Friedrich Herrmann

The Karlsruhe physics course

Lecture notes

Thermodynamics

The Karlsruhe physics course

Lecture notes

Mechanics
Thermodynamics
Electromagnetism
Optics

Der Karlsruher Physikkurs
Ausgabe 2015
Prof. Dr. Friedrich Herrmann

Lizensiert unter Creative Commons

Substance-like quantities and the structure of physics

1.1 Balance equations

We start by positioning thermodynamics in the rest of physics. We'll first have to take a little run-up.
The values of a physical quantity usually refer to a certain geometric structure. Thus electric field strength, temperature and velocity refer to a point. The quantity voltage refers to a line. The force or momentum current, the power or energy current and the electric current refer to surface areas. The quantities we are interested in at the moment refer to a region of space. They include energy, momentum, electric charge, entropy, amount of substance and some others.
Substance-like quantities play a special role in physics. Let us look at some of their properties.
For each substance-like quantity X, an equation of the form

$$
\begin{equation*}
\frac{d X}{d t}=I_{x}+\Sigma_{x} \tag{1.1}
\end{equation*}
$$

holds. Also this equation refers to a region of space. It allows the following interpretation, Fig. 1.1: X is imagined to be the amount of "something": the amount of energy, the amount of movement (in the case of momentum), the amount of electricity, the amount of heat (in the case of entropy) or the amount of a substance.

The term $d X / d t$ represents the temporal change of the amount of X in the interior of the region of space. The quantity I_{x} refers to the surface of the region. It can therefore be interpreted as a current strength: the strength of the current of the quantity X through the surface of the region of space under consideration. The quantity Σ_{x} finally refers again to the interior of the space region and can be interpreted as the production rate of X (where negative production means annihilation).
In this interpretation, equation (1.1) appears as a balance equation. It tells us that the quantity X can change in two ways: 1 . by a current of X flowing through the surface into or out of the region, and 2 . by production or annihilation of X taking place inside the region.
For some substance-like quantities, the term Σ_{X} is always equal to zero. These quantities can only change their value by an inflow or outflow. They are called conserved quantities. These include energy, momentum and electric charge. Examples of substance-like quantities which are not conserved are entropy S and amount of substance n. Entropy can be created, but not destroyed, while amount of substance can be both generated and annihilated.
The interpretation we present here is justified solely by the form of equation (1.1). In fact, this interpretation is common for some quantities, for others less. Everyone is accustomed to imagine the quantity Q as an amount of electricity or an amount of charge, and accordingly the quantity I as the strength of a current, the electric current. The balance equation for the electric charge reads

$$
\frac{d Q}{d t}=I_{Q}
$$

The balance equation for the energy is

$$
\frac{d E}{d t}=P
$$

and that for momentum

$$
\frac{d \vec{p}}{d t}=\vec{F}
$$

It is customary to interpret the last equation differently: It is said that a force acts on the area of space, or a body within it, and thereby the momentum inside the area changes. However, it is advisable to read this equation in the same way as the other balance equations: The change of the momentum is caused by a momentum current of current strength \vec{F}.
Each of the major areas of classical physics is characterized by a substance-like quantity. Mechanics is that part of physics which deals with momentum and its currents. Electricity deals with electric charge and electric currents. Accordingly, pure thermodynamics can be defined as that part of physics which deals with entropy and entropy currents. The amount of substances and its currents belong to chemistry.
Energy is a quantity that is not characteristic of any of these areas. It is equally important in all areas of physics.

1.2 Energy currents

It is an experience that an energy flow is always linked to the flow of another substance-like quantity X. The strength of the energy current is proportional to the current strength I_{x} of the other quantity. As a general rule we have:
$P \sim I_{X}$
Concrete examples of this relation are
$P \sim F$,
which describes the transport of energy through a bicycle chain, for example, or
$P \sim I$,
which applies to the transport of electrical energy. These proportionalities are used to define the so-called energy-conjugated intensive quantities.
The electrical potential difference U is defined by

$$
\begin{equation*}
P=U \cdot I \tag{1.2}
\end{equation*}
$$

and the velocity can be defined by
$P=\vec{v} \cdot \vec{F}$.
We will see that for thermal energy transports the relationship $P \sim I_{s}$
holds and that the temperature T is defined by

$$
\begin{equation*}
P=T \cdot I_{s} \tag{1.4}
\end{equation*}
$$

Accordingly, for chemical energy transports $P \sim I_{n}$,
and the chemical potential μ is defined by

$$
\begin{equation*}
P=\mu \cdot I_{n} . \tag{1.5}
\end{equation*}
$$

The uniform structure of equations (1.2) to (1.5) shows that we are dealing with an analogy. The areas of physics mentioned before have a common structure. The analogy consists in the fact that certain physical quantities are mapped on each other. From a relation valid in one of the subareas, one obtains a relation in another subarea by simply replacing the corresponding quantities. Energy, energy current, position and time are not translated, or in other words, they transform into themselves. The second and third columns of Table 1.1 show the substance-like and intensive quantities which are replaced by each other. The fifth column shows an example of an equation in its various analog variants.

	Extensive quantity	Intensive quantity	Currentstrength	$P=\boldsymbol{\xi} \cdot I_{X}$
Mechanics	momentum p	velocity v	force F	$P=v \cdot F$
Electricity	electric charge Q	elektric potential ϕ	electric current I	$P=U \cdot I$
Heat	entropy S	temperature T	entropy current I_{S}	$P=T \cdot I_{S}$
Chemistry	amount of substan- ce n	chemical potential μ	substance current I_{n}	$P=\mu \cdot I_{n}$

Table 1.1
Assignment of physical quantities to sub-areas of physics and chemistry
The intensive quantities defined by equations (1.2) to (1.5) play an important role in flows associated with "friction" in a more general sense, or dissipation. Such processes are

- mechanical friction;
- "electric friction", i.e. the process that occurs when an electrical current flows through a resistor;
- the process by which entropy flows through a thermal resistor;
- diffusion and chemical reactions that occur spontaneously.

For all these "flows", the substance-like quantity flows from the high to the low value of the corresponding intensive quantity.
Thus, during mechanical friction processes, momentum always flows from the body of the higher velocity to the body of the lower velocity.
In electrical resistors, the electric charge flows from high to low electric potential.
Entropy flows from places of high to places of low temperature.
Finally, substances always diffuse from places with high to places with low chemical potential. In addition, chemical reactions always run spontaneously in the direction of decreasing chemical potential.
If one wants to run any of these processes in the opposite direction, one has to supply energy.
To transfer momentum from a body of lower to a body of higher velocity, a motor can be used. Electricity is transferred from low to high electric potential with the help of a battery or a generator. Entropy is pumped with a heat pump from low to high temperature. And a chemical reaction is driven in the opposite direction to the spontaneous drive, for example in an electrolysis cell.
We are now able to say what thermodynamics is all about. Thermodynamics is more than just the physics of heat. It is more than just the relationship between entropy and temperature. Thermodynamics deals with the interplay of thermal, chemical and mechanical processes. In addition to the ubiquitous energy, the variables we will be dealing with are therefore the thermal variables entropy and temperature and the chemical variables amount of substance and chemical potential. In thermodynamics, mechanics usually does not enter with its variables momentum and velocity, but with the substitutes volume and pressure.

Entropy und temperature

2.1 Entropy as a measure of heat

The entropy S is a quantity for which non-physicists have a good intuitive understanding and with which they intuitively operate correctly. There is probably no other quantity for which the physical term matches a colloquial term so well: Most colloquial statements in which the word "heat" or "quantity of heat" appears remain correct in the sense of physics if these words are replaced by the word "entropy".
However, in physics the word "heat" is used with a different meaning, namely as the name of the "differential form" TdS, and this does not match the colloquial meaning of the word. We therefore will not use the word heat in this sense.
Below are some statements in which the word heat is used in its colloquial meaning. These sentences remain correct if the word heat is replaced by the word entropy. In this way we get a qualitative understanding of the concept of entropy:
If one holds an object, e.g. a piece of iron, over a gas flame, it becomes warmer, its temperature increases. Heat (entropy) flows into the object. The more heat flows into the object, the higher its temperature. If the object is removed from the flame and wrapped in polystyrene, the heat (entropy) remains in it. If it is divided into two equal parts, each part contains half the heat (entropy) contained in the entire object. The heat (entropy) is thus substancelike. A heat density (entropy density) can be defined.
When a warm object is brought into contact with a cold one, heat (= entropy) flows from the warm to the cold, i.e. from the object of higher to that of lower temperature. The greater the temperature difference, the easier the heat (entropy) flows. Whether it flows quickly from a warm to a cold body also depends on the type of contact or connection. If the objects are connected by a piece of wood, the heat (entropy) flows more slowly than if they are connected by a piece of copper. So there are good and bad heat conductors (entropy conductors).
If one holds first a container with air and second a container of the same size with water over a flame, one notices that the air heats up faster, i.e. reaches a certain temperature faster than the water. So one has to put more heat (entropy) into the water to reach this temperature. Water has a greater heat capacity (entropy capacity) than air.
One can also add heat (entropy) to a "system" without heating it up. If boiling water is left on the flame, heat (entropy) flows continuously into the water. But its temperature no longer increases. Instread water is constantly evaporated. The steam must therefore carry away the heat (entropy). One gram of steam therefore contains (much) more heat (entropy) than one gram of liquid water.
If one leaves an object, which one has previously heated, for a while (without a further heating), the heat (entropy) flows out of it; it spreads in the environment. In the process, it becomes so diluted that at the end it is not easy to tell exactly where it has gone. Nevertheless, it is somewhere, it has not disappeared in the sense of "destroyed", but only disappeared in the sense of "hidden" or "dispersed".
Heat (entropy) cannot be destroyed, but it can be produced, e.g. in a flame, in an electrical resistor or by mechanical friction.
Energy is needed to produce heat (entropy). Since we believe in the conservation of energy, we conclude that with the heat (entropy) that flows away from an electrical resistance, energy also flows away.

2.2 Definition of the entropy scale

When introducing a new physical quantity, a scale of the quantity must be defined. The scale allows to attribute values to the quantity. The definition of a scale includes 1. the specification of the unit and 2. a rule for constructing multiples of the unit.

The definition of the unit is essentially a technical problem.
The specification of multiples, on the other hand, affects the essential of the quantity. In fact, the definition of multiples is a delicate problem in certain cases. There are quantities where this definition has changed throughout the history of physics. In the course of time the scale has been distorted, or better: rectified. An example is the temperature scale.
Let us first consider how to define the unit and the scale of entropy. We'll start with the unit.
The unit of entropy is the Carnot, abbreviated Ct. We know that entropy is needed to melt ice. With 1 Ct at normal pressure $0.893 \mathrm{~cm}^{3}$ ice is melted. It could therefore have been decided by law:
„1 Carnot is that amount of entropy with which $0.893 \mathrm{~cm}^{3}$ of ice is melted at normal pressure."
In fact, a different procedure has been preferred as the legal definition. This procedure is somewhat more complicated in concept, but allows a more precise definition of the unit. We'll come back to this later.

Now to the construction of multiples of entropy values. For sub-stance-like quantities, the construction of multiples is always trivial. If a system contains one unit of a quantity, two units are obtained by simply placing an identical system next to the first.
Practical measurement procedures must be distinguished from the procedure for defining the unit and the multiples of the values of the quantity. In order to determine the values of a quantity practically, one needs a procedure, which is not too cumbersome. In principle, an amount of entropy could be measured by melting ice and measuring the corresponding change of the volume of the ice. However, this procedure is impractical. Why? The entropy to be measured is located in any system: a container or a body. From there it must be transferred to the ice to be melted. Now it is very difficult to transfer entropy from one body to another without creating new entropy. It is particularly difficult if the body from which the entropy is taken is at a different temperature than the ice. The entropy must then be carefully pumped up or flow down (with the help of a heat pump or a heat engine, respectively). There is a more practical way to measure entropy. This makes use of the producibility of entropy. We will get to know this procedure later.

2.3 Entropy and energy - the temperature scale

Before we turn to the definition of the temperature scale, we must examine the energy and entropy balances of some simple devices.
Fig. 2.1 shows an immersion heater. First the entropy balance: Entropy comes out of the immersion heater, but no entropy flows into it. The entropy is generated in the immersion heater.

And the energy balance: Energy flows into the immersion heater via the cable, and it must come out again. The only possibility for this is that it comes out across the outer surface together with the entropy. It is also said that the energy enters the immersion heater with the energy carrier "electric charge", and it comes out with the energy carrier "entropy". We conclude that an entropy current is accompanied by an energy current.
We are now looking for the relationship between the entropy current I_{s} and the energy current P. Since both quantities are currents of substance-like quantities, the relationship must be:
$P \sim I_{S}$
(One can imagine, for example, operating two immersion heaters next to each other. Then both the energy and the entropy current for both together are twice as large as for a single one.)
The next system we look at is the entropy and energy balance of a thermal engine. Fig. 2.2 shows the corresponding flow diagram, Fig. 2.3 shows the thermal engine in more detail.

Fig. 2.2
Flow diagram of a heat engine

Fig. 2.3 The heat engine of a power plant consists of the steam generator,
the turbine, the condenser and the pump.

Thermal engines are used in coal-fired and nuclear power plants, among others. Entropy flows into the system at high temperature. This entropy is obtained by production: by burning coal or by fission of uranium and plutonium. The entropy enters the system in the steam generator. The steam expands in a turbine. Thereby it becomes colder. In the condenser, the steam condenses, releasing the entropy that was previously (in the steam generator) absorbed. This entropy is transferred to the water of a river or (in a cooling tower) to the ambient air
The entropy current at the inlet of the heat engine system is equal to that at the outlet. If in a real machine, the entropy current at the output is somewhat greater than at the input, this is due to imperfections of the machine, which in principle can be made as small as desired.
As the entropy flows through the system, the turbine delivers energy via the shaft. This energy must have entered into the machine. The only possibility is that the entropy flowing out carries less energy than the entropy flowing in. The difference between the energy current flowing in with the entropy and that coming out again with the entropy leaves the machine via the shaft. There must be a difference between the entry and the exit of the entropy. More precisely: The proportionality factor that makes the relationship (2.1) an equation must have different values for input and output. It must depend on a variable that has different values at input and output. Now we know that the output of the machine is colder than the input, that the temperature of the output is lower than that of the input, whichever is the temperature scale used.
Since we have not yet defined the temperature scale, we can do it now: The proportionality factor that makes (2.1) an equation is called temperature. The temperature T is therefore defined as:

$$
\begin{equation*}
T:=\frac{P}{I_{s}} \tag{2.2}
\end{equation*}
$$

To distinguish T from the temperature measured in ${ }^{\circ} \mathrm{C}$, this variable is also called absolute temperature.
The definition (2.2) is analogous to that of the electrical voltage. In fact, the electrical voltage is defined as the quotient of energy current and electric current. (This fact is often formulated differently, for example: Voltage equals energy per charge. However, this formulations is equivalent to our version.)
We write equation (2.2) in the form in which it is usually remembered:
$P=T \cdot I_{S}$.

2.4 The units of temperature and entropy

Since the scales, and thus the multiples of energy and entropy are defined, equation (2.2) also specifies the multiples of the temperature. However, we had initially postponed the definition of the unit of the entropy. We can now make up for what is still missing. If one were to define the entropy unit, the temperature unit would also be defined with equation (2.2) (because the energy unit is already known from mechanics). In reality, however, we proceed the other way round: we define a temperature unit by law and deduce the entropy unit, the Carnot, using equation (2.2). Thus, the temperature unit is defined as follows:

The temperature of water at the "triple point" is 273.16 Kelvin.
The triple point is the temperature at which solid, liquid and gaseous water coexist. It is particularly suitable for defining the temperature unit, because no additional information about the values of other variables has to be given. So it does not have to be specified: "at a pressure of...". When water is at the triple point, the pressure is inevitably fixed.
We summarize the somewhat complicated process of defining the scales of entropy and temperature.
The multiples of entropy result simply from the substance-likeness of the quantity. The multiples of temperature values are defined by equation (2.2). The unit of the temperature is defined by the triple point of the water. From this follows the entropy unit via equation (2.2):

$$
1 \mathrm{Ct}=1 \mathrm{~J} / \mathrm{K} .
$$

One more remark about the "crooked" value in the definition of the temperature unit. It was chosen because a temperature difference of 1 Kelvin should be equal to the previously introduced ${ }^{\circ} \mathrm{C}$ (degrees Celsius).
The temperature of the phase transition between solid and liquid water at normal pressure (the temperature of melting ice) is 273.15 K. For the relationship between Celsius temperature ϑ and absolute temperature T, the following applies

$$
\frac{T}{\mathrm{~K}}=\frac{\vartheta}{{ }^{\circ} \mathrm{C}}+273.15
$$

2.5 Heat engine and heat pump

We can now establish the energy balance of the heat engine. (The entropy balance is trivial: just as much flows in as flows out.)
With the entropy (current I_{S}) flowing into the machine at the high temperature T_{2}, an energy current

$$
P_{2}=T_{2} \cdot I_{S}
$$

enters into the machine, and with the entropy flowing out at the low temperature T_{1}, an energy current

$$
P_{1}=T_{1} \cdot I_{s}
$$

comes out.
Thus, a net energy current

$$
P=P_{2}-P_{1}=T_{2} \cdot I_{S}-T_{1} \cdot I_{S}
$$

or

$$
\begin{equation*}
P=\left(T_{2}-T_{1}\right) I s \tag{2.4}
\end{equation*}
$$

enters the machine.
It can be seen that the working principle of the heat engine is similar to that of a water wheel, compare Fig. 2.4 with Fig. 2.2.

Fig. 2.4
Flow diagram of a water wheel

The entropy corresponds to the water in the water wheel, or more precisely, to the mass m of the water, and what is the temperature in the thermal engine is the gravitational potential $g \cdot h$ ($g=$ gravitational field strength, $h=$ height) in the water wheel. A mass current flows at a great height towards the water wheel, a mass current of the same strength flows away from it at a lower height. At the water wheel, the mass moves down from a great height to a small height, thereby releasing energy. The corresponding energy current is

$$
P=P_{2}-P_{1}=g \cdot h_{2} \cdot I_{m}-g \cdot h_{1} \cdot I_{m}=g\left(h_{2}-h_{1}\right) I_{m}
$$

Now to the heat pump. The heat pump does just the opposite of what a heat engine does: it conveys entropy from low temperature to high temperature. Since the entropy flowing away at the high temperature carries more energy than that entering at the low temperature, the heat pump needs an energy supply. The energy it needs to pump is again given by the equation

$$
P=\left(T_{2}-T_{1}\right) I_{S} .
$$

In analogy to this, there is also an inversion to the water wheel: the water pump. Its energy demand is given by the equation

$$
P=g\left(h_{2}-h_{1}\right) I_{m}
$$

Fig. 2.5 shows the flow diagrams of an electric heat pump and an electric water pump.

6 Entropy production - reversible and irreversible processes
electricity flows through an electrical resistor - from high to low electric potential - - the resist
Fig. 2.6. (See also Fig. 2.1.)

The energy flowing to the resistor must be equal to the energy flow($\phi_{2}-\phi_{1}$) I I .
$\left(\phi_{2}-\phi_{1}\right) \cdot l=T \cdot I_{\text {prod }}$
Here is ϕ the elecctric potential, $/$ the electric current and I_{s})
the the the
the rate of entropy production. We read the equation as follows: Towards the resistor, energy flows with the energy carrier electric tropy with which the energy leaves the resistor was produced within the resistor. If $U=\phi_{2}-\phi_{1}, l$ and T are known, the produced entropy the resistor. If $U=\phi_{2}-\phi$
can easily be calculated:
$I_{\text {prood }}=U \cdot I T$
It is an important experience that entropy cannot be destroyed. As a
result, processes in which entropy is produced cannot run backresult, processes in which
wards, they are irreversible.
(23) tells us.

Equation (2.3) tells us that energy is needed to carry the produced entropy away. We say that this energy id dissipated. Proces
which entropy is produced are called dissipative processes.
There are some standard dissipative processes that have certain There are some standard dissipative processes that have certain
characteristics in common. One of these is the process just discussed, in which an electric current flows through an electric resis-
tor. tor.
Another such standard process is mechanical friction, Fig. 2.7: en-
tropy is produced while momentum through a "moentum resistor", is through the contact surface behrough a "momentum resistor", i.e. through the contact surface be-

Fig. 2.7
Monem and entropy balance
lea firicion p process
he momentum flows from the body with higher velocity v_{2} to the body with lower velocity v_{1}. The energy flow required to maintain the process has the strength
$P=\left(v_{2}-v_{1}\right) \cdot F$
Thus, the energy balance is:
$\Delta v \cdot F=T \cdot I_{\text {sprod }}$
Fig. 2.8 shows the flow diagram of the friction process.

$\xrightarrow{\text { Fig. } 2.8} \begin{aligned} & \text { Fiow digaram of a triction processs }\end{aligned}$

Fig. 2.9 shows a third dissipative process. Here, angular momentum
flows from the shaft with the higher angular velocity to the shaft with lows lower angular velocity in a slipping clutch

The energy balance reads
$\Delta \omega \cdot M=T \cdot I_{\text {sprod }}$,
ω is the and M. M is the torque or the angular momen current). The flow diagram is shown in Fig. 2.10.

${ }_{-}^{\text {Fig. } 2.10}$ Fiow diagram of a slipping clutch
Fig. 2.9
Angarar momentum mand entropy
falance tor as slipping clutch

One type of process, which we will not consider until the next chap-
ler, is a free-running chemical reaction. Also here entropy is gene ared, and also here an energy balance equation can be formulated, which has the same structure as that of the electric resistance:
$\Delta \mu \cdot I_{n}=T \cdot I_{\text {spood }}$.
Here μ is the chemical potential and I_{n} the substance conversion
(measured in mol/s). $\Delta \mu$ is the difference between the chemical po(measured in $\mathrm{mol} / \mathrm{s}$). $\Delta \mu$ is the d
tentials of reactants and products.
All the processes we have discused here have in cor All the processes we have discussed here have in common that a
substance-like quantity flows from one point to another or goes from substance-like quantity flows from one epoint to another or goes from
one state to another via a kind of resistor. The corresponding intensive quantity - electric potential, velocity, angular velocity, chemical potential - has a higher value at the first position, or in the first state, than at the second position, or in the second state. The substancelike quantity flows "from the high value of the intensive quantity to he low value",
Finally, we consider a dissipative process that has a peculiarity. Through a thermal conductor (= resistor), whose ends are at the different temperatures T_{2} and T_{1}, an entropy current flows from the end
with the high temperature T_{2} to the end with the low temperature T_{1}, ig. 2.11.

$\underset{\substack{\text { Fig. } 2.11 \\ \text { Entropy balance of a heat conduc. } \\ \text { tor }}}{ }$

Also in this case entropy is produced. This means that more entropy arrives at the cold end than has flowed into the thermal resistor at $T_{2} \cdot I_{12}=T$ energy balance can be formulated as follows:
because the incoming and outgoing energy currents must be equa This equation shows that the entropy current l_{s} must be greater han I_{22}. Since the entropy current flowing out is composed of the current flowing in and the entropy produced in the resistor per time, ${ }_{51}$ can be written.
$s_{s 1}=s_{s 2}+s_{s \text { prod }}$,
Together with (2.6) this results in
$\left(T_{2}-T_{1}\right) \cdot I_{S 2}=T_{1} \cdot I_{\text {prod }}$
fwe omit the index 2 for the entropy current flowing in, we get
$\left(T_{2}-T_{1}\right) \cdot I_{S}=T_{1} \cdot I_{\text {prod }}$,
, \quad,
(2.7)
.e. again an equation of the type of equation (2.5).
The process described in equation (2.7) could be called thermal fric-
tion. The peculiarity of the process is that the flowing quantity is tion. The peculiarity of the process is that the flowing quantity is of
the same nature as the produced one.

2.7 Efficiency

Many devices and machines serve the purpose of transferring energy from one energy carrier to another. The electric motor receives energy with the carrier electric charge and releases it with angular momentum. Energy flows into an electric heat pump with electric charge, and it leaves it with entropy. Such devices or machines are often called energy converters. This way of speaking is not very appropriate. In fact, nothing is converted. The energy only changes its companion. We therefore prefer the name energy transloader. We say the energy is loaded from one carrier to another.
Every energy transloader has losses. The cause of energy losses is always the production of entropy. Part of the incoming energy is used or consumed to carry the produced entropy away, according to equation (2.3).
The transport of a substance-like quantity is also associated with more or less entropy production. Again, energy is needed, and this is also to be recorded as a loss.
Energy is always lost when entropy is produced. Thus, the motto "save energy" should better be replaced by "avoid entropy production".
In fact, any activity that produces entropy can also be realized by a process that runs without entropy production. There is no physical reason why we consume energy at all. In principle, all production and transport services could be managed without energy expenditure. It is technically important to assess whether an appliance, a machine, a transport device is wasting energy. We therefore define an efficiency η for the equipment in question.
To define the efficiency, the system to be evaluated is compared with another system that provides the same service, but does not produce entropy, i.e. with a perfect, ideal system. Let the energy consumption of the real machine be $P_{\text {real }}$ and that of an ideal machine with the same achievement (whatever it may be) Pideal. We define the efficiency as

$$
\begin{equation*}
\eta=\frac{P_{\text {ideal }}}{P_{\text {real }}} \tag{2.8}
\end{equation*}
$$

The definition is such that for a device in which no entropy is produced, the efficiency $\eta=1$ results.
We now want to calculate the efficiency of a notorious energy waster: an electric heater. The service that we expect from the heater is to provide a certain entropy current I_{s} at a certain temperature T_{2}. If the heater is used to heat a house, I_{s} is also the entropy current that leaves the house through the heat leaks. T_{2} is the temperature inside the house.
The real electric heater needs an energy current of

$$
P_{\text {real }}=T_{2} \cdot I_{S}
$$

A reversibly working machine for heating the house would be a heat pump that pumps the required entropy into the house from outside the house. The energy consumption of the heat pump is (see section 2.5)

$$
P_{\text {ideal }}=\left(T_{2}-T_{1}\right) I_{s} .
$$

This results in the efficiency (2.8):

$$
\eta=\frac{P_{\text {ideal }}}{P_{\text {real }}}=\frac{\left(T_{2}-T_{1}\right) I_{S}}{T_{2} I_{S}}=\frac{T_{2}-T_{1}}{T_{2}}
$$

It is interesting that the efficiency can be expressed by only two temperatures. The fact that it is a resistance heater is not reflected in the equation. In fact, the same equation results for any other heater, where all the required entropy is obtained by production. Because of its universal meaning, this expression has its own name. The expression

$$
\begin{equation*}
\eta=\frac{T_{2}-T_{1}}{T_{2}} \tag{2.9}
\end{equation*}
$$

is called Carnot factor.

2.8 Thermal equilibrium

When entropy flows via a heat conductor from a body A of higher temperature into a body B of lower temperature, the temperature T_{A} decreases and the temperature T_{B} increases, Fig. 2.12: The two temperatures equalize. Finally

$$
T_{\underline{A}}=T_{\mathrm{B}} .
$$

Fig. 2.12
Thermal equilibrium establishes between the two bodies.

When this state is reached, there is no longer any "drive" for the entropy current, the entropy ceases to flow. This state is called thermal equilibrium.
It is analogous to other equilibrium states. Momentum equilibrium occurs when two bodies A and B rubbing against each other reach the same velocity, Fig. 2.13, i.e. when

$$
V_{\mathrm{A}}=V_{\mathrm{B}} .
$$

Fig. 2.13
Momentum equilibrium establishes between the two bodies.

Electric equilibrium is reached between two capacitors connected to each other by a resistor, Fig. 2.14. In the electric equilibrium is $U_{A}=U_{B}$.

Fig. 2.14
Electric equilibrium establishes between the two capacitors.

2.9 Measuring temperature and entropy

Measurng temperature

 mechanical, electrical or optical variables depend on the temperature, e.gthermal expansion of a solid: bimetallic strip (used in thermostats);

- thermal expansion of a liquid: mercury thermometers;
- thermal expansion of gases: gas thermometer;
thermoelectric effect: an entropy current is coupled to a current of charged particles; with an open circuit the particle current cannot flow, and a temperature difference causes a difference in the electrochemical potential;
the electric resistance of a material depends on temperature: for metals the
decreases;
every body emits electromagnetic radiation; the spectrum of the radiation depends on temperature: radiation pyrometer;
some substances change their color when a certain temperature is exceeded.
In most temperature measurement procedures, the measuring instrument is brought into thermal equilibrium with the system Y , whose temperature is to be determined: an entropy conducting connection allows for an entropy flow from Y to the measuring instrument. The entropy flows until the measuring instrument and system Y have the same temperature. The entropy capacity of the instru-
ment must be small compared to that of Y. Furthermore, the measuring instrument should not have a thermal leak, otherwise the entropy flow between Y and the measuring instrument never comes to a standstill. Analogous remarks apply to the measurement of other intensive quantities.

Measuring entropy

The fact that entropy can be produced makes its measurement more difficult if a method is applied that is analogous to the methods used to measure conserved quantities, such as electric charge. Actually, however, it facilitates the measurement, since a method can be employed that is not possible with conserved quantities
In the following we assume that we do not want to measure the total tropy content of the system differs in two given states. The measuring task is e.g.: How much more entropy is contained in a certain amount of liquid X at $80^{\circ} \mathrm{C}$ than at $20^{\circ} \mathrm{C}$, Fig. 2.15?

Method without entropy production
We orientate ourselves on the measurement of electric charge. One transfers the amount of charge to be med Fig. 2.16a. The ele is deflection and charge is known.

Accordingly, the entropy to be measured can be transferred into a container filled with water, Fig. 2.16b. The water expands. The vertical pipe is calibrated, i.e. the relation between vertical rise and entropy coctical because in general the entropy to be measured is located in a system whose temperature is different from that of the calibrated water tank. If the system is at a higher temperature than the measuring instrument, the entropy to be measured can be transferred with a heat conductor. But this produces additional entropy and the meter displays too much. If the system is at a lower temperature than the instrument, the entropy does not flow into the instrument at all. This means that a heat pump or a heat engine must althat the entropy is brought to the temperature of the measuring device. This procedure is so impractical and inaccurate that it is not used

Method with entropy production
With this method it is not possible to determine the amount of entropy already in the system. Instead, the entropy whose value one wants to determine is first transferred to the environment and the same amount is then produced anew.
In our case, we will first allow the entire entropy to be measured to flow out of our liquid X , which is at $80^{\circ} \mathrm{C}$: We cool the liquid to $20^{\circ} \mathrm{C}$, Fig. 2.17a. Then we produce the entropy anew and measure the incoming energy flow as well as the temperature, Fig. 2.17b. The energy current P and the entropy current $I s$, which flow out of the heating device, are related by
$P=T \cdot I_{s}$.

