81·10–5 3.7·10–1 166

423 1.97·10–5 6.85·10–3 79

535 2.30·10–5 7.4·10–4 39

647 (= Tcr/K) 5.66·10–5 5.66·10–5 0

V̂L (m3/ mol) V̂V (m3/ mol) ΔŜ L→V (Ct/mol)

Fig. 7.6 
Phase transition at constant pressure
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7.4 Clausius-Clapeyron relation
The shape of the coexistence curve p(T) which separates phases I 
and II depends in a simple way on the values of �  and � . 
On the coexistence curve we have μI = μII. Thus we have

�

and therefore

�

With the Maxwell relations (4.5b) and (4.5c) we obtain

�

and thus

�

During evaporation, both the molar entropy and the molar volume 
increase, i.e. numerator and denominator on the right side of the 
Clausius-Clapeyron equation have the same sign. So dp/dT is 
positive; the boiling temperature increases with increasing pressure. 
Normally the same applies to melting; the melting pressure curve 
also has a positive slope. However, water is an exception here, 
because its volume decreases as it melts (although the molar 
entropy increases). The melting pressure curve therefore has a 
negative slope (“anomaly of water”).

ŜI − ŜII V̂I −V̂II

d (µI − µII )
dT

= 0

∂µI(p,T )
∂T

+ ∂µI(p,T )
∂p

⋅ dp
dT

− ∂µII(p,T )
∂T

− ∂µII(p,T )
∂p

⋅ dp
dT

= 0

−ŜI(p,T )+ ŜII(p,T )+ V̂I(p,T )−V̂II(p,T )⎡⎣ ⎤⎦ ⋅
dp
dT

= 0

dp
dT

= ΔŜ(T )
ΔV̂ (T )

       Clausius-Clapeyron relation
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7.5 Evaporation and boiling
There is water in a container that is open at the top. The chemical 
potential of the water vapor μV directly above the water surface is 
equal to that of the liquid water μL below the water surface. The par-
tial pressure of the water vapor is equal to the vapor pressure pV, 
Fig. 7.7. Further up the partial pressure and the chemical potential 
are lower. There is a chemical potential difference and therefore 
gaseous water diffuses away from the surface region. In order for 
the chemical potential at the surface to maintain its equilibrium val-
ue, water must pass from the liquid to the gaseous state: It evapo-
rates.

�
The partial pressure of the water above the liquid surface increases 
with increasing temperature. When it reaches the value of the air 
pressure, the partial pressure of the “residual air”, i.e. the partial 
pressure of the non-water components of the air (essentially oxygen 
and nitrogen) becomes zero. From now on, the water vapor no 
longer needs to diffuse through the residual air, it pushes it away 
and flows unhindered upwards. The resistance against the propaga-
tion decreases strongly, the flow is practically uninhibited. The speed 
of evaporation is now only limited by the supply of entropy. We say 
that the water boils. 
If the water is heated from below, as is usual when heating on a 
stove, the steam must pass through the liquid from below and form 
bubbles. For this to be possible, the temperature must rise until the 
vapor pressure equals the pressure in the water at the bottom of the 
vessel.
We look at a liquid that is in a closed container together with its va-
por, Fig. 7.8a.

�  
Both have the same chemical potential. Fig. 7.8b shows the μ(p) 
curves (at fixed temperature). If now a foreign substance is dis-
solved in the liquid, the chemical potential of the liquid (see section 
6.1) decreases by Δμ = –xRT (x = mole fraction of the solute). The 
chemical equilibrium between liquid and gas is disturbed. Gas will 
now condense until the chemical potential of the gas has dropped to 
its value in the liquid. The vapor pressure has thus been reduced by 
adding the foreign substance. For this reason, the boiling point of a 
liquid increases when a foreign substance is added. For the same 
reason, the melting point decreases when a foreign substance is 
added to a liquid, such as salt in water.

Fig. 7.7 
The chemical potential of the wa-
ter vapor just above the surface is 
equal to that of the liquid water.μV = μL 

pH2O = pV  

Fig. 7.8 
(a) If a foreign substance is dis-
solved in a liquid, the chemical po-
tential of the liquid decreases.
(b) μ-p diagrama

b μG

foreign substance

p

μ

p

μG,0
μG,0 – xRT
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7.6 Solutions
The so-called precipitate and the dissolved substance also form two 
phases between which a transformation can take place, Fig. 7.9a. 
Here, too, the transformation comes to a standstill when the chemi-
cal potentials have the same value, i.e. when
μ precipitate = μ solute

A similar system is formed by two immiscible liquids A and B, Fig. 
7.9b.

�
Immiscible does not mean that there is nothing of substance B in 
liquid A and nothing of substance A in liquid B. In A a small amount 
of B is dissolved, and in B a small amount of A. B dissolved in A is 
the “gas phase” of liquid B and A dissolved in B is the “gas phase” of 
liquid A. 
Liquid X represents the “vacuum” for the gas of substance Y. Here 
the osmotic pressure is a “vapor pressure”. Above Tcr. the two phas-
es of each substance can no longer be distinguished from each oth-
er; the two substances become miscible.

Fig. 7.9 
(a) Precipitate and solute establish 
chemical equilibrium. 
(b) Two immiscible liquids. The 
liquid phase of one substance rep-
resents the vacuum for the 
gaseous phase of the other.

a

b

solute

precipitate

A

B
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8.1 Pipe flow
We consider the flow through a pipe with the following properties: All 
partial time derivatives are zero, i.e. the flow is stationary. The flow 
velocity is the same over the entire cross-section of the pipe. The 
cross-section can be variable, so that the flow velocity in the direc-
tion of the pipe axis can change from one cross-section to another. 
In addition, there is no internal friction and no friction with the wall of 
the pipe. 
For the treatment of flows three kinds of relations are needed:
1. Balance equations for the substance-like quantities E, S, n and m.
In the special case of stationary flows that we consider, the rate of 
change dX/dt of the substance-like quantities X in the balance equa-
tion

�

is always equal to zero.
2. The energy differential
In addition to the balance equations of the various substance-like 
quantities, we also need the couplings between the flows of the sub-
stance-like quantities that follow from the energy differential:

� (8.1)

We know the first two terms on the right side of the equation from 
earlier times. The third term represents the flow of the kinetic energy. 
The current Im is the current of the inertial mass. We will add another 
summand later, in which the current of the gravitational mass oc-
curs. Like T and μ the pre-factor v2/2 of Im plays the role of a poten-
tial, or a driving force quantity. One could introduce a proper name 
for it, such as inertial potential.
In a flow the energy current P is often constant along the whole 
path, but the individual contributions in (8.1) change at locations 
where the pipe cross-section changes, Fig. 8.1. This can also be 
expressed as follows: The loading of one energy carrier changes at 
the expense of the loading of another. The energy is transferred 
from one carrier to another within the flow.

�
With
�

and
�

equation (8.1) can be written:

� (8.2)

3. Finally, the relations that characterize the specific flowing material 
(ideal gas, incompressible liquid, etc.) must be given.

dX
dt

= IX + ΣX

P =TIS + µIn +
v 2

2
Im

Fig. 8.1 
The energy current is the same at 
each cross-section of the pipe. 
However, the distribution of the 
energy flow among the different 
energy carriers can change

increase
of TIS
decrease
of (v/2) Ip conv

increase
of μIn
decrease
of (v/2) Ip conv

IS = Ŝ ⋅In

Im = m̂ ⋅In

P = TŜ + µ + v
2

2 m̂
⎛
⎝⎜

⎞
⎠⎟
In
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8.2 Currents without an energy flow through  
      the pipe wall
A simple law applies to flows without an energy transfer through the 
pipe wall:
�

To prove it, we imagine that the flow is realized as shown in Fig. 8.2: 
by two moving pistons. We assume that no diffusion and no heat 
conduction takes place in the direction of flow. 

The change dE of the energy of the system between the two pistons 
is
dE = – p1dV1 –  p2dV2

One can imagine that the energy change dE is due to the fact that 
all the energy dE1 contained in the volume dV1 disappears and all 
the energy dE2 contained in dV2 is added, so that
dE = dE1 + dE2 = – p1dV1 –  p2dV2

or
d(E1 + p1V1) + d(E2 + p2V2) = 0

If one follows a certain amount of gas on its way from left to right, so 
for this system we have
E + pV = const

or written in molar quantities
�

This is an important rule: If the energy current in a flow is constant 
from one pipe cross-section to another, i.e. if no energy is “taken out 
or put in from the side”, the expression E + pV has the same value 
for both pipe cross-sections.
We used to look at processes where the value of a variable is con-
stant, e.g. isothermal processes (T = const), isentropic processes (S 
= const), isoenergetic processes (E = const). We are dealing here 
with a process in which a certain combination of variables is con-
stant, namely E + pV. To simplify the equations, we give this  combi-
nation of variables its own symbol:
E + pV = H

and
�

We remember that this expression is also called enthalpy, and that it 
is a characteristic function when written as a function of the vari-
ables S, p and n.

Ê + pV̂ = const

Ê + pV̂ = const

Ê + pV̂ =Ĥ

Fig. 8.2 
One can imagine that the energy 
change in the area between the 
two pistons is caused by the ener-
gy disappearing in the volume 
element dV1 and the energy 
emerging in the volume element 
dV2.
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8.3. Currents of an ideal gas without an energy 
       flow through the pipe wall
In equation (8.2) we insert

�

and obtain

� (8.3)

With P = const and In = const we get 

�

Here and in the following “const” means “has the same value for 
each cross-section of the pipe”. We now call T0 that temperature for 
which the gas has the velocity v = 0 (“boiler state”) and obtain

� (8.4)

Thus, the faster the gas flows, the lower its temperature.
We consider an application of this equation, Fig. 8.3.

�
An ideal gas flows through a so-called thermal expansion valve: a 
flow resistance through which it flows without being accelerated, i.e. 
without forming a jet or vortex behind it. The valve is thermally insu-
lated against the external environment so that it cannot extract en-
ergy from the gas.
The gas expands in the valve: its pressure and density decrease. In 
order for v1 = v2 , the pipe cross-section in the throttle must increase 
slightly. With the previous equation results
�

and thus
T1 = T2 

With the gas equation it follows that the pressure decreases by the 
same factor by which the molar volume increases.

Ŝ(T ,p) =R lnp0
p

+cp ln
T
T0

+ Ŝ(T0,p0 )

µ(T ,p) =RT ln p
p0

−cpT ln
T
T0

−TŜ(T0,p0 )+cp (T −T0 )

+T0Ŝ(T0,p0 )+ µ(T0,p0 )

P = cp (T −T0 )+T0Ŝ(T0,p0 )+ µ(T0,p0 )+
v 2

2 m̂
⎡

⎣
⎢

⎤

⎦
⎥In

cp (T −T0 )+T0Ŝ(T0,p0 )+ µ(T0,p0 )+
v 2

2 m̂ = const

cpT + v
2

2 m̂ = cpT0

Fig. 8.3 
An ideal gas flows through an ex-
pansion valve without being accel-
erated.

cp (T1 −T0 ) = cp (T2 −T0 )
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8.4 Isothermal flow of an ideal gas
The balance equation for the energy is, Fig. 8.4:
P2 =  P1 +  Pz 

With (8.3) and with T1 = T2  we get

�

Here, IS,z is the flow of the entropy that must enter or leave the fluid 
through the pipe walls, in order to keep T constant.
With
�  

and

�  

(since T = const) we obtain

�

If we take the boiler state as state 1, so that v1  =  0, and name 
p1 = p0, v2 = v and  p2 = p, then

�

Thus, the faster the gas flows, the lower its pressure.

v 2
2

2
m̂ ·In =

v1
2

2
m̂ ·In +T ⋅IS ,z

IS ,z = Ŝz ⋅In

Ŝz =R ln
p1
p2

m̂
2
(v 2

2 −v1
2 ) =T ⋅R ⋅ ln p1

p2

v 2 = 2RT
m̂

lnp0
p

Fig. 8.4
Energy balance of isothermal flow
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8.5 Ideal flow of an incompressible fluid
Since the liquid is not compressed (because it is so difficult), and 
since ∂S(T,p,n)/∂p  ≈  0, an isentropic flow is also isothermal. We 
consider such isentropic-isothermal flows.
With (8.2) we get

�

and with
�

we obtain

�

With
�

(equation (6.1)) we get

�   

and with

�

we obtain

�

The equation tells us that the higher the flow velocity, the lower the 
pressure. In places where a pipe is wide, the pressure is higher than 
in narrow sections.

P = TŜ + µ + v
2

2 m̂
⎛
⎝⎜

⎞
⎠⎟
In = const

Ŝ = const

µ + v
2

2
m̂ = const

µ(p) =V̂ (p − p0 )+ µ(p0 )

V̂ ⋅p + v
2

2 m̂ = const

ρm = m̂
V̂

p + v
2

2 ρm = const
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8.6 Flows of liquids in the gravitational field
So far we have implicitly assumed that there is no gravitational field. 
With the gravitational field, (8.1) becomes

�

and

�

This is the energy current coupled to In. However, a part of it, namely 
that which has its origin in the gravitational field, does not flow at the 
same place as In.
With
�
�

and

�

and with P = const, In = const and T = const we get

� (8.5)

This is the Bernoulli’s equation.
In the hydroelectric power plant shown in Fig. 8.5, the energy is 
“transloaded” twice on its way from A to C: On its way from A to B, 
the loading of  In increases at the expense of that of Im, grav. In the 
nozzle the loading of Im, inertial increases at the expense of that of In.

P =TIS + µIn +
v 2

2 Im + ghIm

P = (TŜ + µ + v
2

2 m̂inertial + ghm̂grav )In

Ŝ = const
µ(p) =V̂ (p − p0 )+ µ(p0 )

 ρm = m̂
V̂

p + v
2

2 ρm + g ⋅h ⋅ρm = const

Fig. 8.5 
On the section AB, energy is 
transloaded from the energy carrier 
“gravitational mass” to the energy 
carrier quantity of substance. In the 
nozzle it changes the carrier again: 
It is transferred onto the carrier 
“inertial mass”.
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9.1 Critical point
A gas only obeys the equation of state pV = nRT as long as ρn is 
small and T is large. 
Fig. 9.1 shows the isotherms of CO2 in the p-V diagram and the iso-
bars in the T-S diagram for conditions under which CO2 is no longer 
ideal.

�  
Below the dashed limiting curves, liquid and gas exist simultaneous-
ly. If one moves on an isothermal (upper partial picture) from right to 
left, one enters this coexistence area at point β. The proportion of 
gas then decreases more and more in favor of the liquid. At α the 
phase transition is completed, the whole substance is liquid. The 
isothermal rises steeply, because the compressibility of the liquid is 
very low. Isothermals belonging to high temperatures do not cross 
this area. At these temperatures, it is no longer possible to distin-
guish between gas and liquid. The temperature from which a phase 
transition begins to exist is called critical temperature Tcrit. The pres-
sure at which the isotherm of the critical temperature touches the 
coexistence area is called critical pressure pcrit. Water vapor in a 
state below the limiting curve is called wet vapor.

Fig. 9.1 
Carbon dioxide: Isothermals 
in the p-V diagram and isobarics in 
the T-S diagrams

3.0              3.5               4.0                4.5              5.0

0                      0.5                    1.0                     1.5                    2.0

limiting curve

limiting curve



9. Real gases

9.2 The van der Waals equation
A gas for which the the ideal gas law no longer applies can be de-
scribed outside the limiting curve approximately by a somewhat 
more complicated equation of state, the van der Waals equation:

�  

a and b are two constants characterizing the individual gas. Fig. 9.2 
shows isothermals according to the van der Waals equation.

�

p + a
V̂ 2

⎛
⎝⎜

⎞
⎠⎟ ⋅(V̂ −b) =RT

Fig. 9.2 
Isothermals according to the van 
der Waals equation
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9.3 Adiabatic flow of a real gas  
– the Joule-Thomson effect 
We consider the stationary flow of a real gas through a pipe with a 
dissipative resistance (see section 8.3) and ask for the temperature 
change of the gas. To exclude the acceleration effect discussed in 
Section 8.3, the tube at the “resistor” expands so that the flow veloc-
ity before and behind it is the same. We ask what change dT of the 
temperature results for a given change  dp of the pressure for H = 
const, i.e. we ask for

�

For this we need 

� (9.1)

We start with
�

Comparing with

�

we obtain

� (9.2)

We now express the searched derivatives in (9.1) by the known 
ones in (9.2) using the rules of differential calculus and one of the 
Maxwell relations:

 �  

This results in
�

With
�

we obtain the wanted temperature change:

� (9.3)

For an ideal gas α = 1/T. Thus, the temperature change is zero, as 
was already calculated in section 8.3. In general, the expression 
(9.3) is negative for high temperatures, i.e. an expansion of the gas 
results in an increase in temperature. For low temperatures (9.3)  is 
positive: decompression of the gas is accompanied by a tempera-
ture decrease. At the inversion temperature Ti = 1/α the temperature 
remains unchanged, Table 9.1.

�

We calculate the inversion temperature for a Van-der-Waals gas. It 
is

�

We calculate p i from the Van-der-Waals equation

�

and insert in the previous equation

�

We thus obtain

�

For gas densities that are not too high we have
 �

and the inversion temperature becomes independent of the molar 
volume:

�  

The cooling of an expanding gas at E +  pV =  const is called the 
Joule-Thomson effect. It is used in the Linde process for the lique-
faction of air.

∂T (Ĥ,p)
∂p

dĤ(T ,p) = ∂Ĥ(T ,p)
∂p

dp + ∂Ĥ(T ,p)
∂T

dT

dĤ =TdŜ +V̂dp

dĤ(Ŝ,p) = ∂Ĥ(Ŝ,p)
∂Ŝ

dŜ + ∂Ĥ(Ŝ,p)
∂p

dp

∂Ĥ(Ŝ,p)
∂Ŝ

=T ∂Ĥ(Ŝ,p)
∂p

=V̂

∂Ĥ(T ,p)
∂p

=…=V̂ +T ∂Ŝ(T ,p)
∂p

=V̂ −T ∂V̂ (T ,p)
∂T

=V̂ −TV̂α =V̂ (1−Tα )
∂Ĥ(T ,p)

∂T
=T ∂Ŝ(T ,p)

∂T
= cp

dĤ(T ,p) =V̂ (1−αT )dp +cpdT

dĤ(T ,p) = 0

∂T (Ĥ,p)
∂p

= V̂ (αT −1)
cp

Table 9.1
Inversion temperatures of several substances

substance Ti (K)

H2 224

He 35

O2 1041

N2 866

Ti =
1
α

= 1
1
V̂

∂V̂ (T ,p)
∂T

=V̂ ∂T (p,V̂ )
∂V̂

= V̂
R

− 2a
V̂ 3 (V̂ −b)+ pi +

a
V̂ 2

⎡
⎣⎢

⎤
⎦⎥

pi =
RTi
V̂ −b

− a
V̂ 2

Ti =
V̂
R

− 2a
V̂ 3 (V̂ −b)+ RTi

V̂ −b
− a
V̂ 2 +

a
V̂ 2

⎡
⎣⎢

⎤
⎦⎥

Ti =
2a(V̂ −b)2

RbV̂ 2

V̂ >> b

Ti =
2a
Rb
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10. Combined potentials

10.1 Once more equilibria
Two subsystems A and B were always involved in the discussion of 
the equilibria in Section 4.11. We remember: If there is a thermally 
conductive connection between two bodies A and B, an entropy cur-
rent flows until the temperatures of A and B have assumed the same 
value. The state that is then reached, is called thermal equilibrium. 
Accordingly, we had defined what we mean by electrical and chemi-
cal equilibrium: the state in which two electrical potentials or two 
chemical potentials have reached the same value. 
However, we do not have to limit ourselves to  two different values of 
the  temperature, the electric potential or the chemical potential. The 
rod in Fig. 10.1a has a different temperature at each position x. If we 
leave it to itself for a while, the temperatures will equalize. At the end 
all temperature values are the same, Fig. 10.1b. There is thermal 
equilibrium between all parts of the rod.