The temperature is the same throughout the liquid (thanks to the agitator). Energy is supplied until the temperature has risen from
$(273.15+20) \mathrm{K}$ to $(273.15+80) \mathrm{K}$. The entropy produced in the $(273.15+20) K$
heating resistor is
$S=\int_{t\left(20^{\circ} C\right)}^{t\left(100^{\circ}\right)} I_{s}(t) d t=\int_{t\left(20^{\circ} C\right)}^{t\left(800^{\circ}\right)} \frac{P(t)}{T(t)} d t$

2.10 The first and the second law

Statements about whether or not a substance-like physical quantity is conserved have historically often been regarded as important, if not the most important, physical laws at all. This can be seen by the fact that these statements often have their own, sometimes quite pretentious name.

Newton's second law:
Momentum can neither be produced nor destroyed.
The first law of thermodynamics:
Energy can neither be produced nor destroyed.
The second law of thermodynamics:
Entropy can be produced, but not destroyed.
These names indicate that the discovery of the respective theorem was laborious. The reason for this difficulty is probably that the "sub-stance-likeness" of these quantities was initially not recognized. The theorem of the conservation of the electric charge does not bear its own name, since the substance-likeness of the charge (= electricity) was recognized first, and shortly afterwards the conservation was discovered (Franklin 1747). The situation is similar with the amount of substance. Its substance-likeness was clear from the beginning, and its non-conservation was so obvious that one felt no need to express it in as a new theorem.

2.11 Entropy content at absolute zero

If one tries to extract more and more entropy from a body with a very good heat pump, one realizes two things:

- The temperature can be as close as desired to 0 K , but cannot be lower.
- At this temperature, the pump does no longer pump entropy.

We conclude that, as we approach the temperature of 0 K , the entropy content is approaching zero. So we have:
$T \rightarrow 0$ exactly when $S \rightarrow 0$.
In words: Absolutely cold bodies contain no entropy.
But there are cases in which this statement seems to be violated. When liquid glasses are cooled down quickly, they release less entropy than when they are cooled slowly. During rapid cooling entropy seems to be frozen or trapped.

We will explain this process later as follows: the glass can be broken down into subsystems, and one of these subsystems is not in thermal equilibrium with the rest if it cools too quickly. Although a thermometer indicates that T approaches zero Kelvin, both S and T of this subsystem do no longer decrease. The total system has two different temperatures.
One can also describe the phenomenon like this: Entropy has become immobile, similar to immobile electrical charge.

2.12 Entropy capacitance

Whether a system contains much or little entropy can be seen from various properties, more precisely, from the values of various other physical quantities. In particular, the entropy content increases with increasing temperature. We call the entropy increase per tempera ture increase the entropy capacitance C_{s} of the system:
$C_{s}=\frac{\Delta S}{\Delta T}$
This quantity is defined in analogy to the electrical capacitanc
$C_{Q}=\frac{Q}{U}$
and to the mass, which can be interpreted as the momentum capaci-
tance tance
$C_{\rho} \equiv m=\frac{p}{v}$
In contrast to C_{Q} and C_{p}, C_{s} is not defined as a quotient, but as a dif ferential quotient of an extensive and an intense quantity.
We are now addressing a problem that is normally only encountered with the entropy capacitance. The entropy of a system depends no only on T, but also on other variables, e.g. on the volume V and on the amount of substance n. So it is:
$S=S(T, V, n)$.
However, it is also possible to choose other independent variables
for the same system, e.g. T, p and $n S$ is another function of the for the same system, e.g. T, p and n. S is another function of th variables T, p and n. If one wants to determine the entropy capaci-
tance - mathematically or experimentally - i.e. one asks for the change of the entropy content for a given temperature increase, on has to decide what should happen with the other variables in this process. The most natural thing to do is to leave the volume and the amount of substance unchanged during the temperature increase.
The entropy capacitance, that is determined in this way, is
$\frac{\partial S(T, V, n)}{\partial T}$.
To indicate that the volume is constant, we denominate this quantity $C_{s} \sqrt{ }$. The fact that n is also kept constant is an implicit conventio and is not expressed in the symbol.
So it is
$C_{s}^{v}=\frac{\partial S(T, V, n)}{\partial T}$
Sometimes an entropy capacitance is also useful, which is determined by a temperature change at constant pressure:
$C_{s}{ }^{p}=\frac{\partial S(T, p, n)}{\partial T}$
We emphasize that $S(T, V, n)$ and $S(T, p, n)$ are different functions.
With the electrical capacitance one could make quite analog distinctions. Fig. 2.18 shows a "capacitor" consisting of two spheres. We
can write the charge Q either as a function of the variables U and x (distance between spheres): $Q=Q(U, x)$ or as a function of U and F (momentum current from one sphere to the other): $Q=Q(U, F$).

Accordingly, two capacitances can be defined
$C_{Q}{ }^{x}=\frac{\partial Q(U, x)}{\partial U} \quad$ and $\quad C_{Q}{ }^{F}=\frac{\partial Q(U, F)}{\partial U}$
To measure $C_{Q}{ }^{F}$, when charging the capacitor, the distance x must be increased so that F remains constant. However, this case has no an arrangement. When we talk about the (electric) capacitance of ment is not modified when the voltage is changed.
In thermodynamics, molar quantities are often used. We mark them with a "roof" above the symbol of the quantity. For homogeneous systems, a molar variable depends only on intensive and other molar variables. Therefore, the molar entropy, i.e. the entropy pe amount of substance is
$\hat{S}=\hat{S}(T, \hat{V}) \quad$ or $\quad \hat{S}=\hat{S}(T, p)$
A third variable no longer appears, because the amount of sub stance per amount of substance is equal to 1
We therefore define molar entropy capacitances

$$
\begin{align*}
& c_{s}{ }^{V}=\frac{C_{s}{ }^{V}}{n}=\frac{1}{n} \frac{\partial S(T, V, n)}{\partial T}=\frac{\partial \hat{S}(T, \hat{V})}{\partial T} \tag{2.10}\\
& c_{s}{ }^{p}=\frac{C_{s}{ }^{p}}{n}=\frac{1}{n} \frac{\partial S(T, p, n)}{\partial T}=\frac{\partial \hat{S}(T, p)}{\partial T}
\end{align*}
$$

The values of $c_{s}{ }^{p}$ and $c^{\nu}{ }^{\nu}$ for some substances are listet in Table 2.1. These molar entropy capacitances do not depend on the size of ables: intensive and molar variables. We will discuss their tempera ture dependence later.

Substance	$c_{s}{ }^{\rho}\left(\mathrm{Ct}^{2} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$	$\mathrm{cs}^{\vee}\left(\mathrm{Ct} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$
Potassium	99	
Iron	87	
Silver	86	
Lead	91	
Water	256	
Benzene	0.45	
Helium	77	46
Air	107	76
Hydrogen	104	74
CO_{2}	101	92

Table 2.1 \qquad
Instead of entropy capacitances, tables usually show the produc $C_{s} \cdot T$, which has the dimension of an energy capacitance. This ex pression is called molar heat capacitance. Its symbol is c_{v} or c_{p}, re
spectively: spectively:
$c_{v}=c_{s}{ }^{v} \cdot T$ and $c_{\rho}=c s^{p}$.
Caution: It is not correct to say that a system contains heat when the word heat is used in the sense of physics, because TdS is not substance-like quantity. Therefore, the term heat capacitance is somewhat misleading.
Fig. 2.19 shows the temperature over entropy for copper. It is typica for all substances as long as there is no phase transition.

$\xrightarrow{\text { Fig. } 2.19}$ Temperature
Temperature over entropy for 100

2.13 Entropy conductivity

If entropy flows through a material medium, energy is dissipated, (additional) entropy is produced, Fig. 2.11. For the entropy to flow, a temperature gradient is necessary.
The temperature gradient can be interpreted as a driving force for the entropy current. We consider a section of a heat conductor thal is so short that the entropy produced in this section is sufficiently small compared to the entropy flowing through it
Experience shows that
$I_{s} \sim \frac{T_{2}-T_{1}}{\Delta x}$
Written in differential form the relation reads
$I_{s} \sim \operatorname{grad} T$.
Is depends on the cross-sectional area A of the heat conductor and on the material. We thus can write
$I_{s}=\sigma_{s} \cdot A \cdot|\operatorname{grad} T|$
and call σ_{s} the entropy conductivity. For the entropy current density we thus obtain
$\vec{j}_{s}=-\sigma_{s} \cdot \operatorname{grad} T$
Tables usually show the thermal conductivity
$\lambda=\sigma_{S} \cdot T$
If equation (2.12) is multiplied by T, we obtain
$T \cdot \dot{j}_{s}=-T \sigma_{s} \cdot \operatorname{grad} T=-\lambda \cdot \operatorname{grad} T$
With
$T \cdot \vec{j}_{S}=\vec{j}_{E}$
we get the energy current density
$\vec{j}_{E}=-\lambda \cdot \operatorname{grad} T$
σ_{S} (like λ, but also like the electric conductivity and the momentum conductivity) depends on temperature
Table 2.2 shows the values of σ_{S} and λ for some substances.

Substance	$\sigma_{s}\left(\mathrm{Ct} \cdot \mathrm{K}^{-1} \cdot \mathrm{~s}^{-1} \cdot \mathrm{~m}^{-1}\right)$	$\lambda\left(\mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{~s}^{-1} \cdot \mathrm{~m}^{-1}\right)$
silver	1.54	420
copper	1.43	390
iron	0.29	79
lead	132	36
glass	0.0037	1.0
water	0.0009	0.25
ethanol	0.00066	0.18
styrofoam	0.00013	35
air	0.000088	25

Table 2.2
We now want to find a differential equation that allows us to calculate temperature distributions. To derive it, we consider a one-dimensional problem: a heat conductor whose temperature changes only in the x-direction, Fig. 2.20

Fig. 2.20
Entropy is flowing from left to
righ.

We cut a slice out of the heat conductor perpendicularly to the x-direction and make the energy balance for this slice. The time rate of rection and make the energy balance for this slice. The time rate of
change $d E / d t$ inside the slice is equal to the difference of the energy currents flowing in on the left and out on the right:
$\frac{d E}{d t}=-[P(x+d x)-P(x)]$
With the help of $d E=c \cdot n \cdot d T$ we express the left side by the time rate of change of the temperature:
$\frac{d E}{d t}=c \cdot n \cdot \frac{\partial T}{\partial t}=c \cdot \rho_{n} \cdot A d x \cdot \frac{\partial T}{\partial t}$
Here c is the molar heat capacity, n the amount of substance and ρ_{n}
the density of n. The right side of equation (2.14) the density of n. The right side of equation (2.14) can be written

$$
-\frac{d P}{d x} d x=-A d x \cdot \frac{d j_{E}}{d x}=A d x \cdot \lambda \cdot \frac{\partial}{\partial x}\left(\frac{\partial T}{\partial x}\right)=A d x \cdot \lambda \cdot \frac{\partial^{2} T}{\partial x^{2}}
$$

Here, first $P=j_{E} \cdot A$ and then $j_{E}=-\lambda \cdot \partial T / \partial x$ was used. We thus get from equation (2.14):
$c \cdot \rho_{n} \cdot A d x \cdot \frac{\partial T}{\partial t}=A d x \cdot \lambda \cdot \frac{\partial^{2} T}{\partial x^{2}}$
or
$\frac{\partial^{2} T}{\partial x^{2}}-\frac{c \cdot \rho_{n}}{\lambda} \cdot \frac{\partial T}{\partial t}=0$
The three-dimensional calculation would have resulted in
$\Delta T-\frac{c \cdot \rho_{n}}{\lambda} \cdot \dot{T}=0$
With $c^{\prime}=T \cdot c_{S}$ and $\lambda=T \cdot \sigma_{S}$ we can also write:
$\Delta T-\frac{c_{s} \cdot \rho_{n}}{\sigma_{s}} \cdot \dot{T}=0$
The structure of this differential equation is the same as that of the Schrödinger equation for a free particle
$-\frac{\hbar^{2}}{2 m} \Delta \psi=i \hbar \frac{\partial \psi}{\partial t}$
In the steady state we have $\partial T / \partial t=0$, thus
$\Delta T=0$.
Example: The temperatures T_{1} and T_{2} of the ends of a metal rod are kept constant over time. Since $\partial T / \partial t=0$ and the arrangement is one dimensional, we obtain
$\frac{\partial^{2} T}{\partial x^{2}}=0$
From this follows
$\frac{\partial T}{\partial x}=$ cons
The temperature profile is therefore a straight line.
The entropy currents investigated so far were driven by a temperature gradient. We call them conductive currents.
There are also currents in which a current l_{x} is entrained by a current $/ r$. The entire flow is driven solely by the gradient of the inten sive variable belonging to Y. We call the current $I x$ a convective cursive variable belonging to Y. We call the current $I x$ a convective cur
rent. The entropy current in the pipe of a central heating system, for example, is a convective entropy current. Conductive entropy currents are unsuitable for the transmission of large amounts of en tropy. How thick would the lines of a central heating system have to be if entropy was to be sent conductively through copper rods? The earth's heat balance is also essentially realized with convective curcussed later: entropy transmiscion with electromagnetic radiation cussed later: entropy transmission with electromagnetic radiation.

2.14 Remarks on the history of the concept of heat

Until about 1840, heat was the name of what physicists today call entropy, and what non-physicists still today call heat. This concept of heat was established in physics in the course of the 18th century. We owe the first important contributions to the chemist and physician Joseph Black (1728-1799). He recognized heat as a substancelike quantity and distinguished it from temperature which was already known at that time. Black also introduced the heat capacitance, namely $d S / d T$, which we now call entropy capacitance.
The next decisive step was taken by Sadi Carnot (1796-1832). In his Réflexions sur la puissance motrice du feu (1824) he compares a heat engine with a water wheel. Just as water does work when it goes down over a water wheel from a greater to a lower height, so heat ("calorique" or "chaleur") does work when it goes from higher to a lower temperature in a thermal engine. Expressed in modern language we can say that Carnot combines entropy and energy. For him, just as for Black, heat, i.e. what we call entropy today, was a substance-like quantity. A corresponding idea about what we call energy today, did not yet exist. In fact, energy as a substance-like, conserved quantity was introduced only 20 years later.
When around the middle of the 19th century energy was introduced, it was concluded that Carnot's work was wrong and that heat was a so-called "form" of the energy. Thus "heat" was no longer the name of a physical quantity but of a structure of the form $\xi d X$, a so-called differential form, just like "work". A short time later, entropy was reinvented by Rudolf Clausius (1822-1888). Clausius' construction of entropy is witty, but unfortunately also very unintuitive. This construction, together with the interchange of names, is the reason why entropy still today appears as one of the most abstract physical quantities.
Two important names remain to be mentioned. Gibbs (1839-1903) has given thermodynamics a form in which it allows to describe much more than pure thermal phenomena. The analogies we keep coming across here are based on Gibbs' work.
Boltzmann (1844-1906) tried to trace thermodynamics back to mechanics by explaining thermal phenomena through the movement of small particles. Temperature and entropy were interpreted mechanically. He invented statistical physics. Its significance goes far beyond the mechanical models used to derive it.

Amount of substance and chemical potential

3.1 Substances and basic substances

As one describes the location of a point in space by three coord nates in a spatial reference system, so one can characterize a mate rial by its coordinates in a reference system of substances. To the coordinate axes we assign basic substances. The value of a coordi
nate X_{i} of substance S indicates the amount of basic substance nate X_{i} of substance S indicates the amount of basic substance
contained in S. In Fig. 3.1, a specific solution of common salt in wa ter is represented by a point in an $m_{\text {water }}-m_{\text {salt }}$ coordinate system (Here we use mass as a measure of the amount of the substances.) The values of all other coordinates, e.g. $m_{\text {ron }}$ or $m_{\text {Alconol }}$ are zero. Al mixtures of water and salt can be displayed in this coordinate sys tem, from pure water to pure common salt.

The same substance manifold "saline solution" can also be de scribed in a different coordinate system obtained from the first by linear combination, Fig. 3.2. However, in this case negative quanti-
ties of the substances must also be permitted. Pure water, for exties of the substances must also be permitted. Pure water, for ex-
ample, then "consists" of one-molar salt solution and a negative ample, then "consists"

Which and how many substances are chosen as basic substances
is largely a question of expediency. There must not be too many is largely a question of expediency. There must not be too many
otherwise the coordinates of a substance are no longer unambigu ous. With our saline solution, for example, we must not take water ous. With our saline solution, for example, we must not take wate,
common salt and a one-molar saline solution. If there are too few, two things can happen.

- A substance cannot be represented in these coordinates. For example, a quantity of gasoline cannot be described by
- Different substances have the same coordinates. If we take "electrons", "protons" and "neutrons" as basic materials, for example many substances that the chemist wants to distinguish have the same coordinates.
When speaking of a substance, one usually abstracts from the total amount. Instead of the amounts of the basic substances, it is there fore customary to indicate numerical proportions of the substances If $\mathrm{A}, \mathrm{B}, \mathrm{C} \ldots$... are the basic substances, a substance is represented by the "molecular formula"
$\mathrm{A}_{\mathrm{v} 1} \mathrm{~B}_{\mathrm{v} 2} \mathrm{C}_{\mathrm{v} 3}$.
where we have
$n_{A}: n_{B}: n_{c}: \ldots=\mathrm{v} 1: \mathrm{v} 2: \mathrm{v} 3$
The chemist's basic substances are the approximately 100 chemica elements. They have the special feature that their quantities in pure
substances behave like small integrs substances behave like small integers.
Here, too, it is often not sufficient to specify the coordinates in a substance coordinate system to characterize a substance. Two dif ferent substances can have the same molecular formula, e.g. am monium cyanate and urea: $\mathrm{CH}_{4} \mathrm{ON}_{2}$. This proves that the sub guish them, the chemist indicates the spatial linkage of the atoms, Fig. 3.3

Some "pure" substances do not exist at all, e.g. carbonic acid $\mathrm{H}_{2} \mathrm{CO}_{3}$ exists only in aqueous CO_{2} solution, or FeO exists only together with $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
What for chemists appears to be a uniform substance proves to be a mixture of even "purer" substances: there are different isotopes fo each basic chemical substance. If one wants to consider the differ ent isotopes in the characterization of a substance, one has to dea with about 2000 nuclides of these elements instead of 100 chemical elements.
The nuclides, on the other hand, can be described by only three ba sic substances e, p and n, which, however, have no substance names. Their elementary proportions are called electron, proton and stances, higher energies have to be applied than those that the chemist uses to break down his substances into basic substances The substances e, p and n do not exist in pure form in large quanti ties on earth, but small quantities can easily be produced. The fila ment of an incandescent lamp is surrounded by a thin layer of pure e. A p-gas is obtained by an electric gas discharge in hydrogen.
Pure n also exists on Earth, but in much larger quantities in certain celestial bodies, the neutron stars.
Using very high energies, however, substances can be produced that are outside the e-p-n coordinate system. New basic materials have to be added: Antiprotons, antineutrons and many differen mesons... But also these substances can again be described by fewer, even more elementary basic substances: Quarks and leptons and at this level of the hierarchy the same thing happens as before
By using higher energies, the number of new basic substances in By using higher energies, the number of new basic substances in mentary basic substances.
A material coordinate system is used to bring order to the variety of A material coordinate system is used chooses the coordinate system in such a way that the amount of each basic substance remains constant during the re actions that one examines. Thus, chemists limit themselves to reac tions in which the quantity of each chemical element is conserved By selecting the coordinate system, the description of the chemica reactions becomes very simple. The amounts of the chemical el ments are conserved quantities in all chemical processes
In the following we will mostly use the coordinate system of the chemists. In fact, this coordinate system contains one more coord nate than just the chemical elements. The chemists also operates
with substances called ions. They speak of the amount of [Nal + ions or $\left[\mathrm{CO}_{3}\right]^{2-}$ ions. To describe these substances, it is sufficient to intro duce one more basic substance in addition to the chemical ele ments. Which one is to be taken is again largely a question of expe diency. One possibility would be the electrons e . Thus, we would ob tain
$[\mathrm{Na}]^{+}=\mathrm{Na}_{1} \mathrm{e}_{-1} \quad\left[\mathrm{CO}_{3}\right]^{2-}=\mathrm{C}_{1} \mathrm{O}_{3} \mathrm{e}_{2}$
But one could just as well take the protons $p=[H]^{+}$as new basi substance, then we would have
$[\mathrm{Na}]^{+}=\mathrm{Na}_{1} \mathrm{H}_{-1} \mathrm{p}_{1} \quad\left[\mathrm{CO}_{3}\right]^{2-}=\mathrm{C}_{1} \mathrm{O}_{3} \mathrm{H}_{2} \mathrm{p}_{-2}$
In both cases there are negative coordinates.

3.2 The amount of substance

A measure of the amount of a substance should provide information on how much of one substance is equivalent to a given amount of another. Since different substances are to be compared, equivalence will only refer to certain properties, depending on the choice of the quantity. If the mass is used as a measure for the amount, equal amounts are equivalent with respect to their inertia and their weight Certain physical laws are substance-independent when the mass is used as a measure of the amount, for example
$\vec{F}=m \cdot \vec{g}$
or
$\vec{p}=m \cdot \vec{v}$
There is another quantity which in certain cases is a more convenient measure of the amount of a material than the mass: the amount of substance n, There are physical laws that become sub-stance-independent if they are formulated with n instead of m. An example of this is the ideal gas law
$p V=n R T$.
If one would use m instead of n, the universal gas constant R would have to be replaced by a substance-dependent constant.
Another substance-independent statement is
Two portions of different substances with the same amount of substance n contain the same number of particles
However, the statement that a relationship is substance-independent is only interesting, i.e. a statement that can be tested in an experiment, if the quantity n was not defined by the relationship. If we use the ideal gas law to define n, the proposition (3.1) is a statement that can be tested in an experiment, it is a law of nature. If, on the other hand, the quantity n is defined as a certain number of particles, the fact that the ideal gas law is substance-independent is an interest ing, verifiable fact.
The proposition (3.1) tells us that one can obtain a simple idea of n : n is a measure of a number of items. It describes what ten mole cules, ten photons, ten apples, ten cars and ten stars have in common.
The unit of measurement for the quantity n is the mol. It is defined as follows:
1 mol is the amount substance of a portion of the carbon isotope ${ }_{6}^{12} \mathrm{C}$ whose mass is 12.000 g .

Since we know how many atoms are contained in 12 g of carbon, proposition (3.1) can be formulated as follows:
A portion of a substance has the amount of substance
$n=1 \mathrm{~mol}$ if it consists of $6.022 \cdot 10^{23}$ particles.
$N_{A}=6.022 \cdot 10^{23} \mathrm{~mol}^{-1}$ is called the Avogadro constant.
The propositions (3.1) and (3.2) express an important property of the quantity $n: n$ is quantized, just like the electric charge Q and the angular momentum L. Its value is an integer multiple of its natural unit. The elementary quantum of the amount of substance is:
$T=1.66 \cdot 10^{-24} \mathrm{~mol}$
τ corresponds to the elementary charge e, the elementary quantum of angular momentum \hbar and the elementary quantum of the entropy k :
$e=1.6022 \cdot 10^{-19} \mathrm{C}$
$\hbar=1.0546 \cdot 10^{-34} \mathrm{Js}$
$k=1.380 \cdot 10^{-23} \mathrm{Ct}$
Products or quotients of these elementary quanta are again natural constants. So,
$\Phi_{0}=\pi \cdot \hbar / e=2.06 \cdot 10^{-15} \mathrm{Vs}$
is the elementary quantum of the magnetic flux, or half of the elementary quantum of the magnetic charge
$F=e / \tau=0, .965 \cdot 10^{5} \mathrm{C} / \mathrm{mol}$
is the Faraday constant, and
$R=k / \tau=8.324 \mathrm{Ct} / \mathrm{mol}$
is the gas constant.
Since substances can be produced and destroyed, n is not a conserved quantity. In 3.1, however, it had already been said that basic substances are selected in such a way that their quantities are conserved in the processes of interest.
If different substances A, B, \ldots are present simultaneously, several amount-of-substance variables $n_{A}, n_{B} \ldots$ are used. However, one should not conclude from this that n_{A} and n_{B} are different physical quantities. They are no more so than the masses m_{A} and m_{B} or the entropies S_{A} and S_{B} of the substances.
In a chemical reaction, the quantities of the reactants are in certain integer ratios. If, for example, hydrogen combines with oxygen to form water, the three quantities of substances $n\left[\mathrm{H}_{2}\right], n\left[\mathrm{O}_{2}\right]$ and $n\left[\mathrm{H}_{2} \mathrm{O}\right]$ behave like this

$$
n\left[\mathrm{H}_{2}\right]: n\left[\mathrm{O}_{2}\right]: n\left[\mathrm{H}_{2} \mathrm{O}\right]=2: 1: 2
$$

This is also expressed in the reaction equation:
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
The same reaction can also be described as follows $4 \mathrm{H}_{2}+2 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}$
If the reaction equation is written with the smallest integers, as equation (3.3), it is in the standard form
To describe how far a reaction has progressed, it is not necessary to specify the amounts of all substances involved. It is sufficient to specify a single molar number, the conversion $n(R)$ of the reaction. The conversion is defined as follows:
Multiplying the standard form of the reaction equation by x mol gives a reaction equation describing the conversion of $n(\mathrm{R})=x \mathrm{~mol}$.

Example:
A conversion
$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
of 200 mol is to be realized.
We multiply the standard form with $200 \mathrm{~mol}:$
$800 \mathrm{~mol} \mathrm{Al}+600 \mathrm{~mol} \mathrm{O}_{2} \rightarrow 400 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$
Thus, 800 mol Aluminum must react with 600 mol Oxygen whereby 400 mol Aluminium oxide is produced.

3.3 The chemical potential

Just as there is an associated intensive variable Φ to the substancelike quantity Q and an intensive variable T to the substance-like quantity S, there is also an intensive variable μ which corresponds to the substance-like quantity n : the chemical potential.
Before we discuss the construction of the μ scale, we want to get a qualitative idea of the quantity. (For the temperature this was not necessary, as everyone already has such an idea of the temperature.)
Just as a temperature difference can be seen as a driving force for an entropy current, a difference in the chemical potential represents a drive for an n-current. Entropy flows from high to low "thermal potential" T, amount of substance flows from high to low potential μ. If a substance flows through a kind of resistor from a place A to a place B and no other driving force is present, i.e. no electrical voltage $\Delta \Phi$ and no thermal drive ΔT, we can conclude that the chemical potential of the substance at A is higher than at B ; between A and B there is a chemical potential difference $\Delta \mu$.
If one pours a few drops of ether at one point of the room, it evaporates and spreads evenly throughout the room. This propagation process is called diffusion. It is driven by differences in the chemical potential.
The value of the chemical potential usually refers to a certain substance, in our case to ether. The chemical potential of the air in the room has a different value. However, this does not imply that $\mu[$ ether $]$ and $\mu[$ air $]$ are different physical quantities: They are the values of the same quantity on two different systems. (Compare the corresponding remarks about n).
Since substances can be produced and destroyed, $\Delta \mu$ plays yet another role than that of the drive for a current from one point A to one point B. If a substance A can transform into substance B, and vice versa, i.e. if the reaction $A \leftrightarrow B$ can take place, the chemical potentials of the two substances μ_{A} and μ_{B} tell us in which direction the reaction will proceed. If $\mu_{\mathrm{A}}>\mu_{\mathrm{B}}$, then A transforms into B , if $\mu_{\mathrm{B}}>\mu_{\mathrm{A}}$, B changes into A . If $\mu_{\mathrm{A}}=\mu_{\mathrm{B}}$, there is no reaction. It is said that there is a chemical equilibrium. For example, if the relative humidity is less than 100%, the chemical potential of liquid water is greater than that of gaseous water. The liquid water evaporates.
In fact, these two examples - diffusion and evaporation - are not as different as they look at first. The case of diffusion can also be seen as a reaction: "Ether at location A is transformed into ether at location B ". Thus μ_{A} can be understood in general as the drive of a substance A to disappear. However, since certain conservation laws have to be satisfied, substance A cannot disappear without a trace: Its disappearance is accompanied by the formation of a substance B with a lower chemical potential. Substance B can either be the "same" substance as A, but at a lower pressure, in a lower concentration, in another physical state, in another phase, or it can be what is called another substance.
However, these are far from all the possibilities for how a substance can disappear: A substance can also disintegrate into two or more other substances, or it can react with other substances. In general:

$$
\mathrm{A}+\mathrm{B}+\ldots \leftrightarrow \mathrm{U}+\mathrm{V}+\ldots
$$

Whether such a reaction runs from left to right or from right to left depends on the values of the chemical potentials of all substances involved. If

$$
\mu_{\mathrm{A}}+\mu_{\mathrm{B}}+\ldots>\mu_{\mathrm{U}}+\mu_{\mathrm{v}}+\ldots
$$

the reaction runs from left to right: the substances $\mathrm{A}, \mathrm{B}, \ldots$ disappear, and the substances $\mathrm{U}, \mathrm{V}, \ldots$ are formed. If

$$
\mu_{\mathrm{A}}+\mu_{\mathrm{B}}+\ldots<\mu_{\mathrm{U}}+\mu_{\mathrm{v}}+\ldots
$$

the reaction runs from right to left. If finally

$$
\mu_{\mathrm{A}}+\mu_{\mathrm{B}}+\ldots=\mu_{\mathrm{U}}+\mu_{\mathrm{v}}+\ldots
$$

there is no drive to the reaction. It won't run at all. There is chemical equilibrium.
It is remarkable that so many different processes are described by the values of a single physical quantity. The chemical potential is therefore a very useful quantity.

3.4 The scale of the chemical potential

We define the μ scale in a similar way as the T scale. Like an entropy current, a substance current flow is accompanied by an energy current, and the following must apply

$$
P \sim I_{n}
$$

We define the μ scale by

$$
P=\mu \cdot I_{n}
$$

Thus, the unit of measurement of the chemical potential is $\mathrm{J} / \mathrm{mol}$, and we abbreviate

$$
1 \mathrm{~J} / \mathrm{mol}=\mathrm{I} \text { Gibbs (G). }
$$

When a substance flow is realized, not only the quantity n flows, but also other substance-like quantities, i.e. S, Q, \ldots Accordingly, the energy current is

$$
P=\mu \cdot I_{n}+T \cdot I_{S}+\ldots
$$

If one wants to determine μ via P / I_{n}, the terms $T \cdot I_{s}$ etc. must be subtracted from the total energy flow before. In order to avoid this difficulty, we first consider a procedure that specifies μ differences directly: We consider an energy transloader, into which energy enters together with amount of substance and which it leaves with another carrier, e.g. with angular momentum $P=\omega \cdot M$ or with electric charge $P=U \cdot I$. The machine should be well constructed, i.e. no entropy should be produced in it.
We also limit ourselves to those energy transloaders in which reactions of the type $A \rightarrow B$ take place, i.e. $\operatorname{not} A \rightarrow B+C$ or $A+B \rightarrow C$ + D..... Such devices may not be of great practical importance, but that is not the point here. An example of such an energy transloader is a compressed air engine, Fig. 3.4: The air flows in at high chemical potential μ_{2} (and thus at high pressure) and out at low potential μ_{1} (and at low pressure).

Thus the net energy current that flows into the machine is

$$
P_{2}-P_{1}=\left(\mu_{2}-\mu_{1}\right) \cdot I_{n}
$$

This energy current can be measured as it leaves the machine mechanically through the shaft. So it is

$$
P_{\text {mech }}=\omega \cdot M=\left(\mu_{2}-\mu_{1}\right) \cdot I_{n}
$$

However, this balance equation is only correct if no further energy flows are involved. Since a substance flow is always linked to an entropy flow, it is important that the substance flowing in has the same temperature as the substance flowing out, the machine must operate isothermally. It must also be taken into account that the entropy capacity of the substance flowing in and out is different. Such a machine must generally have another input or output for the entropy.
Another example of such an energy transloader is the galvanic cell described elsewhere. Hydrogen flows into the cell at high chemical potential and out of it at a lower potential. Therefore, the cell releases energy electrically. So the following applies

$$
U \cdot I=\left(\mu_{2}-\mu_{1}\right) \cdot I_{n}
$$

Of course, one can also consider a machine or galvanic cell in which a more complicated reaction takes place, e.g. a combustion. It would allow to determine the chemical potential difference of the combustion reaction.

3.5 The zero point of the chemical potential

Like temperature, the chemical potential has an absolute zero point. The value follows from the equation $P=\mu \cdot I_{n}$. We consider a substance flow. We have

$$
P_{\text {total }}=\mu \cdot I_{n}+v \cdot F+T \cdot I_{S}+\ldots
$$

If the substance in question has a rest mass different from zero, i.e. if it is not electromagnetic radiation, P is, except in extreme cases, very large compared to the terms $v \cdot F, T \cdot I_{s}$ etc., i.e. $\mu \cdot I_{n}$ in these cases is almost identical with $P_{\text {total }}$, and we have

$$
\mu=\frac{P}{I_{n}}=\frac{E}{n}=\frac{m}{n} c^{2}=\hat{m} c^{2}
$$

The absolute value of μ is therefore very high for substances with a rest mass different from zero, Table 3.1.

Substance	$\mu(\mathrm{kG})$
hydrogen H^{1}	$90.5791 \cdot 10^{9}$
helium He^{4}	$359.737 \cdot 10^{9}$
oxygen O^{16}	$1437.555 \cdot 10^{9}$

Table 3.1
Absolute values of μ for three substances
Now chemical potential differences $\Delta \mu$ in chemical reactions, i.e. in the processes of interest to us, are of the order of 100 kG , i.e. much smaller than the uncertainty with which the absolute values of μ are known. Therefore, in normal chemistry (but not in nuclear chemistry) and in the physics of low energies one operates only with differences of the chemical potential. As long as one considers only those processes in which the atomic numbers of all chemical elements are conserved, i.e. as long as no nuclear reactions take place, one can define a zero point of the chemical potential for each of the chemical elements separately. This can be seen in the example of the simple reaction

$$
A+B \rightarrow A B .
$$

We decompose the chemical potentials

$$
\begin{aligned}
& \mu_{\mathrm{A}}=\mu_{\mathrm{A} 0}+\mu_{\mathrm{A}^{\prime}}^{\prime} \\
& \mu_{\mathrm{B}}=\mu_{\mathrm{B} 0}+\mu_{\mathrm{B}}^{\prime} \\
& \mu_{\mathrm{AB}}=\mu_{\mathrm{A} 0}+\mu_{\mathrm{B} 0}+\mu_{\mathrm{AB}}{ }^{\prime}
\end{aligned}
$$

The chemical potential difference of the reaction

$$
\mu_{\mathrm{A}}+\mu_{\mathrm{B}}-\mu_{\mathrm{AB}}=\mu_{\mathrm{A}^{\prime}}+\mu_{\mathrm{B}^{\prime}}-\mu_{\mathrm{AB}}^{\prime}
$$

results from the absolute values $\mu_{\mathrm{A}}, \mu_{\mathrm{B}}$ and μ_{AB} of the chemical potentials, as well as from the primed values $\mu_{A^{\prime}}, \mu_{B^{\prime}}$ und $\mu_{A B^{\prime}}$. We now are free to choose $\mu_{\mathrm{x} 0}$ arbitrarily for each chemical element. One chooses $\mu_{\times 0}$ so that μ_{x}^{\prime} becomes zero for a standard state that can easily be reproduced. Usually the chemical potential $\mu \mathrm{x}^{\prime}$ of substance X will be set to zero if the substance is in its most stable modification at 298 K and 1.01 bar. For dissolved substances (also ions) a one-molar solution (1 mol dissolved in 1 I solution) is chosen as the reference state. From now on we will omit the prime.

3.6 Values of the chemical potential

For a given substance, the chemical potential does not have a fixed value that remains constant in all states of the substance; rather, it depends on

- whether the substance is solid, liquid or gaseous, which is its crystal modification and whether it is dissolved in another substance;
- the temperature T;
- the pressure p;
- the density ρ_{n} of the amount of substance

We will look more closely at these dependencies in Chapter 5. In the vicinity of the standard state p_{0}, T_{0} however, the T - and p-dependence can be approximated linearly
$\mu\left(T, p_{0}\right)=\mu\left(T_{0}, p_{0}\right)+a \cdot\left(T-T_{0}\right)$
$\mu\left(T_{0}, p\right)=\mu\left(T_{0}, p_{0}\right)+\beta \cdot\left(p-p_{0}\right)$
For the solution of many problems it is therefore useful and sufficient to know the temperature coefficient a and the pressure coefficient β in addition to the value of the chemical potential in the standard state $\mu\left(T_{0}, p_{0}\right)$.
The pressure coefficients β are always positive. This is easy to understand when one remembers that a chemical potential difference represents "driving force" for a substance flow. As is well known, substances flow from places of high to places of low pressure
However, it is not so easy to understand that the temperature coefficient is negative. This seems to contradict the experience that water vapor diffuses in a heated room from warm places to cold, for example to the cold windows. However, the drive for this substance flow is not the difference of the chemical potential but that of the flow is not the difference of the cherature: The temperature difference "pulls" at the entropy of the water vapor
Table 3.2 lists the chemical potentials, and the pressure and temperature coefficients for some substances.
By definition, the chemical elements have the chemical potential zero at standard conditions in their most stable form. So $\mu\left[\mathrm{H}_{2}\right]=0$ zero at standard conditions in their most stable form
and $\operatorname{not} \mu[\mathrm{H}]=0$. Furthermore one defines $\mu\left[\mathrm{H}^{+}\right]=0$.
Substances with a negative chemical potential do not spontaneously disintegrate into the elements they are made of.

Substance	$\begin{gathered} \mu \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$	$\begin{gathered} \alpha \\ (\mathrm{kG} / \mathrm{K}) \end{gathered}$	$\begin{gathered} \beta \\ (\mathrm{G} / \mathrm{bar}) \end{gathered}$
iron	0	-27	0.71
limestone	-1129	-93	3.69
sugar	-1544	-0.360	21.70
water	-237	-0.070	1.81
ethyne	209	-0.201	2446
CO_{2}	-394	-0.214	2446
NO_{2}	51	-0.240	2446
ClO_{2}	122	-0.257	2446
$\mathrm{Al}_{2} \mathrm{O}_{3}$	-1582	-0.051	2.56
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	-744	-0.087	3.04
$\mathrm{Au}_{2} \mathrm{O}_{3}$	164		
H_{2}	0	-0.131	2446
H	203	-0.115	2446
graphite	0	-0.0057	0.541
diamond	2.9	-0.0024	0.342
$\mathrm{Ca}(\mathrm{OH})_{2}$	-897	-0.076	3.32
CaO	-604	-0.040	1.65
H^{+}	0	0	0.02
NaCl	-384	-0.072	2.70
Na^{+}	-262	-0.059	-0.16
Cl	-131	-0.056	1.80
AgCl solid	-110	-0.096	2.58
AgCl dissolved	-73	-0.154	
Ag^{+}	77	-0.073	0.17
HCl gas	-95	-0.187	2446
HCI dissolved	-131	-0.056	1.82
NH_{3} gas	-16	-0.193	2446
NH_{3} dissolved	-27	-0.111	2.41
Ca^{++}	-553	0.055	
Pb^{++}	-24	-0.010	-1.78
Z ${ }^{++}$	-147	0.11	-2.6
Ba^{++}	-561	-0.013	-1.24
$\mathrm{CO}_{3}{ }^{-}$	-528	-0.057	0.35
s.-	86	-0.015	
J	-52	-0.111	3.66
PbCO_{3}	-626	-0.131	4.05
ZnCO_{3}	-732	-0.082	2.82
CaCO_{3}	-1129	-0.093	
BaCO_{3}	-1139	-0.112	4.46
CaC_{2}	-68	-0.07	
PbS	-99	-0.091	3.19
ZnS	-201	-0.058	2.39
BaS	-461		3.99
PbJ_{2}	-173	-0.175	7.61
ZnJ_{2}	-209	-0.161	6.74
BaJ_{2}	-598		7.60
$\mathrm{H}_{2} \mathrm{O}$ solid	-236.59	-0.0448	1.973
$\mathrm{H}_{2} \mathrm{O}$ liquid	-237.18	-0.0699	1.807
$\mathrm{H}_{2} \mathrm{O}$ gas	-228.59	-0.1887	2446
Table 3.2			

3.7 Examples of dealing with the

chemical potential

1. Stability of oxides:

The table shows directly that under normal conditions the oxides $\mathrm{CO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are stable, whereas $\mathrm{ClO}_{2}, \mathrm{Au}_{2} \mathrm{O}_{3}$ and NO_{2} are not. (ClO_{2} gas even decays explosively, whereas NO_{2} decays very slowly; it is said to be metastable.)
2. Setting of mortar: $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}$

	$\mu(\mathrm{kG})$	
$\begin{aligned} & \mathrm{Ca}(\mathrm{OH})_{2} \\ & \mathrm{CO}_{2} \end{aligned}$	$\left.\begin{array}{l} -897 \\ -394 \end{array}\right\}$	-1291
$\begin{aligned} & \mathrm{CaCO}_{3} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\left.\begin{array}{l}-1129 \\ -237\end{array}\right\}$	-1366

The chemical potential of the reactants $(-1291 \mathrm{kG})$ is greater than that of the products $(-1366 \mathrm{kG})$.
3. Production of ethyne: $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$

When calculating the chemical potential difference of this reaction, it is important to note that water occurs in twice the amount of the other substances. So the chemical potential difference is
$\left(\mu\left[\mathrm{CaC}_{2}\right]+2 \mu\left[\mathrm{H}_{2} \mathrm{O}\right]\right)-\left(\mu\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]+\mu\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]\right)$

	$\mu(\mathrm{kG})$
CaC_{2}	-68
$\mathrm{H}_{2} \mathrm{O}$	$-237.2\}^{2}-542$
$\mathrm{Ca}(\mathrm{OH})_{2}$	$\begin{array}{l}-897 \\ \mathrm{C}_{2} \mathrm{H}_{2}\end{array}$
209	

The chemical potential difference is 146 kG . Notice that the reaction takes place although the chemical potential of the ethyne is >0. Al the same the reaction takes place because $\mu\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$ is strongly negative.
4. Making Diamond: $\mathrm{C}_{\text {graphite }} \rightarrow \mathrm{C}_{\text {diamond }}$

Under normal conditions, the chemical potential of diamond is greater than that of graphite, so diamond is metastable. However since
$\beta_{\text {graphite }}>\beta_{\text {diamond }}$
by increasing the pressure it is possible to cause the chemical po tential of graphite to be greater than that of diamond. We calculate the pressure at which the chemical potentials are equa ($G=$ graphite, $D=$ diamond):

$$
\mu_{0 \mathrm{G}}+\beta_{\mathrm{G}} \cdot \Delta p=\mu_{0 \mathrm{D}}+\beta_{\mathrm{D}} \cdot \Delta p
$$

$$
\Rightarrow \Delta p=\frac{\mu_{\mathrm{OG}}-\mu_{\mathrm{OD}}}{\beta_{\mathrm{D}}-\beta_{\mathrm{G}}}
$$

With
$\mu_{\mathrm{OG}}=0$
$\mu_{\mathrm{OD}}=2.9 \mathrm{kG}$
$\beta_{\mathrm{G}}=0.541 \mathrm{kG} / \mathrm{kbar}$
$\beta_{\mathrm{D}}=0.342 \mathrm{kG} / \mathrm{kbar}$
we obtain

$$
\Delta p=\frac{0-2.9}{0.342-0.541} \mathrm{kbar} \approx 15 \mathrm{kbar}
$$

5. Melting of ice: Ice (E) \rightarrow liquid water (W)

The table shows that under normal conditions, i.e. at $25^{\circ} \mathrm{C}$ and 1 bar, the chemical potential of liquid water μ_{w} is smaller than that of ice $\mu_{\mathrm{E}}-$ in accordance with the fact that ice does not exist under these conditions. Since $a_{\mathrm{E}}>a_{\mathrm{w}}$, however, at low temperatures ice must be the stable and liquid water the unstable state. We calculate the temperature at which $\mu_{\mathrm{E}}=\mu_{\mathrm{w}}$, i.e. for which there is chemical equilibrium between the solid and liquid phase. This is the melting temperature

$$
\begin{aligned}
& \mu_{0 \mathrm{E}}+a_{\mathrm{E}} \cdot \Delta T=\mu_{\mathrm{OW}}+a_{\mathrm{W}} \cdot \Delta T \\
& \Rightarrow \Delta T=-\frac{\mu_{\mathrm{OE}}-\mu_{\mathrm{OW}}}{\alpha_{\mathrm{E}}-\alpha_{\mathrm{w}}}=-\frac{236.59-237.18}{0.0448-0.0699} \mathrm{~K}=-23.5 \mathrm{~K}
\end{aligned}
$$

The melting temperature should therefore be $25{ }^{\circ} \mathrm{C}-23.5^{\circ} \mathrm{C}=$ $1.5^{\circ} \mathrm{C}$. Despite the linear approximation, we got quite a good result.
6. Freezing-point depression of water by changing the pressure

If the pressure is increased, the freezing point of water decreases We calculate $\Delta p / \Delta T$. ($\mathrm{W}=$ liquid water, $\mathrm{E}=\mathrm{ice}$). At the freezing point there is always $\mu_{\mathrm{E}}=\mu_{\mathrm{w}}$. Therefore:
$\mu_{0 \mathrm{E}}+\beta_{\mathrm{E}} \cdot \Delta p+a_{\mathrm{E}} \cdot \Delta T=\mu_{\mathrm{W}}+\beta_{\mathrm{W}} \cdot \Delta p+a_{\mathrm{w}} \cdot \Delta T$
Since $\mu_{0 \mathrm{E}}=\mu_{\mathrm{ow}}$ we obtain

$$
\Delta T=-\frac{\beta_{\mathrm{W}}-\beta_{\mathrm{E}}}{\alpha_{\mathrm{W}}-\alpha_{\mathrm{E}}} \Delta p
$$

With the values of the table we get

$$
\Delta T / \Delta p=-0.0066 \mathrm{~K} / \mathrm{bar} .
$$

7. Freezing-point depression by dissolving a foreign substance

At the freezing point of the water, the chemical potentials of ice and liquid water are equal. If some salt is added to an ice-water mixture, the salt dissolves and thereby the chemical potential of the liquid water decreases. Therefore, ice melts and the temperature decreases. Finally, a temperature is reached at which the chemical po tential of the ice is equal to that of the saline solution.
3.8 Reaction resistance

In the previous section we asked for the values of the chemical po-
ential of the reactants and the products of a reaction, i.e. for the tential of the reactants and the products of a reaction, i.e. for the
chemical potential difference. If the chemical potential difference is
different from zero, the reaction can take place; if it is zero, it does not take place. However, a non-zero chemical potential differerence is not take place. However, a non-zero chemical potential difiference is Mace, for a phase transition to take place or for a substance to flow tential difference io necation to another -- just as a non-zero electric ut not sufficient.
If an electric current is to flow, the resistance must not be too high,
Fig. 3.5. If the resistance is infinitely high, then we say the electric current is inhibited. ""The electricity wants to flow, but it cannot.")
There is also a resistance to chemical reactions, and chemical reac There is also a resistance to chemical reactions, and chemical reac-
tions can also be completely inhibited, i.e. they do not take place ions can also be completely inhibited, i.e. they do not take place
despite a non-zero chemical potential difference. The verbal descripdespite a non-zero chemical potential difiterence. The verbal descrip
tion of these inhibitions varies depending on the type of reaction.

Conductors and nonconductors
Just as conductors and non-conductors are required as the most
mportant components for the realization of electrical circuits, submportant components for the realization of electrical circuits, subtion of substance transports. However, since there are many diffe ent substances, it is desirable to have selective conductors and non-
conductors: A component should allow substance A to pass through, conductors: A compo
but not substance B.
"conducts" uncharged liquids and gases. conducts" uncharged liquids and gases.
Water is a conductor for many ions, but also for other substances
that dissolve in water, e.g. sugar. It is a non-conductor for electrons. , electron. Metals conduct electrons well, but virtually no other substances. (A
exception is platinum that conducts $\mathrm{H}+$ ions quite well.) exceppion is platinum that conducts H ions quite well.)
Gases are permeable for other gases, although not ver and liquids).
liquid A is permeable to a liquid B if A and B are "miscible". For
ample, water is permeable to alcohol. A solid wall that is permeable to certa ers is called a diaphragm.
Diffusion
A substance transport is called diffusion if
a substance A flows through substance B, where A is a gas,
whereas B can be gaseous, liquid or solid; whereas B can be gaseous, liquid or solid;
the drive for the current is a gradient of the chemical potential. Ditusion is a dissipative process, entropy is produced.
The substance diffuses from one point to the other until the concen-
ration, and thus its chemical potential, is the same everywhere until tration, and thus its chemical
there is chemical equilibrium.
Suppose a substance is present in a higher concentration at one point than at another, e.g. manganate ions dissolved in water, Fig.
3.6. The substance diftuses from one point to another until the 3.6. The substance diffuses from one point to another until the con-
centration, and thus its chemical potential, is the same everywhere centration, and thus its chem
there is chemical equilibrium.

The substance flow density is proportional to the gradient of the $\vec{j}^{2}=-{ }^{2}$ potential
$j_{n}=-\sigma_{n} \cdot \operatorname{grad} \mu$
reated to the difusion constant D.
$\sigma_{n}=\frac{D \cdot \rho_{n}}{R \cdot T}$
Thus the substance current depends
on the cross-sectional area of the flow channel
on its length (the longer it is, the smaller grad μ will become for a given chemical potential difference)

Diffusion can be inhibited, for example, by making the distance be ween the two sites of different chemical potentials very large.

Phase transitions solid \leftrightarrow liquid \leftrightarrow gaseous
The phase transitions solid \leftrightarrow liquid and liquid \leftrightarrow gaseous usually proceed completely uninhibited, i.e. no chemical potential differenc uilds up between the phases. The phases are almost in equilibrium. It is only with difficulty that chemical potential differences can
build up. Doubly distilled water can be heated up to $140^{\circ} \mathrm{C}$ withou evaporating (boiling delay). The chemical potential of the liquid water is then greater than that of the gaseous water. Conversely, stean can also be supercooled (supersaturated steam); the chemical po
tential of the steam is then greater than that of the liquid. According ential of the steam is then greater than that of the liquid. Accordingbe cooled down to $-30^{\circ} \mathrm{C}$ without solidififying.

Chemical reactions
The reaction resistance can be increased by spatially separating the
eaction partners. If they are brought together, however, the resisance is not necessarily small. For some reactions it becomes small, or others it remains large.
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}$
$\mu\left[\mathrm{Naa}=0 \mathrm{kG}, \mu\left[\mathrm{H}_{2} \mathrm{O}\right]=-237 \mathrm{kG}, \mu[\mathrm{NaOH}]=-380 \mathrm{kG}\right.$
$\mu\left[\mathrm{H}_{2}\right]=0 \mathrm{kG}, \Delta \mu=143 \mathrm{kG}$
For most reactions, the resistance is high; the reactions are inhibit $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
does not run by itself despite a high chemical potential difference.
The reaction resistance can be reduced in various ways
by increasing the temperature
with catalysts.
A catalyst acts like a "chemical switch". If a suitable catalyst is avail-
able, an otherwise inhibited reaction can take place. The catalyst is oo altered in the reaction
in biological systems thousands of reactions take place. Most of
hem are normally inhibited. Their onset and progression is conthem are normally inhibited. The
trolled by catalysts, the enzymes.
In order to synthesize a substance according to a given reaction quation, two conditions have to be met:
The chemical potential difference must drive the reaction in the
desired direction. This can be achieved by a suitable selection of desired direction. phis can emperature and pressure
The reaction resistance of the desired reaction must be small, that of competing reactions large. This can be achieved with catalysts.

Nuclear reactions
When considering nuclear reactions, the zero point of the chemical
potential may no longer be freely chosen for each chemical element. otential may no longer be freely chosen for each chemical elemen The μ values of the chemical elements are coupled to each other by
he nuclear reactions. Most chemical elements - more precisely: nose with large and those with small atomic numbers - are
tho
tho
letastable. The reaction, i.e. the decay of the heavy and the fusion metastable. The reaction, i.e. the decay of the heavy and the fusion
of the light, is strongly inhibited. The nuclear reactor and fusion reac of the light, is strongly inhibitited. The nuclear reactor and fusion reac
or serve to reduce the reaction resistance.

3.9 Reversibly running reactions - electrochemical reactions

Fuel cells, accumulators, monocells and various other types of batteries are energy transloaders. The energy is delivered with the carrier amount of substance and leaves the cell with the energy carrier electricity. In most of these cells, the reactants are located inside the cell from the outset. They are introduced into the cell during the production process. Only in the fuel cell the reactants are constantly supplied from the outside.
Fig. 3.7 shows the flow diagram of a fuel cell.

The energy balance equation is

$$
\begin{equation*}
\Delta \mu \cdot I_{n(R)}=U \cdot I \tag{3.4}
\end{equation*}
$$

Here

$$
I_{n(\mathrm{R})}=\frac{n(\mathrm{R})}{t}
$$

is the conversion rate of the reaction.
There is also the counterpart to the fuel cell: a cell that receives energy with the carrier electricity and releases it with the amount of substance, Fig. 3.8. Examples of this are electrolytic cells and the accumulator while it is being charged.

Fig. 3.8
Flow diagram of the electrolytic cell

The reactions that take place in such cells, whether forward or backward, are called electrochemical reactions.
In an electrochemical reaction, the conversion rate $I_{n(R)}$ is firmly coupled to the electric current I. We look at the electrolysis of water as an example.
The reaction

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+4 \mathrm{e}^{-}+\mathrm{O}_{2}
$$

takes place at the anode of the electrolytic cell and

$$
4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2}
$$

at the cathode.
With each mole converted, 4 moles of electrons flow through the outer circuit. Now, for electrons, the charge per amount of substance is equal to the negative Faraday constant:

$$
\frac{Q_{\text {electron }}}{n_{\text {electron }}}=\frac{-e}{\tau}=-F=-9.6 \cdot 10^{4} \mathrm{C} / \mathrm{mol}
$$

This means that $4 \cdot 9,6 \cdot 10^{4} \mathrm{C}$ flow through the circuit per mole of reaction conversion, i.e.

$$
I=4 \cdot F \cdot I_{n(\mathrm{R})}
$$

For other reactions, another small integer z stands instead of the " 4 ":

$$
\begin{equation*}
I=z \cdot F \cdot I_{n(\mathrm{R})} \tag{3.5}
\end{equation*}
$$

We insert (3.5) into the energy balance equation (3.4) and obtain:

$$
\begin{equation*}
\Delta \mu=z \cdot F \cdot U \tag{3.6}
\end{equation*}
$$

This equation tells us that the chemical potential difference can be determined by measuring an electric potential difference. If, on the other hand, the chemical potential difference is known, the electric potential difference of the corresponding electrochemical cell can be calculated using equation (3.6). For a hydrogen-oxygen fuel cell one obtains:

$$
U=\frac{\Delta \mu}{4 F}=\frac{474.36 \cdot 10^{3} \mathrm{G}}{4 \cdot 9.6 \cdot 10^{4} \mathrm{C} / \mathrm{mol}}=1.24 \mathrm{~V}
$$

3.10 Irreversibly running reactions - entropy balance of chemical reactions

Most chemical reactions are free-running: All the energy released during the reaction is used to produce entropy. This is the case, for example, when coal, heating oil, petrol or natural gas is burned in power stations or domestic heating systems.
The energy balance equation is:

$$
\Delta \mu \cdot I_{n(R)}=T \cdot I_{s \text { prod }}
$$

The entropy produced can be calculated according to

$$
I_{s \text { prod }}=\frac{\Delta \mu \cdot I_{n(\mathrm{R})}}{T}
$$

One might expect that every free-running reaction "warms up", i.e. the temperature of the products is higher than that of the reactants, or entropy is released from the reaction products. But this is not always the case.
First, we consider a reaction that is not free-running, i.e. no entropy is produced (as is the case in an ideal electrochemical cell). During the reaction, the reactants disappear and the products are formed.
The reactants contain a certain amount of entropy, and this must be taken over by the products. However, this amount of entropy does not correspond to the same temperature for the reactants and the products. Thus, in some reactions the temperature of the products will be lower, in others it will be higher than that of the reactants. If the reaction is free-running, i.e. completely irreversible, new entropy is created. This contribution to the entropy balance increases the temperature of the reaction products. However, there are reactions whose reaction products have such a low temperature if they run reversibly, that the entropy generated in the irreversible process is not sufficient to bring the reaction products back to the initial temperature.
If such a reaction is to be carried out at constant temperature, entropy must be added. These reactions are called endothermic. Reactions in which entropy is released are called exothermic.
This means that entropy is also produced in endothermic reactions. However, the reaction products have such a large entropy capacitance that the produced entropy causes only a relatively small temperature increase.
An example of an endothermic reaction is

$$
\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow 2 \mathrm{NH}_{3}+10 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}
$$

$\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$ are crystalline solids. The reaction products form an aqueous solution. The low temperature of the products is easy to understand: The water of crystallization of the barium hydroxide transforms into ordinary liquid water. This is a kind of melting process, and entropy is known to be needed for melting.

Energy differential, characteristic function, equilibria

4.1 Physical system and state

Physics describes real objects in an abstract way: by the relationship between the physical quantities of the object. To describe a desired class of processes, one must therefore first select the variables that do what is required. To describe a capacitor, for example, the variables Q, U, E (energy), \vec{E} (electric field strength), etc. are chosen. Normally one does not choose S, T, p or \vec{H} (magnetic field strength), because one gets along without them. There can be several reasons why certain variables are not needed: either because these variables are constant during the processes of interest, or because their values have no influence on the values of the variables of interest. In future, when we speak of "the" variables of a system, we mean only the variables of interest.
We say that a system is in a certain state when all variables have certain values. By "system" in a strict sense we no longer understand the object, but the set of all its states. The choice of variables already contained arbitrariness. What we call a system contains even more arbitrariness, because we can restrict the set of states under consideration as we wish. One often pretends to mean with the system "capacitor" all the states that are defined by the relationship

$$
Q=C \cdot U
$$

Realistically, however, one will restrict oneself to a tiny part of this diversity of states, because even the best capacitor does not tolerate arbitrarily high voltages.
4.2 The energy differentia

We had seen that a flow of energy can always be described by an
expression of the form expression of the form
$P=\xi / x$
In general, several substance-like quantities are involved in an en-
年gy flow. At first we only look at energy flows with a single "energy
carier". carrier". within the system. We want to describe the energy change of the
system. Two things can happen with the quantity X, which accompanies the energy current. Either it accumulates in the system (iike the energy), or it passes through the system and only discharges the energy,
within the system. We consider successively difterent realizations of within the system. We consider successively different realizations of
the relation $P=\xi \times$, i.e. energy transports with different energy carthe relation
riers X.

1. Energy supply with the carrier entropy

A body is warmed up, Fig. 4.1. An energy curr
A body is was
$P=T \cdot I_{s}$
flows into the body:
With the balance equations $P=d E / d t$ und $/ s=d S / d t$ we get
$\frac{d E}{d t}=T \frac{d S}{d t}$
and from that
$d E=T d S$.
This differential tells us by how much the energy of a (4.1)
3
$\underbrace{}_{\substack{\text { Fig. } 4.1 \\ \text { The eneqgy }}}$
气.
The eneqgy and dent
the body incease.
a) With accumulation of momentum

A vehicle is accelerated, Fig. 4.2. An energy curren
flows into the venicle.
With the balance equations $P=d E / d t$ and $\vec{F}=d \bar{\rho} / d t$ follows
$\frac{d E}{d t}=\bar{v} \frac{d \bar{p}}{d t}$
and from this
$d E=\bar{v} d \bar{p}$
The equation tells us by how much the energy of a body changes
when the amount of momentum $\sigma \bar{p}$ is supplied to it.

Fig. 4.2.
The enegy and momenum mon-
Tent of tine evenicici increasese.
b) Without accumulation of momentum

A spring is stretched, Fig. 4.3. An energy current
$P=\vec{v} \cdot \vec{F}$
flows into the spring
The momentum does not accumulate within the spring, it just flows
through. With $P=d E / d$ and $\bar{v}=d \bar{\delta} / d t$ we get
$\frac{d E}{d t}=\bar{F} \frac{d \bar{S}}{d t}$
and from this

A variant of this is shown in Fig. 4.4, where the energy is stored in a gas in the cylinder. We express the force \bar{F} and the displacement $d s$
$F=-A \cdot p$ and $d s=(1 / A) \cdot d V$,
and obtain the energy differentia
$d E=-p d V$.
The minus sign indicates that the energy increases with decreasing volu

Fig. 4.4 a .
3. Energy supply with the carrier amount of substance

Energy flows into a container with a substance current, Fig. 4.5.
Since each substance also carries entropy, the energy current is $P=\mu \cdot I_{n}+T \cdot I_{s}$.
If one ensures that the entropy flows off again simultaneously, then
with the help of the balance equations $P=d E / d$ and $l n=d n / d$ one with th
gets
$\frac{d E}{d t}=\mu \frac{d n}{d t}$
and from this

Fig. 4.5 The enery and amount of sub.
incoase
4. Energy supply with the carrier electric charge

A capacitor is charged, Fig. 4.6 An energy current
$P=U \cdot I$.
The net amount of the electric charge Q of the capacitor does not increase. For the charging of a single plate, however, $I=d Q / d$ plies. Together with the balance equation for the energy follows $\frac{d E}{d t}=u \frac{d Q}{d t}$
and from this $d E=U d Q$.