  Thermal equilibrium: T(x) = const
Here we had assumed that the temperature would only change in 
the x-direction. More generally, we can write:

Thermal equilibrium: T(x, y, z) = const
Since in the following only gradients of a single direction concern us, 
we remain with the x. 
Accordingly, we can generalize the definition of chemical and elec-
trical equilibrium: 

Chemical equilibrium: μ(x) = const 
Electric equilibrium: φ(x) = const

Also the gravitational potential ψ can equalize, so that equilibrium is 
achieved. We call it gravitational equilibrium.

Gravitational equilibrium: ψ(x) = const

Fig. 10.1
(a) The rod has a different temper-
ature at each position x. 
(b) After a while the temperature is 
the same everywhere: T(x) = const. 
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10.2 Substances and particles – coupling  
  between substance-like quantities
If the extension or the amount of a system does not matter, we 
speak of a substance. 1 g of air is the same substance as 1 kg of air. 
In order to characterize a substance, however, it is important to 
know the relationship between the values of the substance-like 
quantities:

Water:  m/n = 18 g/mol.
Free electrons: m/n = 0.55 mg/mol; Q/m = 1.76 · 1011 C/kg .
Light: E/p = 3 · 108 m/s.

Some of the substance-like quantities have a universal quantum. 
What does that mean? If a system is closed, i.e. if it cannot give 
away or receive the physical quantity, the value of this quantity is an 
integer multiple of an elementary quantum, for example:

�

The quotient F = e/τ = 0.965 · 105 C/mol is called Faraday constant.
A system whose amount of substance has the value n = 1 τ is called 
a particle. Under certain circumstances one may imagine it as a 
small localizable individual; but often this idea fails.
The particle electron, for example, is a system with
�

Particles for which Q ≠ 0, are called charge carriers. 
Examples of charge carriers: 

• free electron
• mobile electron in a semiconductor
• electron hole (or hole) in a semiconductor
• free positron
• Cu++-ion in aqueous solution
• myon

Just as an ensemble of values of all substance-like quantities be-
longs to a certain amount of a substance, an ensemble of currents 
of substance-like quantities belongs to the flow of a substance. In 
the case of an electron flow, we are dealing with an electric current 
(current strength I), a mass current (current strength Im), a current of 
the amount of substance (strength In), an entropies current (strength  
IS)... Also the various current strengths are related in a characteristic 
way for a given substance. Thus for a current of free electrons we 
have I/Im = 1.76 · 1011 C/kg.
The substance-like quantities are more or less “coupled” to each 
other. Thus, electric charge is always firmly coupled to the amount of 
substance and to mass. There is no electric current without a mass 
flow and without a flow of amount of substance. So there is no pure 
electric current. It follows that a material or particle flow can be dri-
ven in different ways.
One can initiate an electron current, Fig. 10.2,

• by establishing an electrical potential gradient; this potential 
gradient “pulls” at the charge of the electrons;

• by establishing a gradient of the chemical potential, which pulls 
on the amount of substance of the electrons;

• by producing a temperature gradient that pulls at the entropy of 
the electrons.

Q = k1 ⋅e e = 1.60 ⋅10−19 C = elementary charge

L = k2 ⋅
!
2

! = 1.05 ⋅10−34 Js = quantum of angular momentum 

          
(Planck constant)

n = k3 ⋅τ τ = 1.66 ⋅10−24 mol = elementary amount 
(1/Avogadro constant)

k1,k2,k3 = integers

n = 1τ , Q = 1e, L = ! /2, E =…, etc.
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10.3 The electrochemical potential
We consider a current of any charged particles e.g. electrons, be-
tween positions A and B of a conductor, fig. 10.2. 

If all intensive variables have the same value at A and B, except for 
the electrical potential Φ, i.e. if TA = TB, μA = μB, …, ΦA ≠ ΦB, the par-
ticle flow is driven by the electrical potential difference U = ΦA – ΦB. 
Energy is dissipated in the conductor according to

P = TIS prod = (ΦA – ΦB)I .
If, on the other hand, all intensive variables except μ have the same 
value at A and B, i.e. if TA = TB, ΦA = ΦB, …  μA ≠ μB, the particle flow 
is driven by the chemical potential difference Δμ = μA – μB, and en-
ergy is dissipated in the wire according to

P = TIS prod = (μA – μB) In. 
If both Φ and μ have different values at A and B, the current has two 
drives: ΔΦ and Δμ. These can “pull” the particles in the same direc-
tion or in opposite directions.
The dissipated energy is then

P = TIS prod = (μA – μB) In + (ΦA – ΦB)I.
Now I and In are firmly coupled to each other. One particle (n =1τ) 
carries an integer number z of elementary charges:

Q = ze. 
For electrons, for example, z = –1. 
So it is

�

Therefore, the electric current and the current of the amount of sub-
stance are also related:

�

and with e/τ = F  ( = Faraday constant) we get
I = zF In

This means that the dissipated energy becomes
P = [(μA – μB) + (ΦA – ΦB) zF] In = [(μA  + zFΦA) – (μB  + zFΦB)] In .

The quantity
η = μ + zFΦ

is called the electrochemical potential of the charge carriers. We 
thus can write

P = (ηA – ηB) In 
The total drive of the particle flow is therefore caused by the electro-
chemical potential difference
∆η = ηA – ηB 

There is no energy dissipation if there is no particle current, and 
there is no particle current if the driving force ∆η = 0, i.e. if ηA = ηB, 
or more generally if the electrochemical potential does not depend 
on the position. We then say that there is electrochemical equilibri-
um. 

Electrochemical equilibrium: η(x) = const
Thus, the condition for the current to be zero is not that the electric 
potential is the same everywhere; it is the electrochemical potential 
that must be the same everywhere.
As an example, we consider two electric conductors, for example 
two pieces of wire made of different metals. The chemical potential 
of the electrons is different in the two metals. So there is a chemical 
potential difference between the electrons in one metal and those in 
the other. If we define the chemical potential of free electrons in a 
vacuum to be 0 G, the values in Table 10.1 apply.

�
Thus, the chemical potential difference of the electrons in copper 
and platinum is 
μ(Cu) – μ(Pt) = 85 kG. 

If the two pieces of wire are brought into contact with each other, 
electrons flow from the copper to the platinum according to the 
chemical potential gradient. This causes the two metals to charge 
oppositely: the copper becomes positive, the platinum negative. As a 
result, the electric potential of the copper increases and that of the 
platinum decreases. That means that we now have an electric drive 
in the opposite direction of the chemical drive. If

F∆Φ = ∆μ
i.e. if ∆η is equal to zero, the electric and the chemical drive com-
pensate each other and there will be no longer a flow of electrons. 
There is electrochemical equilibrium.
Thus, there is an electrical potential difference between two pieces 
of different metals that touch each other. We calculate the contact 
voltage between copper and platinum.
From 
η = 0 

we get 
∆Φ = (1/F)∆μ. 

With F = 0.965 · 105 C/mol and ∆μ = 85 kG follows
∆Φ = Φ(Cu) – Φ(Pt) = 0.88 V.

Despite (or better: because of) this voltage no electric current flows.
If a closed circuit is built up from different metals, no current is flow-
ing, Fig. 10.3.

�
It is not possible to measure the contact voltage simply with a volt-
meter. Figure 10.4 shows why. A voltmeter always indicates the 
electrochemical potential difference. Only if the chemical potential in 
the two points between which the voltage is measured, is the same, 
the electrochemical potential difference is the same as the electric 
voltage (except for a factor zF).

�
However, if one assumes that a voltmeter measures the electric 
voltage, there is normally no harm, because in many cases in which 
one believes that one needs the electric voltage, one actually needs 
the electrochemical potential difference – for example for the calcu-
lation of the electric current I by means of Ohm’s law.
The electrochemical potential also plays an important role in the pn 
junction in a semiconductor. The chemical potential of the “holes” is 
high in the p material and low in the n material. This means that 
there is a chemical drive for the holes from the p side to the n side. 
The reverse applies to electrons: A chemical potential gradient acts 
in such a way that they are driven from the n material to the p mater-
ial. However, an electric potential difference builds up between the p 
and n sides of the junction, which keeps the chemical drives bal-
anced; there is no particle flow – neither a flow of electrons nor of 
holes. The net drive given by the gradient of the electrochemical po-
tential is zero; the electrochemical potential is the same throughout 
the material, even across the pn junction.

Q
n = zeτ

I
In

= ze
τ

substance μ  (in kG)

Ag –460

Cs –170

Cu –430

Ni –445

Pt –515

W –435

Table 10.1
Chemical potenzial of the electrons in some metals

Fig. 10.3
Electric, chemical and electrochemical potenzial of a closed circuit, which consists only of three 
conductors of different metals

Φ

μ

η

metal 1 metal 1metal 2 metal 3

Fig. 10.4 
The voltmeter does not measure 
the electric potential difference 
between iron and silver but the 
electrochemical potential differ-
ence.

Fe Ag

copper wires

Fig. 10.2 
A substance flow can have differ-
ent drives.A B

ΦA
TA
μA

ΦB
TB
μB
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10.4 Electrochemical cells
Electrochemical cells are devices that receive energy with the ener-
gy carrier amount of substance and release it with the carrier electric 
charge, or vice versa, Fig. 10.5. They exist in countless variants and 
have a variety of names. If such a cell works as shown in Figure 
10.5a, it is called an electrolytic cell. The various realizations of Fig. 
10.5b are called battery, fuel cell etc. Some of these devices are run 
alternately in one direction or the other. They are then called accu-
mulators or storage batteries.

�  
Even if the devices or “cells” are constructed differently, their operat-
ing principle is the same in all cases. In the following we will try to 
understand it by means of a system which is difficult to realize for 
technical reasons, but which is very transparent, so that one can 
easily understand how it works.
The cell uses the chemical potential difference that a gas – in our 
case hydrogen – goes through when it expands, Fig. 10.6.

�
The left reservoir contains hydrogen at high pressure, for example 
10 bar. The hydrogen pressure in the right reservoir is low.
The cell has a high pressure hydrogen inlet on its left side and a low 
pressure hydrogen outlet on its right side. Because of the pressure 
difference, and thus the chemical potential difference, the hydrogen 
“wants” to flow through the cell. But that is not easy for it. Behind the 
inlet is a platinum wall, a so-called electrode. There is another one 
next to the exit.  
Platinum has the property that it can incorporate hydrogen. There is 
not enough space between the platinum atoms for the quite large 
hydrogen molecules. However, at the entry the hydrogen molecules 
break down into electrons and protons, and these particles can 
move relatively freely in platinum.
Between the two platinum electrodes is an acid, e.g. sulphuric acid. 
Acids have the property that they are conductors for protons, but not 
for electrons. 
The hydrogen now wants to go from left to right. To each hydrogen 
atom belongs a proton and an electron. Protons and electrons are 
separated from each other in the platinum. The electrons cannot 
pass through the acid. So couldn’t at least the protons follow the 
chemical drive and flow to the right through the acid? In fact, some-
thing is happening that we already know: At the very beginning, a 
small amount of protons will flow through the acid from the left to the 
right platinum electrode. In this way, however, an electrical potential 
difference is built up, which represents a drive for the protons in the 
opposite direction. After a very short time, the two drives compen-
sate each other and the proton current stops flowing. The protons 
are in electrochemical equilibrium. This means that the electrical po-
tential of the left platinum electrode is lower than that of the right 
platinum electrode.
It is now easy to open a path from left to right for the electrons as 
well: The two platinum electrodes are connected via a copper wire. 
Copper, like most metals, is a conductor for electrons but not for pro-
tons. (We had just come across platinum as an exception, it con-
ducts both electrons and protons.)
This electron current through the copper can now be guided through 
any electrical energy receiver, e.g. an electric motor, Fig. 10.7.

�
The two hydrogen reservoirs could also have been connected via a 
turbine. Then the energy corresponding to the chemical potential dif-
ference would have been drawn off with the turbine, Fig. 10.8.

�   
We realized the pressure equalization differently: We let the two 
components of hydrogen – the protons and the electrons – go sepa-
rate ways and extracted all the energy in one of them.  
In practice, the cell described here works very poorly because plat-
inum is not as good a conductor for the protons as we have as-
sumed. 
A cell very similar to ours is the concentration cell. It exploits the 
chemical potential difference of dissolved substances with different 
concentrations. Concentration cells may work, but they are not very 
efficient. The really good cells exploit more complicated chemical 
reactions. 
Also a chemical reaction is driven by a chemical potential difference. 
The cells are set up in such a way that the reactants are spatially 
separated from each other. They can only come together if one of 
the substances is broken down into electrons plus ions in or on an 
electrode. The ions pass through the electrolyte, the electrons 
through the conductor of the outer part of the circuit. 
It is not difficult to calculate the voltage if one knows the chemical 
potential difference of the reaction taking place in the cell. We look 
at the cell in open circuit conditions. The ions (in a special case pro-
tons) are then in electrochemical equilibrium, i.e. the sum 
μ + z · F · φ

must have the same value for the left and right platinum electrode:
μleft + z · F · φleft =  μright + z · F · φright

We call the potenzial differences
μleft –  μright = Δμ
φleft –  φright = Δφ

and obtain

Δφ �

If one knows the reaction, i.e. the chemical potential difference, as 
well as the number z of ions per reaction turnover, one can calculate 
the open circuit voltage of the cell. 
We look at the hydrogen cell discussed above as an example. We 
obtain the chemical potential difference with the equation (see Sec-
tion 5.2):  

 �

With 
p = 10 bar 
p0 = 1 bar 
T = 300 K 
z = 1  
R = 8.31441 J/(mol · K)

and
F = 0.965 · 105 C/mol

we get
Δφ = 0,060 V

Fig. 10.5 
Electrolytic cell (a) and its reversal 
(b)

a

b

electrolytic 
cell

ENERGY

amount of substance

ENERGY

electric charge

fuel cell,
battery,

etc.

ENERGY

electric charge

ENERGY

amount of substance

Fig. 10.6 
Electrochemical cell. The chemi-
cal potential of the hydrogen is 
higher in the left reservoir than in 
the right.

platinum electrodes
electrolyte

Fig. 10.7 
The electric circuit is closed. 

Fig. 10.8 
One can directly take profit of the 
chemical potential difference with 
a turbine.

= – Δµ
z ⋅F

Δµ =RT ln p
p0
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10.5 The gravitochemical potential
We apply the same arguments as in the previous section to the 
Earth’s atmosphere, i.e. air in the gravitational field. Several drives 
also act on a portion of air: a gradient of the gravitational potential 
downwards, and a pressure gradient, and thus a chemical potential 
gradient upwards. The gravitational drive acts on the (gravitational) 
mass, the chemical potential gradient on the amount of substance. 
Now mass and amount of substance are firmly coupled to each oth-
er. We have: 

�

Here is �  the molar mass. The corresponding applies to the cur-
rents:

�

The vertical distribution of the air is such that a displacement of an 
air portion from point A to point B, or from B to A does not result in 
any energy gain, i.e.

P =  [(μA – μB) + (ψA – ψB) ] In =  [(μA + ψA ) – (μB + ψB )] In = 0
We call the sum 
γ = μ + ψ �

the gravitochemical potential of the air. A difference of this magni-
tude represents a drive for an air portion. If γ has the same value 
everywhere, the air is in equilibrium, which is a gravitochemical equi-
librium.

Gravitochemical equilibrium: γ(z) = const
We are interested in the vertical distribution of the air and have 
therefore designated the position coordinate with z.  
We now express the gravitational potential through the gravitational 
field strength  
ψ = g · z

and write the gravitochemical potential
γ = μ + g · z · �

If there is gravitochemical equilibrium we have
γ(z) = const ,

thus
�

or
�

This means that the chemical potential μ decreases linearly with the 
height z.
With

�

see section 5.2, we obtain the pressure as a function of the height 
(as long as the temperature is the same everywhere):

�

or

�

This equation is known as the barometric formula. It was derived on 
the assumption that the temperature does not depend on z. Howev-
er, this assumption is completely unrealistic. Strangely enough, the 
barometric formula is still very popular. We will consider a more real-
istic distribution of the air in the atmosphere in the next section.

m
n = m̂

m̂

Im
In

= m̂

m̂ m̂ m̂

m̂

m̂

µ(z )+ m̂ ·g ·z = µ(0)

µ(z )− µ(0) = −m̂ ·g ·z

µ[p(z )]− µ[p(0)] =RT lnp(z )
p(0)

−m̂ ·g ·z =RT lnp(z )
p(0)

p(z ) = p(0)exp − m̂gz
RT

⎛
⎝⎜

⎞
⎠⎟
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10.6 A combination of temperature, gravitational  
        and chemical potential
The calculation we performed in the previous section is unrealistic 
because we had assumed that no temperature difference builds up 
when an air portion moves in a vertical direction, i.e. an air flow in a 
vertical direction is an isothermal process. In fact, the opposite is 
almost perfectly realized. An air transport is in good approximation 
an isentropic process. The reason for this is that air is a poor heat 
conductor and that the air portions under consideration are large. 
We know that a sweater whose wool with its cavities forms a thin 
“layer of air” is a very good thermal insulator. In the atmosphere, en-
tropy exchange would have to take place over hundreds of meters if 
it were to behave isothermal. 
So in the following we make the opposite assumption: We assume 
that the air does not conduct entropy at all. This means that the en-
tropy, just like the mass, is firmly coupled to the amount of sub-
stance. 
The gradient of the gravitochemical potential is no longer responsi-
ble for driving an air flow, but the gradient of a combination of three 
potential variables: the gravitational potential, the chemical potential 
and the temperature. We can write this three-potential:
ε = μ + � ψ + � T (10.1)

where �  is the molar entropy. 
Thus, the drive for the transport of an air portion would be the gradi-
ent

grad ε = grad (μ + � ψ + � T)
Although the molar mass for air has a well-defined value, the value 
of the molar entropy depends on the history of the air and can have 
a different value for one air portion than for another, because despite 
poor thermal conductivity, air can naturally absorb and release en-
tropy. The most effective mechanism for this is the evaporation and 
condensation of water. In the following we are interested in an im-
portant special case: the “dry atmosphere” with the same molar en-
tropy everywhere. So we are looking at an area of the atmosphere 
where the molar entropy has the same value everywhere. The molar 
entropy, which is a factor in front of the temperature in equation 
(10.1), is thus simply constant just as the molar mass in front of the 
gravitational potential. 
The equilibrium of such an atmosphere is then defined by the condi-
tion

grad ε = grad (μ + � ψ + � T) = 0
or 
ε = μ + � ψ + � T  = const.