All the differentials (4.1) to (4.6) have the same structure.
$d E=\xi d X$.
We call the quantities X extensive quantities and the quantities ξ in-
tensive quantititis. To a given extensive quantity always belongs a
lensive quantities. To a given extensive quantity always belongs a well-deffied intensive quanity.
In the processes considered so far, only one extensive quantity cuantities to change their value simultaneously. Then the enerangivif
$d E=T d S-p d V+\mu d n+\vec{v} d \bar{p}+\vec{F} d \bar{s}$
Of course, the system can also have several independent variables S_{1}, S_{2}, \ldots or V_{1}, V_{2}, \ldots etc.. Then the expression has even more
tems. It
ables.

4.3 Characteristic functions

Suppose the energy differential (4.7) for a system is

$$
d E=T d S-p d V+\mu d n+\ldots
$$

If each of the extensive variables S, V, n, \ldots is given a value, E also has a well-defined value. E is therefore a function of the extensive variables

$$
E=E(S, V, n, \ldots)
$$

This function characterizes the system completely. Two systems for which these functions are the same are identical systems in the sense of physics. We call such a function a characteristic function. Table 4.1 lists the characteristic functions of some simple physical systems.

System	extensive variable	energy differential	characteristic function
capacitor	Q	$d E=U d Q$	$E(Q)=\frac{Q^{2}}{2 C}+E_{0}$
capacitor with a variable plate distance	Q, x	$d E=U d Q-F d x$	$E(Q, x)=\frac{Q^{2} x}{2 \varepsilon \varepsilon_{0} A}+E_{0}$
spring	x	$d E=-F d x$	$E(x)=\frac{D}{2} x^{2}+E_{0}$
mass point	p	$d E=\vec{v} d \vec{p}$	$E(\vec{p})=\frac{\vec{p}^{2}}{2 m}+E_{0}$

Table 4.1
Some characteristic functions

Only for few systems a characteristic function is known as an analytic expression.
For any system, in addition to

$$
E=E(S, V, n, \ldots) .
$$

there are also other characteristic functions.
They are all equivalent and can be derived from one another (by "Legendre transformation"), Table 4.2.

Name	Definition of the quantity	characteristic function
energy	E	$E=E(S, V, n)$
enthalpy	$H=E+p \cdot V$	$H=H(S, p, n)$
free energy	$F=E-T \cdot S$	$F=F(T, V, n)$
free enthalpy	$G=E+p \cdot V-T \cdot S$	$G=G(T, p, n)$
Hamilton function	E	$E=E(\vec{p} \cdot \vec{q})$
Lagrange function	$L=-E+\vec{p} \cdot \vec{v}$	$E=E(\vec{v} \cdot \vec{q})$

Table 4.2

Several types of characteristic functions
Apart from the above-mentioned relation, in which the independent variable is the energy, the quantities on the left hand side of the other characteristic functions are rather unintuitive: the enthalpy, the free energy and the free enthalpy. Fortunately, we will get along with the first one alone, where the independent variable is the energy.
The characteristic functions are also called thermodynamic potentials. By the way, such functions are also used in mechanics. These are the Hamilton function and the equivalent Lagrange function.

4.4 The decomposition of a system

In general, the characteristic function $E=E\left(X_{1}, X_{2}, \ldots X_{n}\right)$ is a complicated function of the variables $X_{1}, X_{2}, \ldots X_{n}$ of the system. Sometimes, however, there is a simple structure, at least in certain ranges of values of the variables: Some characteristic functions break down into terms which have no variables in common:
$E=E_{A}\left(X_{1}, X_{2}, \ldots X_{k}\right)+E_{B}\left(X_{k+1}, \ldots X_{n}\right)$
In this case, not only $d E$ is a complete differential, but also $d E_{\mathrm{A}}$ and $d E_{\mathrm{B}}$ taken separately. The system described by $E=E\left(X_{1}, X_{2}, \ldots X_{n}\right)$ behaves like two independent systems. It can be decomposed. The individual terms E_{A} and E_{B} often have names of their own.
As an example, we consider a capacitor that can be moved, heated, and of course charged. Its variables are \vec{p}, S, and Q_{s}. Thus, its energy differential is
$d E=\vec{v} d \vec{p}+T d S+U d Q$
The characteristic function of this system is

$$
\begin{aligned}
E(\vec{p}, S, Q) & =\frac{\vec{p}^{2}}{2 m}+\frac{Q^{2}}{2 C}+E_{0}(S) \\
& =E_{1}(\vec{p})+E_{2}(Q)+E_{0}(S)
\end{aligned}
$$

Each of the three terms depends on only one variable.
The terms are called

$E_{1}=$ kinetic energy

$E_{2}=$ electric field energy
$E_{0}=$ internal energy
Sometimes a system can be decomposed simply because it consists of spatially separated subsystems, Fig. 4.7.

The characteristic function of the system in the dashed box is

$$
E(Q, x)=\frac{Q^{2}}{2 C}+\frac{D}{2} x^{2}+E_{0}
$$

Often the decomposition is only an approximation. For example the decomposition into kinetic and internal energy is only possible in non-relativistic approximation. The relativistic characteristic function of a body is:
$E(|\vec{p}|, S)=\sqrt{c^{2} \vec{p}^{2}+E_{0}{ }^{2}(S)}$
Only for $c|\vec{p}| \ll E$ it decomposes into
$E(|\vec{p}|, S)=\frac{\vec{p}^{2}}{2 m}+E_{0}(S)$
Let us compare two more systems, Fig. 4.8, which have the same variables and thus the same energy differential, namely
$d E=U d Q-F d x$
one of which can be decomposed (Fig. 4.8a) and the other one cannot (Fig. 4.8b).

We start with the uncoupled system. The characteristic function is
$E(Q, x)=\frac{Q^{2}}{2 C}+m \cdot g \cdot x+E_{0}$
We calculate the differential $d E$

$$
d E=\frac{Q}{C} d Q+m \cdot g \cdot d x
$$

Comparison with (4.8) provides

$$
U=\frac{Q}{C} \text { and } F=-m \cdot g
$$

And now the coupled system. Its characteristic function is

$$
E(Q, x)=\frac{Q^{2} x}{2 \varepsilon_{0} A}+E_{0}
$$

It follows

$$
d E=\frac{Q x}{\varepsilon_{0} A} d Q+\frac{Q^{2}}{2 \varepsilon_{0} A} d x
$$

and by comparison with (4.8):

$$
U=\frac{Q x}{\varepsilon_{0} A} \quad \text { and } \quad F=-\frac{Q^{2}}{2 \varepsilon_{0} A}
$$

While in the first case each intensive variable depends only on its own conjugated extensive variable
$U=U(Q) \quad F=$ even constant
we have in the second a coupling between the variables of the two terms of the energy differential:
$U=U(Q, x) \quad F=F(Q)$

4.5 Energy forms

To the name energy often attributes are added. There is kinetic, po tential, electric, chemical, free, nuclear, thermal, rest and radiant energy and many more. However, the classification of energy into different "forms of energy" is not based on a uniform principle, but on different criteria. Some of the attributes are simply intended to identify the system or object that contains the energy. So by radiation energy we mean nothing more than the (total) energy of the radiation in question - just as the electron charge means the charge of an electron and solar mass means the mass of the sun. In most cases, however, there is a more far-reaching intention when indicating a form of the energy.
The need to classify energy into forms arose around the middle of the 19th century, immediately after the introduction of the concept of energy. At that time it was found that a new physical quantity could be introduced, although there was no general characteristic of this quantity, and there was no general rule for obtaining its values. The energy manifested itself in different systems and processes in very different ways. The fact that in the various cases one had to deal with the same quantity was only deduced from the observation that certain combinations of other physical quantities changed in a certain ratio during certain processes. There were, so to speak, fixed exchange rates between these combinations of quantities, the socalled equivalents. The best known of these exchange rates was the "mechanical heat equivalent". It was a great scientific achievement to recognize these combinations of quantities as manifestations of a single, new physical quantity.
On the one hand, the new quantity had the beautiful characteristic of being very general in nature. It played a role in various sub-fields of physics. It created a link between the various physical sub-disciplines. On the other hand it had a flaw: it did not always show up in the same way as one would have expected from a well-behaving physical quantity. There was no characteristic by which one could always recognize it, by which one could determine its value in every case. For this reason, some physicists also considered it as nothing more than a mathematical aid. In any case, it seemed reasonable to call the various combinations of quantities that represented the different appearances of energy the forms of energy. The energy did not always show up in the same way, but in one form or another.
This was the state of the art until around the turn of the 19th and 20th centuries. We will see later that the concept of energy form is superfluous in the light of 20th century physics, just as superfluous as the concept of momentum or entropy forms would be. However, since the concept of the energy form has survived to this day, we would first like to make a few comments on the physical principles of the classification.
It is important to note that a distinction must be made between two classification procedures.

- One method is used to classify energy changes and energy flows. We have seen that every flow of energy is accompanied by a flow of another extensive quantity. Depending on which quantity this is, we speak of an energy transport or exchange in one form or another, Table 4.3.
- The other method is to assign a name to stored energy, i.e. the energy contained in a system or subsystem. We had mentioned the procedure in the previous section. If the characteristic function of a system breaks down into terms without common variables, the terms are often given their own names like kinetic energy, potential energy, tensional energy (of a spring) or internal energy.

	energy exchange	Table 4.3 Forms of energy exchanges
$P=\vec{v} \cdot \vec{F}$	work	
$P=T \cdot I_{S}$	heat	
$P=U \cdot I$	electric energy	
$P=\mu \cdot I_{n}$	chemical energy	

It is unfortunate to call the results of both classification procedures by the same name, namely "energy form". In fact, the two types of energy forms are often confused in the literature.
The clearest way to deal with the problem is to avoid the names altogether. In fact, from today's perspective, the concept of the energy form is not only superfluous, but also misleading. To speak of forms of energy suggests that these are different physical quantities, with the strange property that one can convert one into the other. It also suggests that energy in different forms has different properties. Of course, this is not the case.
Since we know the special theory of relativity, we know that energy is a physical quantity in its own right, and not just a derived quantity. Talking about forms of energy is therefore just as unfounded today as talking about different forms of electric charge, depending on whether the charge is carried by electrons, protons or muons. The theory of relativity tells us what general characteristics energy has. From the energy-mass equivalence it follows that the energy has exactly those properties that we know from the mass: Gravity and inertia.
In order to distinguish between the different energy transports in Table 4.3, it is not necessary to speak of different forms of energy; it is sufficient to specify which quantity is transmitted together with the energy. Instead of e.g. talking about energy in form of heat, one simply says that beside the energy current there is also an entropy current. Or, as we have often done here, the accompanying quantity is referred to as the energy carrier.
Similar arguments hold for the terms of the characteristic function. Also here the name energy form is misleading. After all, these terms always represent subsystems. If one wants to refer to such a term, it is almost always clearer to name the subsystem to which the it belongs, instead of adding an adjective to the energy. So it is more correct to speak of the energy of the field of a capacitor instead of the potential energy of one capacitor plate in the field of the other.

4.6 Equations of state

We calculate the differential of the energy $E(S, V, n, \ldots)$:

$$
d E=\frac{\partial E(S, V, n)}{\partial S} d S+\frac{\partial E(S, V, n)}{\partial V} d V+\frac{\partial E(S, V, n)}{\partial n} d n
$$

Comparing with

$$
d E=T d S-p d V+\mu d n
$$

we obtain

$$
\begin{align*}
& \frac{\partial E(S, V, n)}{\partial S}=T(S, V, n) \tag{4.9}\\
& \frac{\partial E(S, V, n)}{\partial V}=-p(S, V, n) \tag{4.10}
\end{align*}
$$

$$
\frac{\partial E(S, V, n)}{\partial n}=\mu(S, V, n)
$$

Knowing the functions $T=T(S, V, n), p=p(S, V, n)$ and $\mu(S, V, n)$ is equivalent (apart from a constant term) to knowing the characteristic function. These three functions are called equations of state. They play an important role in thermodynamics, because often not all equations of state of a system are known, and therefore its characteristic function is not known either. For many purposes, however, knowledge of a single equation of state is sufficient.

Example: Solid materials and gases

Figure 4.9 shows the state functions $S(p, T)$ and $V(p, T)$ for solids and for gases for fixed n.

Fig. 4.9
The state functions $S(p, T)$ (above) and $V(p, T)$ (below) for a solid (left) and a gas (right)

7 Maxwell relations and flip rule
The equations of state are not independent of each other. Here is
how one can see it. With equations (4.9) and (4.10) we obtain
$\frac{\partial}{\partial V}\left(\frac{\partial E(S, V, n)}{\partial S}\right)=\frac{\partial T(S, V, n)}{\partial V}$
and
$\frac{\partial}{\partial S}\left(\frac{\partial E(S, V, n)}{\partial V}\right)=-\frac{\partial p(S, V, n)}{\partial S}$
Since the left sides are equal, it must be:
$\frac{\partial T(S, V, n)}{\partial V}=-\frac{\partial p(S, V, \eta)}{\partial S}$
This is a condition which the two equations of state $T(S, V, n)$ and
$p(S, V, n)$ must t fulil.
The following two relationships are otained in similar wa:
The ofolowing two relationships are obtained in a simiar way:
$\partial \tau(S, V, n)$
$\partial u(S, V, n)$
$\frac{\partial T(S, V, n)}{\partial n}=\frac{\partial \mu(S, V, n)}{\partial S}$
Equations of this type are called Maxwell relations. There are more Equations of this type are caled
of them. We will derive three emere. We proceed in a similiar way as
abour above, however we do not start trom the dififerential of the energy,
but of $G=E+p V-T$
We have
$d G=\frac{\partial G(T, p, n)}{\partial T} d T+\frac{\partial G(T, p, n)}{\partial p} d p+\frac{\partial G(T, p, n)}{\partial n} d n \quad$ (4.12)
Moreover,
$d G=d(E)$
$d G=d(E+p V-T S)$
$=T d S-p d V+\mu d n+p d V+V d p-T d S-S d T$
$=V d p-S d T+\mu d n$
equation (4.12) results in:
$\frac{\partial G(T, p, n)}{\partial T}=-S(T, p, n)$
$\frac{\partial G(T, p, n)}{\partial p}=V(T, p, n)$
$\frac{\partial G(T, p, n)}{\partial n}=\mu(T, p, n)$
We thus have obtained the state equations
$S=S(T, p, n)$
$V=V T, n)$
$\mu=\mu(T, p, n)$
Also these are equivalent to the knowledge of any of the characteris-
tic tunctions. These three functions are particularily popular because tic functions. TTese three e tunctions are paraticiulalil
the variables T, p and n can easily be measured.
$S=S(T, p, n)$ is obtained directly from the entropy capacity at constant pressure c_{s}, which can be measurea. The relationshi $V=(T, p, n)$, the so-called ideal gas law, can also be easily ob-
tainene by maesurement This function has the special feature that it
has tained by measurement. This function has the special feature
has a very simple, universal form for diluted systems, namely:
$V(T, p, n)=R \frac{n \cdot T}{p}$
Here R is the gas constant (see also section 3.2):
Also these state functions are not independent of one another. The
following Maxwell relations apoly:
Also
folowinges saxate functions are not relations apply:
$-\frac{\partial S(T, p, n)}{\partial p}=\frac{\partial V(T, p, n)}{\partial T}$
$\frac{\partial V(T, p, n)}{\partial \eta}=\frac{\partial \mu(T, p, n)}{\partial p}$
The auxiliary quantity G, which we used for the derivation, is no
longer included in these relations. The Maxwell relations are very simple, but sometimes surpisising. For example, equation (4.13b
says that the change of the chemical potential with
wniter says that the change of the chemimalal potential with temperature is
equal to the change of the entropy with the amount of substance, i.e.
equal to the molar entropy, except tor the sign equal to the molar entropy, except for the sign.
If we look more closely at the structure of equations 4.11 and 4.13,
we notice that they are "knitted" according to a simple principe; there is a simple procecourre that allows one to express any given dif
ferential quotient through another one. We will ferential quotient through another one. We will give the rules without
proving them, but we will check their validity on the relationships
4.11 and 4.13 calculalated above.
We statit rom the energy difierential of the system under considera,
tion. Since we do not want to estrict ourselves to a specificic system, we writie it it the general form
$d E=\xi_{1} d X_{1}+\xi_{2} X_{2}+\xi_{d} d X_{3}+\ldots$ We are interested in a difterential quotient that can
any two of the variables on the right, tor example
$d \xi_{1} / d X_{3}$
$d \xi_{1 / d \xi_{3}}$
$d X_{1} / d X_{3}$
We only exclude quotitents where both variables come from the Now a new differential quotient is obtained as follow 1. The numerator and denominator rere iterechanged, and each of
the two variables is simultaneously replaced by its coniugate" ie the two variables is simultaneousty replaced by it "coniugate", i.e.
intensive by exensive, and extensive by intensive. Here are our
three examples $\frac{d E_{5}}{d x_{2}}=\frac{d \sigma_{5}}{d X_{1}}$
$\frac{d \xi_{5}}{d \xi_{5}}=\frac{d X_{2}}{\partial x_{1}}$
$\frac{d x_{1}}{d x_{3}}=\frac{d \xi_{5}}{d \xi_{5}}$
2. It the quantitise in the numerator in the denominato are both in-
tensive or robth extensive, a minus sign must be addeded:
$\frac{d \xi_{5}}{d x_{3}} \Rightarrow+\frac{\sigma \sigma_{5}}{\partial x_{2}}$
$\frac{d t_{5}}{\sigma_{5}} \Rightarrow-\frac{d x_{2}}{\partial_{1}}$
$\frac{d x_{1}}{d x_{3}} \Rightarrow-\frac{d \xi_{5}}{d \xi_{5}}$

 which must be taken into accounn
sign is a part of the variable "volum
This rule is called the filp rule.
Verify that the 6 equations 4.11 and 4.13 can be obtained by using
the fili rule.
Example: Capacitor with variable plate spacing
The system cannot be decomposed. We call the plate spacing x.
One characteristic function is.
$E(x, Q)=\frac{Q^{2} x}{2 \varepsilon \varepsilon_{0} A}+E_{0}$
$d E=\frac{\partial E(Q, x)}{\partial Q} d Q+\frac{\partial E(Q, x)}{\partial x} d x$
Comparing with the energy differential
$d E=U d Q-F d x$
we find
$U(Q, x)=\frac{\partial E(Q, x)}{\partial Q}=\frac{Q \cdot x}{\varepsilon \varepsilon_{0} A} \quad F(Q, x)=-\frac{\partial E(Q, x)}{\partial x}=-\frac{Q^{2}}{2 \varepsilon \varepsilon_{0} A}$
The state functions $U(Q, x)$ and $F(Q, x)$ are not independent from one
another. The following Maxwell relationship applies:
$\frac{\partial U(Q, x)}{\partial x}=-\frac{\partial F(Q, x)}{\partial Q}$
$\frac{\partial}{\partial x}\left(\frac{Q \cdot x}{\varepsilon \varepsilon_{0} A}\right)=\frac{\partial}{\partial Q}\left(\frac{Q^{2}}{2 \varepsilon \varepsilon_{0} A}\right)$
$\frac{Q}{\varepsilon \varepsilon_{0} A}=\frac{Q}{\varepsilon \varepsilon_{0} A}$
The two sides are equal, but not equal to zero. The variables Q and
x are coupled to each other. Fig. 4.10 shows $U(Q, x)$ and $F(Q, x)$.

4.8 Linear approximation of the characteristic function

The knowledge of the characteristic function $Y\left(X_{1}, X_{2}, \ldots X_{n}\right)$ is equivalent to the knowledge of n equations of state. Here, "knowledge" does not necessarily mean that an analytical expression must be known. The knowledge can also be expressed in a table of values or in a diagram.
Of course, a characteristic function or the corresponding state functions of an object are only known within a limited range of values of the variables.
For many purposes it is sufficient to know the state functions in a small interval, so that all relations between the variables of the state functions can be approximated by linear functions.
We suppose the equations of state to be $V(T, p)$ and $S(T, p)$. If S and V are given for a pair of values $\left\{T_{0}, p_{0}\right\}$, i.e. $V\left(T_{0}, p_{0}\right)$ and $S\left(T_{0}, p_{0}\right)$, then the volume and the entropy can be calculated in the vicinity of this independent coordinate point if the derivatives

$$
\frac{\partial V(T, p)}{\partial T}, \quad \frac{\partial V(T, p)}{\partial p}, \quad \frac{\partial S(T, p)}{\partial T} \text { and } \frac{\partial S(T, p)}{\partial p}
$$

at the point $\left\{T_{0}, p_{0}\right\}$ are known.
Now the first and the last of these differential quotients are the same because of the Maxwell relation (4.13a) (except for the sign).
Therefore in a small vicinity of the point $\left\{T_{0}, p_{0}\right\}$ the knowledge of two values ($V\left(T_{0}, p_{0}\right)$ and $S\left(T_{0}, p_{0}\right)$) and three derivatives, i.e. five numbers, is equivalent to the knowledge of the characteristic function. It is advisable to eliminate the size or extension of the system by dividing the derivatives by extensive quantities. The coefficients thus obtained have special names and are listed in tables:

$$
\begin{aligned}
& \kappa=-\frac{1}{V} \frac{\partial V(T, p)}{\partial p}=\text { compressibility } \\
& \alpha=\frac{1}{V} \frac{\partial V(T, p)}{\partial T}=\text { volumetric thermal expansion coefficient } \\
& c_{S}^{p}=\frac{1}{n} \frac{\partial S(T, p)}{\partial T}=\text { molar entropy capacity }
\end{aligned}
$$

Instead of the last of these three coefficients, more frequently one uses

$$
c_{p}=\frac{T}{n} \frac{\partial S(T, p)}{\partial T}=\text { molar heat capacity }
$$

Of course, other derivatives can be given. Altogether, however, only three are independent of each other (as long as we remain with two independent variables). Thus, for example, the pressure coefficient

$$
\beta=\frac{\partial p(T, V)}{\partial T}
$$

can be expressed by the compressibility and the volumetric thermal expansion coefficient:

$$
\beta=\frac{\alpha}{\kappa}
$$

Moreover, it can be shown that

$$
C_{s}^{p}-C_{s}^{v}=V \frac{\alpha^{2}}{\kappa}
$$

In section (3.6) we had already made use of the linear approximation of the state function $\mu(T, p)$.

4.10 Why the energy form heat is not contained in a system

We had already stressed that giving the term TdS its own name was an unfortunate move. It is a consequence that there are certain expectations that can't be fulfilled - especially the following:
"If a system absorbs heat, the heat must be contained in it after being absorbed."
To convince ourselves that this proposition is wrong, we look at a gas and bring it from an initial state A to a final state C in two different manners, Fig. 4.18: once passing by B, and once by D, and we ask both times for the absorbed energy.

Fig. 4.18
On the way A-B-C the gas absorbs less heat than on the way $A-D-C$.

On the A-B-C path, the gas absorbs the amount of heat corresponding to the hatched area in Fig. 4.18a, as this area represents $\int T d S$. In addition, the gas does (or yields or delivers) work, that is given by the hatched area in Fig. 4.18b.
On the A-D-C path, the gas absorbs the amount of heat corresponding to the pink area in Fig. 4.18a and does the work corresponding to the pink area in Fig. 4.18b.
Initial and final state are the same for both process paths, but the absorbed heat is different. By how much has the heat of the gas increased? Obviously a meaningless question. The same applies to the work.
On the other hand, all questions about the values of the normal physical quantities, the "state quantities", make sense:
By how much has the entropy or the volume increased?
How much have the temperature and pressure values changed?
In the case of substance-like quantities, the question may and should even be formulated as follows: "How much of it is within the system?" or "How much is contained in it?".

In practice, the "dissipators" shown in the three figures (damper,
electric resistor and brake) can also be omitted, because possibilities for entropy production are almost always present anyway.
If we include the dissipator in our system, the energy differential becomes zero and we have
$\left(-p_{A}+p_{B}\right) d V+T d S_{\text {pord }}=0$
$\left(U_{A}-U_{B}\right) d Q+T d S_{\text {pood }}=0$
$\left(U_{A}-U_{B}\right) d Q+T d S_{\text {pood }}=0$
$\left(T_{A}-T_{B}\right) d S+T d S_{\text {pood }}=0$

Since these processes are associated with entropy production, they
run by themselves, but only if $n_{A}-\eta_{\mathrm{B}}(d Y$ is not zero. In this product, the second factor, dY, could be erero. That would
simply mean that the process is inhibited. We assume that this is not simply mean that the process is inhibited. We assume that this is not
the case. At some point however the first facto the case. At some point, however, the first factor $\left(\eta_{A}-\eta_{\text {l }}\right.$ becomes
zero, and the processs comes to halt: there is equilibrium between
the esubsytems with regard to the variable Y. In other words, equilibrium exists between two subsystems only with respect to the exchange of a certain extensive variable. There is no
equilibrium per se. One must therefore distinguish between different

4.12 Flow equilibria

When an equilibrium is establishing, entropy is produced as much as the system allows. Once the equilibrium is reached, no further entropy production is possible, and the entropy production rate Σ_{s} becomes zero.
However, it often happens that a system goes through states and finally comes to a standstill in a state in which Σ_{s} is not equal to zero The term "standstill" means that all variables of the system assume constant values over time. Such a state is called a steady state o sometimes flow equilibrium.
Steady state:
Values of variables are constant over time, but $\Sigma_{S} \neq 0$
Since the entropy production rate is not zero, the system must be constantly supplied with energy:
$P=T \cdot \Sigma_{S}$
An equilibrium is always established between subsystems. We consider the simplest case, namely that there are only two subsystems, Fig. 4.23. Two resistors are connected in series to a power supply unit which delivers a constant voltage U_{0}.

Fig. 4.23
When the sw
When the switch is closed, the voltage U_{0} is distributed over the
resistors so that $U_{1} / R_{1}=U_{d} R_{2}$.

When the switch is closed, the voltage is distributed over the resistors:

$$
U_{0}+U_{1}+U_{2}=0
$$

As is well known, it is distributed in such a way that the following applies

$$
\begin{equation*}
\frac{U_{1}}{R_{1}}=\frac{U_{2}}{R_{2}} \tag{4.16}
\end{equation*}
$$

From equations (4.15) and (4.16) together we obtain the values of U_{1} and U_{2} :

$$
\begin{align*}
& U_{1}=-\frac{R_{1}}{R_{1}+R_{2}} U_{0} \\
& U_{2}=-\frac{R_{2}}{R_{1}+R_{2}} U_{0} \tag{4.17}
\end{align*}
$$

Now the distribution of the voltage U_{0} over the two resistors can be considered a process. In a real circuit, the capacitances between the different parts of the circuit are not zero, and we can draw a more precise picture of the circuit by taking into account two of these capacitances, Fig. 4.24

Fig. 4.24
More realistic
More realistic representation of
the circuit shown in Fig. 4. 23 Two the circuit shown in Fig. 4.23. Two
capacitances are shown. It can be capen that the values of the voltages at the two resistors result
from the estabishment of an equilibrium.

The distribution of U_{0} over R_{1} and R_{2} is now time-dependent
$U_{0}+U_{1}(t)+U_{2}(t)=0$
The steady-state voltages adjust with the time constant
$\frac{C_{1}+C_{2}}{1}$
$\frac{1}{R_{1}}+\frac{1}{R_{2}}$
So we obtain
$\frac{U_{1}(t=\infty)}{R_{1}}=\frac{U_{2}(t=\infty)}{R_{2}}$
The state reached for $t \rightarrow \infty$ is a steady state, because all physica quantities have time-constant values, whereas in the resistors entropy is produced.
It is now found that the energy dissipated in the two resistors, and thus the total entropy produced, reaches a minimum value in the steady state (compared to the states that are passed through when the equilibrium is establishing). We will prove this claim
The energy dissipated per time in the two resistors taken together is

$$
P=\frac{U_{1}^{2}}{R_{1}}+\frac{U_{2}^{2}}{R_{2}}
$$

With equation (4.15) we get

$$
P=\frac{U_{1}^{2}}{R_{1}}+\frac{\left(U_{0}+U_{1}\right)}{R_{2}}
$$

In order to obtain $U_{1}^{\text {min }}$, for which P admits a minimum value, we set $d P / d U_{1}=0$:

$$
\frac{2 U_{1}^{\text {min }}}{R_{1}}+\frac{2\left(U_{0}+U_{1}^{\text {min }}\right)}{R_{2}}=0
$$

and obtain

$$
U_{1}^{\text {min }}=-\frac{R_{1}}{R_{1}+R_{2}} U_{0}
$$

and with (4.15)

$$
U_{2}^{\text {min }}=-\frac{R_{2}}{R_{1}+R_{2}} U_{0}
$$

i.e. the same expressions as (4.17),

The result can be generalized to more than two resistors connected in series:

A voltage distributes over resistors connected in series in such a way that the total entropy production becomes minimal.
Analogue statements can be formulated for other "driving forces", i.e. differences of intensive quantities

In addition, a similar consideration results in
An electric current distributes over resistors connected in paralle in such a way that the total entropy production becomes minimal. Here, too, we have a steady state. Also this statement can be translated to other currents.

The ideal gas

5.1 The ideal gas law

For a diluted gas, the relation between p, V, n and T is experimentally found to be:

$$
p \cdot V=R \cdot n \cdot T
$$

where

$$
R=8.31441 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K})
$$

This relationship is called the ideal gas law. Because of its universal character it is also called the general gas equation. Any substance can be brought in two ways into states where it fulfills the ideal gas law:

- by sufficient dilution;
- by a sufficiently high temperature.