Since the values of our potentials only change in a vertical direction, 
we write:
ε(z) = μ(z) + � ψ(z) + � T(z)  = const.

It is now our goal to determine the functions μ(z), ψ (z) and T (z). 
For this purpose we use equation 5.8 (section 5.6):

�

Since the molar entropy S/n is independent of pressure and temper-
ature, we have

S(T,p,n) – S(T0,p0,n) = 0
and thus

(10.2)

p and T therefore depend unambiguously on each other.
In addition, we need the chemical potential of the ideal gas as a 
function of temperature and pressure (equation (5.11) in Section 
5.8):

�

Inserting (10.2) we obtain

�

With the abbreviations
�

we get
� (10.3)

Thus our three-potential becomes
ε(z) = μ(z) + � ψ(z) + � T(z)

       = � ψ (z) + � T(z) + μ(z)
and with (10.3)

�

If now
ε(z) = const.

we have
ε(z) = ε(0)

and
�

or

(10.4)

Therefore, the temperature decreases linearly with altitude. As a 
numerical value, this gives a temperature decrease of about 1 de-
gree per hundred meters. This temperature decrease is called the 
dry-adiabatic temperature gradient. It only applies if there are no 
phase transitions of the water during a vertical air movement. In fact, 
water evaporates during a downward movement and condenses 
during an upward movement of the air. As a result, the temperature 
decrease with height is lower. The approximate value is 0.6 degrees 
per 100 meters. 
Finally, the combination of equations (10.2) and (10.4) provides the 
pressure decrease with the height:

�

So not only the pressure, but also the temperature in the at-
mosphere decreases with the altitude. This stratification corre-
sponds to a three-equilibrium in which gravitational, chemical and 
thermal drive add up to zero.

m̂ Ŝ

Ŝ

m̂ Ŝ

m̂ Ŝ

m̂ Ŝ

m̂ Ŝ

S(T ,p,n)−S(T0,p0,n) = n ⋅ R ln
p0
p

+cp ln
T
T0

⎛
⎝⎜

⎞
⎠⎟

R lnp0
p

+cp ln
T
T0

= 0

µ(T ,p) =RT ln p
p0

−cpT ln
T
T0

+ cp − Ŝ(T0,p0 )( )(T −T0 )+ µ(T0,p0 )

µ(T ) = cp − Ŝ(T0,p0 )( )(T −T0 )+ µ(T0,p0 )

Ŝ(T0,p0 ) = Ŝ0     and     µ(T0,p0 ) = µ0

µ(z ) = (cp − Ŝ0 ) T (z )−T0( ) + µ0

m̂ Ŝ0

m̂ Ŝ0

ε(z ) = m̂gz + Ŝ0T (z )+ (cp − Ŝ0 ) T (z )−T0( ) + µ0

= m̂gz +cp T (z )−T0( ) + Ŝ0T0 + µ0

m̂gz +cpT (z ) = cpT (0)

T (z ) =T (0) – m̂g
cp

z

p(z ) = p(0) 1– m̂g
cpT0

·z
⎛

⎝⎜
⎞

⎠⎟

cp /R
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10.7 A combination of gravitational, inertial and 
        hydrostatic potential – Bernoulli’s equation
In Section 8.6 we had become familiar with Bernoulli’s equation 
(8.5):

�

We want to transform this equation a little. 
We multiply by the molar volume � .
We also replace

 �

and use equation (6.1) (section 6.1):
� .

Thus, Bernoulli’s equation becomes

�

We want to be a little more precise, because the two molar masses 
are not the same: the first one is the inertial mass, the second is the 
gravitational mass.

�

For the term v2/2 we had in section 8.1 proposed the name inertial 
potential. g · z is the gravitational potential.
In this form, the Bernoulli equation allows for a new interpretation: it 
is an expression of an equilibrium. Here, too, we have a sum of 
three potentials: the chemical, the inertial and the gravitational po-
tential. The molar masses are constant factors that ensure that all 
three potentials are measured in the same units. 
The equation applies to the frictionless flow of a liquid. We see that 
the state of such a liquid can be interpreted as an equilibrium. Again, 
three drives act on three firmly coupled quantities: the amount of 
substance, the inertial mass and the gravitational mass.

p + v
2

2 ρm + g ⋅z ⋅ ρm = const

V̂ =V /n

ρmV̂ = mV ·Vn = mn = m̂

µ(p)− µ(p0 ) =V̂ ⋅(p − p0 )

µ + v
2

2
m̂ + g ⋅z ⋅m̂ =  const

µ + v
2

2
m̂inertial + g ⋅z ⋅m̂grav =  const
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11. Light as a gas

11.1 Thermal radiation
There are states of the electromagnetic field that can be described 
with very few variables, e.g. 
• the homogeneous electric field; 
• the plane electromagnetic wave. 

Another class of states that get along with very few variables is 
thermal radiation. The variables used to describe it are those com-
monly used in thermodynamics: Energy, entropy, volume, tempera-
ture, pressure and chemical potential. Since the light particles, the 
photons, can fly around freely in an empty box, we also call light a 
gas. Thermal radiation is present in every empty container whose 
walls absorb electromagnetic radiation. Every body that absorbs 
electromagnetic radiation also emits electromagnetic radiation. In 
the case of thermal equilibrium between wall and radiation, the wall 
absorbs as much radiation as it emits, and the radiation has the 
same temperature as the wall. If the wall of the container absorbs 
radiation of all wavelengths, i.e. if the wall is black, the radiation in 
the container is called black-body radiation. 
Black-body radiation can also be present in a container with reflect-
ing walls. For radiation to be described by a single temperature, it 
must be in thermal and chemical equilibrium with itself. This can be 
achieved by a tiny particle of dust that absorbs and emits light of any 
frequency. We imagine the dust particle to be so small that its heat 
content is small compared to that of the radiation, so that its energy 
and entropy do not need to be included in the balances. Black-body 
radiation of 300 K is invisible, it is in the infrared range. The light 
from the sun is nearly black-body radiation. It has, like the solar sur-
face, a temperature of about 6000 K. Fig. 11.1 shows the spectra of 
black-body radiation at different temperatures.

�
For the description of light, we will use methods that we have also 
applied to material gases. First of all, we must refrain from some 
processes that seem natural to us when dealing with light: So we will 
not consider a free light beam (e.g. from the sun to the earth) – this 
corresponds to a free gas beam into the vacuum. We will also not 
look at selectively absorbing or reflecting walls. If light has a certain 
wavelength, the light particles (photons) have a certain momentum. 
A color filter that transmits light of a single wavelength transmits light 
particles of a particular momentum. In the case of a material gas, 
this would correspond to a device that only allows molecules of a 
certain momentum to pass through. 
One problem with the handling of light is that it is difficult to measure 
some parameters that are important for its description: the pressure 
is usually very low and difficult to measure. The temperature is diffi-
cult to measure because the entropy density of light is usually very 
small. Furthermore, in contrast to material gases, it is almost impos-
sible to perform a process with n = const in the laboratory with light.

Fig. 11.1 
Spectra of black-body radiation of 
various temperatures
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11. Light as a gas

11.2 The entropy of light
The fact that light has entropy and that a light flow is accompanied 
by an entropy current can easily be seen from the experiment in Fig. 
11.2. Experience shows that the two bodies A and B come into 
thermal equilibrium by radiation flowing from the body with the high-
er to that with the lower temperature. As TA decreases, the entropy 
SA also decreases. Because entropy cannot be destroyed and, apart 
from radiation, there is no connection through which entropy could 
flow from body A to body B, the entropy must flow away with the ra-
diation.

�

Fig. 11.2 
The temperature of the body at the 
left decreases. Thus, the radiation 
must transport entropy.

reflecting wall vacuum
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11.3 The temperature of light
Light that is emitted by a body has the same temperature as the 
body. Thus, the light coming from the surface of the sun has the 
temperature of the surface of the sun, namely about 6000 K. 
However, this statement sounds somewhat implausible: If sunlight 
has this temperature, – wouldn’t everything exposed to solar 
radiation have to burn immediately? And if sunlight has this 
temperature, then it should be possible to measure it by placing a 
thermometer in the sunlight. 
We want to discuss the problem of measuring the temperature of 
light. To measure the temperature of a body or other system, the 
system must be brought into thermal contact with the thermometer 
being used. If one now holds a thermometer into the solar radiation, 
the thermometer is in thermal contact not only with the light but also 
with the air. Whose temperature will it show? 
The situation is similar to that shown in Fig. 11.3, where an attempt 
is made to measure the voltage of two different batteries 
simultaneously with a single voltmeter. What the voltmeter indicates 
is not easy to predict. In any case, it will make a compromise 
between the open circuit voltages of the two batteries. In whose 
favor the compromise is found depends on the internal resistance of 
the batteries.

�  
With our thermometer, the compromise is clearly in favor of the air. 
One can now try to help oneself by placing the thermometer in a 
transparent, evacuated container, Fig. 11.4.

�  
However, the temperature value it now displays is still far from the 
expected 6000 K. The reason is that we missed something else. In 
fact, the thermometer makes another compromise: it is not only in 
thermal contact with the sunlight, but also with the radiation from the 
environment, i.e. radiation at ambient temperature. And while solar 
radiation only comes from a very small range of  the solid angle, the 
300 K radiation comes from a very large range. It is therefore normal 
that this time too the measurement is very much in favor of the am-
bient temperature. 
But how can the temperature of the sunlight be measured? One 
simply has to make sure that sunlight does not only come from a 
narrow range of the solid angle, but from all directions, and this is 
achieved with the help of lenses and mirrors, Fig. 11.5. If, from the 
thermometer, the sun can be seen in all directions, it will also indi-
cate the temperature of the sun (our normal thermometers are of 
course no longer suitable for this).

�

Fig. 11.3 
One attempts to measure the open 
circuit voltages of two batteries 
simultaneously with a voltmeter.

Fig. 11.4 
Thermal contact with the air has 
been prevented, but sunlight only 
comes from a very small range of 
the solid angle.sunlight

thermometer

vacuum

Fig. 11.5 
The sunlight comes from all direc-
tions of the front hemisphere.mirror

thermometer
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11.4 The chemical potential of light
We consider a container with reflecting walls with a dust particle 
filled with radiation whose chemical potential is initially not equal to 
zero. Since the container has a fixed volume and is energetically in-
sulated, the energy differential reduces to:

0 = TdS + μdn
Because of the dust particle, the amount of substance n can 
change. Such a change will occur if thereby the entropy increases, 
until S does not increase any further, i.e. until

�

has become equal to zero. This is the case when μ has become 
zero (the chemical potential depends on n). The resulting light with 
μ = 0 is black-body radiation.

For black-body radiation is μ = 0.
There is also thermal radiation, i.e. light of a uniform temperature, 
with μ  ≠  0. It is obtained by bringing light into equilibrium with 
another system whose chemical potential is not equal to zero, e.g. 
the excited electron system of a semiconductor (electrons + holes). 
This kind of thermal radiation is not called black-body radiation.

dS = − µ
T
dn
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11.5 Radiance
We are looking for a quantity that describes a light field. We are 
used to describe fields by the distribution of physical quantities in 
space, more precisely: in positional space. For example, an electric 
field is described by the spatial distribution of the electric potential 
Φ(x,y,z), or a material gas by the spatial distribution of its tempera-
ture T(x,y,z) and its pressure p(x,y,z). 
In a light field, not only the amount of light at each position is of in-
terest, but also the distribution of the light in the different directions 
at each position. The field quantity we use to describe the light, the 
radiance, is therefore a function of the position and of the direction. 
We take the energy of light as a measure of the amount of light and 
define the radiance LE:
�

P is the energy current, �  the solid angle element and �  the 
area of the surface element. The radiance LE is therefore the energy 
current per area and solid angle or the energy current density per 
solid angle. 
One can easily visualize LE by looking at a measuring method for 
the quantity, Fig. 11.6. 

�
The instrument measures the radiance at the position of the lens 
through which the light enters it and of the direction of the optical 
axis of the device. By changing the orientation of the instrument at a 
fixed location, the radiance at this location is obtained as a function 
of the direction. By shifting it parallel to itself one gets the radiance 
of a given direction for different positions.
If the device is moved parallel to itself in the direction of its optical 
axis, i.e. parallel to a light ray, the measured value does not change 
– if the light is neither scattered nor absorbed. The radiance is con-
stant on a light ray. The displayed value therefore also makes a 
statement about the surface element from which the light beam 
comes. LE is therefore also called the surface brightness.
We consider a container filled with light and look for the relation be-
tween  LE and the energy density ρE. We first introduce the quantity 
ρE’, defined by
� (11.1)

�  is the energy density of that radiation which propagates 
into the solid angle element of the direction (ϑ,Φ).
We now assume that the radiation in our container is isotropic, i.e. 
ρE’ is independent of ϑ and Φ. Then (11.1) can be integrated:
ρE = 4π ρE’ (11.2)

Now the magnitude of the energy current density jE of electromag-
netic radiation of a single direction is  jE = c · ρE, so in our case it is

LEdΩ = c · ρE’ · dΩ
or

LE = c · ρE’
With equation (11.2) we finally  obtain

� (11.3)

Instead of the energy, entropy can also be used as a measure of the 
amount of light. One can thus define an entropy current density per 
solid angle LS, and for the entropy density ρS in the container filled 
with isotropic light one gets

� (11.4)

We are now looking at a container filled with black-body radiation. 
We ask how much energy flows through an opening of surface A out 
of the container into a solid angle element of the direction ϑ, Fig. 
11.7.

�
With
�  

we get

�

or
�

The energy current dP(ϑ) into a solid angle element �  which lies 
in the direction ϑ is smaller by the factor cos ϑ than that which flows 
into an equal solid angle element perpendicular to the surface. This 
statement is known as Lambert’s law.
For the isotropic radiation of interest to us, LE can be drawn in front 
of the integral, and with
�

(Φ = azimuth) we obtain

�  

Dividing this expression by the surface area A results in the magni-
tude of the energy current density.

 jE = LE π .
With equation (11.3) we obtain the relationship between the energy 
density ρE in the container and the energy current density jE of the 
light exiting through an opening:

�  (11.5)

The entropy current density is obtained in an analog way

� (11.6)

P = LE d
!
Ωd
!
A

Ω
∫

A
∫

d
!
Ω d

!
A

Fig. 11.6 
Measuring radiance. The instru-
ment measures the radiance at the 
position of the inlet opening and for 
the direction of the optical axis of 
the instrument.

light sensor

ρE = ρE’ (ϑ,Φ )d
!
Ω∫

ρE’ (ϑ,Φ )d
!
Ω

ρE = 4π
c
LE

ρS = 4π
c
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Fig. 11.7 
Lambert’s law
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11.6 Stefan-Boltzmann law
The energy current per surface area of the light emitted by a black 
body depends only on the temperature of the body. It was found ex-
perimentally

jE = σ T4     with  σ = 5.670 · 10–8 Wm–2K–4 (11.7)

This relation is called the Stefan-Boltzmann law; σ is the Stefan-
Boltzmann constant. 
With equation (11.5) follows

�

We use the abbreviation

� (11.8)

and obtain
ρE = aT 4 (11.9)

Il follows
E = aVT4 (11.10)

In addition, with (11.3) we get

�

In words: Energy density, radiance and total energy in a black body 
increase with the 4th power of the temperature.

ρE = 4σ
c
T 4

a = 4σ
c

= 7,566 ⋅10−16 Jm-3K−4

LE = σ
π
T 4
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11.7 Pressure and entropy of thermal radiation as 
 a function of temperature

We consider the black-body radiation in a cylinder whose rear wall is 
black and at temperature T, Fig. 11.8. We choose T and V as inde-
pendent variables. If the piston is shifted to the right, the black wall 
emits more than it absorbs, just so that the newly created volume is 
filled with radiation of the same density as the radiation had before.

�  
From the energy differential of the black-body radiation, i.e. of radia-
tion with  μ = 0 
dE = TdS – pdV

we get

�

From equation (11.10) we obtain
dE(T,V) = 4aVT 3dT + aT4dV

By inserting it into the preceding equation, the following results

�

Comparing with

�

we get

� (11.11)

Partial derivation of the first relationship with respect to V and the 
second with respect to T, and equating results in

�

and from this we obtain

�

This differential equation has the solution

� (11.12)

Thus, also the pressure of black-body radiation goes with the 4th 
power of the temperature. With equation (11.9) we also get

� (11.13)

We will add a plausibility check that delivers the same result.
We decompose the radiation in a rectangular container into 6 parts, 
each running towards one of the walls. Each component corre-
sponds to a momentum current density, which, according to Max-
well’s theory, is equal to the energy density:
jpi = ρEi

With  ρEi = ρE/6 we get
jpi = ρE/6.

The momentum current flowing into the reflecting wall is twice as 
large as that of the incident radiation, i.e.
p = 2 jpi = ρE/3,

that is, the same expression as (11.13).
We finally ask for the entropy density

�

of the black-body radiation. With (11.11) and (11.12) we get

�

From this we obtain the total entropy

�

The temperature dependence of the entropy is therefore the same 
as that of a phonon gas in a solid, Section 6.2.
With equation (11.4) follows

�

Finally, we obtain the relation between energy and entropy:

�

Fig. 11.8 
When the piston is pulled out, the 
black surface emits light so that 
the density of the radiation in the 
cylinder remains constant.

reflecting
black

dS = 1
T
dE + p

T
dV

dS(T ,V ) = 4aVT 2dT +aT 3dV + p
T
dV

= 4aVT 2dT + aT 3 + p
T

⎛
⎝⎜

⎞
⎠⎟ dV

dS(T ,V ) = ∂S(T ,V )
∂T

dT + ∂S(T ,V )
∂V

dV
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∂T
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∂V
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T

4aT 2 = 3aT 2 + 1
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dp
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− p
T 2

aT 3 = dp
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T
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3
T 4

p = ρE
3
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∂V
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4
3
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S = 4
3
aVT 3
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3π

aT 3

E(S,V ) = 0,681⋅ S 4

aV
3



11. Light as a gas

11.8 Isothermal, isentropic and isoenergetic  
  expansion of light
Isothermal expansion, Fig. 11.9
The piston is moved. The heat reservoir ensures T = const. With the 
results of the previous section we get:

E ~ V  
S ~ V 
ρE = const  
ρS = const  
p = const

�
 
Isentropic expansion, Fig. 11.10
The reflecting walls ensure S = const. During the expansion, the 
light remains thermal. With the results of the previous section fol-
lows: 

V · T 3 = const 
p · V4/3 = const 
E/T = const

�

 
Isoenergetic expansion, Fig. 11.11
This is the analog to the Gay-Lussac experiment. At first, there is 
light only in the left container. Then the connection to the right is es-
tablished. With the results of the previous section: 

V · T4 = const 
S · T = const 
p · V = const

In this expansion, T decreases according to the first equation. The 
second tells us that S increases, as it has to be because of the 2nd 
law.

�

The cosmic background radiation
The last two of the processes described above cannot be realized in 
the laboratory, since even the best mirrors absorb so strongly that 
the light is always in thermal equilibrium with the cylinder wall. In na-
ture, however, an isentropic expansion is realized: The universe is 
expanding, and the light that fills the cosmos and had 400,000 years 
after the Big Bang a temperature of 3000 K continues to cool down. 
Today its temperature is 2.7 K. It is called cosmic background radia-
tion. 

The gas-condensate analogue
The fact that during the isothermal expansion or compression of 
light, Fig. 11.9, the values of all intensive variables remain constant 
and the values of the substance-like quantities are proportional to 
the volume, is something we know from the material gases: a mater-
ial gas behaves in the same way when it is in equilibrium with its 
condensate. The black walls in the experiment with the light corre-
spond to the condensate. When the volume is increased, new light 
comes out of the walls, when it is reduced it disappears into them. 
The light reacts with the wall, more precisely: with the electron and 
phonon system of the wall, and the chemical potentials of light and 
wall are always equal (and equal to zero). Equation (11.12) corre-
sponds in this picture to the vapor pressure curve.

Fig. 11.9 
Isothermal expansion of lightreflecting

blackheat reservoir
T = const

Fig. 11.10
Isentropic expansion of light

reflecting

Fig. 11.11
Isoenergetic expansion of light

dust particle all the walls reflecting
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11.9 Light with non-zero chemical potential
To generate thermal radiation with μ ≠ 0 light is brought into chemi-
cal equilibrium with reaction partners whose chemical potential is not 
equal to zero. For example, the reaction

e + h ↔  γ .

e and h are electrons or holes in a semiconductor, γ stands for light. 
In equilibrium it is
μe + μh =  μγ 

The values of μe and μh are known from solid state physics. If one 
wishes to generate a light beam with μ ≠ 0, one reaction partner, 
namely γ, has to be constantly removed. In order to maintain the 
concentration of electrons and holes, it is necessary to constantly 
generate new ones. This can be done, for example, by “pumping” 
with another light source, such as sunlight. The whole process takes 
place in a luminescent solid, Fig. 11.12.

�

The incident light has a high temperature, but μ = 0. The emitted 
light has the temperature of the solid, i.e. T ≈ 300 K, but its chemical 
potential is greater than zero. So the solid body transloads energy – 
from the carrier entropy to the carrier amount of substance. 
Instead of using light, one can also “pump” electrically. This is done 
in a luminescent diode. This light also has T ≈ 300 K and μ > 0.

Fig. 11.12 
In the luminescent body, the tem-
perature of the light decreases 
and the chemical potential in-
creases.

sunlight T = 6000 K
μ = 0

luminescence light
T = 300 K
μ > 0
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11.10 Energy transport with thermal radiation
Two black radiators with different temperatures T1 and T2 are located 
in a reflecting box, so that the radiation emitted by one of them ei-
ther falls back onto the emitting body or is absorbed by the other 
body, Fig. 11.13. 

The resulting energy current between the bodies is the sum of one 
flowing from right to left and one flowing from left to right. The same 
applies to the entropy current. If the temperatures T1 and T2 are not 
very different, i.e. if ΔT = T2 – T1 ≪ T2 = T, then with (11.7) and 
(11.8) we get

�

and with (11.6) and (11.14)

� .

Thus, for the resulting energy current we get the relation
jE = T · jS

jE = jE 2 − jE1 =
c
4
a(T2

4 −T1
4 ) ≈ caT 3ΔT

jS = jS2 − jS1 =
c
3
a(T2

3 −T1
3 ) ≈ caT 2ΔT

Fig. 11.13 
The radiation emitted by one body 
is absorbed either by itself or by 
the other body.

reflecting
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11.11 Kirchhoff’s law of radiation
The quotient

�

is called the absorptivity of a body. Two bodies A and B of the same 
temperature stand opposite each other in an evacuated container 
with reflecting walls, Fig. 11.14.

�
Body A is “black”, it absorbs all radiation, i.e. αA = 1. Body B is not 
black, it only absorbs part of the incoming light and reflects the rest. 
We call the current density of the energy flowing out of A and B, re-
spectively, jEA and jEB. Thus the following applies to the energy flow 
in the space between the two bodies

from left to right:  jE→ =  jEA 
from right to left:  jE←  = jEB + (1 –  αB) jEA

Now no net energy must flow between A and B, otherwise the en-
tropy of the whole arrangement would decrease. So

 jE→ =  jE←
and 

 jEB =  αB ·  jEA

We now call jEA =  jE,black , omit the index B and obtain

�  

The quotient of the energy current density of the emitted radiation 
and the absorptivity is the same for all bodies. It only depends on 
temperature. One can place a color filter in front of each of the two 
bodies, which transmits radiation of a single frequency ν, and re-
flects the rest. The same consideration as above then shows that 
the relationship just derived applies to each frequency individually:

�

or

�

This is Κirchhoff’s law of radiation.

α = absorbed energy current
incident energy current

Fig. 11.14 
Body A is black, it absorbs all ra-
diation, body B does not.

reflecting

jE
α

= jE ,black

djE /dν
α = djE ,black /dν

djE /dν
α = f (T ,ν )
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12. Thermal engines

12.1 Overview
We are dealing with devices and machines in which entropy S is 
brought from a high temperature T2 to a low temperature T1 and 
thereby the potential ξ of another extensive quantity X is increased, 
and also with machines in which the opposite happens: the potential 
of a quantity X decreases and entropy is raised from low to high 
“thermal potential T”. Such machines can be represented schemati-
cally as shown in Figures 12.1a and 12.1b.

�  
The entropy flowing downwards in the diagrams is the unintentional-
ly produced entropy. If the carrier of the out-flowing energy is angu-
lar momentum, the machine is called a heat engine or thermal mo-
tor. In the case of the solar cell, the thermocouple and the MHD 
generator, the carrier of the energy flowing out is electric charge.
The name of a machine often includes more than what is shown in 
Fig. 12.1. As is well known, the gasoline engine is a machine into 
which the energy enters with the carrier gasoline + O2, Fig. 12.2. 
The entropy is generated within the engine.

�
Machines of the type shown in Figure 12.1b are called heat pumps. 
Heat pumps are used for heating and for cooling. There is a special 
type of heat pump, where the energy carrier is entropy on both 
sides: the absorption refrigerator, Fig. 12.3. Its structure is analog to 
that of the electric transformer.

�

Fig. 12.1 
(a) Flow diagram of a heat engine; 
(b) Flow diagram of a heat pump
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Fig. 12.2 
Flow diagram of a gasoline engine
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12.2 Why heat engines?
Cars need energy carried by angular momentum. Electricity-based 
energy is particularly suitable for distribution to many small con-
sumers. But we get our energy from natural sources with other en-
ergy carriers. 
Our energy sources are of two kinds.
• The inexhaustible sources: One taps into a natural energy flow. 

This is done in hydro, wind and solar power plants.
• The exhaustible sources: Energy has accumulated on the earth 

in processes that have lasted billions of years. These stocks are 
currently being emptied, and on a historical time scale, very 
quickly. At present, but of course not for much longer, they are 
man’s most important source of energy. 

Energy is now being squandered not only in that the natural energy 
stores are being depleted ruthlessly, but also in that the energy is 
being transloaded with a poor efficiency from the energy carriers 
with which it is obtained in nature, to the energy carriers of angular 
momentum and electricity that people prefer.
We had seen in section 2.7 that the cause of all energy losses is en-
tropy production. However, entropy production is the first step in vir-
tually all technical processes for the exploitation of natural energy 
reservoirs. In order to obtain energy with the carrier angular momen-
tum or electricity, heat engines are used – machines that need en-
tropy at a high temperature at their input. This entropy is obtained by 
production, and this is one of the reasons for the poor efficiency of 
the energy industry. We had seen (equation (2.9) in section 2.7) that 
this alone is the cause of a factor

�

to the efficiency. Here T1 is at best the ambient temperature, i.e. 
about 300 K, and T2 the highest temperature that can be technically 
controlled, i.e. about 800 K. Consequently, just because of the en-
tropy production a factor

�  

results.
Actually, the efficiency of heat engines is considerably lower: be-
tween 0.3 and 0.4.

η = T2 −T1
T2

η = 800 K − 300K
800 K

≈ 0.63
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12.3 External combustion engines
Cyclically operating machines – the Stirling cycle

Fig. 12.4 shows the p-V and the T-S diagram of the idealized Stirling 
cyclic cycle.

�  
The process is approximately realized in a Stirling or hot air engine, 
Fig. 12.5. A piston (P) moves back and forth in a cylinder filled with 
air. The cylinder is heated on the left and cooled on the right. In ad-
dition to the piston, the “displacer” (D) also runs back and forth, 
phase-shifted against the piston. The displacer is permeable to air, 
but has a large heat capacity and a large surface area, so that it ex-
changes entropy with the passing air.

�
Fig. 12.6 shows the piston and displacer positions corresponding to 
the four states A to D. The same process running backwards is used 
in air liquefiers. Thereby hydrogen or helium is the working fluid.

�

Continuous flow machines 
In a continuous flow machine, the working medium flows in a circuit. 
The flow is stationary. For a small portion of the working fluid that is 
traced on its way through the circuit, a closed curve can be specified 
in the p-V and T-S diagrams, just as for the cyclically operating ma-
chines. 

The Brayton cycle
Fig. 12.7 shows the p-V and the T-S diagram.
AB The gaseous working fluid is isentropically compressed.
BC At constant high pressure entropy is supplied to the gas. 
CD The gas expands isentropically. 
DA The gas releases entropy at low constant pressure.

�  
The Brayton cyclic process is realized in a closed-cycle gas turbine 
plant, Fig. 12.8. The compressor is driven by the turbine. Part of the 
energy flows “in a circle” within the machine.

�
The self-circulating central heating, Fig. 12.9, also represents an ex-
ample of this process. The pressure difference between the entropy 
input and entropy output is provided by the gravitational field. A 
closed convection flow in a heated room is also such a process.

�  
A more complicated variant of the Brayton cycle is the Ericson cycle. 
Here, compression and expansion are broken down into sub-steps 
between which entropy is taken from or supplied to the gas, so that 
compression and expansion are almost isothermal. This process 
was used in the helium turbine plant of high-temperature nuclear re-
actors. 

The Rankine cycle 
The Rankine cyclic process is the process that realized in steam en-
gines. It is very similar to the Joule process. It differs from the Joule 
process in that the working fluid (usually water) makes phase transi-
tions during the cyclic process, Fig. 12.10.
AB The pressure of the liquid working fluid is isentropically in-
creased (in the feedwater pump).
BC At constant high pressure entropy is supplied to the fluid (in 
the boiler or steam generator).
CD The steam expands isentropically (in the turbine). 
DA At constant low pressure entropy is released (in the con-
denser).

�
An advantage of this process is that only a feed water pump is re-
quired instead of a compressor. As a result, the energy flowing 
around within the machine is much lower than with the Brayton cy-
cle. 
Fig. 12.11 shows pressure and temperature values of a power plant.

�  
Most steam locomotives had no condenser. The steam at the outlet 
of the engine therefore had to have a pressure p > 1 bar and a tem-
perature ϑ  > 100 °C. The temperature drop between 100 °C and 
ambient temperature was therefore not exploited.

Fig. 12.4 
Stirling cycle (a) in the p-V and (b) in the T-S diagram

a b

Fig. 12.5 
Stirling enginehot coldD

P

Fig. 12.6 
Stirling engine, 4 phases

Fig. 12.7 
Brayton cycle (a) in the p-V and (b) in the T-S diagram
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Fig. 12.10
Rankine cyclic process (a) in the p-V and (b) in the T-S diagram
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12.4 Internal combustion engines
Cyclically operating machines – the gasoline engine

Fig. 12.4 shows the p-V and the T-S diagram of the Otto cycle which 
is an idealization of the process that runs in the gasoline engine.

�  
The increase in entropy in process step AB is caused by entropy 
production within the cylinder, by the combustion of gasoline. This 
happens at the top dead center, and so quickly that the volume prac-
tically does not change during the combustion process. BC is the 
power stroke. The hot gas (N2, H2O and CO2) expands. The process 
step  CD does not actually consist of cooling the gas at a fixed vol-
ume. Instead, the gas is replaced by fresh, cold gas in a further pis-
ton stroke. In process step DA, the fresh gas is isentropically com-
pressed. 

Continuous flow machines – the gas turbine

The process is essentially the same as the Brayton cycle, Fig. 
12.13. The working fluid is air – whose oxygen, however, combines 
with the fuel to other gases (H2O and CO2). The compressor com-
presses air from the surroundings. Entropy is supplied in the com-
bustion chambers by burning the fuel. The hot gases expand in the 
turbine. In the jet engine, the turbine is designed so that it only dri-
ves the compressor. The gas leaving the turbine then has a high ve-
locity relative to the engine. This means that a momentum current 
flows from the outflowing gas into the engine – and from there into 
the aircraft.

�

Fig. 12.12
Idealized process of the gasoline engine (a) in the p-V and (b) in the T-S diagram

Fig. 12.13 
Gas turbine systemfuel

turbine
compressorair exhaust

 gas

a b
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12.5 Heat pumps
Any heat engine working reversibly can operate as a chiller. Internal 
combustion engines are not suitable, since irreversibility is 
fundamental for their operation.  

Inversed Stirling and Rankine process
It has already been mentioned that the Stirling engine can operate 
as a chiller. However, the most common process is the reverse 
Rankine process: it is used in most refrigerators and freezers, Fig. 
12.14. Instead of in an expansion machine, the working fluid ex-
pands in a throttle (E + pV = const). This makes the refrigerator less 
efficient, but it is less complicated.

�

The Hampson-Linde cycle
It is used for the liquefaction of gases, Fig. 12.15. The gas is com-
pressed to 100 to 200 bar and expands in a throttle. It cools down 
due to the Joule-Thomson effect. This cooled gas is used to pre-cool 
the incoming gas. As a result, the temperature of the expanded gas 
becomes lower and lower until part of it finally becomes liquid. Gas-
es whose inversion temperature is below normal temperature, such 
as H2 or He, must first be brought below the inversion temperature 
by another procedure.

�

Fig. 12.14 
In the refrigerator, a Rankine 
process runs in reverse.
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Fig. 12.15 
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13.1 Amount of data
We want to transmit messages using cards, Fig. 13.1: Each card 
can contain one of z symbols or characters agreed between sender 
and receiver, e.g. one of the letters of the alphabet.

�
We are looking for a measure of the amount of data that is trans-
ferred with one card. For simplicity’s sake, we first consider the case 
that there are only two characters, e.g. a cross and a circle. Thus, 
our character set contains z = 2 characters. With one card one of 
two possible messages can be transmitted; one can choose be-
tween two messages. With two cards (sent in order) one can choose 
between 2 · 2 = 4 messages, and with n cards between 2n mes-
sages. 
One could use the number N = 2n as a measure for the amount of 
data transmitted with n cards. However, the measure defined in this 
way would have the disadvantage of not being substance-like. This 
can be seen in the following way.
We send 3 cards first. For 3 cards we have

Na = 23 = 8.
After that, we’ll send two more cards. For two cards alone we have

Nb = 22 = 4.
For all 5 cards together, however

Nc = 25 = 32. 
Thus,

Nc ≠ Na + Nb. 
A better measure of the amount of data is the logarithm of the num-
ber N of possible messages. We therefore provisionally define the 
amount of data H:

H = f · ln N
with N = number of the possible messages.
The constant f defines the unit of measurement of H. For N = 2, i.e. 
in the case that a decision is made between two possibilities, H = 
1 bit, i.e.

�

With n cards, an amount of data of

 �

will be transferred.
With ln x/ln 2 = ld x we can also write

H = ld N bit
If the number z of characters of the character set is large, the 
amount of data per card, and therefore per character, is also large.
With z = 32 we have for one card N = 32, thus H = ld 32 bit = 5 bit. 
Assuming that there are 40 000 Chinese characters, the amount of 
data transferred with one character is 

H = ld 40 000 bit ≈ 15 bit. 
We will now convince ourselves that the expression f · ln N is still not 
a good measure of the amount of data. We look at three examples 
in which one of two possible messages is selected. This means that 
the character set must contain z = 2 characters. Since each time 
only one character is transmitted we have H = 1 bit, Fig. 13.2.

�
(a) The sender rolls the dice and tells the receiver whether the re-
sult is an even or an odd number. 
(b) The sender rolls the dice and tells the receiver whether he has 
made a 6.
(c) The sender rolls the dice and tells the receiver whether he has 
rolled a seven. 

The formula f · ln N returns the same result every time, namely 1 bit. 
However, from a reasonable amount of data one would expect that

H3 < H2 < H1

in fact, that even H3 = 0, because if the receiver knows the message 
in advance (in our case, that no seven were rolled), the amount of 
data he receives with the message should be zero.
A measure that meets this requirement was introduced is:
�

The sum extends over all possible messages. pi is the probability 
that the message i will be sent. In the case that all messages are 
equally likely, we have 

p1 = p2 = p3 = … = pi  = … = 1/N ,
and H becomes the old expression f · ln N.
In our example we have

(a) p(pair) = 0.5 p(impair) = 0.5 H = 1 bit 
(b) p(six) = 1/6 p(not six) = 5/6 H = 0.65 bit 
(c) p(one to six) = 1 p(seven) = 0 H = 0 bit 

The example shows two important properties of this measure of the 
amount of data: 
1) If one of the probabilities is equal to one and all the others equal 
to zero, we obtain H = 0:

�

because

�

2) For a given number z of characters H is maximum if 
p1 = p2 = p3 = … = pz .