In both ways, the mean interaction energy of the particles becomes small against their mean kinetic energy. However, raising the temperature can cause the substance to disintegrate (e.g. atoms are ionized) and thus n increases. This does not change the fact that the substance fulfills the gas equation - but then at higher temperatures one does not have the same substance as at lower temperatures.
The different dependencies contained in the equation have been discovered by different researchers and have different names:

$$
\begin{array}{ll}
p \sim \frac{1}{V} & \begin{array}{l}
\text { Boyle-Mariotte law (Robert Boyle 1627-1691, } \\
\text { Edmé Mariotte 1620-1684) }
\end{array} \\
V \sim T & \begin{array}{l}
\text { Gay - Lussac's law, was not discovered by Gay - Lus- } \\
\text { sac (1778-1850), but by Amontons (1663-1705) }
\end{array} \\
V \sim n & \begin{array}{l}
\text { Avogadro's law (Earl Amedeo di Quaregna e di Cerreto } \\
1776-1856)
\end{array}
\end{array}
$$

Avogadro's discovery was not simply that for a substance the volume is proportional to the amount of substance - this is trivial because of the homogeneity of the gases -, it was the insight that the proportionality factor depends only on p and T, and not on the nature of the gas. For the volume of an ideal gas of 1 mol under normal conditions, i.e. at

$$
p=101325 \mathrm{~Pa}, \quad T=273.15 \mathrm{~K}
$$

we obtain

$$
V=R \frac{n \cdot T}{p}=\frac{8.31441 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) \cdot 1 \mathrm{~mol} \cdot 273.15 \mathrm{~K}}{101325 \mathrm{~Pa}}=0.02241 \mathrm{~m}^{3}
$$

With $\rho_{n}=n / V$ we can write the ideal as law in such a way that it does no longer contain substance-like quantities but only local quantities:

$$
p=\rho_{n} \cdot R \cdot T
$$

Some of the coefficients introduced in section 4.8 can be calculated from the gas law:

$$
\begin{aligned}
& \kappa=-\frac{1}{V} \frac{\partial V(T, p)}{\partial p}=\frac{1}{V} \frac{R n T}{p^{2}}=\frac{1}{p} \\
& \alpha=\frac{1}{V} \frac{\partial V(T, p)}{\partial T}=\frac{1}{V} \frac{R n}{p}=\frac{1}{T} \\
& \beta=\frac{\partial p(T, V)}{\partial T}=\frac{R n}{V}=\frac{p}{T}
\end{aligned}
$$

For ideal gases $\beta=a \cdot p$. It is easy to verify that the general relationship $\beta=\alpha / \kappa$ is fulfilled.
From

$$
C_{S}^{p}-C_{S}^{v}=\frac{V \alpha^{2}}{\kappa}
$$

we get

$$
C_{s}^{p}-C_{s}^{v}=R \frac{n}{T}
$$

5.2 Consequences of the ideal gas law

We study the quantities E, S and μ as a function of p and V at fixed temperature and at fixed amount of substance. Therefore, we use V, T and n or p, T and n as independent variables. For the sake of clarity, we sometimes omit the variable n in expressions such as $E(T, V, n)$; we simply write $E(T, V)$.

Energy as a function of volume and pressure at constant tempera ture
We first ask for the V dependence of energy. With the rules of differential calculus (Falk-Ruppel p. 401, Job p. 51) we get:
$\frac{\partial E(T, V)}{\partial V}=\frac{\partial E(S, V)}{\partial V}+\frac{\partial E(S, V)}{\partial S} \cdot \frac{\partial S(T, V)}{\partial V}$
With equations (4.1) and (4.2) (section 4.6) we can write:
$\frac{\partial E(S, V)}{\partial V}=-p(S, V)$

$$
\frac{\partial E(S, V)}{\partial S}=T(S, V)
$$

By using the flip rule (section 4.7) we replace

$$
\frac{\partial S(T, V)}{\partial V}=\frac{\partial p(T, V)}{\partial T}
$$

and obtain
$\frac{\partial E(T, V)}{\partial V}=-p+T \cdot \frac{\partial p(T, V)}{\partial T}$
With the ideal gas law the second term on the right side becomes $T \cdot \frac{\partial p(T, V)}{\partial T}=T \cdot \frac{R n}{V}=p$
So equation (5.1) becomes
$\frac{\partial E(T, V)}{\partial V}=0$
or
$E(V, T)-E\left(V_{0}, T\right)=0$
We now obtain (with the rules of differential calculus)

$$
\frac{\partial E(T, V)}{\partial V}=-\frac{\partial E(T, V)}{\partial T} \cdot \frac{\partial T(E, V)}{\partial V}
$$

Since $\partial E(T, V / \partial T \neq 0$, with (5.2) we get
$\frac{\partial T(E, V)}{\partial V}=0$
Thus, for $E=$ const the temperature of an ideal gas is independent of the volume, or in other words, the temperature remains constant of the volume, or in other words, the temperature remains constant Isoenergetic means: The energy has the same value in the initial and final state, no matter how the process is realized:

- Let the gas push a piston in a cylinder, Fig. 5.1. Thereby it releases the energy $d E=v d p$. It obtains this energy with entropy that enters the cylinder: $d E=T d S$.
- A historically important realization of the isoenergetic expansion is the free expansion carried out by Gay-Lussac, Fig. 5.2: The gas in the left tank expands into the empty right tank. The temperature is the same at the end as at the beginning.

Finally, we obtain the dependence of the energy on pressure at constant temperature. With the chain rule and with (5.2) we get
$\frac{\partial E(p, T)}{\partial p}=\frac{\partial E(T, V(p, T))}{\partial p}=\frac{\partial E(T, V)}{\partial V} \cdot \frac{\partial V(p, T)}{\partial p}=0$
or
$E(p, T)-E\left(p_{0}, T\right)=0$
Entropy as a function of volume and pressure at constant temperature
For the calculation of the volume dependence of the entropy we again consider the isoenergetic expansion, realized reversibly as in Fig. 5.1. The energy flowing into the gas together with entropy is equal to the energy flowing out with momentum. So it is
$d E=T d S-p d V=0$
or
$T d S=p d V$
With the ideal gas law we have
$d S=n \cdot R \cdot \frac{d V}{V}$
and from this
$S(V, T)-S\left(V_{0}, T\right)=n \cdot R \cdot \ln \frac{V}{V_{0}}$
Thus, for $T=$ const the entropy increases logarithmically with the volume. With the ideal gas law we also obtain from (5.3)
$S(p, T)-S\left(p_{0}, T\right)=n \cdot R \cdot \ln \frac{p_{0}}{p}$

The chemical potential as a function of volume and pressure at constant temperature
With the ideal gas law we calculate

$$
\frac{\partial V(T, p, n)}{\partial n}=\frac{R T}{p}
$$

and with the Maxwell relation (4.5c) (section 4.7): we obtain $\frac{\partial \mu(T, p, n)}{\partial p}=\frac{R T}{p}$
Integration gives
$\mu(T, p)-\mu\left(T, p_{0}\right)=R T \ln \frac{p}{p_{0}}$
Thus, at $T=$ const the chemical potential increases logarithmically with pressure. With the ideal gas law we also obtain
$\mu(T, V)-\mu\left(T, V_{0}\right)=R T \ln \frac{V_{0}}{V}$

5.3 Dissolved substances as ideal gases

The ideal gas law always applies when a substance is sufficiently diluted. It does not matter how the dilution is achieved. We had previously assumed that the substance existed as a pure gas of low density. The material was diluted in vacuum, so to speak. However, the validity of the gas law does not change if a substance is diluted in a material solvent. Sugar in an aqueous sugar solution, Na^{+}ions in an aqueous saline solution, alcohol dissolved in water or water dissolved in alcohol also obey the ideal gas law

$$
p \cdot V=n \cdot R \cdot T
$$

In the case of a solution the molar density

$$
\rho_{n}=\frac{n}{V}=c
$$

is called concentration.
The experimental proof of the validity of the gas law is, however, somewhat more difficult for these gases than for gases in a vacuum: In order to measure the pressure of the solute (the dissolved substance) alone, the so-called osmotic pressure, a wall is required which is permeable to the solvent but impermeable to what is dissolved. Such a diaphragm has the unpleasant property of having a high flow resistance even for the material it lets through. Therefore, the pressures establish only slowly. In the experiment shown in Figure 5.3, the pressure of the gas "sugar" is given by the difference Δp of the pressure gauge readings.

Fig. 5.3
The left pressure gauge shows a value higher by the osmotic pressure than the right one.

We have

$$
\begin{aligned}
& p_{\text {left }}=p_{\text {water left }}+p_{\text {sugar left }} \\
& p_{\text {right }}=p_{\text {water right }}
\end{aligned}
$$

Since the diaphragm is permeable for water, it must be

$$
p_{\text {water left }}=p_{\text {water right }}
$$

Thus

$$
\Delta p=p_{\text {left }}-p_{\text {right }}=p_{\text {sugar left }}
$$

The equation for the chemical potential derived in the previous section also applies here. The chemical potential of the dissolved substance as a function of the (osmotic) pressure of the dissolved substance is

$$
\mu(T, p)-\mu\left(T, p_{0}\right)=R T \ln \frac{p}{p_{0}}
$$

With $c=n / V$ and $p=(n / V) \cdot R \cdot T$ we obtain

$$
\mu(T, c)-\mu\left(T, c_{0}\right)=R T \ln \frac{c}{c_{0}}
$$

5.4 Mixtures of ideal gases

There is a mixture of several ideal gases in one container. In the gas equation $p \cdot V=R \cdot n \cdot T$ we have to write

$$
n=\sum_{i} n_{i}
$$

i.e. the amount of substance n is the sum of the amounts n_{i} of the gases i. The quantities

$$
p_{i}=p \frac{n_{i}}{n}
$$

are called the partial pressures of the gases. So we can write
$p_{i} \cdot V=R \cdot n_{i} \cdot T$
For each gas i alone a gas equation applies, if the partial pressure of the gas is used. Each gas i behaves as if it were alone in the container. The two situations 1 and 2 shown in Fig. 5.4 are physically identical.

Besides the amount of substance, energy and entropy are simply given by the sum of the partial energies or entropies:

$$
n=\sum n_{i} \quad E=\sum E_{i} \quad S=\sum S_{i}
$$

A mixture of two gases can also be described as follows: It represents two gases in the same region of space, which are in thermal equilibrium. They are in thermal equilibrium because entropy can pass from one to the other. They are not in pressure equilibrium, because the volume of each of the gases is fixed, and they are not in chemical equilibrium, because one cannot transform into the other.
The chemical potential of each gas depends only on the partial pressure of that gas:

$$
\mu_{i}\left(T, p_{i}\right)-\mu_{i}\left(T, p_{0 i}\right)=R T \ln \frac{p_{i}}{p_{0 i}}
$$

We consider the mixing process shown in Fig. 5.5: In the initial state (1) the gases A and B are separated and have the same pressure $p_{\mathrm{A} 1}=p_{\mathrm{B} 1}$.

Then the separating wall is pulled out (b), so in the final state (2) it is

$$
V_{2}=V_{\mathrm{A} 1}+V_{\mathrm{B} 1} .
$$

The mixing process is an isoenergetic expansion of both gases to the final volume V_{2}, which is nothing new. Therefore, T remains constant during mixing and the entropy increases (see equation (5.3), section 5.2):

$$
\Delta S=R \sum_{i} n_{i} \ln \frac{V_{2}}{V_{i 1}}
$$

Since the pressures of the gases are the same before mixing, we have

$$
\frac{p}{R T}=\frac{n_{i}}{V_{i 1}}=\frac{n}{V_{2}}
$$

and we obtain

$$
\Delta S=R \sum_{i} n_{i} \ln \frac{n}{n_{i}}
$$

The quotient $x_{i}=n_{i} / n$ is called the mole fraction. With this we obtain the entropy of mixing

$$
\Delta S=-n R \sum_{i} x_{i} \ln x_{i}
$$

We will encounter this relationship again in statistical physics and information theory.
Although the relation between the variables of one partial gas is as if there were no other gases present, one can well distinguish between a free expansion into the vacuum and a free expansion into another gas: The second process is a diffusion process, it has a much greater reaction resistance than the first.
The last equation makes a statement that may be perceived as paradoxical (Gibbs' paradox): If the two gases A and B (Fig. 5.5) are identical, pulling out the wall does not result in any process at all. If, on the other hand, the gases differ in the smallest conceivable characteristic, ΔS assumes a value independent of this characteristic. But can't one type of gas be transformed into another by continuously changing one characteristic? Thermodynamics teaches us that the answer is "no". It thus requires the quantization of physical quantities. One of the gases could be e.g. orthohydrogen, the other parahydrogen. There can be no continuous transition between or-tho- and parahydrogen, i.e. no type of hydrogen whose nuclear spin has a sharp value between 0 and \hbar (but $\neq 0$ and $\neq \hbar$).

5.5 The law of mass action

For the sake of clarity, we limit ourselves to four reaction partners A, B, C and D. The generalization of the following calculations is obvious.
All partners of the reaction

$$
a \mathrm{~A}+b \mathrm{~B} \rightarrow c \mathrm{C}+d \mathrm{D}
$$

are supposed to be ideal gases or exist in a diluted solution.
In chemical equilibrium the chemical potential difference

$$
\begin{aligned}
\Delta \mu\left(T, p_{\mathrm{A}}, p_{\mathrm{B}},\right. & \left.p_{\mathrm{C}}, p_{\mathrm{D}}\right) \\
& =a \mu_{\mathrm{A}}\left(T, p_{\mathrm{A}}\right)+b \mu_{\mathrm{B}}\left(T, p_{\mathrm{B}}\right)-c \mu_{\mathrm{C}}\left(T, p_{\mathrm{C}}\right)-d \mu_{\mathrm{D}}\left(T, p_{\mathrm{D}}\right)
\end{aligned}
$$

is zero. Here, $p_{\mathrm{A}}, p_{\mathrm{B}}, p_{\mathrm{C}}$ and p_{D} are the partial pressures of the gases A, B, C, and D. We express every chemical potential on the right side by

$$
\mu_{i}\left(T, p_{i}\right)=\mu_{i}\left(T, p_{0}\right)+R T \ln \frac{p_{i}}{p_{0}}
$$

and obtain (for the case of chemical equilibrium)

$$
\begin{aligned}
& \overbrace{a \mu_{\mathrm{A}}\left(T, p_{0}\right)+b \mu_{\mathrm{B}}\left(T, p_{0}\right)-c \mu_{\mathrm{C}}\left(T, p_{0}\right)-d \mu_{\mathrm{D}}\left(T, p_{0}\right)}^{\Delta \mu^{\prime}\left(T, p_{0}\right)} \\
& +R T\left(a \ln \frac{p_{\mathrm{A}}}{p_{0}}+b \ln \frac{p_{\mathrm{B}}}{p_{0}}-c \ln \frac{p_{\mathrm{C}}}{p_{0}}-d \ln \frac{p_{\mathrm{D}}}{p_{0}}\right)=0
\end{aligned}
$$

We call $\Delta \mu^{\prime}\left(T, p_{0}\right)$ the chemical potential difference in the case that each reaction partner has the partial pressure p_{0}, and obtain

$$
\exp \left(-\frac{\Delta \mu^{\prime}\left(T, p_{0}\right)}{R T}\right)=\frac{\left(\frac{p_{\mathrm{A}}}{p_{0}}\right)^{a} \cdot\left(\frac{p_{\mathrm{B}}}{p_{0}}\right)^{b}}{\left(\frac{p_{\mathrm{C}}}{p_{0}}\right)^{c} \cdot\left(\frac{p_{\mathrm{D}}}{p_{0}}\right)^{d}}
$$

The expression on the left side only depends on temperature, but not on the partial pressures $p_{\mathrm{A}}, p_{\mathrm{B}}, p_{\mathrm{C}}$ and p_{D}. We designate it $K(T)$ and obtain the law of mass action:

$$
\frac{\left(\frac{p_{\mathrm{A}}}{p_{0}}\right)^{a} \cdot\left(\frac{p_{\mathrm{B}}}{p_{0}}\right)^{b}}{\left(\frac{p_{\mathrm{C}}}{p_{0}}\right)^{c} \cdot\left(\frac{p_{\mathrm{D}}}{p_{0}}\right)^{d}}=K(T)
$$

If three partial pressures are given (or $n-1$ if n substances are involved), the fourth (n-th) follows from the law of mass action.

5.6 The second equation of state $S=S(T, p, n)$

A system with the energy differential

$$
d E=T d S-p d V+\mu d n
$$

is characterized by three state functions, e.g. $V=\mathrm{V}(T, p, n)$, $S=S(T, p, n)$ and $\mu=\mu(T, p, n)$. We have dealt with the first of these and now turn to the second one, namely $S=S(T, p, n)$. It is determined by further experience. However, the p-dependence of $S(T, p, n)$ is already known because of the Maxwell relation (4.5a)

$$
-\frac{\partial S(T, p, n)}{\partial p}=\frac{\partial V(T, p, n)}{\partial T}
$$

With the ideal gas law (our first equation of state) we get

$$
\frac{\partial S(T, p, n)}{\partial p}=-\frac{R n}{p}
$$

and by integrating

$$
\begin{equation*}
S(T, p, n)=n \cdot R \cdot \ln \frac{p_{0}}{p}+S\left(T, p_{0}, n\right) \tag{5.4}
\end{equation*}
$$

Only the n - and T-dependence of S are yet unknown. Both are obtained from the experiment.
The n-dependence results from the homogeneity of the gas: If the amount of the gas is increased by a factor k while leaving T and p constant, the entropy increases by the same factor k. One can imagine that one has simply placed a new system next to the old one, Fig. 5.6.

Experience shows that the new and the old system do not influence each other. In mathematical symbols:

$$
\begin{equation*}
S(T, p, n)=n \cdot \hat{S}(T, p) \tag{5.5}
\end{equation*}
$$

The T-dependence of S finally contains the whole individuality of the gas; it is complicated. Under certain conditions, however, a simple analytical expression can also be specified for it. In addition to

$$
C_{S}^{p}=\frac{\partial S(T, p, n)}{\partial T}
$$

we also consider

$$
C_{s}^{V}=\frac{\partial S(T, V, n)}{\partial T}
$$

For the ideal gas, the knowledge of C_{s}^{p} is equivalent to that of C_{s}^{v}, because the following applies (see section 5.1)

$$
C_{s}^{p}-C_{s}^{v}=R \frac{n}{T}
$$

Now, the experiment shows

$$
\begin{array}{ll}
C_{S}^{v} \geq \frac{3}{2} R \frac{n}{T} & C_{S}^{p} \geq \frac{5}{2} R \frac{n}{T} \\
\text { in general } \\
C_{S}^{v}=\frac{3}{2} R \frac{n}{T} & C_{S}^{p}=\frac{5}{2} R \frac{n}{T} \\
\text { for monoatomic gases (noble gases, } \mathrm{Hg} \\
C_{S}^{v} \approx \frac{5}{2} R \frac{n}{T} & C_{S}^{p} \approx \frac{7}{2} R \frac{n}{T}
\end{array} \quad \begin{aligned}
& \text { for diatomic gases (only in a restricted } \\
& \text { temperature range) }
\end{aligned}
$$

For c_{V} and c_{p} we thus obtain (see section 2.12)

$$
\begin{array}{lll}
c_{V}=\frac{3}{2} R & c_{p}=\frac{5}{2} R & \text { for monoatomic gases } \\
c_{V} \approx \frac{5}{2} R & c_{p} \approx \frac{7}{2} R & \text { for diatomic gases }
\end{array}
$$

and for all gases we have

$$
\begin{equation*}
c_{V}-c_{P}=R \tag{5.6}
\end{equation*}
$$

Thus, c_{p} and c_{V} are temperature-independent, and we can write

$$
\frac{\partial S(T, p, n)}{\partial T}=c_{p} \frac{n}{T}
$$

and integrate:

$$
\begin{equation*}
S(T, p, n)=c_{p} \cdot n \cdot \ln \frac{T}{T_{0}}+S\left(T_{0}, p, n\right) \tag{5.7}
\end{equation*}
$$

From (5.4) and (5.7) we get

$$
\begin{equation*}
S(T, p, n)-S\left(T_{0}, p_{0}, n\right)=n \cdot\left(R \ln \frac{p_{0}}{p}+c_{p} \ln \frac{T}{T_{0}}\right) \tag{5.8}
\end{equation*}
$$

and with (5.5)

$$
S(T, p, n)=n \cdot\left(R \ln \frac{p_{0}}{p}+c_{p} \ln \frac{T}{T_{0}}+\hat{S}\left(T_{0}, p_{0}\right)\right)
$$

In an analogue manner one gets

$$
\begin{equation*}
S(T, V, n)-S\left(T_{0}, V_{0}, n\right)=n \cdot\left(R \ln \frac{V}{V_{0}}+c_{V} \ln \frac{T}{T_{0}}\right) \tag{5.9}
\end{equation*}
$$

and

$$
S(T, V, n)=n \cdot\left(R \ln \frac{V}{V_{0}}+c_{V} \ln \frac{T}{T_{0}}+\hat{S}\left(T_{0}, V_{0}\right)\right)
$$

5.7 Isothermal, isentropic, isobaric and isochoric processes of the ideal gas

We are looking for the $p-V$ relationship at constant temperature and constant entropy: isotherms and isentropics. Again we always consider processes with $n=$ const. To obtain the isotherms, we write the ideal gas law in the form

$$
p(V, T)=p_{0} V_{0} \frac{T}{T_{0}} \cdot \frac{1}{V}
$$

or

$$
p(V, T)=f(T) \cdot \frac{1}{V} \quad \text { isothermals }
$$

To calculate the isentropics, we introduce an abbreviation:

$$
\frac{c_{p}}{c_{v}}=\gamma
$$

and transform equation (5.9) with the aid of (5.6)

$$
\begin{align*}
S(T, V)-S\left(T_{0}, V_{0}\right) & =n \cdot\left(\left(c_{p}-c_{V}\right) \cdot \ln \frac{V}{V_{0}}+c_{V} \ln \frac{T}{T_{0}}\right) \\
& =n c_{V} \cdot\left[(\gamma-1) \cdot \ln \frac{V}{V_{0}}+\ln \frac{T}{T_{0}}\right] \tag{5.10}\\
& =n c_{V} \cdot \ln \left[\left(\frac{V}{V_{0}}\right)^{\gamma-1} \cdot \frac{T}{T_{0}}\right]
\end{align*}
$$

From this follows with the ideal gas law:

$$
S(p, V)-S\left(p_{0}, V_{0}\right)=n \cdot c_{V} \cdot \ln \left(\left(\frac{V}{V_{0}}\right)^{\gamma} \cdot \frac{p}{p_{0}}\right)
$$

and finally

$$
p(V, S)=p_{0} \cdot\left(\frac{V_{0}}{V}\right)^{\gamma} \cdot \exp \left(\frac{S-S_{0}}{n c_{V}}\right)
$$

or

$$
p(V, S)=f(S) \cdot \frac{1}{V^{\gamma}} \quad \text { isentropics }
$$

Since $\gamma>1$, the isentropic is steeper than the isothermal at every point of the $p-V$ diagram.
To calculate the isochorics ($V=$ const) of the ideal gas, we eliminate the temperature in (5.10)

$$
T(S, V)=T_{0} \cdot\left(\frac{V_{0}}{V}\right)^{\gamma-1} \cdot \exp \left(\frac{S-S_{0}}{n c_{V}}\right)
$$

or

$$
T(S, V)=f(V) \cdot \exp \left(\frac{S}{n c_{V}}\right) \quad \text { isochorics }
$$

In a similar way we get from (5.8)

$$
T(S, p)=T_{0} \cdot\left(\frac{p}{p_{0}}\right)^{1-\frac{1}{\gamma}} \cdot \exp \left(\frac{S-S_{0}}{n c_{p}}\right)
$$

or

$$
T(S, p)=f(p) \cdot \exp \left(\frac{S}{n c_{p}}\right) \quad \text { isobarics }
$$

Fig. 5.7a shows an isothermal and an isentropic in the $p-V$ diagram, Fig. 5.7 b shows an isobaric and an isochoric in the $T-S$ diagram.

5.8 The third equation of state: $\mu=\mu(\boldsymbol{T}, \boldsymbol{p}, \boldsymbol{n})$

Two derivatives of this function are already determined by the Maxwell relations (4.5b) and (4.5c), as well as by the equations of state discussed so far:

$$
\begin{aligned}
& -\frac{\partial \mu(T, p, n)}{\partial T}=\frac{\partial S(T, p, n)}{\partial n}=R \ln \frac{p_{0}}{p}+c_{p} \ln \frac{T}{T_{0}}+\hat{S}\left(T_{0}, p_{0}\right) \\
& \frac{\partial \mu(T, p, n)}{\partial p}=\frac{\partial V(T, p, n)}{\partial n}=\frac{R T}{p}
\end{aligned}
$$

The third derivative must be obtained from the experiment. Now, because of the homogeneity of the system, μ can no longer depend on n if T and p are fixed. So we have

$$
\frac{\partial \mu(T, p, n)}{\partial n}=0
$$

By integrating we obtain:

$$
\begin{equation*}
\mu(T, p, n)=R T \ln \frac{p}{p_{0}}-c_{p} T \ln \frac{T}{T_{0}}+\left(c_{p}-\hat{S}\left(T_{0}, p_{0}\right)\right)\left(T-T_{0}\right)+\mu\left(T_{0}, p_{0}\right) \tag{5.11}
\end{equation*}
$$

We finally obtained the T dependence of the chemical potential. However, it looks so complicated that one cannot recognize at first sight whether μ increases or decreases with T. The behavior of μ as a function of T can best be seen by looking at the Maxwell relation

$$
-\frac{\partial \mu(T, p, n)}{\partial T}=\frac{\partial S(T, p, n)}{\partial n}
$$

The right side simply represents the entropy per amount of substance, and this must always be positive. Thus, the derivative $\partial \mu(T, p, n) / \partial T$ is negative; for $p=$ const and $n=$ const the chemical potential decreases with increasing temperature.
5. The ideal gas
5.9 Simple cyclic processes with ideal gases Cyclic processes of particular technical importance are those in
which the energy carrier X_{1}, with which the energy arrives, flows into which the energy carrier X_{1}, with which the energy arrives, flows into
he machine at constant potential ξ ind and flows out of the machine at constant potential $\xi_{1 \text { out, }}$ Fig. 5.8. The $\xi_{1}-X_{1}$ diagram is a rectangle.

We examine three examples. In the first, X_{1} is the entropy, the cor esponding cyclic process is called the Carnot cycle. In the second, the first and the second.
We carry out the three cycles with an ideal gas. The second extensive variable X_{2} is the volume in all cases (the corresponding energy
carrier is the momentum).

Carnot cycle with the ideal gas
Fig. 5.9 shows the machine schematically, Fig. 5.10 shows the process in the $T-S$ and in the p - V diagram.
sists of two isothermals and two isentropics.

Isothermal compressed air engine
Fig. 5.11 shows the engine schematically, Fig. 5.12 shows the process in the $\mu-n, p-V$ and T-S diagrams.

$\underset{\substack{\text { Fig. } 5.10 \\ T \text {-Sdiagram and } p \text {-Vdiagram of }}}{ }$

In addition to the extensive quantities n and V, the entropy of the gas also changes. However, as can be seem in the $T-$ enciagram, the entropy always remains at the same thermal potential T, i.e. the energy that it carries does not change.
For processes with constant μ and constant n, the technical jargon
has not reserved its own "iso word" has not reserved its own "iso word". In process step AB entropy is carried convectively into the cylinder with the inflowing gas, in step
BC entropy flows through the cylinder wall into the cylinder. In step CD it is transported out again convectively.
sentropic compressed air engine (steam engine)
The just described cyclic process is difficult to realize, because en-
tropy conduction is a slow process Real engines or steam engines) operate mainly isentropically, Fig. 513 engines or steam engines) operate mainly isentropically, Fig. 5.13

\qquad

The temperature decreases in the expansion step BC . Therefore the chemical potential μ is higher at C compared with the isothermal engine. The air (or steam) leaving the engine could still be used: A
hermal engine could be operated between the atmospheric air and the air leaving the compressed air engine. This would deliver an amount of energy (in one cycle) that corresponds to the dark area in

Liquid and solid materials

6.1 The chemical potential

Liquids and solids have a particular property: their density can be changed only with difficulty by a change of pressure or by a change of temperature. The following considerations apply to solids only if the problem is isotropic. Both, the coefficients characterizing the solid as well as the mechanical stresses must be direction-independent. Experience shows that

$$
\begin{aligned}
& \kappa=-\frac{1}{V} \frac{\partial V(T, p, n)}{\partial p} \approx 0 \\
& \alpha=\frac{1}{V} \frac{\partial V(T, p, n)}{\partial T} \approx 0
\end{aligned}
$$

With the Maxwell relation (4.5a)

$$
\frac{\partial V(T, p, n)}{\partial T}=-\frac{\partial S(T, p, n)}{\partial p}
$$

$$
\begin{aligned}
& \text { we obtain } \\
& \qquad \frac{\partial S(T, p, n)}{\partial p} \approx 0
\end{aligned}
$$

Thus entropy is almost pressure-independent. This does not mean that S is also independent of the volume. In fact, another Maxwell relationship reads
$\frac{\partial S(T, V, n)}{\partial V}=\frac{\partial p(T, V, n)}{\partial T}$
and experience shows that $\partial p(T, V, n) / \partial T$ is large. The fact that S cannot be changed by changing the volume is simply because the substances under consideration are difficult to compress.

In addition, for liquids and solids we have $c_{p} \approx c_{V}$ (the lower the tem perature, the better they coincide). We therefore simply write c in stead c_{p} or C_{V}.
With the Maxwell relation (4.5c)
$\frac{\partial V(T, p, n)}{\partial n}=\frac{\partial \mu(T, p, n)}{\partial p}$
we calculate the pressure dependence of the chemical potential. Because of $a \approx 0$ and $k \approx 0$ the quotient

$$
\frac{\partial V(T, p, n)}{\partial n}=\hat{V}(T, p)
$$

is nearly independent of temperature and pressure and we obtain

$$
\begin{equation*}
\mu(p)-\mu\left(p_{0}\right)=V \cdot\left(p-p_{0}\right) \tag{6.1}
\end{equation*}
$$

We apply equation (6.1) to an example.
Lowering of the chemical potential of a liquid by adding a small amount of a foreign substance

If a small amount of a foreign substance (a solute) is dissolved in a liquid (the solvent), the chemical potential of the solvent decreases. We look at the experiment in Fig. 6.1

Fig. 6.1
On the left (1) of the water-permeable diaphragm there is pure a foreign substance is dissolved of water is the same on both sides.