To prove it, the extremum of

�

is calculated under the constraint
 �

(The sum of the probabilities is equal to one.)
Fig. 13.3 shows H(p1) for the case in which z = 2: 

H = – f [p1 ln p1 + (1 – p1) ln(1 – p1)] 

Here we encounter a problem that is also typical for statistical ther-
modynamics. It is easy to calculate H for such absurd messages as 
whether an even or odd number was rolled, because we know the 
probability distribution of the possible messages. In most cases, 
however, it is not so easy to specify probabilities. 
But how do we know the probabilities of the numbers occurring on 
the dice? There are two ways for obtaining them: First, we can de-
termine them experimentally. We roll the dice very often and mea-
sure the frequency with which the numbers appear. Secondly, we 
can indicate the probabilities “a priori”. We conclude from the sym-
metry of the dice and the complete indeterminacy of the rolling 
process that all numbers are equally likely.

Fig. 13.1 
A data current flows from the 
sender to the receiver.

sender receiver

1 bit = f ⋅ ln 2   ⇒    f = 1 bit
ln 2

H = 1 bit
ln 2

ln 2n= n  bit
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cross
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cross
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Fig. 13.2 
Although two characters are used 
in each case, the amount of data is 
not the same for the three trans-
missions (a), (b) and (c).

H = −f ⋅ pi lnpi
i
∑

H = −f ⋅ pi lnpi
i=1
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∑ = −f (z −1)lim(p lnp
p→0

)− f ⋅1⋅ ln1= 0,

lim(p lnp
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) = lim  lnp
1/ pp→0

=…= 0  (l’Hôspital’s rule)

H(p1,p2,…pz ) = −f ⋅ pi lnpi
i=1

z

∑

ϕ(p1,p2,…pz ) = pi −1= 0
i
∑

Fig. 13.3 
Amount of data in the case of a 
transmission with two characters 
as a function of the probability of 
the characters
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13.2 Generalization of the concept of state
In section 4.1 we learned: In a particular state, each variable has a 
specific value. Many real situations cannot be described with this 
concept of state, namely all those in which the values of variables 
are not known. We are looking at an example that may seem a bit 
absurd at first glance, but which makes it easy to explain the prob-
lem. 
In an opaque box there is a flat magnetic pill whose magnetic mo-
ment m0 is perpendicular to the plane of the disc, Fig. 13.4. Now the 
box is shaken and placed on the table. We ask for the state of the 
magnet, whereby we assume that the state is determined only by 
the value of the magnetic moment.

�
In the sense of our definition of a state given earlier we would have 
to say: We do not know the state. However, our common sense tells 
us that we know a lot more than nothing about the magnet, namely 
(1) We have either m = (0, 0, m0) or m = (0, 0, –m0), but certainly not 
m = (0,5 · m0,  0, 0) etc. 
(2) Since we have shaken the box, and since the magnetic disk is 
symmetrical and neither the box nor the table itself is magnetic, the 
probability p(↑) that the magnetic moment points up is 0.5 and the 
probability that it points down p(↓) is also 0.5:

p(↑) = p(↓) = 0.5
We can therefore specify a probability distribution of the values of 
the variable. This is what we are doing now in order to generalize 
the concept of state: 

In a given state, to the values of each variable belongs a specific 
probability distribution.

By means of statistical physics it will be possible to specify the state 
of many systems: the energy and the velocity of the molecules of a 
gas, the energy of the electrons in a semiconductor, the momentum 
of the photons in a radiation cavity, the magnetic moment of the par-
ticles of a paramagnetic material. 
The most important task of statistical physics is to calculate such 
probability distributions. However, it sounds a bit like magic: One 
cannot calculate probabilities if one does not enter probabilities 
somewhere in the calculation – but this is done in statistical physics 
just the same way as we did with the magnetic disk. The argument 
is always the same: “The probabilities of all states...[more precise 
description]... are equal.” The probabilities thus specified are a-priori 
probabilities. The reason for the equality is: We don’t know any rea-
son why they should be different.
Many physicists feel uneasy about this argument. They try to calm 
down by saying that one can experimentally determine the probabili-
ties, at least in thought. For this one needs the concept of Gibbs’ en-
semble. One imagines that the system to be described exists in a 
very large number of copies. This is Gibbs’ ensemble. The value of 
the quantity of interest is measured on each copy and a frequency 
distribution is obtained. This, one says, is equal to the sought-after 
probability distribution. All statements made about a system are also 
made about the ensemble. One can say that the ensemble is the 
system. With the help of the ensemble concept one can now de-
scribe the state verbally without giving probable values. One speci-
fies the system preparation. 

Examples of system preparations 
(1) 1 mol H2 is in a container which is in thermal contact with a heat 
reservoir of temperature T. 
(2) One of two valves is opened with the aid of a radioactive materi-
al: If a decay takes place within 1 s, 1 mole oxygen flows into a con-
tainer, if none takes place, 1 mole hydrogen, Fig. 13.5a. 
(3) State at time t = t0, Fig. 13.5b: In the left compartment there is air 
of T =…, p =… At time t0 – 10–8 s the wall is pulled out. 
(4) Put 105 molecules one after the other into a container according 
to the following procedure: Go from your laboratory to the elevator, 
see how many men and how many women leave. Put one O2 mol-
ecule for each man and one N2 molecule for each woman into the 
container. Go back to the elevator etc.

�

Fig. 13.4 
Although one doesn’t know which 
way the magnet is oriented, its 
state is not completely unknown.

Fig. 13.5 
(a) In the right container there is 
with a certain probability pure hy-
drogen and with another probability 
pure oxygen. 
(b) At time t0 the gas has partially 
invaded the right side of the con-
tainer.

b

a
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13.3 Entropy of a distribution
Fig. 13.6 shows the probability distribution p(x) over the values of a 
variable x. With this distribution several quantities or numbers can 
be defined.

mean of x:

variance of x:

entropy of the distribution:

The square root of the variance is called the standard deviation.

�  
Fig. 13.7 shows three particular distributions, all with the same mean 
value.

�
The entropy has a finite value only if the distribution is discrete, i.e. if 
x can only assume a finite number of different values. The entropy 
concept defined in this way can be applied to any physical system. 
We consider a system with a single independent variable, such as a 
system of N particles whose magnetic moments can be oriented in 
one of two directions: up or down, Fig. 13.8. If the magnitude of the 
magnetic moment of a single particle is m0, the total magnetic mo-
ment can assume the values Nm0, (N – 2) m0 ,(N – 4) m0 ,…, 0,…, 
 – (N – 4) m0, –(N – 2) m0, –Nm0.

�
We now describe a state of the system by specifying the system 
preparation, for example: Bring the system into thermal contact with 
a heat reservoir of temperature T. If we do this with all members of 
Gibbs’ ensemble, we obtain a frequency distribution over the values 
of m and thus a probability distribution. From this the entropy η 
could be calculated.
Instead of the cumbersome description of the preparation of the sys-
tem, we can simply specify the probability distribution p(mi), and cal-
culate the associated entropy. Among the probability distributions 
over m there is a class of particular distributions: those where all p 
except one are zero. The entropy of such a distribution is zero. Each 
such distribution corresponds to a particular state. So there is a 
class of states with entropy zero. If we number the states i = 1,..., we 
can also say: In the equation
�

it has to be summed over all states with entropy zero.

Fig. 13.6 
Different numbers can be calculat-
ed from the discrete probability 
distribution.

Fig. 13.7 
Three probability distributions, all 
with the same mean, but different 
variances and different entropies.
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Fig. 13.8 
The only variable of the system is 
the magnetic moment. The mag-
netic moment of each particle can 
only assume two values.
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∑ lnp(xi )

x = p(xi )xi
i
∑

S Δx( )2 = p(xi )
i
∑ (xi − x )2

η = − p(xi )
i
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13.4 The physical entropy of a system
We now claim that the entropy η defined in the previous section is 
equal to the physical entropy except for a constant factor:
�  

where
k = 1.380 · 10–23 JK–1 

is the Boltzmann constant
To sum is over all states with S = 0. We will illustrate this with the 
example of the previous section. The system consists of four ener-
getically degenerate magnetic moments. The 16 states with entropy 
zero are listed in Fig. 13.9.

�  

1. S increases spontaneously 
We bring the system into a state with η = 0, e.g. into the state with 
p1 = 1, p2 = … = p16 = 0. If one now waits for a sufficient time, then 
finally all probabilities become equal p1 =  p2 = … =  p16 = 1/16. Thus 
η increases from 0 to ln 16. The state of maximum entropy is a state 
of equilibrium: all probabilities pi are equal. The entropy η, which we 
had defined in the previous section, thus has one property in com-
mon with the physical entropy S: If a system is left to itself, it in-
creases.
 
2. Substancelikeness 
We consider the independent systems A and B. We assume that A 
has NA and B has NB states with η = 0. Thus

�  

The system AB consisting of A and B together has NAB = NA  · NB 
states with η = 0. The probability of the state characterized by i and j 
is pA(i) · pB(j). So it is 

�  

With
�

we get

�

The entropy ηAB of the compound system AB is therefore equal to 
the sum of the entropies ηA and ηB of the subsystems. 

3. If heat flows, η also flows
We consider two systems A and B consisting of four magnetic mo-
ments each, but this time in an external magnetic field, Fig. 13.10. 
Thus there is no degeneration.

�
The zero point of the energy is set so that E = 0 when the magnetic 
moments point in the direction of the field vector. If a magnetic mo-
ment is reversed, the energy of the system increases by E0. The two 
systems are energetically isolated from each other and from the en-
vironment. The initial state is like this: The energy of A is two units 
E0, i.e. 2E0, the energy of B is zero. Fig. 13.9 shows that A has six 
states with η = 0 (no. 6 to 11) and B has one (no. 1). Each of the 
systems A and B is in equilibrium, i.e. in the state of maximum en-
tropy. It is therefore (index “in”: initial): 
ηAin = ln 6 = 1.79  and  ηBin = ln 1 = 0.

We now bring A and B into thermal contact with each other. We 
know that (1) entropy S flows from A to B and (2) entropy S is pro-
duced. We want to check whether this also applies to our statistically 
defined entropy η 
By counting, we find that the overall system has 28 states with η = 0 
(in which E = 2E0). If both sub-systems are in thermal equilibrium, all 
of them are equally probable and it is (index “fin”: final):
ηABfin = ln 28 = 3.33 > ηAin + ηBin 

In addition we know
ηAfin = ηBfin = 0.5 · ηABfin = 0.5 · ln 28 = 1,67

Thus
ηAfin < ηAin  and   ηBfin > ηBin 

Thus the entropy η of A has decreased, that of B has increased. Fur-
thermore, the total entropy ηAB has increased – everything as we 
know it from the physical entropy S.

S = −k p
i
∑ (i )lnp(i )

Fig. 13.9 
The 16 states with the entropy 
S = 0 of a system of 4 magnetic 
moments.
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Fig. 13.10 
Two systems consisting of four 
magnetic moments each



13. Entropy and probability

13.5 Entropy and temperature
A small class of probability distributions, namely that of equilibrium, 
can be described very simply: by specifying a single number, the 
temperature. For an isolated system in equilibrium it is

�

With dE = TdS we obtain

�

p(1) = p(2) =… ⇒ S = −k p(i )lnp(i )
i=1

Ω

∑

= −kΩ 1
Ω
ln 1
Ω

S = k lnΩ

kT = 1
d (lnΩ)/dE



13. Entropy and probability

13.6 Entropy and amount of data
From the equality of the expressions for S and H it follows that the 
entropy can be interpreted as an amount of data. If one looks at the 
four magnetic moments in our example to see how each individual 
moment is oriented, one obtains the amount of data
�

where i stands for the states with S = 0. 
Instead of saying “the system contains the entropy S” one can also 
say “the system contains the amount of data H”. 
If we identify S and H, we can write:

�

and thus 
1 bit = 0.9565 · 10–23 JK–1 

or
1 bit ≈ 10–23 J/K

The fact that a system containing entropy also contains data does 
not imply that the system can be used as a technical data store. A 
data memory should not come into internal equilibrium or into 
equilibrium with the environment by itself.

H = −f p(i )lnp(i )∑

f = bit
ln2

= k = 1.380 ⋅10−23  JK-1



Table of chemical potentials and molar entropies
The values in the table are valid for substances under standard con-
ditions, i.e. for a temperature of 25 °C and a pressure of 1 bar. For 
dissolved substances, the values refer to one-molar solutions: 1 liter 
of the solution contains 1 mole of the dissolved substance. 

For some of the dissolved substances, the molar entropies listed in 
the table are negative. For example, for Ca++: S/n = –55,23 Ct/mol. 
In fact, of course, there are no negative entropies. The negative va-
lue is only the result of an arithmetic trick. In aqueous solutions, ions 
are surrounded by so-called hydrate shells: A certain number of wa-
ter molecules are attached to each ion. Ion and hydrate shell toge-
ther form a kind of large molecule. When dissolving CaCl2, for ex-
ample, the reaction
CaCl2  + nH2O(normal) + 2mH2O(normal) →
Ca++ + 2Cl– + nH2O(Ca++  hydrate shell) + 2mH2O(Cl–  hydrate shell) 
takes place. CaCl2 transforms into Ca++ and Cl– ions, and “normal” 
water is converted into water in the hydrate shells. But now one 
usually writes this reaction simply like that:
CaCl2  →  Ca++ + 2Cl–

i.e. the water on both sides of the reaction equation is omitted. To 
ensure that the entropy balance remains correct, the entropy that is 
released during the formation of the hydrate shell is simply added to 
the entropy of the ions. The entry in the table under Ca++ therefore 
contains the molar entropy of
Ca++ + n[H2O (Ca++  hydrate shell) – H2O(normal)]
and under Cl– there is the molar entropy of
Cl– + m[H2O (Cl–-hydrate shell) – H2O (normal)]
Taking these values, the simplified reaction equation can be used to 
establish the entropy balance of the reaction. 
Since the molar entropy of normal water is much greater than that of 
water in a hydrate shell, it can happen that the total molar entropy 
listed for an ion is negative.

Table of chemical potentials and molar entropies



Formula Name, phase μ in kG S/n in Ct/mol

Ag silver. gaseous 245.68 172.89

Ag solid 0 42.55

Ag+ aqueous solution 77.12 72.68

AgBr solid -96.9 107.11

AgCl solid -109.8 96.23

AgI solid -66.19 115.48

AgNO2 solid 19.08 128.2

AgNO3 solid -33.47 140.92

AgN3 solid 376.14 104.18

Ag2CO3 solid -436.81 167.36

Ag2O solid -11.21 121.34

Ag2O2 solid 27.61 117.15

Ag2O3 solid 121.34 100.42

Ag2S   orthorhombic, solid -40.67 144.01

Ag2SO4 solid -618.48 200.41

Al aluminum, gaseous 285.77 164.45

Al liquid 6.61 35.23

Al solid 0 28.32

Al +++ aqueous solution -485.34 -321.75

AlBr3 solid -505.01 184.1

Al(CH3)3 liquid -10.04 209.41

AlCl3 gaseous -570.05 314.29

AlCl3 solid -630.06 109.29

AlF3 gaseous -1192.75 276.77

AlF3 solid -1431.15 66.48

AlI3 solid -300.83 158.99

AlN solid -287.02 20.17

Al(NO3)3 · 6H2O  solid -2203.88 467.77

AlO(OH) boehmite, solid -912.95 48.45

AlO(OH)   α -biaspore, solid -920.48 35.27

Al(OH)3     hydrargillite, solid -1143.91 70.12

AlPO4 berlinite, solid -1601.22 90.79

Al2Cl6 gaseous -1220.47 489.53

Al2O3 liquid -1483.14 99.28

Al2O3    α , solid -1581.88 50.94

Al2O3  γ , solid -1563.94 52.51

Al2(SO4)3 solid -3100.13 239.32

Al2(SO4)3 · 6H2O solid -4622.57 469.03

Al2SiO5 andalusite, solid -2597.43 93.22

Al2SiO5 cyanite, solid -2596.17 83.81

Al2SiO5 · 2H2O  sillimanite, solid -2625.88 96.19

Al2Si2O7 · 2H2O halloysite, solid -3759.32 203.34

Al2Si2O7 · 2H2O  kaolinite, solid -3778.15 202.92

Al4C3 solid -196.23 88.95

Al6Si2O13 mullite, solid -6441.94 274.89

Ar argon, gaseous 0 154.73

Ar aqueous solution 16.32 59.41

As arsenic, gaseous 261.08 174.1

As     grey, metallic, solid 0 35.15

AsCl3 gaseous -248.95 327.06

AsCl3 liquid -259.41 216.31

AsF3 liquid -909.14 181.21

AsI3 solid -59.41 213.05

As2O3 monoclinic, solid -577.02 117.15

As2O5 solid -782.41 105.44

As2S3 solid -168.62 163.59

As4O6 cubic, solid -1152.52 214.22

Au gold, gaseous 326.36 180.39

Au solid 0 47.4

Au2O3 solid 163.3 125

B boron, gaseous 511.67 153.34

B liquid 19.35 14.78

B solid 0 5.87

BBr3 gaseous -232.46 324.13

BBr3 liquid -238.49 229.7

B(CH3)3 gaseous -35.98 314.64

BCl3 gaseous -387.98 290.07

BCl3 liquid -387.44 206.27

BF3 gaseous -1120.35 254.01

BN solid -228.45 14.81

BO2H monoclinic, solid -723.41 37.66

BO2H orthorhombic, solid -721.74 50.21

BO3H3 gaseous -928.43 295.14

BO3H3 solid -969.01 88.83

B2Cl4 gaseous -460.66 357.31

B2Cl4 liquid -464.84 262.34

B2F4 gaseous -1410.43 317.15

B2O3 gaseous -822.58 283.67

B2O3 liquid -1180.37 78.4

B2O3 solid -1193.7 53.97

B2O3 amorphous -1182.4 77.82

B3N6H6 liquid -392.79 199.58

B4C solid -71.13 27.11

Ba barium, gaseous 144.77 170.28

Ba solid 0 66.94

Ba++ aqueous solution -560.66 12.55

BaCO3 witherite, solid -1138.88 112.13

BaCl2 solid -810.86 125.52

BaF2 solid -1148.51 96.23

BaI2 solid -598 167.4

Ba(NO3)2 solid -794.96 213.8

BaO solid -528.44 70.29

Ba(OH)2 · 8H2O solid -2793.24 426.77

BaS solid -456.06 78.24

BaSO4 solid -1353.11 132.21

Be beryllium, gaseous 289.66 136.17

Be liquid 9.96 16.54

Be solid 0 9.54

BeCl2 gaseous -366.1 251.04

BeCl2  α , solid -446.26 82.68

BeF2 gaseous -800.54 227.44

BeF2 solid -979.38 53.35

Be(OH)2 gaseous -625.37 247.69

Be(OH)2  α , solid -814.51 49.37

Bi bismuth, gaseous 168.2 186.9

Bi solid 0 56.74

BiClO solid -322.17 120.5

BiCl3 solid -315.06 176.98

Bi2O3 solid -493.71 151.46

Bi2S3 solid -140.58 200.41

Br bromine, gaseous 82.43 174.91

Br - aqueous solution -103.97 82.42

BrCl gaseous -0.96 239.99

BrF gaseous -109.16 228.86

BrF3 gaseous -229.45 292.42

BrF3 liquid -240.58 178.24

BrF5 gaseous -350.62 320.08

BrF5 liquid -351.87 225.1

BrH gaseous -53.43 198.59

Br2 gaseous 3.14 245.35

Br2 liquid 0 152.23

Ag … Br (Silver to bromine)

Table of chemical potentials and molar entropies



Formula Name, phase μ in kG S/n in Ct/mol

C carbon, gaseous 669.58 157.99

C diamond, solid 2.9 2.38

C graphite, solid 0 5.74

CBr4 gaseous 66.94 357.94

CBr4 monoclinic, solid 47.7 212.55

CCl2O  carbonyl chloride, gas -204.6 283.42

CCl4 gaseous -60.63 309.74

CCl4 liquid -65.27 216.4

CF4 gaseous -878.64 261.5

CH gaseous 560.75 182.92

CHCl3 chloroform, gaseous -70.41 295.51

CH2 gaseous 371.87 181.04

CH2 polyethylene, solid 4.4 25.34

CH2Cl2   dichloromethane, gas -68.97 270.18

CH2O    formaldehyde, gas -112.97 218.66

CH2O2  formic acid, gaseous -350.03 251.6

CH2O2  formic acid, liquid -359.57 129

CH2O2   formic acid, 
aqueous solution

-372.38 163.18

CH3 gaseous 147.92 194.05

CH3Br   methyl bromide, gas -25.94 246.27

CH3Cl   chloromethane, gas -62.95 234.26

CH3NO2  nitromethane, gas -6.92 275

CH3NO2  nitromethane, liquid -14.55 171.9

CH3NO3  methyl nitrate, liquid -40.52 217

CH4 methane, gaseous -50.81 186.1

CH4N2O urea, solid -196.82 104.6

CH4O methanol, gaseous -162.52 239.7

CH4O methanol, liquid -166.34 126.7

CO gaseous -137.15 197.56

CO2 gaseous -394.36 213.64

CO2 aqueous solution -386 113

CO3 – carbonate ion,  
aqueous solution

-527.9 -56.9

CO3H–   aqueous solution -586.85 91.21

CS gaseous 184.1 210.46

CS2 gaseous 66.91 237.79

CS2 liquid 65.27 151.34

C2Cl2 dichloroethine, gas 198.41 271.96

C2Cl4 tetrachloroethene, gas 21.56 343.31

C2Cl6 hexachloroethane, 
gaseous

-50 397.77

C2H2 ethyne, gaseous 209.2 200.83

C2H4         ethene, gaseous 68.12 219.45

C2H4O acetaldehyde, gasf. -132.92 264.2

C2H4O epoxyethane, gaseous -11.84 243.7

C2H4O2 acetic acid, gaseous -378.95 282.5

C2H4O2 acetic acid, liquid -389.95 159.83

C2H4O2 acetic acid, aqu. sol. -396.56 178.66

C2H5Cl ethyl chloride, gaseous -60.46 275.89

C2H5Cl ethyl chloride, liquid -59.41 190.79

C2H5O2N aminoacetic acid, solid -367.02 109.2

C2H6 ethane, gaseous -32.62 229.5

C2H6O  dimethyl ether, gas -114.07 266.6

C2H6O ethanol, gaseous -168.57 282

C2H6O ethanol, liquid -174.89 160.67

C2H6O2    ethylene glycol, liquid -327.07 179.5

C3H4 propadiene, gaseous 202.38 234.9

C3H4 propyne, gaseous 194.16 248.1

C3H6 propene, gaseous 74.66 226.9

C3H6  cyclopropane, gaseous 104.11 237.9

C3H6O acetone, gaseous -151.82 294.9

C3H6O  acetone, liquid -154.83 200

C3H8 propane, gaseous -23.43 269.9

C4H8 butene-(1), gaseous 72.03 307.4

C4H8O2   ethyl acetate, liquid -323.19 259

C4H10 butane, gaseous -15.62 310

C4H10 2-methylpropane,  
gaseous

-17.92 294.6

C5H10  cyclopentane, gaseous 38.67 292.9

C5H10  cyclopentane, liquid 36.49 204.1

C5H12 pentane, gaseous -8.11 348.4

C5H12 pentane, liquid -9.21 262.7

C6H5Cl    chlorobenzene, liquid 93.65 194.1

C6H5NO2   nitrobenzene, liquid 141.62 224.3

C6H6 benzene, gaseous 129.73 269.2

C6H12  cyclohexane, gaseous 31.75 298.2

C6H12 cyclohexane, liquid 26.83 204.1

C6H14 hexane, gaseous 0.3 386.8

C6H14 hexane, liquid -4.26 296

C7H8   methylbenzene, gas 122.39 319.7

C7H8    methylbenzene, liquid 110.61 219

C8H18 octane, gaseous 17.44 463.7

C8H18 octane, liquid 6.41 361.2

C12H22O11 sucrose, solid -1543.52 360

C (Carbon)

Table of chemical potentials and molar entropies



Formula Name, phase μ in kG S/n in Ct/mol

Ca calcium, gaseous 145.53 154.78

Ca liquid 8.19 50.65

Ca  α , solid 0 41.55

Ca  β , solid 0.22 42.47

Ca++ aqueous solution -553.04 -55.23

CaBr2 solid -656.05 129.7

CaCO3 aragonite, solid -1127.71 88.7

CaCO3 calcite, solid -1128.76 92.88

CaC2 solid -67.78 70.29

CaCl gaseous -130.96 241.42

CaCl2 gaseous -479.18 289.95

CaCl2 liquid -732.16 123.88

CaCl2 solid -750.19 113.8

CaCrO4 solid -1277.38 133.89

CaF2 gaseous -793.27 273.68

CaF2 solid -1161.9 68.87

CaH2 solid -149.79 41.84

CaI2 solid -529.69 142.26

Ca(NO3)2 solid -741.99 193.3

CaO solid -604.17 39.75

Ca(OH)2 solid -896.76 76.15

CaPO4H solid -1679.88 87.86

CaS solid -477.39 56.48

CaSO4 anhydrite, solid -1320.3 98.32

CaSO4 · 2H2O  gypsum, solid -1795.73 193.97

CaSiO3     α wollastonite, solid -1495.36 87.45

CaSiO3     β wollastonite, solid -1498.71 82.01

Ca3N2 solid -368.61 104.6

Ca3(PO4)2  α, solid -3889.86 241

Ca3(PO4)2  β, solid -3899.49 235.98

Cd cadmium, gaseous 77.45 167.64

Cd solid 0 51.76

Cd++ aqueous solution. -77.58 -73.22

CdBr2 solid -296.31 137.24

CdCO3 solid -669.44 92.47

CdCl2 solid -343.97 115.27

CdF2 solid -647.68 77.4

CdI2 solid -201.38 161.08

CdO solid -228.45 54.81

CdS solid -156.48 64.85

CdSO4 solid -822.78 123.04

CdSO4 · 8/3 H2O solid -1457.98 229.7

Cl chlorine, gaseous 105.03 165.1

Cl - aqueous solution. -131.26 56.48

ClF gaseous -55.94 217.78

ClF3 gaseous -123.01 281.5

ClF5 gaseous -146.77 310.62

ClH gaseous -95.3 186.79

ClO2 gaseous 120.5 256.73

Cl2 gaseous 0 222.97

Cl2 aqueous solution. 6.9 121.34

Co cobalt, gaseous 380.33 179.41

Co   α , hexagonal, solid 0 30.04

Co      β . fcc. solid 0.25 30.71

Co++ aqueous solution. -54.39 -112.97

Co+++ aqueous solution. 133.89 -305.43

CoCl2 solid -269.87 109.16

CoF2 solid -647.26 81.96

CoFe2O4 solid -1032.61 134.72

CoO solid -214.22 52.97

CoSO4 solid -782.41 117.99

Co3O4 solid -774.04 102.51

Cr chromium, gaseous 351.87 174.39

Cr solid 0 23.77

CrCl2 solid -356.06 115.31

CrCl2O2 chromyl chloride, liquid -510.87 221.75

CrCl3 solid -486.18 123.01

CrF3 solid -1087.84 93.89

Cr2O3 solid -1058.13 81.17

Cs cesium, gaseous 49.72 175.49

Cs liquid 0.03 92.07

Cs solid 0 85.15

Cs+ aqueous solution. -282.04 133.05

CsBr solid -383.25 121.34

CsCl gaseous -257.85 255.96

CsCl solid -414.37 101.18

CsClO4 solid -306.6 175.27

CsF gaseous -373.35 243.09

CsF solid -525.39 88.28

CsH gaseous 101.67 214.43

CsI solid -333.46 129.7

Cu copper, gaseous 298.61 166.27

Cu liquid 8.37 36.25

Cu solid 0 33.11

Cu+ aqueous solution. 50 40.58

CuBr solid -100.83 96.11

CuCO3 · Cu(OH)2 malachite, solid -893.7 186.19

CuCl gaseous 63.5 237.09

CuCl solid -119.87 86.19

CuCl2 solid -175.73 108.07

CuI solid -69.45 96.65

CuN3 solid 344.76 100.42

CuO gaseous 216.93 234.6

CuO solid -129.7 42.63

Cu(OH)2 solid -372.74 108.37

CuS solid -53.56 66.53

CuSO4 solid -661.91 108.78

CuSO4 · H2O solid -918.22 146.02

CuSO4 · 3H2O solid -1400.18 221.33

CuSO4 · 5H2O solid -1880.06 300.41

Cu2O solid -146.02 93.14

Cu2S  α , solid -86.19 120.92

F fluorine, gaseous 61.92 158.64

F – aqueous solution. -278.82 -13.81

FH gaseous -273.22 173.67

FH aqueous solution. -296.85 88.7

F2 gaseous 0 202.67

F2O gaseous -4.6 247.32

Fe iron, gaseous 370.7 180.38

Fe iron, liquid 11.05 34.29

Fe  α , solid 0 27.28

Fe++ aqueous solution. -78.87 -137.65

Fe+++ aqueous solution. -4.6 -315.89

FeCO3 siderite, solid -666.72 92.88

Fe(CO)5 liquid -705.42 338.07

FeCl2 gaseous -159.62 287.48

FeCl2 solid -302.34 117.95

FeCl3 gaseous -247.87 344.1

FeCl3 solid -334.05 142.26

FeCr2O4 solid -1343.9 146.02

FeO gaseous 217.66 241.84

FeO solid -245.14 57.49

Fe(OH)2 gaseous -306.63 282.75

Fe(OH)2 solid -492.03 87.86

Fe(OH)3 solid -705.56 104.6

FeS pyrrhotite, solid -100.42 60.29

FeSO4 solid -820.9 107.53

FeS2 pyrite, solid -166.94 52.93

Fe2O3 hematite, solid -742.24 87.4

Fe2(SO4)3 solid -2263.05 307.52

Fe2SiO4 fayalite, solid -1379.05 145.18

Fe3C cementite, solid 20.08 104.6

Fe3O4 magnetite, solid -1015.46 146.44

Ca … Fe (Calcium to iron)

Table of chemical potentials and molar entropies



Formula Name. Phase μ in kG S/n in Ct/mol

Ga Gallium, gaseous 238.91 168.95

Ga solid 0 40.88

Ga+++ aqueous solution -158.99 -330.54

GaBr3 solid -359.82 179.91

GaCl3 solid -454.8 142.26

GaF3 solid -1085.33 83.68

Ga(OH)3 solid -831.36 100.42

Ga2O3 rhombohedral,  solid -998.3 84.98

Ge germanium, gaseous 335.98 167.79

Ge solid 0 31.09

GeBr4 liquid -331.37 280.75

GeCl4 gaseous -457.31 347.61

GeCl4 liquid -462.33 245.6

GeH4 gaseous 113.39 217.02

GeI4 solid -144.35 271.12

GeO brown, solid -237.23 50.21

GeO2 hexagonal, solid -497.06 55.27

GeS solid -71.55 71.13

H hydrogen, gaseous 203.26 114.6

H + aqueous solution. 0 0

H2 gaseous 0 130.57

H2 aqueous solution 18 49

He helium, gaseous 0 126.04

He aqueous solution 19.25 55.65

Hg mercury, gaseous 31.85 174.85

Hg liquid 0 76.02

Hg++ aqueous solution 164.43 -32.22

HgBr2 solid -153.13 171.54

HgCl2 solid -178.66 146.02

HgI2 red, solid -101.67 179.91

HgO  red -58.56 70.29

HgO yellow, solid -58.43 71.13

HgS red, solid -50.63 82.42

HgS black -47.7 88.28

Hg2++ aqueous solution 153.55 84.52

Hg2Br2 solid -181.08 217.57

Hg2CO3 solid -468.19 179.91

Hg2Cl2 solid -210.78 192.46

Hg2I2 solid -111 233.47

Hg2SO4 solid -625.88 200.66

Hf hafnium, gaseous 576.56 186.78

Hf solid 0 43.56

HfCl4 solid -901.32 190.79

HfF4 monoclinic, solid -1830.5 112.97

HfO2 solid -1027.17 59.33

I Iodine, gaseous 70.28 180.68

I – aqueous solution -51.59 111.29

ICl gaseous -5.44 247.44

ICl3 solid -22.34 167.36

IF gaseous -118.49 236.06

IF7 gaseous -818.39 346.44

IH gaseous 1.72 206.48

I2 gaseous 19.36 260.58

I2 liquid 3.32 150.36

I2 solid 0 116.14

I2 aqueous solution 16.4 137.24

In indium, gaseous 208.74 173.68

In solid 0 57.82

In+++ aqueous solution -106.27 150.62

InBr solid -169.03 112.97

InI solid -120.5 129.7

In(OH)3 solid -761.49 104.6

In2O3 solid -830.73 104.18

In2(SO4)3 solid -2439.27 271.96

Ir iridium, gaseous 617.98 193.47

Ir solid 0 35.48

IrF6 solid -461.66 247.69

K potassium, gaseous 61.17 160.23

K liquid 0.26 71.45

K solid 0 55.81

K + aqueous solution -283.26 102.51

KAl(SO4)2 solid -2235.47 204.6

KBF4 solid -1785 133.89

KBr solid -379.2 96.44

KBrO3 solid -243.51 149.16

KCl gaseous -233.41 238.99

KCL liquid -395.11 86.65

KCl solid -408.32 82.68

KClO3 solid -289.91 142.97

KClO4 solid -304.18 151.04

KF gaseous -344.8 226.5

KF solid -533.13 66.57

KF2H solid -852.41 104.27

KI gaseous -165.9 258.17

KI solid -322.29 104.35

KIO3 solid -425.51 151.46

KH solid -34.04 50.21

KMnO4 solid -713.79 171.71

KNO2 solid -306.6 152.09

KNO3 solid -393.13 132.93

KOH gaseous -235.46 244.35

KOH liquid -317.87 98.4

KOH solid -379.05 79.29

KSO4H solid -1031.36 138.07

K2CO3 liquid -1049.44 170.37

K2CO3 solid -1064.59 155.52

K2O solid -322.11 94.14

K2O2 solid -429.79 112.97

K2CrO4 solid -1295.78 200.12

K2PtCl6 solid -1109.18 333.88

K2SO4 solid -1316.37 175.73

Kr krypton, gaseous 0 163.97

Kr aqueous solution 15.06 61.5

La lanthanum, gaseous 330.54 182.3

La solid 0 57.32

La+++ aqueous solution -723.41 -184.1

Li lithium, gaseous 128.04 138.67

Li liquid 0.93 33.94

Li solid 0 29.1

Li+ aqueous solution -293.8 14.23

LiCl gaseous -217.26 212.81

LiCl solid -384.03 59.3

LiF gaseous -361.57 200.16

LiF solid -588.67 35.66

LiH gaseous 117.84 170.8

LiH solid -68.46 20.04

LiI gaseous -134.22 232.12

LiI solid -269.66 85.77

LiOH gaseous -252.42 217.57

LiOH solid -438.73 42.78

Li2CO3 solid -1132.44 90.37

Li2CO3 liquid -1105.55 127.29

Li2O gaseous -187.31 229

Li2O solid -562.11 37.89

Ga … Li (Gallium to lithium)
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Formula Name, phase μ in kG S/n in Ct/mol