We assume the solvent to be water. For the water chemical equilibrium between the left and the right of the diaphragm will establish:
$\mu_{\mathrm{H}_{2} \mathrm{O}, 1}=\mu_{\mathrm{H}_{2} \mathrm{O}, 2}$
This means that no more water passes through the diaphragm and the liquid columns on the left and right no longer change their height. The pressure to the right of the diaphragm must now be equal to the sum of the pressure on the left and the pressure of the solute.
$p_{2}=p_{1}+p_{\text {solute }}$
(Two forces act on the surface area A of the liquid on the right: the force $p_{1} \cdot A$, which liquid 1 exerts on liquid 2 through the diaphragm and the force $p_{\text {solute }} \cdot A$, which the diaphragm itself exerts on the liquid 2.
Now the water on the right of the diaphragm differs from the water on the left in two respects: first, its pressure is higher and second, a foreign substance is dissolved in it. So its chemical potential is

$$
\mu_{\mathrm{H}_{2} \mathrm{O}, 2}=\mu_{\mathrm{H}_{2}, 1,1}+\frac{V}{n}\left(p_{2}-p_{1}\right)+\Delta \mu\left(n_{\text {solute }}\right)
$$

The second summand on the right side of the equation describes the change of the chemical potential due to the increased pressure, the third summand $\Delta \mu\left(n_{\text {solute }}\right)$ is the change of the chemical potentia due to the foreign substance. In order for the chemical potentials to be equal on the left and right, both "corrections" must add up to zero, i.e. it must be
$\Delta \mu\left(n_{\text {solute }}\right)=-\frac{V}{n}\left(p_{2}-p_{1}\right)$
With the ideal gas law $p_{\text {solute }} V=R n_{\text {solute }} T$ and with $p_{2}=p_{1}+p_{\text {solute }}$ we get

$$
\Delta \mu\left(n_{\text {solute }}\right)=-\frac{V}{n} \frac{R n_{\text {solute }} T}{V}
$$

Now, $n_{\text {solute }} / n$ is equal to the mole fraction x, and we obtain
$\Delta \mu\left(n_{\text {solute }}\right)=-x R T$
The formula tells us that the chemical potential of water in the Rhine is higher than that of water in the North Sea. One could therefore operate a power plant at the mouth of the Rhine in which the Rhine water is lowered to the low North Sea potential and electric charge is pumped up to a high electric potential

6.2 The entropy of solid materials

It is convenient to decompose in our mind a solid material into subsystems: a lattice system, an electron system, a spin system... Each of these subsystems can contribute to the entropy. For many purposes, these systems can be considered separately. Sometimes one of them "does not exist": Its amount of substance is zero. By "electron system" we mean the so-called free electrons. An electrical insulator has no electron system in this sense.
First we look at the lattice system (the word comes from the fact that the atoms or ions of solids form a crystal lattice). Experience shows that the molar heat capacity for all solids at low temperatures follows Debye's law, Fig. 6.2:

$$
c=\frac{12}{5} \pi^{4} R\left(\frac{T}{T_{D}}\right)^{3} \text { for } T \ll T_{\mathrm{D}}
$$

Fig. 6.2
Specific heat capacity as a function of temperature for some solid materials

With

$$
c=\frac{d \hat{E}}{d T}=T \frac{d \hat{S}}{d T}
$$

we get

$$
\hat{S}=\int_{0}^{T} \frac{c}{T} d T=\frac{12}{5} \pi^{4} \frac{R}{T_{\mathrm{D}}^{3}} \int_{0}^{T} T^{2} d T=\frac{12}{5} \pi^{4} \frac{R}{3}\left(\frac{T}{T_{\mathrm{D}}}\right)^{3}=\frac{c}{3}
$$

Thus, also the molar entropy increases with the 3rd power of T, Fig. 6.3.

Fig. 6.3
Entropy of the electron system and the lattice system as a function of temperature for solids
A specific substance is thus characterized solely by T_{D}, the Debye temperature. Some T_{D} values are listed in Table 6.1.

substance		$T_{D}(\mathrm{~K})$
Pb	88	Table 6.1 Debye temperatures
Ag	215	
Cu	315	
Fe	453	
KBr	177	
NaCl	287	
Ge	360	
diamond	1860	

The experiment shows that c exhibits a simple behavior also for high temperatures: For crystals consisting of a single type of atom, c approaches asymptotically $3 R$ for increasing temperature, Fig. 6.2:

$$
c=3 R \quad \text { for } \quad T \gg T_{\mathrm{D}} .
$$

This is the Dulong-Petit law.

The entropy of the electron system is only noticeable at very low temperatures (if the substance has free electrons at all, i.e. if it is a metal). It is proportional to T and the molar entropy is therefore identical to c :
$\hat{S}=c \propto T$

Phase transitions

7.1 Phases

The word phase has a meaning similar to the word substance. However, since people do not like to say that ice and liquid water are different substances, they prefer to talk about different phases. We do not speak of two different phases if, for example, we have liquid water at $10^{\circ} \mathrm{C}$ and liquid water at $20^{\circ} \mathrm{C}$.
In order to pass from one phase to another, the values of any variables undergo discontinuous changes: in the transition of liquid water \rightarrow gaseous water, for example, the variables molar entropy and molar volume make a jump. But one should not take this definition too seriously: one can avoid the jump in the quoted example by passing around the so-called critical point.
The best known phases are the solid, liquid and gaseous phases, in which many substances can be found. In addition, especially solids exist in countless other phases: different crystal modifications; phases in which one part of the crystal lattice (one type of ion) is solid, another is liquid; phases characterized by different states of order of the atomic magnetic or electric moments; phases of the electron system (normal and superconductivity) and many others.

7.2 Phase transitions

Phase transitions are reactions. If the reaction can run uninhibited there is chemical equilibrium during the phase transition from phase I to phase II, it is
$\mu_{l}(p, T)=\mu_{l l}(p, T)$
This equation defines a relationship between pressure and temperature $p=p(T)$. If the function is displayed in a $p-T$ coordinate system, it is referred to as a phase diagram. For pairs of $p-T$ values that lie on the coexistence curve $p(T)$, both phases can exist simultaneous y. Outside the curv, from the liquid phase. is called curve tha separates the gaseous rom the liquid phase is called the vapor pressu curve presure (or equilibrium vapor pressure) of the liq id at temperatur The vapor presure curve ends at the citical uid at temperature T. The vapor pressure curve ends at the critical point (at $T=T_{\text {cr }}$ and $p=p$ agram of water in two different scales.

Fig. 7.3 shows the phase diagram of sulfur.

In triple points, the chemical potentials of three phases have the same value. This is a condition that defines values for p and T. So when a substance is brought into the state in which three phases coexist, a well-defined temperature will establish: a fixed point of temperature. The unit of temperature is defined by the triple point of water (see section 2.4).
Table 7.1 shows the vapor pressure values of water at different tem peratures. Table 7.2 lists the vapor pressures of some substances at $20^{\circ} \mathrm{C}$.

$\vartheta\left({ }^{\circ} \mathrm{C}\right)$	$p_{0}(\mathrm{~Pa})$	Table 7.1 Vapor pressure of water
0	613	
20	2333	
40	7373	
60	19.92.103	
80	47.3.103	
100	101.3.103	
150	4.76.105	
300	$8.59 \cdot 10^{6}$	
350	$1.65 \cdot 10^{7}$	
substance	$p_{\mathrm{D}}(\mathrm{Pa})$	Table 7.2 Vapor pressure of some substances at $20^{\circ} \mathrm{C}$
ethanol	$5.88 \cdot 10^{3}$	
methanol	1.25.104	
benzene	1.00.104	
mercury	0.16	

Whether a substance is normal or superconducting at a certain temperature depends on the magnetic field. Fig. 7.4 shows the $H-T$ phase diagram of lead.

A/m ${ }^{\text {H }}$	Fig. 7.4 $H-T$ phase diagram of lead
$64 \sim$	
48 -	
$32->$	
$\begin{array}{lllll}0 & 2 & 4 & 6 & \mathrm{~K}\end{array}$	

7.3ξ - X diagrams

In order to better understand how the various variables change during a phase transition, we look at the gaseous-liquid phase transitions in different representations.
First, we decrease the volume of the gas at a fixed temperature, Fig. 7.5.

Fig. 7.5
Phase transition at constant temperature
In this process, at first the pressure increases, see the path in the p T diagram. When this path reaches the vapor pressure curve, liquefaction begins. In the $p-V$ diagram we are at the point a. From now on the pressure does no longer change despite the reduction of the volume. The liquefaction continues until in the point β the whole substance has become liquid. A further reduction of the volume is accompanied by a sharp increase in pressure. In the $p-T$ diagram we leave the vapor pressure curve. During the transition liquid \rightarrow gaseous the molar volume changes by a finite amount. Its value is characteristic for the substance, but depends on the temperature. Table 7.3 lists the molar volumes of liquid water (index L) and water vapor (index V) for different temperatures.

$T(\mathrm{~K})$		$\hat{V}_{\mathrm{L}}\left(\mathrm{m}^{3} / \mathrm{mol}\right)$	$\hat{V}_{\mathrm{V}}\left(\mathrm{m}^{3} / \mathrm{mol}\right)$
312	$1.81 \cdot 10^{-5}$	$3.7 \cdot 10^{-1}$	$\Delta \hat{S}_{\mathrm{L} \rightarrow \mathrm{V}}(\mathrm{Ct} / \mathrm{mol})$
423	$1.97 \cdot 10^{-5}$	$6.85 \cdot 10^{-3}$	76
535	$2.30 \cdot 10^{-5}$	$7.4 \cdot 10^{-4}$	39
$647\left(=T_{\mathrm{cr}} / \mathrm{K}\right)$	$5.66 \cdot 10^{-5}$	$5.66 \cdot 10^{-5}$	0

Table 7.3
Molar volume of liquid water and water vapor, as well as the change of the entropy of the water during the transition

We now supply entropy to the liquid at fixed pressure, Fig. 7.6.

Fig. 7.6
Phase transition at constant pressure
In the process, at first the temperature increases, see the path in the $p-T$ diagram. When this path reaches the vapor pressure curve, evaporation begins. In the $T-S$ diagram we are at the point γ. From now on the temperature does no longer change despite the supply of entropy. Evaporation continues until at the point δ the whole substance is gaseous. A further entropy supply is accompanied by an increase in temperature; we leave the vapor pressure curve in the p T diagram. During the transition liquid \rightarrow gaseous the molar entropy changes by a finite amount. Its value is characteristic for the substance, but still depends on the temperature. Table 7.3 shows in column 4 this change in the molar entropy of water at different temperatures.
$T \Delta \hat{S}$ is called the molar heat of evaporation.

7.4 Clausius-Clapeyron relation

The shape of the coexistence curve $p(T)$ which separates phases I and II depends in a simple way on the values of $\hat{S}_{1}-\hat{S}_{\|}$and $\hat{V}_{1}-\hat{V}_{\| 1}$. On the coexistence curve we have $\mu_{\mathrm{l}}=\mu_{\| l}$. Thus we have

$$
\frac{d\left(\mu_{1}-\mu_{11}\right)}{d T}=0
$$

and therefore

$$
\frac{\partial \mu_{1}(p, T)}{\partial T}+\frac{\partial \mu_{1}(p, T)}{\partial p} \cdot \frac{d p}{d T}-\frac{\partial \mu_{11}(p, T)}{\partial T}-\frac{\partial \mu_{\| 1}(p, T)}{\partial p} \cdot \frac{d p}{d T}=0
$$

With the Maxwell relations (4.5b) and (4.5c) we obtain

$$
-\hat{S}_{1}(p, T)+\hat{S}_{\|}(p, T)+\left[\hat{V}_{1}(p, T)-\hat{V}_{\| 1}(p, T)\right] \cdot \frac{d p}{d T}=0
$$

and thus

$$
\frac{d p}{d T}=\frac{\Delta \hat{S}(T)}{\Delta \hat{V}(T)} \quad \text { Clausius-Clapeyron relation }
$$

During evaporation, both the molar entropy and the molar volume increase, i.e. numerator and denominator on the right side of the Clausius-Clapeyron equation have the same sign. So dp/dT is positive; the boiling temperature increases with increasing pressure. Normally the same applies to melting; the melting pressure curve also has a positive slope. However, water is an exception here, because its volume decreases as it melts (although the molar entropy increases). The melting pressure curve therefore has a negative slope ("anomaly of water").

7.5 Evaporation and boiling

There is water in a container that is open at the top. The chemical potential of the water vapor μ_{v} directly above the water surface is equal to that of the liquid water μ_{L} below the water surface. The partial pressure of the water vapor is equal to the vapor pressure p_{V}, Fig. 7.7. Further up the partial pressure and the chemical potential are lower. There is a chemical potential difference and therefore gaseous water diffuses away from the surface region. In order for the chemical potential at the surface to maintain its equilibrium value, water must pass from the liquid to the gaseous state: It evaporates.

Fig. 7.7
The chemical potential of the water vapor just above the surface is equal to that of the liquid water.

The partial pressure of the water above the liquid surface increases with increasing temperature. When it reaches the value of the air pressure, the partial pressure of the "residual air", i.e. the partial pressure of the non-water components of the air (essentially oxygen and nitrogen) becomes zero. From now on, the water vapor no longer needs to diffuse through the residual air, it pushes it away and flows unhindered upwards. The resistance against the propagation decreases strongly, the flow is practically uninhibited. The speed of evaporation is now only limited by the supply of entropy. We say that the water boils.
If the water is heated from below, as is usual when heating on a stove, the steam must pass through the liquid from below and form bubbles. For this to be possible, the temperature must rise until the vapor pressure equals the pressure in the water at the bottom of the vessel.
We look at a liquid that is in a closed container together with its vapor, Fig. 7.8a.

Fig. 7.8
(a) If a foreign substance is dissolved in a liquid, the chemical potential of the liquid decreases. (b) μ - p diagram

Both have the same chemical potential. Fig. 7.8b shows the $\mu(p)$ curves (at fixed temperature). If now a foreign substance is dissolved in the liquid, the chemical potential of the liquid (see section 6.1) decreases by $\Delta \mu=-x R T$ ($x=$ mole fraction of the solute). The chemical equilibrium between liquid and gas is disturbed. Gas will now condense until the chemical potential of the gas has dropped to its value in the liquid. The vapor pressure has thus been reduced by adding the foreign substance. For this reason, the boiling point of a liquid increases when a foreign substance is added. For the same reason, the melting point decreases when a foreign substance is added to a liquid, such as salt in water.

7.6 Solutions

The so-called precipitate and the dissolved substance also form two phases between which a transformation can take place, Fig. 7.9a. Here, too, the transformation comes to a standstill when the chemical potentials have the same value, i.e. when

$$
\mu_{\text {precipitate }}=\mu_{\text {solute }}
$$

A similar system is formed by two immiscible liquids A and B, Fig. 7.9b.

Fig. 7.9
(a) Precipitate and solute establish chemical equilibrium.
(b) Two immiscible liquids. The liquid phase of one substance represents the vacuum for the gaseous phase of the other.

Immiscible does not mean that there is nothing of substance B in liquid A and nothing of substance A in liquid B. In A a small amount of B is dissolved, and in B a small amount of A. B dissolved in A is the "gas phase" of liquid B and A dissolved in B is the "gas phase" of liquid A .
Liquid X represents the "vacuum" for the gas of substance Y . Here the osmotic pressure is a "vapor pressure". Above $T_{\text {cr. }}$ the two phases of each substance can no longer be distinguished from each other; the two substances become miscible.

Fluid dynamics

8.1 Pipe flow

We consider the flow through a pipe with the following properties: All partial time derivatives are zero, i.e. the flow is stationary. The flow velocity is the same over the entire cross-section of the pipe. The cross-section can be variable, so that the flow velocity in the direction of the pipe axis can change from one cross-section to another. In addition, there is no internal friction and no friction with the wall of the pipe.
For the treatment of flows three kinds of relations are needed:

1. Balance equations for the substance-like quantities E, S, n and m.

In the special case of stationary flows that we consider, the rate of change $d X I d t$ of the substance-like quantities X in the balance equation

$$
\frac{d X}{d t}=I_{X}+\Sigma_{X}
$$

is always equal to zero.

2. The energy differential

In addition to the balance equations of the various substance-like quantities, we also need the couplings between the flows of the sub-stance-like quantities that follow from the energy differential:

$$
\begin{equation*}
P=T I_{s}+\mu I_{n}+\frac{v^{2}}{2} I_{m} \tag{8.1}
\end{equation*}
$$

We know the first two terms on the right side of the equation from earlier times. The third term represents the flow of the kinetic energy. The current I_{m} is the current of the inertial mass. We will add another summand later, in which the current of the gravitational mass occurs. Like T and μ the pre-factor $v^{2} / 2$ of I_{m} plays the role of a potential, or a driving force quantity. One could introduce a proper name for it, such as inertial potential.
In a flow the energy current P is often constant along the whole path, but the individual contributions in (8.1) change at locations where the pipe cross-section changes, Fig. 8.1. This can also be expressed as follows: The loading of one energy carrier changes at the expense of the loading of another. The energy is transferred from one carrier to another within the flow.

With

$$
I_{S}=\hat{S} \cdot I_{n}
$$

and

$$
I_{m}=\hat{m} \cdot I_{n}
$$

equation (8.1) can be written:

$$
\begin{equation*}
P=\left(T \hat{S}+\mu+\frac{v^{2}}{2} \hat{m}\right) I_{n} \tag{8.2}
\end{equation*}
$$

3. Finally, the relations that characterize the specific flowing material (ideal gas, incompressible liquid, etc.) must be given.

8.2 Currents without an energy flow through the pipe wall

A simple law applies to flows without an energy transfer through the pipe wall:

$$
\hat{E}+p \hat{V}=\text { const }
$$

To prove it, we imagine that the flow is realized as shown in Fig. 8.2: by two moving pistons. We assume that no diffusion and no heat conduction takes place in the direction of flow.

Fig. 8.2
One can imagine that the energy change in the area between the two pistons is caused by the energy disappearing in the volume element $d V_{1}$ and the energy emerging in the volume element $d V_{2}$.

The change $d E$ of the energy of the system between the two pistons is

$$
d E=-p_{1} d V_{1}-p_{2} d V_{2}
$$

One can imagine that the energy change $d E$ is due to the fact that all the energy $d E_{1}$ contained in the volume $d V_{1}$ disappears and all the energy $d E_{2}$ contained in $d V_{2}$ is added, so that

$$
d E=d E_{1}+d E_{2}=-p_{1} d V_{1}-p_{2} d V_{2}
$$

or

$$
d\left(E_{1}+p_{1} V_{1}\right)+d\left(E_{2}+p_{2} V_{2}\right)=0
$$

If one follows a certain amount of gas on its way from left to right, so for this system we have

$$
E+p V=\text { const }
$$

or written in molar quantities

$$
\hat{E}+p \hat{V}=\text { const }
$$

This is an important rule: If the energy current in a flow is constant from one pipe cross-section to another, i.e. if no energy is "taken out or put in from the side", the expression $E+p V$ has the same value for both pipe cross-sections.
We used to look at processes where the value of a variable is constant, e.g. isothermal processes ($T=$ const), isentropic processes (S $=$ const), isoenergetic processes ($E=$ const). We are dealing here with a process in which a certain combination of variables is constant, namely $E+p V$. To simplify the equations, we give this combination of variables its own symbol:

$$
E+p V=H
$$

and

$$
\hat{E}+p \hat{V}=\hat{H}
$$

We remember that this expression is also called enthalpy, and that it is a characteristic function when written as a function of the variables S, p and n.

8.3. Currents of an ideal gas without an energy flow through the pipe wall

In equation (8.2) we insert

$$
\begin{aligned}
& \hat{\mathcal{S}}(T, p)=R \ln \frac{p_{0}}{p}+c_{p} \ln \frac{T}{T_{0}}+\hat{S}\left(T_{0}, p_{0}\right) \\
& \begin{aligned}
& \mu(T, p)=R T \ln \frac{p}{p_{0}}-c_{p} T \ln \frac{T}{T_{0}}-T \hat{S}\left(T_{0}, p_{0}\right)+c_{p}\left(T-T_{0}\right) \\
&+T_{0} \hat{S}\left(T_{0}, p_{0}\right)+\mu\left(T_{0}, p_{0}\right)
\end{aligned}
\end{aligned}
$$

and obtain

$$
\begin{equation*}
P=\left[c_{p}\left(T-T_{0}\right)+T_{0} \hat{S}\left(T_{0}, p_{0}\right)+\mu\left(T_{0}, p_{0}\right)+\frac{v^{2}}{2} \hat{m}\right] I_{n} \tag{8.3}
\end{equation*}
$$

With $P=$ const and $I_{n}=$ const we get

$$
c_{p}\left(T-T_{0}\right)+T_{0} \hat{S}\left(T_{0}, p_{0}\right)+\mu\left(T_{0}, p_{0}\right)+\frac{v^{2}}{2} \hat{m}=\text { const }
$$

Here and in the following "const" means "has the same value for each cross-section of the pipe". We now call T_{0} that temperature for which the gas has the velocity $v=0$ ("boiler state") and obtain

$$
\begin{equation*}
c_{p} T+\frac{v^{2}}{2} \hat{m}=c_{p} T_{0} \tag{8.4}
\end{equation*}
$$

Thus, the faster the gas flows, the lower its temperature.
We consider an application of this equation, Fig. 8.3.

Fig. 8.3
An ideal gas flows through an expansion valve without being accelerated.

An ideal gas flows through a so-called thermal expansion valve: a flow resistance through which it flows without being accelerated, i.e. without forming a jet or vortex behind it. The valve is thermally insulated against the external environment so that it cannot extract energy from the gas.
The gas expands in the valve: its pressure and density decrease. In order for $v_{1}=v_{2}$, the pipe cross-section in the throttle must increase slightly. With the previous equation results

$$
c_{p}\left(T_{1}-T_{0}\right)=c_{p}\left(T_{2}-T_{0}\right)
$$

and thus

$$
T_{1}=T_{2}
$$

With the gas equation it follows that the pressure decreases by the same factor by which the molar volume increases.

8.4 Isothermal flow of an ideal gas

The balance equation for the energy is, Fig. 8.4:

$$
P_{2}=P_{1}+P_{z}
$$

Fig. 8.4
Energy balance of isothermal flow

With (8.3) and with $T_{1}=T_{2}$ we get

$$
\frac{v_{2}^{2}}{2} \hat{m} \cdot I_{n}=\frac{v_{1}^{2}}{2} \hat{m} \cdot I_{n}+T \cdot I_{S, z}
$$

Here, $I_{s, z}$ is the flow of the entropy that must enter or leave the fluid through the pipe walls, in order to keep T constant.
With

$$
I_{S, z}=\hat{S}_{z} \cdot I_{n}
$$

and

$$
\hat{S}_{\mathrm{z}}=R \ln \frac{p_{1}}{p_{2}}
$$

(since $T=$ const) we obtain

$$
\frac{\hat{m}}{2}\left(v_{2}^{2}-v_{1}^{2}\right)=T \cdot R \cdot \ln \frac{p_{1}}{p_{2}}
$$

If we take the boiler state as state 1 , so that $v_{1}=0$, and name $p_{1}=p_{0}, v_{2}=v$ and $p_{2}=p$, then

$$
v^{2}=\frac{2 R T}{\hat{m}} \ln \frac{p_{0}}{p}
$$

Thus, the faster the gas flows, the lower its pressure.

8. Fluid dynamics

8.5 Ideal flow of an incompressible fluid

Since the liquid is not compressed (because it is so difficult), and since $\partial S(T, p, n) / \partial p \approx 0$, an isentropic flow is also isothermal. We consider such isentropic-isothermal flows.
With (8.2) we get

$$
P=\left(T \hat{S}+\mu+\frac{v^{2}}{2} \hat{m}\right) I_{n}=\text { const }
$$

and with

$$
\hat{S}=\text { const }
$$

we obtain

$$
\mu+\frac{v^{2}}{2} \hat{m}=\text { const }
$$

With

$$
\mu(p)=\hat{V}\left(p-p_{0}\right)+\mu\left(p_{0}\right)
$$

(equation (6.1)) we get

$$
\hat{V} \cdot p+\frac{v^{2}}{2} \hat{m}=\text { const }
$$

and with

$$
\rho_{m}=\frac{\hat{m}}{\hat{V}}
$$

we obtain

$$
p+\frac{v^{2}}{2} \rho_{m}=\text { const }
$$

The equation tells us that the higher the flow velocity, the lower the pressure. In places where a pipe is wide, the pressure is higher than in narrow sections.

8.6 Flows of liquids in the gravitational field

So far we have implicitly assumed that there is no gravitational field. With the gravitational field, (8.1) becomes

$$
P=T I_{S}+\mu I_{n}+\frac{v^{2}}{2} I_{m}+g h I_{m}
$$

and

$$
P=\left(T \hat{S}+\mu+\frac{v^{2}}{2} \hat{m}_{\text {inertial }}+g h \hat{m}_{\text {grav }}\right) I_{n}
$$

This is the energy current coupled to I_{n}. However, a part of it, namely that which has its origin in the gravitational field, does not flow at the same place as I_{n}.
With

$$
\hat{S}=\text { const }
$$

$$
\mu(p)=\hat{V}\left(p-p_{0}\right)+\mu\left(p_{0}\right)
$$

and

$$
\rho_{m}=\frac{\hat{m}}{\hat{V}}
$$

and with $P=$ const, $I_{n}=$ const and $T=$ const we get

$$
\begin{equation*}
p+\frac{v^{2}}{2} \rho_{m}+g \cdot h \cdot \rho_{m}=\mathrm{const} \tag{8.5}
\end{equation*}
$$

This is the Bernoulli's equation.
In the hydroelectric power plant shown in Fig. 8.5, the energy is "transloaded" twice on its way from A to C : On its way from A to B, the loading of I_{n} increases at the expense of that of I_{m}, grav. In the nozzle the loading of I_{m}, inertial increases at the expense of that of I_{n}.

Fig. 8.5
On the section $A B$, energy is transloaded from the energy carrier "gravitational mass" to the energy carrier quantity of substance. In the nozzle it changes the carrier again: It is transferred onto the carrier "inertial mass".

Real gases

9.1 Critical point

A gas only obeys the equation of state $p V=n R T$ as long as ρ_{n} is small and T is large.
Fig. 9.1 shows the isotherms of CO_{2} in the $p-V$ diagram and the isobars in the $T-S$ diagram for conditions under which CO_{2} is no longer ideal.

Fig. 9.1
Carbon dioxide: Isothermals in the $p-V$ diagram and isobarics in the $T-S$ diagrams

Below the dashed limiting curves, liquid and gas exist simultaneously. If one moves on an isothermal (upper partial picture) from right to left, one enters this coexistence area at point β. The proportion of gas then decreases more and more in favor of the liquid. At a the phase transition is completed, the whole substance is liquid. The isothermal rises steeply, because the compressibility of the liquid is very low. Isothermals belonging to high temperatures do not cross this area. At these temperatures, it is no longer possible to distinguish between gas and liquid. The temperature from which a phase transition begins to exist is called critical temperature $T_{\text {crit. }}$. The pressure at which the isotherm of the critical temperature touches the coexistence area is called critical pressure $p_{\text {crit. }}$. Water vapor in a state below the limiting curve is called wet vapor.

9.2 The van der Waals equation

A gas for which the the ideal gas law no longer applies can be described outside the limiting curve approximately by a somewhat more complicated equation of state, the van der Waals equation:

$$
\left(p+\frac{a}{\hat{V}^{2}}\right) \cdot(\hat{V}-b)=R T
$$

a and b are two constants characterizing the individual gas. Fig. 9.2 shows isothermals according to the van der Waals equation.

Fig. 9.2
Isothermals according to the van der Waals equation

9.3 Adiabatic flow of a real gas

- the Joule-Thomson effect

We consider the stationary flow of a real gas through a pipe with a dissipative resistance (see section 8.3) and ask for the temperature change of the gas. To exclude the acceleration effect discussed in Section 8.3, the tube at the "resistor" expands so that the flow velocity before and behind it is the same. We ask what change $d T$ of the temperature results for a given change $d p$ of the pressure for $H=$ const, i.e. we ask for

$$
\frac{\partial T(\hat{H}, p)}{\partial p}
$$

For this we need

$$
\begin{equation*}
d \hat{H}(T, p)=\frac{\partial \hat{H}(T, p)}{\partial p} d p+\frac{\partial \hat{H}(T, p)}{\partial T} d T \tag{9.1}
\end{equation*}
$$

We start with

$$
d \hat{H}=T d \hat{S}+\hat{V} d p
$$

Comparing with

$$
d \hat{H}(\hat{S}, p)=\frac{\partial \hat{H}(\hat{S}, p)}{\partial \hat{S}} d \hat{S}+\frac{\partial \hat{H}(\hat{S}, p)}{\partial p} d p
$$

we obtain

$$
\begin{equation*}
\frac{\partial \hat{H}(\hat{S}, p)}{\partial \hat{S}}=T \quad \frac{\partial \hat{H}(\hat{S}, p)}{\partial p}=\hat{V} \tag{9.2}
\end{equation*}
$$

We now express the searched derivatives in (9.1) by the known ones in (9.2) using the rules of differential calculus and one of the Maxwell relations:

$$
\begin{aligned}
\frac{\partial \hat{H}(T, p)}{\partial p} & =\ldots=\hat{V}+T \frac{\partial \hat{S}(T, p)}{\partial p}=\hat{V}-T \frac{\partial \hat{V}(T, p)}{\partial T} \\
& =\hat{V}-T \hat{V} \alpha=\hat{V}(1-T \alpha) \\
\frac{\partial \hat{H}(T, p)}{\partial T} & =T \frac{\partial \hat{S}(T, p)}{\partial T}=c_{p}
\end{aligned}
$$

This results in

$$
d \hat{H}(T, p)=\hat{V}(1-\alpha T) d p+c_{p} d T
$$

With

$$
d \hat{H}(T, p)=0
$$

we obtain the wanted temperature change:

$$
\begin{equation*}
\frac{\partial T(\hat{H}, p)}{\partial p}=\frac{\hat{V}(\alpha T-1)}{c_{p}} \tag{9.3}
\end{equation*}
$$

For an ideal gas $a=1 / T$. Thus, the temperature change is zero, as was already calculated in section 8.3. In general, the expression (9.3) is negative for high temperatures, i.e. an expansion of the gas results in an increase in temperature. For low temperatures (9.3) is positive: decompression of the gas is accompanied by a temperature decrease. At the inversion temperature $T_{i}=1 / a$ the temperature remains unchanged, Table 9.1.

substance	$T_{\mathrm{i}}(\mathrm{K})$	Table 9.1 Inversion temperatures of several substances
H_{2}	224	
He	35	
O_{2}	1041	
$\mathrm{~N}_{2}$	866	

We calculate the inversion temperature for a Van-der-Waals gas. It is

$$
T_{\mathrm{i}}=\frac{1}{\alpha}=\frac{1}{\frac{1}{\hat{V}} \frac{\partial \hat{V}(T, p)}{\partial T}}=\hat{V} \frac{\partial T(p, \hat{V})}{\partial \hat{V}}=\frac{\hat{V}}{R}\left[-\frac{2 a}{\hat{V}^{3}}(\hat{V}-b)+p_{\mathrm{i}}+\frac{a}{\hat{V}^{2}}\right]
$$

We calculate p_{i} from the Van-der-Waals equation

$$
p_{i}=\frac{R T_{i}}{\hat{V}-b}-\frac{a}{\hat{V}^{2}}
$$

and insert in the previous equation

$$
T_{\mathrm{i}}=\frac{\hat{V}}{R}\left[-\frac{2 a}{\hat{V}^{3}}(\hat{V}-b)+\frac{R T_{\mathrm{i}}}{\hat{V}-b}-\frac{a}{\hat{V}^{2}}+\frac{a}{\hat{V}^{2}}\right]
$$

We thus obtain

$$
T_{\mathrm{i}}=\frac{2 a(\hat{V}-b)^{2}}{R b \hat{V}^{2}}
$$

For gas densities that are not too high we have

$$
\hat{V} \gg b
$$

and the inversion temperature becomes independent of the molar volume:

$$
T_{\mathrm{i}}=\frac{2 a}{R b}
$$

The cooling of an expanding gas at $E+p V=$ const is called the Joule-Thomson effect. It is used in the Linde process for the liquefaction of air.