Mg magnesium, gaseous 113.07 148.55

Mg liquid 6.1 42.51

Mg solid 0 32.69

Mg++ aqueous solution -456.01 -117.99

MgCO3 solid -1029.26 65.69

MgCl2 gaseous -398.8 276.91

MgCl2 liquid -563.96 129.49

MgCl2 solid -592.12 89.63

MgF2 gaseous -731.5 258.3

MgF2 solid -1071.12 57.24

MgI2 solid -358.15 129.7

Mg(NO3)2 solid -588.4 164.01

MgO gaseous -21.48 221.29

MgO liquid -502.46 50.35

MgO solid -568.96 26.94

Mg(OH)2 gaseous -542.06 273.63

Mg(OH)2 solid -833.69 63.18

MgS solid -341.72 46.02

MgSO4 solid -1147.51 91.4

MgSiO3 liquid -1415.39 92.52

MgSiO3 solid -1462.07 67.77

Mg2SiO4 liquid -2003.19 123.04

Mg2SiO4 solid -2057.93 95.14

Mn manganese, gaseous 238.49 173.59

Mn  α , solid 0 32.01

Mn++ aqueous solution -228.03 -73.64

MnCO3 solid -816.72 85.77

MnCl2 solid -440.53 118.24

MnO solid -362.92 59.71

MnO2 solid -465.18 53.05

Mn(OH)2 precipitated,  
amorphous

-615.05 99.16

MnS green, solid -218.4 78.24

MnSO4 solid -957.42 112.13

MnSiO3 solid -1240.56 89.12

Mn2O3 solid -881.15 110.46

Mn2SiO4 solid -1632.18 163.18

Mn3O4 solid -1283.23 155.64

Mo molybdenum, gaseous 612.54 181.84

Mo solid 0 28.66

Mo(CO)6 solid -877.8 325.93

MoF6 liquid -1473.1 259.66

MoO2 solid -533.04 46.28

MoO3 solid -668.02 77.74

MoS2 solid -225.94 62.59

N nitrogen, gaseous 455.58 153.19

NFO gaseous -51.04 247.99

NF3 gaseous -83.26 260.62

NH3 gaseous -16.48 192.34

NH3 aqueous solution -26.57 111.29

NH4+ aqueous solution -79.37 113.39

NH4Cl  α , solid -203.19 94.98

NH4NO3  solid -184.01 151.08

NH4H2PO4  solid -1214.35 151.9

(NH4)2SO4  solid -899.9 220.3

NO gaseous 86.57 210.65

NOCl   nitrosyl chloride, gas 66.11 261.63

NO2 gaseous 51.3 239.95

NO2- aqueous solution -37.24 140.16

NO2H cis, gaseous -42.97 248.66

NO2H trans, gaseous -45.27 249.12

NO3- aqueous solution -111.34 146.44

NO3H gaseous -74.77 266.27

NO3H liquid -80.79 155.6

N2 gaseous 0 191.5

Na sodium, gaseous 77.3 153.61

Na liquid 0.5 57.85

Na solid 0 51.45

Na+ aqueous solution -261.89 58.99

NaBH4 solid -127.11 101.39

NaBr gaseous -177.78 241.12

NaBr solid -349.26 86.82

NaCO3H Na bicarbonate, solid -851.86 102.09

NaC2H3O2   Na acetate, solid -608.84 123.1

NaCl gaseous -201.32 229.7

NaCl liquid -365.68 95.06

NaCl solid -384.04 72.13

NaClO4 solid -254.32 142.26

NaF gaseous -309.74 217.5

NaF solid -545.09 51.21

NaI solid -284.57 98.32

NaNO3 solid -365.89 116.32

NaOH gaseous -215.93 236.4

NaOH liquid -375.13 74.17

NaOH solid -380.19 64.43

NaSO4H Na bisulfate, solid -992.86 112.97

Na2CO3 liquid -1031.88 155.39

Na2CO3 solid -1048.08 138.78

Na2CO3 · 10 H2O solid -3428.2 564

Na2Cl2 gaseous -565.94 325.52

Na2O solid -379.11 75.04

Na2O2 solid -449.66 94.81

Na2S solid -361.36 97.91

Na2SO3 solid -1002.07 146.02

Na2SO4 thenardite, solid -1269.35 149.62

Na2SO4 · 10H2O solid -3647.4 592.04

Na2S2O3 solid -1028.01 154.81

Na2S2O3 · 5H2O liquid -2227.72 438.69

Na2S2O3 · 5H2O solid -2230.07 372.38

Na2SiO3 solid -1467.38 113.85

Na2Si2O5 solid -2324.25 164.05

Na3AlF6 solid -3114.1 238

Na3PO4 solid -1787.16 173.64

Nb niobium, gaseous 681.16 186.15

Nb solid 0 36.4

NbBr5 solid -510.45 259.41

NbC solid -136.82 35.4

NbCl3 solid -518.82 146.44

NbCl3O solid -782.41 142.26

NbCl4 solid -606.68 184.1

NbCl5 solid -683.25 210.46

NbF5 solid -1699.12 160.25

NbN solid -205.85 34.52

NbO solid -378.65 48.12

NbO2 solid -740.57 54.52

Nb2O5 solid -1766.07 137.24

Ne neon, gaseous 0 146.22

Ne aqueous solution 19.25 66.11

Ni nickel, gaseous 384.51 182.08

Ni solid 0 29.87

Ni++ aqueous solution -45.61 -128.87

NiCO3 solid -605.83 87.9

Ni(CO)4 gaseous -587.27 410.45

Ni(CO)4 liquid -588.27 313.38

NiCl2 solid -259.06 97.65

NiF2 solid -604.17 73.6

NiO solid -211.71 37.99

Ni(OH)2 solid -447.27 87.86

NiS solid -79.5 52.97

NiSO4 solid -759.81 92.05

Ni3S2 solid -197.07 133.89

Mg … Ni (Magnesium to nickel)

Table of chemical potentials and molar entropies



Formula Name, phase μ in kG S/n in Ct/mol

O oxygen, gaseous 231.75 160.95

OH - aqueous solution -157.29 -10.75

OH2 water, gaseous -228.59 188.72

OH2 liquid -237.18 69.91

OH2 solid -236.59 44.77

OH3+  oxonium ion. aqueous 
solution

-237.18 69.91

O2 gaseous 0 205.03

O2H2 gaseous -105.6 232.63

O2H2 liquid -120.42 109.62

O2H2 aqueous solution -134.1 143.93

O3 gaseous 163.18 238.82

Os osmium, gaseous 744.75 192.46

Os solid 0 32.64

OsO4 yellow, solid -305.01 149.93

OsO4 white, solid -303.76 167.78

P phosphorus, gaseous 280.02 163.09

P liquid 0.09 42.89

P red, solid -12.13 22.8

P white, solid 0 41.09

PBr3 liquid -175.73 240.16

PCl3 gaseous -267.78 311.67

PCl3 liquid -272.38 217.15

PCl3O gaseous -514.32 325.39

PCl3O liquid -520.91 222.46

PCl5 gaseous -305.01 364.47

PF3 gaseous -897.47 273.13

PF5 gaseous -1520.72 300.7

PH3 gaseous 13.39 210.12

PO4- - - aqueous solution -1018.8 -221.75

PO4H - - aqueous solution -1089.26 -33.47

PO4H2- aqueous solution -1130.39 90.37

PO4H3 liquid -1118.43 146.44

PO4H3 solid -1119.22 110.5

PO4H3 aqueous solution -1142.65 158.16

P4O6 gaseous -2084.94 345.6

P4O10 gaseous -2669.85 403.76

P4O10 hexagonal, solid -2697.84 228.86

Pb lead, gaseous 161.92 175.26

Pb liquid 2.22 71.72

Pb solid 0 64.81

Pb++ aqueous solution -24.39 10.46

PbBr2 solid -261.92 161.5

PbCO3 solid -625.51 130.96

PbCl2 solid -314.13 135.98

PbCl4 gaseous -276.2 384.51

PbF2 solid -617.14 110.46

PbI2 solid -173.64 174.85

Pb(N3)2 monoclinic, solid 624.67 148.11

Pb(N3)2 orthorhombic, solid 622.16 149.37

PbO gaseous 26.36 239.94

PbO liquid -171.19 85.96

PbO yellow, solid -187.9 68.7

PbO red, solid -188.95 66.53

PbO2 solid -217.36 68.62

Pb(OH)2 solid -421.07 88

PbS solid -98.74 91.21

PbSO4 solid -813.2 148.57

PbSiO3 solid -1062.15 109.62

Pb3O4 solid -601.24 211.29

Pd palladium, gaseous 339.74 166.94

Pd solid 0 37.57

Pd++ aqueous solution 176.56 -117.15

PdCl2 solid -125.1 104.6

PdI2 solid -62.76 150.62

PdS solid -66.94 46.02

PdS2 solid -74.48 79.5

Pt platinum, gaseous 520.49 192.3

Pt solid 0 41.63

PtS solid -76.15 55.06

PtS2 solid -99.58 74.68

Rb rubidium, gaseous 55.86 169.99

Rb solid 0 69.45

Rb+ aqueous solution -282.21 124.26

RbBr solid -378.15 108.28

RbI solid -325.52 118.03

Re rhenium, gaseous 724.67 188.83

Re solid 0 36.86

ReCl3 solid -188.28 123.85

ReO2 solid -368.19 72.8

Re2O7 solid -1066.08 207.11

Rh rhodium, gaseous 510.87 185.7

Rh solid 0 31.51

Ru ruthenium, gaseous 595.8 186.4

Ru solid 0 28.53

RuO4 gaseous -139.75 289.95

RuO4 liquid -152.3 183.26

RuO4 solid -152.3 146.44

S sulfur, gaseous 238.28 167.71

S liquid 0.39 35.31

S orthorhombic, solid 0 32.07

S monoclinic, solid 0.04 32.75

S – – aqueous solution 85.77 -14.64

SF6 gaseous -1105.41 291.71

SH2 gaseous -33.56 205.69

SH2 aqueous solution -27.87 121.34

SO gaseous -19.84 221.84

SO2 gaseous -300.19 248.11

SO3 gaseous -371.08 256.65

SO3  β , solid -368.99 52.3

SO3– – aqueous solution -486.6 -29.29

SO3H – aqueous solution -527.81 139.75

SO3H2 aqueous solution -537.9 232.21

SO4– – aqueous solution -744.63 20.08

SO4H – aqueous solution -756.01 131.8

SO4H2 gaseous -656.09 289.11

SO4H2 liquid -690.06 156.9

S2Cl2 gaseous -31.8 331.37

Sb antimony, gaseous 222.17 180.16

Sb solid 0 45.69

SbBr3 solid -239.32 207.11

SbCl3 gaseous -301.25 337.69

SbCl3 solid -323.72 184.1

SbCl5 gaseous -334.34 401.83

SbCl5 liquid -350.2 301.25

Sb2O3   orthorhombic, solid -626.55 123.01

Sb2O4 solid -795.8 127.19

Sb2O5 solid -829.27 125.1

Sb2S3 black, solid -173.64 182

Sb2Te3 solid -55.23 234.3

Sb4O6 cubic, solid -1268.17 220.92

Sc scandium, gaseous 336.06 174.68

Sc solid 0 34.64

ScF3 solid -1555.61 92.05

Sc(OH)3 solid -1233.44 100.42

Sc2O3 solid -1819.41 77.4

Se selenium, gaseous 187.07 176.61

Se  hexagonal, black, solid 0 42.44

SeF6 gaseous -1016.71 313.76

SeH2 gaseous 15.9 218.91

SeO gaseous 26.82 233.89

O … Se (Oxygen to selenium)

Table of chemical potentials and molar entropies



Formula Name, phase μ in kG S/n in Ct/mol

Si silicon, gaseous 411.29 167.86

Si liquid 40.83 44.46

Si solid 0 18.83

SiBr4 gaseous -431.79 377.77

SiBr4 liquid -443.92 277.82

SiC  α , hexagonal, solid -60.25 16.48

SiC  β , cubic, solid -62.76 16.61

SiCl4 gaseous -617.01 330.62

SiCl4 liquid -619.9 239.74

SiF4 gaseous -1572.68 282.38

SiH4 gaseous 56.9 204.51

SiO gaseous -126.36 211.5

SiO2 gaseous -306.93 228.86

SiO2 liquid -850.21 47.93

SiO2   α cristobalite, solid -853.67 50.05

SiO2   β cristobalite, solid -854.54 43.4

SiO2  α quartz, solid -856.67 41.84

SiO2  β quartz, solid -856.48 41.46

SiO3H2 solid -1092.44 133.89

SiO4H4 solid -1333.02 192.46

Si2O5H2 solid -1943.47 192.46

Si2O7H6 solid -2425.88 330.54

Si3N4 solid -642.66 101.25

Sn tin, gaseous 267.36 206.03

Sn  α , grey, solid 0.13 44.14

Sn  β , white, solid 0 51.55

SnBr4 gaseous -331.37 411.83

SnBr4 solid -350.2 264.43

SnCl4 gaseous -432.21 365.68

SnCl4 liquid -440.16 258.57

SnH4 gaseous 188.28 227.57

SnO solid -256.9 56.48

SnO2 solid -519.65 52.3

Sn(OH)2 precipitated -491.62 154.81

SnS solid -98.32 76.99

Sr strontium, gaseous 110.04 164.54

Sr solid 0 54.39

Sr++ aqueous solution -557.31 -39.33

SrCO3 strontianite, solid -1137.63 97.49

SrCl2 solid -781.15 117.15

SrO solid -559.82 54.39

SrSO4 solid -1334.28 121.75

Te tellurium, gaseous 157.11 182.63

Te solid 0 49.71

TeO2 solid -270.29 79.5

Ti titanium, gaseous 425.09 180.19

Ti solid 0 30.63

TiBr3 solid -523.84 176.56

TiBr4 solid -589.53 243.51

TiC solid -180.75 24.23

TiCl2 solid -464.42 87.45

TiCl3 solid -653.54 139.75

TiCl4 liquid -737.22 252.34

TiF4 amorphous -1559.38 133.97

TiH2 solid -80.33 29.71

TiI4 solid -371.54 249.37

TiN solid -309.62 30.25

TiO  α , solid -494.97 34.77

TiO2 anatase, solid -884.5 49.92

TiO2 rutile, solid -889.52 50.33

Ti2O3 solid -1434.28 78.78

Tl thallium, gaseous 147.44 180.85

Tl solid 0 64.18

Tl+ aqueous solution -32.38 125.52

Tl+++ aqueous solution 214.64 -192.46

TlBr solid -167.36 120.5

TlCl solid -184.93 111.25

TlI solid -125.39 127.61

TlNO3 solid -152.46 160.67

TlOH solid -195.76 87.4

Tl2CO3 solid -614.63 155.23

Tl2O solid -147.28 125.52

Tl2S solid -93.72 150.62

Tl2SO4 solid -830.48 230.54

U uranium, gaseous 478.82 198.52

U solid 0 50.33

U+++ aqueous solution -520.49 -125.52

U++++ aqueous solution -579.07 -326.35

UBr4 solid -788.68 242.67

UC2 solid -175.73 58.58

UCl4 solid -962.32 198.32

UCl6 solid -1010.44 285.77

UF4 solid -1761.46 151.04

UF6 solid -2033.42 227.82

UI4 solid -527.6 271.96

UN solid -313.8 75.31

UO2 solid -1075.29 77.82

UO3 solid -1184.07 98.62

V vanadium, gaseous 453.21 182.19

V solid 0 28.91

V++ aqueous solution -217.57 -129.7

V+++ aqueous solution -242.25 -230.12

VCl2 solid -405.85 97.07

VCl3 solid -511.28 130.96

VCl3O liquid -668.6 244.35

VCl4 liquid -503.75 255.22

VF5 liquid -1373.19 175.73

VN solid -191.21 37.28

VO solid -404.17 38.91

VSO4 solid -1169.85 108.78

V2O3 solid -1139.3 98.32

V2O4  α , solid -1318.38 102.51

V2O5 solid -1419.63 130.96

W tungsten, gaseous 807.09 173.84

W liquid 43.07 45.7

W solid 0 32.64

WCl6  α , solid -455.65 238.49

WF6 gaseous -1632.18 340.95

WF6 liquid -1631.47 251.46

WO2 solid -533.92 50.54

WO3 solid -764.08 75.9

Xe xenon, gaseous 0 169.57

Xe aqueous solution 13.39 65.69

Zn zinc, gaseous 95.18 160.87

Zn solid 0 41.63

Zn++ aqueous solution -147.03 -112.13

ZnBr2 solid -312.13 138.49

ZnCO3 solid -731.57 82.42

ZnCl2 solid -369.43 111.46

ZnF2 solid -713.37 73.68

ZnI2 solid -208.95 161.08

ZnO solid -318.32 43.64

Zn(OH)2 solid -555.13 81.59

ZnS sphalerite, solid -201.29 57.74

ZnSO4 solid -874.46 119.66

Zr zirconium, gaseous 566.51 181.25

Zr solid 0 38.99

ZrC solid -199.58 32.17

ZrCl4 solid -889.94 181.59

ZrF4    β , monoclinic, solid -1810 104.6

ZrH2 solid -128.87 35.02

ZrN solid -336.39 38.87

ZrO2    α , monoclinic, solid -1042.82 50.38

Si … Zr (Silicon to zirconium)

Table of chemical potentials and molar entropies



Formula Name, phase μ in kG S/n in Ct/mol

Ca calcium, gaseous 145.53 154.78

Ca liquid 8.19 50.65

Ca  α , solid 0 41.55

Ca  β , solid 0.22 42.47

Ca++ aqueous solution -553.04 -55.23

CaBr2 solid -656.05 129.7

CaCO3 aragonite, solid -1127.71 88.7

CaCO3 calcite, solid -1128.76 92.88

CaC2 solid -67.78 70.29

CaCl gaseous -130.96 241.42

CaCl2 gaseous -479.18 289.95

CaCl2 liquid -732.16 123.88

CaCl2 solid -750.19 113.8

CaCrO4 solid -1277.38 133.89

CaF2 gaseous -793.27 273.68

CaF2 solid -1161.9 68.87

CaH2 solid -149.79 41.84

CaI2 solid -529.69 142.26

Ca(NO3)2 solid -741.99 193.3

CaO solid -604.17 39.75

Ca(OH)2 solid -896.76 76.15

CaPO4H solid -1679.88 87.86

CaS solid -477.39 56.48

CaSO4 anhydrite, solid -1320.3 98.32

CaSO4 · 2H2O  gypsum, solid -1795.73 193.97

CaSiO3     α wollastonite, solid -1495.36 87.45

CaSiO3     β wollastonite, solid -1498.71 82.01

Ca3N2 solid -368.61 104.6

Ca3(PO4)2  α, solid -3889.86 241

Ca3(PO4)2  β, solid -3899.49 235.98

Cd cadmium, gaseous 77.45 167.64

Cd solid 0 51.76

Cd++ aqueous solution. -77.58 -73.22

CdBr2 solid -296.31 137.24

CdCO3 solid -669.44 92.47

CdCl2 solid -343.97 115.27

CdF2 solid -647.68 77.4

CdI2 solid -201.38 161.08

CdO solid -228.45 54.81

CdS solid -156.48 64.85

CdSO4 solid -822.78 123.04

CdSO4 · 8/3 H2O solid -1457.98 229.7

Cl chlorine, gaseous 105.03 165.1

Cl - aqueous solution. -131.26 56.48

ClF gaseous -55.94 217.78

ClF3 gaseous -123.01 281.5

ClF5 gaseous -146.77 310.62

ClH gaseous -95.3 186.79

ClO2 gaseous 120.5 256.73

Cl2 gaseous 0 222.97

Cl2 aqueous solution. 6.9 121.34

Co cobalt, gaseous 380.33 179.41

Co   α , hexagonal, solid 0 30.04

Co      β . fcc. solid 0.25 30.71

Co++ aqueous solution. -54.39 -112.97

Co+++ aqueous solution. 133.89 -305.43

CoCl2 solid -269.87 109.16

CoF2 solid -647.26 81.96

CoFe2O4 solid -1032.61 134.72

CoO solid -214.22 52.97

CoSO4 solid -782.41 117.99

Co3O4 solid -774.04 102.51

Cr chromium, gaseous 351.87 174.39

Cr solid 0 23.77

CrCl2 solid -356.06 115.31

CrCl2O2 chromyl chloride, liquid -510.87 221.75

CrCl3 solid -486.18 123.01

CrF3 solid -1087.84 93.89

Cr2O3 solid -1058.13 81.17

Cs cesium, gaseous 49.72 175.49

Cs liquid 0.03 92.07

Cs solid 0 85.15

Cs+ aqueous solution. -282.04 133.05

CsBr solid -383.25 121.34

CsCl gaseous -257.85 255.96

CsCl solid -414.37 101.18

CsClO4 solid -306.6 175.27

CsF gaseous -373.35 243.09

CsF solid -525.39 88.28

CsH gaseous 101.67 214.43

CsI solid -333.46 129.7

Cu copper, gaseous 298.61 166.27

Cu liquid 8.37 36.25

Cu solid 0 33.11

Cu+ aqueous solution. 50 40.58

CuBr solid -100.83 96.11

CuCO3 · Cu(OH)2 malachite, solid -893.7 186.19

CuCl gaseous 63.5 237.09

CuCl solid -119.87 86.19

CuCl2 solid -175.73 108.07

CuI solid -69.45 96.65

CuN3 solid 344.76 100.42

CuO gaseous 216.93 234.6

CuO solid -129.7 42.63

Cu(OH)2 solid -372.74 108.37

CuS solid -53.56 66.53

CuSO4 solid -661.91 108.78

CuSO4 · H2O solid -918.22 146.02

CuSO4 · 3H2O solid -1400.18 221.33

CuSO4 · 5H2O solid -1880.06 300.41

Cu2O solid -146.02 93.14

Cu2S  α , solid -86.19 120.92

F fluorine, gaseous 61.92 158.64

F – aqueous solution. -278.82 -13.81

FH gaseous -273.22 173.67

FH aqueous solution. -296.85 88.7

F2 gaseous 0 202.67

F2O gaseous -4.6 247.32

Fe iron, gaseous 370.7 180.38

Fe iron, liquid 11.05 34.29

Fe  α , solid 0 27.28

Fe++ aqueous solution. -78.87 -137.65

Fe+++ aqueous solution. -4.6 -315.89

FeCO3 siderite, solid -666.72 92.88

Fe(CO)5 liquid -705.42 338.07

FeCl2 gaseous -159.62 287.48

FeCl2 solid -302.34 117.95

FeCl3 gaseous -247.87 344.1

FeCl3 solid -334.05 142.26

FeCr2O4 solid -1343.9 146.02

FeO gaseous 217.66 241.84

FeO solid -245.14 57.49

Fe(OH)2 gaseous -306.63 282.75

Fe(OH)2 solid -492.03 87.86

Fe(OH)3 solid -705.56 104.6

FeS pyrrhotite, solid -100.42 60.29

FeSO4 solid -820.9 107.53

FeS2 pyrite, solid -166.94 52.93

Fe2O3 hematite, solid -742.24 87.4

Fe2(SO4)3 solid -2263.05 307.52

Fe2SiO4 fayalite, solid -1379.05 145.18

Fe3C cementite, solid 20.08 104.6

Fe3O4 magnetite, solid -1015.46 146.44

Ca … Fe

Table of chemical potentials and molar entropies



Formula Name. Phase μ in kG S/n in Ct/mol

Ga Gallium, gaseous 238.91 168.95

Ga solid 0 40.88

Ga+++ aqueous solution -158.99 -330.54

GaBr3 solid -359.82 179.91

GaCl3 solid -454.8 142.26

GaF3 solid -1085.33 83.68

Ga(OH)3 solid -831.36 100.42

Ga2O3 rhombohedral,  solid -998.3 84.98

Ge germanium, gaseous 335.98 167.79

Ge solid 0 31.09

GeBr4 liquid -331.37 280.75

GeCl4 gaseous -457.31 347.61

GeCl4 liquid -462.33 245.6

GeH4 gaseous 113.39 217.02

GeI4 solid -144.35 271.12

GeO brown, solid -237.23 50.21

GeO2 hexagonal, solid -497.06 55.27

GeS solid -71.55 71.13

H hydrogen, gaseous 203.26 114.6

H + aqueous solution. 0 0

H2 gaseous 0 130.57

H2 aqueous solution 18 49

He helium, gaseous 0 126.04

He aqueous solution 19.25 55.65

Hg mercury, gaseous 31.85 174.85

Hg liquid 0 76.02

Hg++ aqueous solution 164.43 -32.22

HgBr2 solid -153.13 171.54

HgCl2 solid -178.66 146.02

HgI2 red, solid -101.67 179.91

HgO  red -58.56 70.29

HgO yellow, solid -58.43 71.13

HgS red, solid -50.63 82.42

HgS black -47.7 88.28

Hg2++ aqueous solution 153.55 84.52

Hg2Br2 solid -181.08 217.57

Hg2CO3 solid -468.19 179.91

Hg2Cl2 solid -210.78 192.46

Hg2I2 solid -111 233.47

Hg2SO4 solid -625.88 200.66

Hf hafnium, gaseous 576.56 186.78

Hf solid 0 43.56

HfCl4 solid -901.32 190.79

HfF4 monoclinic, solid -1830.5 112.97

HfO2 solid -1027.17 59.33

I Iodine, gaseous 70.28 180.68

I – aqueous solution -51.59 111.29

ICl gaseous -5.44 247.44

ICl3 solid -22.34 167.36

IF gaseous -118.49 236.06

IF7 gaseous -818.39 346.44

IH gaseous 1.72 206.48

I2 gaseous 19.36 260.58

I2 liquid 3.32 150.36

I2 solid 0 116.14

I2 aqueous solution 16.4 137.24

In indium, gaseous 208.74 173.68

In solid 0 57.82

In+++ aqueous solution -106.27 150.62

InBr solid -169.03 112.97

InI solid -120.5 129.7

In(OH)3 solid -761.49 104.6

In2O3 solid -830.73 104.18

In2(SO4)3 solid -2439.27 271.96

Ir iridium, gaseous 617.98 193.47

Ir solid 0 35.48

IrF6 solid -461.66 247.69

K potassium, gaseous 61.17 160.23

K liquid 0.26 71.45

K solid 0 55.81

K + aqueous solution -283.26 102.51

KAl(SO4)2 solid -2235.47 204.6

KBF4 solid -1785 133.89

KBr solid -379.2 96.44

KBrO3 solid -243.51 149.16

KCl gaseous -233.41 238.99

KCL liquid -395.11 86.65

KCl solid -408.32 82.68

KClO3 solid -289.91 142.97

KClO4 solid -304.18 151.04

KF gaseous -344.8 226.5

KF solid -533.13 66.57

KF2H solid -852.41 104.27

KI gaseous -165.9 258.17

KI solid -322.29 104.35

KIO3 solid -425.51 151.46

KH solid -34.04 50.21

KMnO4 solid -713.79 171.71

KNO2 solid -306.6 152.09

KNO3 solid -393.13 132.93

KOH gaseous -235.46 244.35

KOH liquid -317.87 98.4

KOH solid -379.05 79.29

KSO4H solid -1031.36 138.07

K2CO3 liquid -1049.44 170.37

K2CO3 solid -1064.59 155.52

K2O solid -322.11 94.14

K2O2 solid -429.79 112.97

K2CrO4 solid -1295.78 200.12

K2PtCl6 solid -1109.18 333.88

K2SO4 solid -1316.37 175.73

Kr krypton, gaseous 0 163.97

Kr aqueous solution 15.06 61.5

La lanthanum, gaseous 330.54 182.3

La solid 0 57.32

La+++ aqueous solution -723.41 -184.1

Li lithium, gaseous 128.04 138.67

Li liquid 0.93 33.94

Li solid 0 29.1

Li+ aqueous solution -293.8 14.23

LiCl gaseous -217.26 212.81

LiCl solid -384.03 59.3

LiF gaseous -361.57 200.16

LiF solid -588.67 35.66

LiH gaseous 117.84 170.8

LiH solid -68.46 20.04

LiI gaseous -134.22 232.12

LiI solid -269.66 85.77

LiOH gaseous -252.42 217.57

LiOH solid -438.73 42.78

Li2CO3 solid -1132.44 90.37

Li2CO3 liquid -1105.55 127.29

Li2O gaseous -187.31 229

Li2O solid -562.11 37.89

Ga … Li
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Formula Name, phase μ in kG S/n in Ct/mol

Mg magnesium, gaseous 113.07 148.55

Mg liquid 6.1 42.51

Mg solid 0 32.69

Mg++ aqueous solution -456.01 -117.99

MgCO3 solid -1029.26 65.69

MgCl2 gaseous -398.8 276.91

MgCl2 liquid -563.96 129.49

MgCl2 solid -592.12 89.63

MgF2 gaseous -731.5 258.3

MgF2 solid -1071.12 57.24

MgI2 solid -358.15 129.7

Mg(NO3)2 solid -588.4 164.01

MgO gaseous -21.48 221.29

MgO liquid -502.46 50.35

MgO solid -568.96 26.94

Mg(OH)2 gaseous -542.06 273.63

Mg(OH)2 solid -833.69 63.18

MgS solid -341.72 46.02

MgSO4 solid -1147.51 91.4

MgSiO3 liquid -1415.39 92.52

MgSiO3 solid -1462.07 67.77

Mg2SiO4 liquid -2003.19 123.04

Mg2SiO4 solid -2057.93 95.14

Mn manganese, gaseous 238.49 173.59

Mn  α , solid 0 32.01

Mn++ aqueous solution -228.03 -73.64

MnCO3 solid -816.72 85.77

MnCl2 solid -440.53 118.24

MnO solid -362.92 59.71

MnO2 solid -465.18 53.05

Mn(OH)2 precipitated,  
amorphous

-615.05 99.16

MnS green, solid -218.4 78.24

MnSO4 solid -957.42 112.13

MnSiO3 solid -1240.56 89.12

Mn2O3 solid -881.15 110.46

Mn2SiO4 solid -1632.18 163.18

Mn3O4 solid -1283.23 155.64

Mo molybdenum, gaseous 612.54 181.84

Mo solid 0 28.66

Mo(CO)6 solid -877.8 325.93

MoF6 liquid -1473.1 259.66

MoO2 solid -533.04 46.28

MoO3 solid -668.02 77.74

MoS2 solid -225.94 62.59

N nitrogen, gaseous 455.58 153.19

NFO gaseous -51.04 247.99

NF3 gaseous -83.26 260.62

NH3 gaseous -16.48 192.34

NH3 aqueous solution -26.57 111.29

NH4+ aqueous solution -79.37 113.39

NH4Cl  α , solid -203.19 94.98

NH4NO3  solid -184.01 151.08

NH4H2PO4  solid -1214.35 151.9

(NH4)2SO4  solid -899.9 220.3

NO gaseous 86.57 210.65

NOCl   nitrosyl chloride, gas 66.11 261.63

NO2 gaseous 51.3 239.95

NO2- aqueous solution -37.24 140.16

NO2H cis, gaseous -42.97 248.66

NO2H trans, gaseous -45.27 249.12

NO3- aqueous solution -111.34 146.44

NO3H gaseous -74.77 266.27

NO3H liquid -80.79 155.6

N2 gaseous 0 191.5

Na sodium, gaseous 77.3 153.61

Na liquid 0.5 57.85

Na solid 0 51.45

Na+ aqueous solution -261.89 58.99

NaBH4 solid -127.11 101.39

NaBr gaseous -177.78 241.12

NaBr solid -349.26 86.82

NaCO3H Na bicarbonate, solid -851.86 102.09

NaC2H3O2   Na acetate, solid -608.84 123.1

NaCl gaseous -201.32 229.7

NaCl liquid -365.68 95.06

NaCl solid -384.04 72.13

NaClO4 solid -254.32 142.26

NaF gaseous -309.74 217.5

NaF solid -545.09 51.21

NaI solid -284.57 98.32

NaNO3 solid -365.89 116.32

NaOH gaseous -215.93 236.4

NaOH liquid -375.13 74.17

NaOH solid -380.19 64.43

NaSO4H Na bisulfate, solid -992.86 112.97

Na2CO3 liquid -1031.88 155.39

Na2CO3 solid -1048.08 138.78

Na2CO3 · 10 H2O solid -3428.2 564

Na2Cl2 gaseous -565.94 325.52

Na2O solid -379.11 75.04

Na2O2 solid -449.66 94.81

Na2S solid -361.36 97.91

Na2SO3 solid -1002.07 146.02

Na2SO4 thenardite, solid -1269.35 149.62

Na2SO4 · 10H2O solid -3647.4 592.04

Na2S2O3 solid -1028.01 154.81

Na2S2O3 · 5H2O liquid -2227.72 438.69

Na2S2O3 · 5H2O solid -2230.07 372.38

Na2SiO3 solid -1467.38 113.85

Na2Si2O5 solid -2324.25 164.05

Na3AlF6 solid -3114.1 238

Na3PO4 solid -1787.16 173.64

Nb niobium, gaseous 681.16 186.15

Nb solid 0 36.4

NbBr5 solid -510.45 259.41

NbC solid -136.82 35.4

NbCl3 solid -518.82 146.44

NbCl3O solid -782.41 142.26

NbCl4 solid -606.68 184.1

NbCl5 solid -683.25 210.46

NbF5 solid -1699.12 160.25

NbN solid -205.85 34.52

NbO solid -378.65 48.12

NbO2 solid -740.57 54.52

Nb2O5 solid -1766.07 137.24

Ne neon, gaseous 0 146.22

Ne aqueous solution 19.25 66.11

Ni nickel, gaseous 384.51 182.08

Ni solid 0 29.87

Ni++ aqueous solution -45.61 -128.87

NiCO3 solid -605.83 87.9

Ni(CO)4 gaseous -587.27 410.45

Ni(CO)4 liquid -588.27 313.38

NiCl2 solid -259.06 97.65

NiF2 solid -604.17 73.6

NiO solid -211.71 37.99

Ni(OH)2 solid -447.27 87.86

NiS solid -79.5 52.97

NiSO4 solid -759.81 92.05

Ni3S2 solid -197.07 133.89

Mg … Ni

Table of chemical potentials and molar entropies



Formula Name, phase μ in kG S/n in Ct/mol

Si silicon, gaseous 411.29 167.86

Si liquid 40.83 44.46

Si solid 0 18.83

SiBr4 gaseous -431.79 377.77

SiBr4 liquid -443.92 277.82

SiC  α , hexagonal, solid -60.25 16.48

SiC  β , cubic, solid -62.76 16.61

SiCl4 gaseous -617.01 330.62

SiCl4 liquid -619.9 239.74

SiF4 gaseous -1572.68 282.38

SiH4 gaseous 56.9 204.51

SiO gaseous -126.36 211.5

SiO2 gaseous -306.93 228.86

SiO2 liquid -850.21 47.93

SiO2   α cristobalite, solid -853.67 50.05

SiO2   β cristobalite, solid -854.54 43.4

SiO2  α quartz, solid -856.67 41.84

SiO2  β quartz, solid -856.48 41.46

SiO3H2 solid -1092.44 133.89

SiO4H4 solid -1333.02 192.46

Si2O5H2 solid -1943.47 192.46

Si2O7H6 solid -2425.88 330.54

Si3N4 solid -642.66 101.25

Sn tin, gaseous 267.36 206.03

Sn  α , grey, solid 0.13 44.14

Sn  β , white, solid 0 51.55

SnBr4 gaseous -331.37 411.83

SnBr4 solid -350.2 264.43

SnCl4 gaseous -432.21 365.68

SnCl4 liquid -440.16 258.57

SnH4 gaseous 188.28 227.57

SnO solid -256.9 56.48

SnO2 solid -519.65 52.3

Sn(OH)2 precipitated -491.62 154.81

SnS solid -98.32 76.99

Sr strontium, gaseous 110.04 164.54

Sr solid 0 54.39

Sr++ aqueous solution -557.31 -39.33

SrCO3 strontianite, solid -1137.63 97.49

SrCl2 solid -781.15 117.15

SrO solid -559.82 54.39

SrSO4 solid -1334.28 121.75

Te tellurium, gaseous 157.11 182.63

Te solid 0 49.71

TeO2 solid -270.29 79.5

Ti titanium, gaseous 425.09 180.19

Ti solid 0 30.63

TiBr3 solid -523.84 176.56

TiBr4 solid -589.53 243.51

TiC solid -180.75 24.23

TiCl2 solid -464.42 87.45

TiCl3 solid -653.54 139.75

TiCl4 liquid -737.22 252.34

TiF4 amorphous -1559.38 133.97

TiH2 solid -80.33 29.71

TiI4 solid -371.54 249.37

TiN solid -309.62 30.25

TiO  α , solid -494.97 34.77

TiO2 anatase, solid -884.5 49.92

TiO2 rutile, solid -889.52 50.33

Ti2O3 solid -1434.28 78.78

Tl thallium, gaseous 147.44 180.85

Tl solid 0 64.18

Tl+ aqueous solution -32.38 125.52

Tl+++ aqueous solution 214.64 -192.46

TlBr solid -167.36 120.5

TlCl solid -184.93 111.25

TlI solid -125.39 127.61

TlNO3 solid -152.46 160.67

TlOH solid -195.76 87.4

Tl2CO3 solid -614.63 155.23

Tl2O solid -147.28 125.52

Tl2S solid -93.72 150.62

Tl2SO4 solid -830.48 230.54

U uranium, gaseous 478.82 198.52

U solid 0 50.33

U+++ aqueous solution -520.49 -125.52

U++++ aqueous solution -579.07 -326.35

UBr4 solid -788.68 242.67

UC2 solid -175.73 58.58

UCl4 solid -962.32 198.32

UCl6 solid -1010.44 285.77

UF4 solid -1761.46 151.04

UF6 solid -2033.42 227.82

UI4 solid -527.6 271.96

UN solid -313.8 75.31

UO2 solid -1075.29 77.82

UO3 solid -1184.07 98.62

V vanadium, gaseous 453.21 182.19

V solid 0 28.91

V++ aqueous solution -217.57 -129.7

V+++ aqueous solution -242.25 -230.12

VCl2 solid -405.85 97.07

VCl3 solid -511.28 130.96

VCl3O liquid -668.6 244.35

VCl4 liquid -503.75 255.22

VF5 liquid -1373.19 175.73

VN solid -191.21 37.28

VO solid -404.17 38.91

VSO4 solid -1169.85 108.78

V2O3 solid -1139.3 98.32

V2O4  α , solid -1318.38 102.51

V2O5 solid -1419.63 130.96

W tungsten, gaseous 807.09 173.84

W liquid 43.07 45.7

W solid 0 32.64

WCl6  α , solid -455.65 238.49

WF6 gaseous -1632.18 340.95

WF6 liquid -1631.47 251.46

WO2 solid -533.92 50.54

WO3 solid -764.08 75.9

Xe xenon, gaseous 0 169.57

Xe aqueous solution 13.39 65.69

Zn zinc, gaseous 95.18 160.87

Zn solid 0 41.63

Zn++ aqueous solution -147.03 -112.13

ZnBr2 solid -312.13 138.49

ZnCO3 solid -731.57 82.42

ZnCl2 solid -369.43 111.46

ZnF2 solid -713.37 73.68

ZnI2 solid -208.95 161.08

ZnO solid -318.32 43.64

Zn(OH)2 solid -555.13 81.59

ZnS sphalerite, solid -201.29 57.74

ZnSO4 solid -874.46 119.66

Zr zirconium, gaseous 566.51 181.25

Zr solid 0 38.99

ZrC solid -199.58 32.17

ZrCl4 solid -889.94 181.59

ZrF4    β , monoclinic, solid -1810 104.6

ZrH2 solid -128.87 35.02

ZrN solid -336.39 38.87

ZrO2    α , monoclinic, solid -1042.82 50.38

Si … Zr
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