Combined potentials

10.1 Once more equilibria

Two subsystems A and B were always involved in the discussion of the equilibria in Section 4.11. We remember: If there is a thermally conductive connection between two bodies A and B, an entropy current flows until the temperatures of A and B have assumed the same value. The state that is then reached, is called thermal equilibrium.
Accordingly, we had defined what we mean by electrical and chemical equilibrium: the state in which two electrical potentials or two chemical potentials have reached the same value.
However, we do not have to limit ourselves to two different values of the temperature, the electric potential or the chemical potential. The rod in Fig. 10.1a has a different temperature at each position x. If we leave it to itself for a while, the temperatures will equalize. At the end all temperature values are the same, Fig. 10.1b. There is thermal equilibrium between all parts of the rod.

Fig. 10.1
(a) The rod has a different temperature at each position x.
(b) After a while the temperature is the same everywhere: $T(x)=$ const.

Thermal equilibrium: $T(x)=$ const
Here we had assumed that the temperature would only change in the x -direction. More generally, we can write:

Thermal equilibrium: $T(x, y, z)=$ const
Since in the following only gradients of a single direction concern us, we remain with the x.
Accordingly, we can generalize the definition of chemical and electrical equilibrium:

Chemical equilibrium: $\mu(x)=$ const
Electric equilibrium: $\phi(x)=$ const
Also the gravitational potential ψ can equalize, so that equilibrium is achieved. We call it gravitational equilibrium.

Gravitational equilibrium: $\psi(x)=$ const

10.2 Substances and particles - coupling between substance-like quantities

If the extension or the amount of a system does not matter, we speak of a substance. 1 g of air is the same substance as 1 kg of air. In order to characterize a substance, however, it is important to know the relationship between the values of the substance-like quantities:

Water: $m / n=18 \mathrm{~g} / \mathrm{mol}$.
Free electrons: $m / n=0.55 \mathrm{mg} / \mathrm{mol} ; Q / m=1.76 \cdot 10^{11} \mathrm{C} / \mathrm{kg}$.
Light: $E / p=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$.
Some of the substance-like quantities have a universal quantum. What does that mean? If a system is closed, i.e. if it cannot give away or receive the physical quantity, the value of this quantity is an integer multiple of an elementary quantum, for example:

$$
\begin{array}{ll}
Q=k_{1} \cdot e & e=1.60 \cdot 10^{-19} \mathrm{C}=\text { elementary charge } \\
L=k_{2} \cdot \frac{\hbar}{2} & \hbar=1.05 \cdot 10^{-34} \mathrm{Js}=\text { quantum of angular momentum } \\
\text { (Planck constant) } \\
n=k_{3} \cdot \tau & \tau=1.66 \cdot 10^{-24} \mathrm{~mol}=\text { elementary amount } \\
\text { (1/Avogadro constant) } \\
k_{1}, k_{2}, k_{3}=\text { integers }
\end{array}
$$

The quotient $F=e / \tau=0.965 \cdot 10^{5} \mathrm{C} / \mathrm{mol}$ is called Faraday constant. A system whose amount of substance has the value $n=1 \tau$ is called a particle. Under certain circumstances one may imagine it as a small localizable individual; but often this idea fails.
The particle electron, for example, is a system with

$$
n=1 \tau, Q=1 e, L=\hbar / 2, E=\ldots, \text { etc. }
$$

Particles for which $Q \neq 0$, are called charge carriers.

Examples of charge carriers:

- free electron
- mobile electron in a semiconductor
- electron hole (or hole) in a semiconductor
- free positron
- $\mathrm{Cu}^{++-i o n ~ i n ~ a q u e o u s ~ s o l u t i o n ~}$
- myon

Just as an ensemble of values of all substance-like quantities belongs to a certain amount of a substance, an ensemble of currents of substance-like quantities belongs to the flow of a substance. In the case of an electron flow, we are dealing with an electric current (current strength I), a mass current (current strength I_{m}), a current of the amount of substance (strength I_{n}), an entropies current (strength $I_{s)}$... Also the various current strengths are related in a characteristic way for a given substance. Thus for a current of free electrons we have $I / I_{m}=1.76 \cdot 10^{11} \mathrm{C} / \mathrm{kg}$.
The substance-like quantities are more or less "coupled" to each other. Thus, electric charge is always firmly coupled to the amount of substance and to mass. There is no electric current without a mass flow and without a flow of amount of substance. So there is no pure electric current. It follows that a material or particle flow can be driven in different ways.
One can initiate an electron current, Fig. 10.2,

- by establishing an electrical potential gradient; this potential gradient "pulls" at the charge of the electrons;
- by establishing a gradient of the chemical potential, which pulls on the amount of substance of the electrons;
- by producing a temperature gradient that pulls at the entropy of the electrons.

10. Combined potentials
10.3 The electrochemical potential

\square

 $\left.\begin{array}{l}\text { Energy } \\ P=T_{s} \text { spoed } \\ =\left(Q_{A}-Q_{\theta}\right)\end{array}\right)$.
If, on the other hand, all intensive variables except μ have the same
 ergy is dissipated in the wire accorring to

If both Φ and μ have different values at A and B, the current has two drives: $\Delta \Phi$ and $\Delta \mu$. These can "pull" the particles in the same direc
tion or in opposite directions. tion or in opposite directions.
$P=T I_{s \text { pood }}=\left(\mu_{A}-\mu_{B}\right) l_{n}+\left(\Phi_{A}-\Phi_{B}\right)$.
Now / and l_{n} are firmly coupled to each other. One particle ($n=1 \tau$ $Q=z e$
For electrons, for example, $z=-$
Sotis
$\frac{Q}{n}=\frac{z e}{\tau}$
Therefore, the electric current and the current of the amount of sub-
stance are also related:
$\frac{1}{I_{n}}=\frac{z e}{\tau}$
and with e/ $\tau=F(=$ Faraday constant $)$ we get
$1=z F I_{n}$
This means that the dissipated energy becomes
$P=\left[\left(\mu_{A}-\mu_{B}\right)+\left(\phi_{A}-\phi_{B}\right) z I_{n}=\left[\left(\mu_{A}+z F \phi_{A}\right)-\left(\mu_{B}+z F \phi_{B}\right) l_{n}\right.\right.$,
The quantity
is called the electrochemical potential of the charge carriers. We
thus can write
thus can write
$P=\left(\eta_{A}-\eta_{B}\right)$
The total drive of the particle flow is therefore caused by the electro.
chemical potential difference chemical potentia
$\Delta \eta=\eta_{A}-\eta_{B}$
There is no energy dissipation if there is no particle current, and
there is no particle current if the driving force $\Delta n=0$. i.e. if $n=n=n$ there is no particle current if the diviving force $\Delta \eta=0$, i.e. if $\eta_{A}=\eta$
or more generally if the electrochemical potential coes not depend
on the position. We then say that there is electrochemal or more generally if the electrochemical poetential does not depend
on the position. We then say that there is electrochemical equilibri-
um. um.
Electrochemical equilibrium: $\eta(x)=$ const
Thus, the condition for the current to be zero is not that the electric
potential is the same eremere it is the electrochemical potentia potential is the same everywhere;
that must be the same everrywhere.
As an example, we consider two electric conductors, for example
two pieese of wire made of different metals. The chemical potentia
of the electronsis diditerent two pieces of wire made of difterent metals. The chemical potentia
of the electrons sis ififerent in the two metals. So there is a chemica
optential difterence between the electrons in potential difterence between the electrons in one metal and those in
the other. If we define the chemical potential of free electrons in the other. If we define the chemical potential of f t.
vacuum to be 0 G , the values in Table 10.1 apply.

Thus, the chemical potential difference of the electrons in coppe
and platinum is
$\mu(\mathrm{Cu})-\mu \mathrm{P})=85 \mathrm{kG}$
If the two pieces of wire are brought into contact with each other,
electrons flow from the copper to the platinum according to the
 result, the electric potential of the copperi increases and that of the
platium decreases. That means that we now have an electric diver platinum decreases. That means that we now have an electric driv $F \Delta \Phi=\Delta \mu$
i.e. if $\Delta \eta$ is equal to zero, the electric and the chemical drive com
pensate each other and there will be no longer a flow of electrons.
pensate each other and there will be no longer a flow of electrons.
There is electrochemical equilibrium. Thus, there is an electrical potential difference between two pieces
of difterent metals that touch each other. We calculate the contac
voltage between copper and platinum. voltage between copper and platinum.
From
$\eta=0$
$\eta=0$
we get
we get
$\Delta \Phi=(1 / / \neg \Delta \mu$.
With $F=0.965 \cdot 10^{5} \mathrm{C} / \mathrm{mol}$ and $\Delta \mu=85 \mathrm{kG}$ follows
$\Delta \Phi=\phi(\mathrm{Cu})-\phi(\mathrm{Pt})=0.88 \mathrm{~V}$.
If a closed better: because of this voltage no electric current flows.
Ifa closed circuit is built up from different metals, no current is flow
ing, Fig. 10.3. me

However, if one assumes that a voltmeter measures the electric
voltage, there is normally no harm, because in many cases in which voltage, there is normally no harm, because in many cases in whic
one believes that one needs the electric voltage, one actually need the electrochemical potential difference - for example for the calcu-
lation of the electric current Iby means of Ohm's law. The electrochemical potential also olays an important role in the pn
junction in a semiconductor. The chemical potential of the "holes" is
high in the p material cand Thw in junction in a semiconductor. The chemical potential of the "holes" is
high in the p material and low in the n material This means that
there is a chemical drive for the holes from the p side to the s side there is a chemical drive for the holes from the p side to the n side.
The reverse applies to electrons: A chemical potential gradient acts The reverse applies to electrons: A chemical potential gradient act
in such a way that they are diren from the n mationial tote p mate
ial. However, an electric potential difiference build up between the and n sides of the junction, which keeps the chemical drives ba
anced; there is no particle flow - neither a flow of electrons nor holes. The net drive given by the gradient of the electrochemical po.
tential is zero; the electrochemical potential is the sam thougho tential is zero; the electrochemical poten
the material, even across the pn junction.
10.4 Electrochemical cells

Electrochemical cells are devices that receive energy with the ener-
carrier amount of substance and release it with the carrier electric charge, or vice versa, Fig. 10.5. They exist in countless variants and have a variety of names. If such a cell works as shown in Figure
10.5 a it is called an electrolytic cell. The various realizations of Fig. 0.5 a , it is called an electrolytic cell. The various realizations of Fig. 0.5 b are called battery, fuel cell etc. Some of these devices are run
Ilternately in one direction or the other. They are then called accumulators or storage batteries.

$\underset{\substack{\text { Fig. } 10.5 \\ \text { Electrovicic cell (a) and its reversal } \\(0)}}{ }$

Even if the devices or "cells" are constructed differently, their operatng principle is he same in all cases. In the following we will try to lechnical reasons, but which is very transparent, so that one can easily understand how it works.
The cell uses the chemical potential difference that a gas - in our
case hydrogen - goes through when it expands, Fig. 10.6.

The left reservoir contains hydrogen at high pressure, for example 10 bar. The hydrogen pressure in the right reservoir is low.
The cell has a high pressure hydrogen inlet on its left side and a low difference, and thus the chemical potential difference, the hydrogen wants" to flow through the cell. But that is not easy for it. Behind the net is a platinum wall, a so-called electrode. There is another one next to the exit
Platinum has the property that it can incorporate hydrogen. There is
not enough space between the platinum atoms for the quite large ydrogen molecules. However, at the entry the hydrogen molecules break down into electrons and protons, and these particles can
move relatively freely in platinum.
Between the two platinum electrodes is an acid, e.g. sulphuric acid.

Acids have the property that they are conductors for protons, but not | Acids have electrons. |
| :--- |
| for |

The hydrogen now wants to go from left to right. To each hydrogen atom belongs a proton and an electron. Protons and electrons are separated from each other in the platinum. The electrons cannot pass through the acid. So couldn't at least the protons follow the
chemical drive and flow to the right through the acid? In fact, somechemical drive and flow to the right through the acid? In fact, some-
thing is happening that we already know: At the very beginning, a small amount of protons will flow through the acid from the left to the
right platinum electrode. In this way, however, an electrical potetial ight platinum electrode. In this way, howeverr, an electrical potential erence is built up, which represenis a dive for the protons in the sate each other and the proton current stops flowing. The protons re in electrochemical equilibrium. This means that the electrical poential of the left platinum electrode is lower than that of the right plainum electrode.
is now easy to open a path from left to right for the electrons as copper, like most metals ectrodes are connected via a copper wire. ons. (We had just come across platinum as an exception, it conducts both electrons and protons.)
This electron current through the copper can now be guided through

The two hydrogen reservoirs could also have been connected via a
urbine. Then the energy corresponding to the chemical potential diference would have been drawn off with the turbine, Fig. 10.8.

We realized the pressure equalization differently: We let the two components of hydrogen - the protons and the elect
in practice, the cell described here works very poorly because platinum is not
A cell very similar to ours is the concentration cell. It exploits the
chemical potential difference of dissolved substances with different Aemical potential difference of dissolved substances with different efficient. The really good cells exploit more complicated chemical eactions.
Also a chemical reaction is driven by a chemical potential difference.
The cells are set up in such a way that the reactants are spatiall eparated from set up in such a way that the reactants are spatially the substances is broken down into electrons plus ions in or on an lectrode. The ions pass through int eltrons plus ions in or on an hrough the conductor of the outer part of the circuit.
It is not difficult to calculate the voltage if one knows the chemical
potential difference of the reaction taking place in the cell. We look potential difiference of the reaction taking place in the cell. We look
at the cell in open circuit conditions. The ions. (in a special case proions) are then in electrochemical equilibrium, i.e. the sum
$\mu+z \cdot F \cdot \phi$
must have the same value for the left and right platinum electrode
$\mu_{\text {eft }}+z \cdot F \cdot \phi_{\text {left }}=\mu_{\text {hight }}+z \cdot F \cdot \phi_{\text {igh }}$
We call the potenzial differences
$\mu_{\text {eft }}-\mu_{\text {right }}=\Delta \mu$
$\phi_{\text {lef }}-\phi_{\text {ing }}$
and obtain
$\Delta \phi=-\frac{\Delta \mu}{z \cdot F}$
If one knows the reaction, i.e. the chemical potential difference, as well as the number z of ions per reaction turnover, one can calculate
We look at the hy obtain the chemical potential difference with the equation (see Sec-
ion 5 .2) tion 5.2):
$\Delta \mu=R T \ln \frac{p}{p_{0}}$
With
$p=10 \mathrm{bar}$
$p_{0}=1 \mathrm{bar}$
$p_{0}=1 \mathrm{bar}$
$T=300 \mathrm{~K}$
$T=300 \mathrm{~K}$
$R=8.31441 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
and $F=$
$F=0.965 \cdot 10^{5} \mathrm{C} / \mathrm{mol}$
we get
$\Delta \phi=0,060 \mathrm{~V}$

10.5 The gravitochemical potential

We apply the same arguments as in the previous section to the Earth's atmosphere, i.e. air in the gravitational field. Several drives also act on a portion of air: a gradient of the gravitational potential downwards, and a pressure gradient, and thus a chemical potential gradient upwards. The gravitational drive acts on the (gravitational) mass, the chemical potential gradient on the amount of substance. Now mass and amount of substance are firmly coupled to each other. We have:

$$
\frac{m}{n}=\hat{m}
$$

Here is \hat{m} the molar mass. The corresponding applies to the currents:

$$
\frac{I_{m}}{I_{n}}=\hat{m}
$$

The vertical distribution of the air is such that a displacement of an air portion from point A to point B, or from B to A does not result in any energy gain, i.e.

$$
P=\left[\left(\mu_{\mathrm{A}}-\mu_{\mathrm{B}}\right)+\left(\psi_{\mathrm{A}}-\psi_{\mathrm{B}}\right) \hat{m}\right] I_{n}=\left[\left(\mu_{\mathrm{A}}+\psi_{\mathrm{A}} \hat{m}\right)-\left(\mu_{\mathrm{B}}+\psi_{\mathrm{B}} \hat{m}\right)\right] I_{n}=0
$$

We call the sum

$$
\gamma=\mu+\psi \hat{m}
$$

the gravitochemical potential of the air. A difference of this magnitude represents a drive for an air portion. If γ has the same value everywhere, the air is in equilibrium, which is a gravitochemical equilibrium.

Gravitochemical equilibrium: $\gamma(z)=$ const
We are interested in the vertical distribution of the air and have therefore designated the position coordinate with z.
We now express the gravitational potential through the gravitational field strength

$$
\psi=g \cdot z
$$

and write the gravitochemical potential

$$
\gamma=\mu+g \cdot z \cdot \hat{m}
$$

If there is gravitochemical equilibrium we have

$$
\gamma(z)=\text { const }
$$

thus

$$
\mu(z)+\hat{m} \cdot g \cdot z=\mu(0)
$$

or

$$
\mu(z)-\mu(0)=-\hat{m} \cdot g \cdot z
$$

This means that the chemical potential μ decreases linearly with the height z.
With

$$
\mu[p(z)]-\mu[p(0)]=R T \ln \frac{p(z)}{p(0)}
$$

see section 5.2, we obtain the pressure as a function of the height (as long as the temperature is the same everywhere):

$$
-\hat{m} \cdot g \cdot z=R T \ln \frac{p(z)}{p(0)}
$$

or

$$
p(z)=p(0) \exp \left(-\frac{\hat{m} g z}{R T}\right)
$$

This equation is known as the barometric formula. It was derived on the assumption that the temperature does not depend on z. However, this assumption is completely unrealistic. Strangely enough, the barometric formula is still very popular. We will consider a more realistic distribution of the air in the atmosphere in the next section.

10.6 A combination of temperature, gravitational

 and chemical potentialThe calculation we performed in the previous section is unrealistic because we had assumed that no temperature difference builds up when an air portion moves in a vertical direction, i.e. an air flow in a vertical direction is an isothermal process. In fact, the opposite is almost perfectly realized. An air transport is in good approximation an isentropic process. The reason for this is that air is a poor heat conductor and that the air portions under consideration are large. We know that a sweater whose wool with its cavities forms a thin "layer of air" is a very good thermal insulator. In the atmosphere, entropy exchange would have to take place over hundreds of meters if it were to behave isothermal
So in the following we make the opposite assumption: We assume that the air does not conduct entropy at all. This means that the enlropy, just like the mass, is firmly coupled to the amount of substance.
The gradient of the gravitochemical potential is no longer responsible for driving an air flow, but the gradient of a combination of three potential variables: the gravitational potential, the chemical potential and the temperature. We can write this three-potential:
$\varepsilon=\mu+\hat{m} \psi+\hat{S} T$
where \hat{S} is the molar entropy.
Thus, the drive for the transport of an air portion would be the gradient
$\operatorname{grad} \varepsilon=\operatorname{grad}(\mu+\hat{m} \psi+\hat{S} T)$
Although the molar mass for air has a well-defined value, the value of the molar entropy depends on the history of the air and can have a different value for one air portion than for another, because despite poor thermal conductivity, air can naturally absorb and release enropy. The most effective mechanism for this is the evaporation and condensation of water. In the following we are interested in an important special case: the "dry atmosphere" with the same molar entropy everywhere. So we are looking at an area of the atmosphere where the molar entropy has the same value everywhere. The molar entropy, which is a factor in front of the temperature in equation 10.1), is thus simply constant just as the molar mass in front of the gravitational potential.
The equilibrium of such an atmosphere is then defined by the condition
$\operatorname{grad} \varepsilon=\operatorname{grad}(\mu+\hat{m} \psi+\hat{S} T)=0$
or
$\varepsilon=\mu+\hat{m} \psi+\hat{S} T=$ const.
Since the values of our potentials only change in a vertical direction, we write:
$\varepsilon(z)=\mu(z)+\hat{m} \psi(z)+\hat{S} T(z)=$ const
t is now our goal to determine the functions $\mu(z), \psi(z)$ and $T(z)$. For this purpose we use equation 5.8 (section 5.6)
$S(T, p, n)-S\left(T_{0}, p_{0}, n\right)=n \cdot\left(R \ln \frac{p_{0}}{p}+c_{p} \ln \frac{T}{T_{0}}\right)$
Since the molar entropy S / n is independent of pressure and temperature, we have
$S(T, p, n)-S\left(T_{0}, p_{0}, n\right)=0$
and thus
$R \ln \frac{p_{0}}{p}+c_{p} \ln \frac{T}{T_{0}}=0$
p and T therefore depend unambiguously on each other
In addition, we need the chemical potential of the ideal gas as a function of temperature and pressure (equation (5.11) in Section 5.8):
$\mu(T, p)=R T \ln \frac{p}{p_{0}}-c_{p} T \ln \frac{T}{T_{0}}+\left(c_{p}-\hat{S}\left(T_{0}, p_{0}\right)\right)\left(T-T_{0}\right)+\mu\left(T_{0}, p_{0}\right)$
Inserting (10.2) we obtain
$\mu(T)=\left(c_{p}-\hat{S}\left(T_{0}, p_{0}\right)\right)\left(T-T_{0}\right)+\mu\left(T_{0}, p_{0}\right)$
With the abbreviations
$\hat{S}\left(T_{0}, p_{0}\right)=\hat{S}_{0} \quad$ and $\quad \mu\left(T_{0}, p_{0}\right)=\mu_{0}$
we get
$\mu(z)=\left(c_{p}-\hat{S}_{0}\right)\left(T(z)-T_{0}\right)+\mu_{0}$
Thus our three-potential becomes
$\varepsilon(z)=\mu(z)+\hat{m} \psi(z)+\hat{S}_{0} T(z)$
$=\hat{m} \psi(z)+\hat{S}_{0} T(z)+\mu(z)$
and with (10.3)
$\varepsilon(z)=\hat{m} g z+\hat{S}_{0} T(z)+\left(c_{p}-\hat{S}_{0}\right)\left(T(z)-T_{0}\right)+\mu_{0}$

$$
=\hat{m} g z+c_{p}\left(T(z)-T_{0}\right)+\hat{S}_{0} T_{0}+\mu_{0}
$$

If now
$(z)=$ const.
we have
$\varepsilon(z)=\varepsilon(0)$
and
$\hat{m} g z+c_{p} T(z)=c_{p} T(0)$
or

$$
T(z)=T(0)-\frac{\hat{m} g}{c_{p}} z
$$

Therefore, the temperature decreases linearly with altitude. As a numerical value, this gives a temperature decrease of about 1 degree per hundred meters. This temperature decrease is called the dry-adiabatic temperature gradient. It only applies if there are no phase transitions of the water during a vertical air movement. In fact, water evaporates during a downward movement and condenses during an upward movement of the air. As a result, the temperature decrease with height is lower. The approximate value is 0.6 degrees per 100 meters.
Finally, the combination of equations (10.2) and (10.4) provides the pressure decrease with the height:
$p(z)=p(0)\left(1-\frac{\hat{m} g}{c_{p} T_{0}} \cdot z\right)^{c_{p} /}$
So not only the pressure, but also the temperature in the atmosphere decreases with the altitude. This stratification corresponds to a three-equilibrium in which gravitational, chemical and thermal drive add up to zero

10.7 A combination of gravitational, inertial and hydrostatic potential - Bernoulli's equation

In Section 8.6 we had become familiar with Bernoulli's equation (8.5):

$$
p+\frac{v^{2}}{2} \rho_{m}+g \cdot z \cdot \rho_{m}=\text { const }
$$

We want to transform this equation a little.
We multiply by the molar volume $\hat{V}=V / n$.
We also replace

$$
\rho_{m} \hat{V}=\frac{m}{V} \cdot \frac{V}{n}=\frac{m}{n}=\hat{m}
$$

and use equation (6.1) (section 6.1):

$$
\mu(p)-\mu\left(p_{0}\right)=\hat{V} \cdot\left(p-p_{0}\right)
$$

Thus, Bernoulli's equation becomes

$$
\mu+\frac{v^{2}}{2} \hat{m}+g \cdot z \cdot \hat{m}=\text { const }
$$

We want to be a little more precise, because the two molar masses are not the same: the first one is the inertial mass, the second is the gravitational mass.

$$
\mu+\frac{v^{2}}{2} \hat{m}_{\text {ineritial }}+g \cdot z \cdot \hat{m}_{\text {grav }}=\text { const }
$$

For the term $v^{2} / 2$ we had in section 8.1 proposed the name inertial potential. $g \cdot z$ is the gravitational potential.
In this form, the Bernoulli equation allows for a new interpretation: it is an expression of an equilibrium. Here, too, we have a sum of three potentials: the chemical, the inertial and the gravitational potential. The molar masses are constant factors that ensure that all three potentials are measured in the same units.
The equation applies to the frictionless flow of a liquid. We see that the state of such a liquid can be interpreted as an equilibrium. Again, three drives act on three firmly coupled quantities: the amount of substance, the inertial mass and the gravitational mass.

Light as a gas

11.1 Thermal radiation

There are states of the electromagnetic field that can be described with very few variables, e.g.

- the homogeneous electric field;
- the plane electromagnetic wave.

Another class of states that get along with very few variables is thermal radiation. The variables used to describe it are those commonly used in thermodynamics: Energy, entropy, volume, temperature, pressure and chemical potential. Since the light particles, the photons, can fly around freely in an empty box, we also call light a gas. Thermal radiation is present in every empty container whose walls absorb electromagnetic radiation. Every body that absorbs electromagnetic radiation also emits electromagnetic radiation. In the case of thermal equilibrium between wall and radiation, the wall absorbs as much radiation as it emits, and the radiation has the same temperature as the wall. If the wall of the container absorbs radiation of all wavelengths, i.e. if the wall is black, the radiation in the container is called black-body radiation.
Black-body radiation can also be present in a container with reflecting walls. For radiation to be described by a single temperature, it must be in thermal and chemical equilibrium with itself. This can be achieved by a tiny particle of dust that absorbs and emits light of any frequency. We imagine the dust particle to be so small that its heat content is small compared to that of the radiation, so that its energy and entropy do not need to be included in the balances. Black-body radiation of 300 K is invisible, it is in the infrared range. The light from the sun is nearly black-body radiation. It has, like the solar surface, a temperature of about 6000 K . Fig. 11.1 shows the spectra of black-body radiation at different temperatures.

For the description of light, we will use methods that we have also applied to material gases. First of all, we must refrain from some processes that seem natural to us when dealing with light: So we will not consider a free light beam (e.g. from the sun to the earth) - this corresponds to a free gas beam into the vacuum. We will also not look at selectively absorbing or reflecting walls. If light has a certain wavelength, the light particles (photons) have a certain momentum. A color filter that transmits light of a single wavelength transmits light particles of a particular momentum. In the case of a material gas, this would correspond to a device that only allows molecules of a certain momentum to pass through.
One problem with the handling of light is that it is difficult to measure some parameters that are important for its description: the pressure is usually very low and difficult to measure. The temperature is difficult to measure because the entropy density of light is usually very small. Furthermore, in contrast to material gases, it is almost impossible to perform a process with $n=$ const in the laboratory with light.

11.2 The entropy of light

The fact that light has entropy and that a light flow is accompanied by an entropy current can easily be seen from the experiment in Fig. 11.2. Experience shows that the two bodies A and B come into thermal equilibrium by radiation flowing from the body with the higher to that with the lower temperature. As T_{A} decreases, the entropy S_{A} also decreases. Because entropy cannot be destroyed and, apart from radiation, there is no connection through which entropy could flow from body A to body B, the entropy must flow away with the radiation.

Fig. 11.2
The temperature of the body at the left decreases. Thus, the radiation must transport entropy.

11.3 The temperature of light

Light that is emitted by a body has the same temperature as the body. Thus, the light coming from the surface of the sun has the temperature of the surface of the sun, namely about 6000 K . However, this statement sounds somewhat implausible: If sunlight has this temperature, - wouldn't everything exposed to solar radiation have to burn immediately? And if sunlight has this temperature, then it should be possible to measure it by placing a thermometer in the sunlight.
We want to discuss the problem of measuring the temperature of light. To measure the temperature of a body or other system, the system must be brought into thermal contact with the thermometer being used. If one now holds a thermometer into the solar radiation, the thermometer is in thermal contact not only with the light but also with the air. Whose temperature will it show?
The situation is similar to that shown in Fig. 11.3, where an attempt is made to measure the voltage of two different batteries simultaneously with a single voltmeter. What the voltmeter indicates is not easy to predict. In any case, it will make a compromise between the open circuit voltages of the two batteries. In whose favor the compromise is found depends on the internal resistance of the batteries.

With our thermometer, the compromise is clearly in favor of the air. One can now try to help oneself by placing the thermometer in a transparent, evacuated container, Fig. 11.4.

Fig. 11.4
Thermal contact with the air has been prevented, but sunlight only comes from a very small range of the solid angle

However, the temperature value it now displays is still far from the expected 6000 K . The reason is that we missed something else. In fact, the thermometer makes another compromise: it is not only in thermal contact with the sunlight, but also with the radiation from the environment, i.e. radiation at ambient temperature. And while solar radiation only comes from a very small range of the solid angle, the 300 K radiation comes from a very large range. It is therefore normal that this time too the measurement is very much in favor of the ambient temperature.
But how can the temperature of the sunlight be measured? One simply has to make sure that sunlight does not only come from a narrow range of the solid angle, but from all directions, and this is achieved with the help of lenses and mirrors, Fig. 11.5. If, from the thermometer, the sun can be seen in all directions, it will also indicate the temperature of the sun (our normal thermometers are of course no longer suitable for this)

Fig. 11.5
The sunlight comes from all directions of the front hemisphere.

11.4 The chemical potential of light

We consider a container with reflecting walls with a dust particle filled with radiation whose chemical potential is initially not equal to zero. Since the container has a fixed volume and is energetically insulated, the energy differential reduces to:

$$
0=T d S+\mu d n
$$

Because of the dust particle, the amount of substance n can change. Such a change will occur if thereby the entropy increases, until S does not increase any further, i.e. until

$$
d S=-\frac{\mu}{T} d n
$$

has become equal to zero. This is the case when μ has become zero (the chemical potential depends on n). The resulting light with $\mu=0$ is black-body radiation.

For black-body radiation is $\mu=0$.
There is also thermal radiation, i.e. light of a uniform temperature, with $\mu \neq 0$. It is obtained by bringing light into equilibrium with another system whose chemical potential is not equal to zero, e.g. the excited electron system of a semiconductor (electrons + holes). This kind of thermal radiation is not called black-body radiation.

11.5 Radiance

We are looking for a quantity that describes a light field. We are used to describe fields by the distribution of physical quantities in space, more precisely: in positional space. For example, an electric
field is described by the spatial distribution of the electric potential field is described by the spatial distribution of the electric potential
$\Phi(x, y, z)$, or a material gas by the spatial distribution of its temperature $T(x, y, z)$ and its pressure $p(x, y, z)$.
In a light field, not only the amount of light at each position is of inIn a light field, not only the amount of light at each position is of in-
terest, but also the distribution of the light in the different directions terest, but also the distribution of the light in the different directions
at each position. The field quantity we use to describe the light, the at each position. The field quantity we use to describe the light, the
radiance, is therefore a function of the position and of the direction. radiance, is therefore a function of the position and of the direction.
We take the energy of light as a measure of the amount of light and define the radiance L_{E} :
$P=\iint_{A \Omega} L_{E} d \vec{\Omega} d \vec{A}$
P is the energy current, $d \vec{\Omega}$ the solid angle element and $d \vec{A}$ the area of the surface element. The radiance L_{E} is therefore the energy current per area and solid angle or the energy current density per solid angle.
One can easily visualize L_{E} by looking at a measuring method for the quantity, Fig. 11.6.

Fig. 11.6 Measuring radiance. The instru- ment measures the radiance at the ment measures the radiance at the position of the inlet opening and for position of the inlet opening and for the direction of the optical axis of the instrument the instrumen

The instrument measures the radiance at the position of the lens through which the light enters it and of the direction of the optical axis of the device. By changing the orientation of the instrument at a fixed location, the radiance at this location is obtained as a function of the direction. By shifting it parallel to itself one gets the radiance of a given direction for different positions.
If the device is moved parallel to itself in the direction of its optical axis, i.e. parallel to a light ray, the measured value does not change - if the light is neither scattered nor absorbed. The radiance is constant on a light ray. The displayed value therefore also makes a statement about the surface element from which the light beam comes. L_{E} is therefore also called the surface brightness.
We consider a container filled with light and look for the relation between L_{E} and the energy density ρ_{E}. We first introduce the quantity $\rho_{E^{\prime}}$, defined by

$$
\rho_{E}=\int \rho_{E}^{\prime}(\vartheta, \Phi) d \vec{\Omega}
$$

$\rho_{\bar{E}}{ }^{\prime}(\vartheta, \Phi) d \vec{\Omega}$ is the energy density of that radiation which propagates into the solid angle element of the direction (ϑ, Φ).
We now assume that the radiation in our container is isotropic, i.e. $\rho_{E}{ }^{\prime}$ is independent of ϑ and Φ. Then (11.1) can be integrated:
$\rho_{E}=4 \pi \rho_{E^{\prime}}^{\prime}$
Now the magnitude of the energy current density j_{E} of electromagnetic radiation of a single direction is $j_{E}=c \cdot \rho_{E}$, so in our case it is $L_{E} d \Omega=c \cdot \rho_{E^{\prime}} \cdot d \Omega$
or
$L_{E}=c \cdot \rho_{E}{ }^{\prime}$
With equation (11.2) we finally obtain

$$
\rho_{E}=\frac{4 \pi}{c} L_{E}
$$

Instead of the energy, entropy can also be used as a measure of the amount of light. One can thus define an entropy current density per solid angle L_{s}, and for the entropy density ρ_{s} in the container filled with isotropic light one gets
$\rho_{s}=\frac{4 \pi}{c} L_{s}$
We are now looking at a container filled with black-body radiation. We ask how much energy flows through an opening of surface A out of the container into a solid angle element of the direction 9 , Fig. 11.7.

With
$d \vec{\Omega} d \vec{A}=d \Omega d A \cos \vartheta$
we get
$P=\iint_{A \Omega} L_{E} d \vec{\Omega} d \vec{A}=\iint_{A \Omega} L_{E} \cos \vartheta d \Omega d A=A \int_{\Omega} L_{E} \cos \vartheta d \Omega$
or
$d P(\vartheta)=A L_{E} \cos \vartheta d \Omega$
The energy current $d P(\vartheta)$ into a solid angle element $d \vec{\Omega}$ which lies in the direction ϑ is smaller by the factor $\cos 9$ than that which flows in the direction $\mathcal{\text { is smaller by the factor cos } \vartheta \text { than that which flows }}$ into an equal solid angle element perpendicular to the surface. This statement is known as Lambert's law.
For the isotropic radiation of interest to us, L_{E} can be drawn in front of the integral, and with
$d \Omega=\sin \vartheta d \vartheta d \Phi$
(Φ = azimuth) we obtain

$$
P=A L_{E} \underbrace{\pi / 2}_{1 / 2} \sin \vartheta \cos \vartheta d \vartheta \underbrace{\int_{0}^{2 \pi} d \Phi}_{2 \pi} d A L_{E} \pi
$$

Dividing this expression by the surface area A results in the magnitude of the energy current density.
$j_{E}=L_{E} \pi$.
With equation (11.3) we obtain the relationship between the energy density ρ_{E} in the container and the energy current density j_{E} of the light exiting through an opening:

$$
\begin{equation*}
j_{E}=\frac{c}{4} \rho_{E} \tag{11.5}
\end{equation*}
$$

The entropy current density is obtained in an analog way

11.6 Stefan-Boltzmann law

The energy current per surface area of the light emitted by a black body depends only on the temperature of the body. It was found experimentally

$$
\begin{equation*}
j_{E}=\sigma T^{4} \quad \text { with } \quad \sigma=5.670 \cdot 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4} \tag{11.7}
\end{equation*}
$$

This relation is called the Stefan-Boltzmann law; σ is the StefanBoltzmann constant.
With equation (11.5) follows

$$
\rho_{E}=\frac{4 \sigma}{c} T^{4}
$$

We use the abbreviation

$$
\begin{equation*}
a=\frac{4 \sigma}{c}=7,566 \cdot 10^{-16} \mathrm{Jm}^{-3} \mathrm{~K}^{-4} \tag{11.8}
\end{equation*}
$$

and obtain

$$
\begin{equation*}
\rho_{E}=a T^{4} \tag{11.9}
\end{equation*}
$$

II follows

$$
\begin{equation*}
E=a V T^{4} \tag{11.10}
\end{equation*}
$$

In addition, with (11.3) we get

$$
L_{E}=\frac{\sigma}{\pi} T^{4}
$$

In words: Energy density, radiance and total energy in a black body increase with the 4th power of the temperature.

11.7 Pressure and entropy of thermal radiation as a function of temperature

We consider the black-body radiation in a cylinder whose rear wall is black and at temperature T, Fig. 11.8. We choose T and V as independent variables. If the piston is shifted to the right, the black wall emits more than it absorbs, just so that the newly created volume is filled with radiation of the same density as the radiation had before.

Fig. 11.8
When the piston is pulled out, the black surface emits light so that cye densitity of the radiation in the cylinder remains constant.

From the energy differential of the black-body radiation, i.e. of radiation with $\mu=0$

$$
d E=T d S-p d V
$$

we get

$$
d S=\frac{1}{T} d E+\frac{p}{T} d V
$$

From equation (11.10) we obtain

$$
d E(T, V)=4 a V T^{3} d T+a T^{4} d V
$$

By inserting it into the preceding equation, the following results

$$
\begin{aligned}
d S(T, V) & =4 a V T^{2} d T+a T^{3} d V+\frac{p}{T} d V \\
& =4 a V T^{2} d T+\left(a T^{3}+\frac{p}{T}\right) d V
\end{aligned}
$$

Comparing with

$$
d S(T, V)=\frac{\partial S(T, V)}{\partial T} d T+\frac{\partial S(T, V)}{\partial V} d V
$$

we get

$$
\begin{equation*}
\frac{\partial S(T, V)}{\partial T}=4 a V T^{2} \quad \text { and } \quad \frac{\partial S(T, V)}{\partial V}=a T^{3}+\frac{p}{T} \tag{11.11}
\end{equation*}
$$

Partial derivation of the first relationship with respect to V and the second with respect to T, and equating results in

$$
4 a T^{2}=3 a T^{2}+\frac{1}{T} \frac{d p}{d T}-\frac{p}{T^{2}}
$$

and from this we obtain

$$
a T^{3}=\frac{d p}{d T}-\frac{p}{T}
$$

This differential equation has the solution

$$
\begin{equation*}
p=\frac{a}{3} T^{4} \tag{11.12}
\end{equation*}
$$

Thus, also the pressure of black-body radiation goes with the 4th power of the temperature. With equation (11.9) we also get

$$
\begin{equation*}
p=\frac{\rho_{E}}{3} \tag{11.13}
\end{equation*}
$$

We will add a plausibility check that delivers the same result
We decompose the radiation in a rectangular container into 6 parts, each running towards one of the walls. Each component corresponds to a momentum current density, which, according to Maxwell's theory, is equal to the energy density:

$$
j_{p i}=\rho_{E i}
$$

With $\rho_{E i}=\rho_{E} / 6$ we get

$$
j_{p i}=\rho_{E} / 6
$$

The momentum current flowing into the reflecting wall is twice as large as that of the incident radiation, i.e.

$$
p=2 j_{p i}=\rho_{E} / 3
$$

that is, the same expression as (11.13).
We finally ask for the entropy density

$$
\rho_{S}(T)=\frac{\partial S(T, V)}{\partial V}
$$

of the black-body radiation. With (11.11) and (11.12) we get

$$
\rho_{S}(T)=\frac{4}{3} a T^{3}
$$

From this we obtain the total entropy

$$
S=\frac{4}{3} a V T^{3}
$$

The temperature dependence of the entropy is therefore the same as that of a phonon gas in a solid, Section 6.2.
With equation (11.4) follows

$$
L_{s}=\frac{c}{3 \pi} a T^{3}
$$

Finally, we obtain the relation between energy and entropy:

$$
E(S, V)=0,681 \cdot \sqrt[3]{\frac{S^{4}}{a V}}
$$

11.8 Isothermal, isentropic and isoenergetic expansion of light

Isothermal expansion, Fig. 11.9
The piston is moved. The heat reservoir ensures $T=$ const. With the results of the previous section we get:

$$
\begin{aligned}
& E \sim V \\
& S \sim V \\
& \rho_{E}=\text { const } \\
& \rho_{S}=\text { const } \\
& p=\text { const }
\end{aligned}
$$

Fig. 11.9
sothermal expansion of light

Isentropic expansion, Fig. 11.10
The reflecting walls ensure $S=$ const. During the expansion, the light remains thermal. With the results of the previous section follows:

$$
\begin{aligned}
& V \cdot T^{3}=\mathrm{const} \\
& p \cdot V^{4 / 3}=\mathrm{const} \\
& E / T=\mathrm{const}
\end{aligned}
$$

Isoenergetic expansion, Fig. 11.11
This is the analog to the Gay-Lussac experiment. At first, there is light only in the left container. Then the connection to the right is es tablished. With the results of the previous section:

$$
\begin{aligned}
& V \cdot T^{4}=\text { const } \\
& S \cdot T=\text { const } \\
& p \cdot V=\text { const }
\end{aligned}
$$

In this expansion, T decreases according to the first equation. The second tells us that S increases, as it has to be because of the 2nd law.

Fig. 11.11
Isoenergetic expansion of light

The cosmic background radiation

The last two of the processes described above cannot be realized in the laboratory, since even the best mirrors absorb so strongly that the light is always in thermal equilibrium with the cylinder wall. In nature, however, an isentropic expansion is realized: The universe is expanding, and the light that fills the cosmos and had 400,000 years after the Big Bang a temperature of 3000 K continues to cool down. Today its temperature is 2.7 K . It is called cosmic background radiation.

The gas-condensate analogue

The fact that during the isothermal expansion or compression of light, Fig. 11.9, the values of all intensive variables remain constant and the values of the substance-like quantities are proportional to the volume, is something we know from the material gases: a material gas behaves in the same way when it is in equilibrium with its condensate. The black walls in the experiment with the light correspond to the condensate. When the volume is increased, new light comes out of the walls, when it is reduced it disappears into them. The light reacts with the wall, more precisely: with the electron and phonon system of the wall, and the chemical potentials of light and wall are always equal (and equal to zero). Equation (11.12) corresponds in this picture to the vapor pressure curve.

11.9 Light with non-zero chemical potential

To generate thermal radiation with $\mu \neq 0$ light is brought into chemical equilibrium with reaction partners whose chemical potential is not equal to zero. For example, the reaction

$$
\mathrm{e}+\mathrm{h} \leftrightarrow \mathrm{Y} .
$$

e and h are electrons or holes in a semiconductor, γ stands for light. In equilibrium it is

$$
\mu_{\mathrm{e}}+\mu_{\mathrm{h}}=\mu_{\gamma}
$$

The values of μ_{e} and μ_{h} are known from solid state physics. If one wishes to generate a light beam with $\mu \neq 0$, one reaction partner, namely γ, has to be constantly removed. In order to maintain the concentration of electrons and holes, it is necessary to constantly generate new ones. This can be done, for example, by "pumping" with another light source, such as sunlight. The whole process takes place in a luminescent solid, Fig. 11.12.

Fig. 11.12
In the luminescent body, the temperature of the light decreases and the chemical potential increases.

The incident light has a high temperature, but $\mu=0$. The emitted light has the temperature of the solid, i.e. $T \approx 300 \mathrm{~K}$, but its chemical potential is greater than zero. So the solid body transloads energy from the carrier entropy to the carrier amount of substance.
Instead of using light, one can also "pump" electrically. This is done in a luminescent diode. This light also has $T \approx 300 \mathrm{~K}$ and $\mu>0$.

11.10 Energy transport with thermal radiation

Two black radiators with different temperatures T_{1} and T_{2} are located in a reflecting box, so that the radiation emitted by one of them either falls back onto the emitting body or is absorbed by the other body, Fig. 11.13.

Fig. 11.13
The radiation emitted by one body is absorbed either by itself or by the other body.

The resulting energy current between the bodies is the sum of one flowing from right to left and one flowing from left to right. The same applies to the entropy current. If the temperatures T_{1} and T_{2} are not very different, i.e. if $\Delta T=T_{2}-T_{1} \ll T_{2}=T$, then with (11.7) and (11.8) we get

$$
j_{E}=j_{E 2}-j_{E 1}=\frac{c}{4} a\left(T_{2}^{4}-T_{1}^{4}\right) \approx c a T^{3} \Delta T
$$

and with (11.6) and (11.14)

$$
j_{s}=j_{S 2}-j_{S 1}=\frac{c}{3} a\left(T_{2}^{3}-T_{1}^{3}\right) \approx c a T^{2} \Delta T .
$$

Thus, for the resulting energy current we get the relation

$$
j_{E}=T \cdot j_{S}
$$

11.11 Kirchhoff's law of radiation

The quotient

$$
\alpha=\frac{\text { absorbed energy current }}{\text { incident energy current }}
$$

is called the absorptivity of a body. Two bodies A and B of the same temperature stand opposite each other in an evacuated container with reflecting walls, Fig. 11.14.

Body A is "black", it absorbs all radiation, i.e. $a_{A}=1$. Body B is not black, it only absorbs part of the incoming light and reflects the rest. We call the current density of the energy flowing out of A and B, respectively, $j_{E A}$ and $j_{E B}$. Thus the following applies to the energy flow in the space between the two bodies
from left to right: $j_{E \rightarrow}=j_{E A}$
from right to left: $j_{E \leftarrow}=j_{E B}+\left(1-a_{B}\right) j_{E A}$
Now no net energy must flow between A and B, otherwise the entropy of the whole arrangement would decrease. So

$$
j_{E \rightarrow}=j_{E \leftarrow}
$$

and

$$
j_{E B}=a_{B} \cdot j_{E A}
$$

We now call $j_{E A}=j_{E, \text { black }}$, omit the index B and obtain

$$
\frac{j_{E}}{\alpha}=j_{E, \text { lack }}
$$

The quotient of the energy current density of the emitted radiation and the absorptivity is the same for all bodies. It only depends on temperature. One can place a color filter in front of each of the two bodies, which transmits radiation of a single frequency v, and reflects the rest. The same consideration as above then shows that the relationship just derived applies to each frequency individually:

$$
\frac{d j_{E} / d v}{\alpha}=d j_{E, \text { black }} / d v
$$

or

$$
\frac{d j_{E} / d v}{\alpha}=f(T, v)
$$

This is Kirchhoff's law of radiation.

Heat engines

12.1 Overview

We are dealing with devices and machines in which entropy S is brought from a high temperature T_{2} to a low temperature T_{1} and thereby the potential ξ of another extensive quantity X is increased, and also with machines in which the opposite happens: the potential of a quantity X decreases and entropy is raised from low to high "thermal potential T ". Such machines can be represented schematically as shown in Figures 12.1a and 12.1b.

Fig. 12.1
(a) Flow diagram of a heat engine;
(b) Flow diagram of a heat pump

The entropy flowing downwards in the diagrams is the unintentionally produced entropy. If the carrier of the out-flowing energy is angular momentum, the machine is called a heat engine or thermal motor. In the case of the solar cell, the thermocouple and the MHD generator, the carrier of the energy flowing out is electric charge.
The name of a machine often includes more than what is shown in Fig. 12.1. As is well known, the gasoline engine is a machine into which the energy enters with the carrier gasoline $+\mathrm{O}_{2}$, Fig. 12.2. The entropy is generated within the engine.

Fig. 12.2
Flow diagram of a gasoline engine

Machines of the type shown in Figure 12.1b are called heat pumps. Heat pumps are used for heating and for cooling. There is a special type of heat pump, where the energy carrier is entropy on both sides: the absorption refrigerator, Fig. 12.3. Its structure is analog to that of the electric transformer.

12.2 Why heat engines?

Cars need energy carried by angular momentum. Electricity-based energy is particularly suitable for distribution to many small consumers. But we get our energy from natural sources with other energy carriers.
Our energy sources are of two kinds.

- The inexhaustible sources: One taps into a natural energy flow. This is done in hydro, wind and solar power plants.
- The exhaustible sources: Energy has accumulated on the earth in processes that have lasted billions of years. These stocks are currently being emptied, and on a historical time scale, very quickly. At present, but of course not for much longer, they are man's most important source of energy.
Energy is now being squandered not only in that the natural energy stores are being depleted ruthlessly, but also in that the energy is being transloaded with a poor efficiency from the energy carriers with which it is obtained in nature, to the energy carriers of angular momentum and electricity that people prefer.
We had seen in section 2.7 that the cause of all energy losses is entropy production. However, entropy production is the first step in virtually all technical processes for the exploitation of natural energy reservoirs. In order to obtain energy with the carrier angular momentum or electricity, heat engines are used - machines that need entropy at a high temperature at their input. This entropy is obtained by production, and this is one of the reasons for the poor efficiency of the energy industry. We had seen (equation (2.9) in section 2.7) that this alone is the cause of a factor

$$
\eta=\frac{T_{2}-T_{1}}{T_{2}}
$$

to the efficiency. Here T_{1} is at best the ambient temperature, i.e. about 300 K , and T_{2} the highest temperature that can be technically controlled, i.e. about 800 K . Consequently, just because of the entropy production a factor

$$
\eta=\frac{800 \mathrm{~K}-300 \mathrm{~K}}{800 \mathrm{~K}} \approx 0.63
$$

results.
Actually, the efficiency of heat engines is considerably lower: between 0.3 and 0.4.

TE

$\underset{\substack{\text { Figit. } 12.6 \\ \text { stiring angine, } 4 \text { phases }}}{ }$

Continuous tow machines

 The Brayton cycle
The Brayton cycle
Fig. 12.7 shows the p-Vand the T-S diagram.
$\begin{array}{ll}\text { AB } & \text { The gaseous working fluid is sisentropically compressed } \\ \text { BC } \\ \text { At constant high pressure entrooy is supplied to the }\end{array}$
$\begin{array}{ll}\text { BC } & \text { At constant high pressure entropy is supplied to the gas. } \\ \text { CD } & \text { The gas expands sisentropically. }\end{array}$
DA The gas releases entropy at low constant pressure.

The self-circulating central heating, Fig. ample of this process. The pressure diff input and entropy output is provided by

A more complicated variant of the Brayton cycle is the Ericson cycle.
Here, compression and expansion are broken down into sub-steps between which entropy is taken from or supplied to the gas, so that
comperssion and expansion are almost isothermal. This process
was used was used in the eelium turbine plant of high-temperature nuclear re-
actors.

The Rankine cycle
The Rankine cyccicic processs is the processs that reaized in steam en-
ginesc. It is very simiar to the Joule processs. It difiters trom the Jule pinecess in that the working fluid (usually water) makes phase transi-
tions
turing the cycclic process. Fig. 12.10 tions during the cyclic process, Fig. 12.10
AB The pressure of the liquid working fluid is isentropically in-
creased (in the feedwater pump). BC At constant high pressurure entropy is supplied to the fluid (in
the boier or steam generator). CD The steam expands isentropically (in the turbine).
DA At constant low pressure entropy is released (in the con-
denser).

cle.
Fig. 12.11 shows pressure and temperature values of a power plant.
,

[^0]
12.4 Internal combustion engines

Cyclically operating machines - the gasoline engine
Fig. 12.4 shows the $p-V$ and the T - S diagram of the Otto cycle which is an idealization of the process that runs in the gasoline engine.

Fig. 12.12
Idealized process of the gasoline engine (a) in the $p-V$ and (b) in the T - S diagram
The increase in entropy in process step $A B$ is caused by entropy production within the cylinder, by the combustion of gasoline. This happens at the top dead center, and so quickly that the volume practically does not change during the combustion process. BC is the power stroke. The hot gas ($\mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{O}$ and CO_{2}) expands. The process step CD does not actually consist of cooling the gas at a fixed volume. Instead, the gas is replaced by fresh, cold gas in a further piston stroke. In process step DA, the fresh gas is isentropically compressed.

Continuous flow machines - the gas turbine

The process is essentially the same as the Brayton cycle, Fig. 12.13. The working fluid is air - whose oxygen, however, combines with the fuel to other gases $\left(\mathrm{H}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CO}_{2}\right)$. The compressor compresses air from the surroundings. Entropy is supplied in the combustion chambers by burning the fuel. The hot gases expand in the turbine. In the jet engine, the turbine is designed so that it only drives the compressor. The gas leaving the turbine then has a high velocity relative to the engine. This means that a momentum current flows from the outflowing gas into the engine - and from there into the aircraft.

Fig. 12.13
Gas turbine system

12.5 Heat pumps

Any heat engine working reversibly can operate as a chiller. Internal combustion engines are not suitable, since irreversibility is fundamental for their operation.

Inversed Stirling and Rankine process

It has already been mentioned that the Stirling engine can operate as a chiller. However, the most common process is the reverse Rankine process: it is used in most refrigerators and freezers, Fig. 12.14. Instead of in an expansion machine, the working fluid expands in a throttle ($E+p V=$ const). This makes the refrigerator less efficient, but it is less complicated.

Fig. 12.14
In the refrigerator, a Rankine process runs in reverse.

The Hampson-Linde cycle

It is used for the liquefaction of gases, Fig. 12.15. The gas is compressed to 100 to 200 bar and expands in a throttle. It cools down due to the Joule-Thomson effect. This cooled gas is used to pre-cool the incoming gas. As a result, the temperature of the expanded gas becomes lower and lower until part of it finally becomes liquid. Gases whose inversion temperature is below normal temperature, such as H_{2} or He , must first be brought below the inversion temperature by another procedure.

Fig. 12.15
The Linde-Hampson cycle

13

Entropy and probability
3.1 Amount of data

We want to transmit messages using cards, Fig. 13.1: Each card
can contain one of s symbols or characales agreed between sender
and receiver ee

We are looking for a measure of the amount of data that is transthat there are card. For simplicity's sake, we first consider the case that there are only two characters, e.g. a cross and a circle. Thus,
our character set contains $z=2$ characters. With one card one of our character set contains $z=2$ characters. With one card one of
two possible messages can be transmitted; one can choose between two messages. Witht two cards sent in orddr) one can choose
between $2 \cdot 2=4$ messages, and with n cards between $2 n$ mesbetween
sages.
One could use the number $N=2^{n}$ as a measure for the amount of One could use the number $N=2^{n}$ as a measure for the amount of
data transmitted with n cards. However, the measure defined in this way would have the disadvantage of not being substance-like. This We seen in the following way
We send 3 cards first. For 3 cards we have
N_{b} ter that, we'll send two more cards. For two cards alone we have
$N_{b}=2^{2}=4$.
For all 5 cards together, howeve
$N_{c}=2^{5}=32$.
Thus,
$N_{c} \neq N_{\mathrm{a}}+N_{\mathrm{o}}$.
A better measure of the amount of data is the logarithm of the num-
ber N of possible messages. We therefore provisionally define the amount of
$H=f \cdot \ln N$
with $N=$ number of the possible messages,
The constant f defines the unit of measurement of H. For $N=2$, i.e.
in the case that a decision is made between two possibilities, $H=$
1 bit, i.e.
$1 \mathrm{bit}=f \cdot \ln 2 \Rightarrow f=\frac{1 \mathrm{bit}}{\ln 2}$
With n cards, an amount of data of
$H=\frac{1 \text { bit }}{\ln 2} \ln 2^{n}=n$ bit
will be transferred.
With $\ln x \ln 2=\operatorname{ld} x$ we can also write
$H=\operatorname{ld} N$ bit
If the number z of characters of the character set is large, the
amount of data per card, and therefore per character, is also large.
With $z=32$ we have for one card $N=32$, thus $H=1 \mathrm{~d} 32$ bit $=5$ bit.
Assuming that there are 40000 Chinese characters, the amount of data transferred with one character is
$H=1 \mathrm{~d} 40000 \mathrm{bit} \approx 15$ bit
We will now convince ourselves that the expression f. In N is still not
a good measure of the amount of data. We look at three examples a good measure of the amount of data. We look at three examples
in which one of two possible messages is selected. This means that in which one of two possible messages is selected. This means that
the character set must contain $z=2$ characters. Since each time
only one character is transmitted we have $H=1$ bit, Fig. 13.2.

(a) The sender rolls the dice and tells the receiver whether the re-
sult is an even or an odd number. (b) The sender rolls the dice and tells the receiver whether he has
made a 6 . made a 6 .
(c) The sender rolls the dice and tells the receiver whether he has
olled a seven.

The formula f. In N returns the same result every time, namely 1 bit.
However, trom a reasonable amount of data one would expect that

$$
H_{3}<H_{2}<H_{1}
$$

in fact, that even $H_{3}=0$, . in fact, that even $H_{3}=0$, because if the receiver knows the message
in advance (in our case, that no seven were rolled), the amount of
data he receives with the message should be zero,
A measure that meets this requirement was introduc
$H=-f \cdot \sum p_{i} \ln p_{i}$
The sum extends over all possible messages. p i is the probability
that the message i will be sent. In the case that all messages are that the message i will
equally likely, we have
$p_{1}=p_{2}=p_{3}=\ldots=p_{i}=\ldots=1 / \mathrm{N}$,
and
and H becomes the old expression $f \cdot \ln N$
In our example we hav
$\begin{array}{ll}\text { (a) } p(\text { pair })=0.5 & p \text { (impair) }=0.5 \quad H=1 \text { bit } \\ \text { (b) } p(\text { six })=1 / 6\end{array}$
(c) $p($ one to six $)=1 \quad p($ seven $)=0 \quad H=0$ bit

The example shows two important properties of this measure of the
a mount of data:

1) If one of the probabilities is equal to one and all the others equal
to zero, we obtain $H=0$:
$H=-f \cdot \sum_{i=1} p_{i} \cdot \ln p_{i}=-f(z-1) \lim _{p \rightarrow 0}(p \ln p)-f \cdot 1 \cdot \ln 1=0$,
because
$\lim _{\rho \rightarrow 0}(p \ln p)=\lim _{p \rightarrow 0} \frac{\ln p}{1 / p}=\ldots=0$ ('Hôspital's rule)
2) For a given number z of characters H is maximum if
$p_{1}=p_{2}=p_{3}=\ldots=p_{z}$.
To prove it, the extremum of
$H\left(p_{1}, p_{2}, \ldots, p_{z}\right)=-f \cdot \sum_{i=1}^{2} p_{i} \ln p_{i}$
is calculated under the constraint
$\varphi\left(p_{1}, p_{2}, \ldots p_{z}\right)=\sum p_{i}-1=0$
(The sum of the probabilities is equal to one.)
Fig. 13.3 shows $H\left(p_{1}\right)$ for the case in which $z=2$
$H=-f\left[p_{1} \ln p_{1}+\left(1-p_{1}\right) \ln \left(1-p_{1}\right)\right]$

13.2 Generalization of the concept of state

In section 4.1 we learned: In a particular state, each variable has a specific value. Many real situations cannot be described with this concept of state, namely all those in which the values of variables are not known. We are looking at an example that may seem a bit absurd at first glance, but which makes it easy to explain the problem.
In an opaque box there is a flat magnetic pill whose magnetic moment m_{0} is perpendicular to the plane of the disc, Fig. 13.4. Now the box is shaken and placed on the table. We ask for the state of the magnet, whereby we assume that the state is determined only by the value of the magnetic moment.

In the sense of our definition of a state given earlier we would have to say: We do not know the state. However, our common sense tells us that we know a lot more than nothing about the magnet, namely
(1) We have either $m=\left(0,0, m_{0}\right)$ or $m=\left(0,0,-m_{0}\right)$, but certainly not $m=\left(0,5 \cdot m_{0}, 0,0\right)$ etc.
(2) Since we have shaken the box, and since the magnetic disk is symmetrical and neither the box nor the table itself is magnetic, the probability $p(\uparrow)$ that the magnetic moment points up is 0.5 and the probability that it points down $p(\downarrow)$ is also 0.5 :
$p(\uparrow)=p(\downarrow)=0.5$
We can therefore specify a probability distribution of the values of the variable. This is what we are doing now in order to generalize the concept of state:

In a given state, to the values of each variable belongs a specific probability distribution.
By means of statistical physics it will be possible to specify the state of many systems: the energy and the velocity of the molecules of a gas, the energy of the electrons in a semiconductor, the momentum of the photons in a radiation cavity, the magnetic moment of the particles of a paramagnetic material.
The most important task of statistical physics is to calculate such probability distributions. However, it sounds a bit like magic: One cannot calculate probabilities if one does not enter probabilities somewhere in the calculation - but this is done in statistical physics just the same way as we did with the magnetic disk. The argument is always the same: "The probabilities of all states...[more precise description]... are equal." The probabilities thus specified are a-priori probabilities. The reason for the equality is: We don't know any reason why they should be different.
Many physicists feel uneasy about this argument. They try to calm down by saying that one can experimentally determine the probabilities, at least in thought. For this one needs the concept of Gibbs' ensemble. One imagines that the system to be described exists in a very large number of copies. This is Gibbs' ensemble. The value of the quantity of interest is measured on each copy and a frequency distribution is obtained. This, one says, is equal to the sought-after probability distribution. All statements made about a system are also made about the ensemble. One can say that the ensemble is the system. With the help of the ensemble concept one can now describe the state verbally without giving probable values. One specifies the system preparation.

Examples of system preparations
(1) $1 \mathrm{~mol} \mathrm{H}_{2}$ is in a container which is in thermal contact with a heat reservoir of temperature T.
(2) One of two valves is opened with the aid of a radioactive material: If a decay takes place within $1 \mathrm{~s}, 1$ mole oxygen flows into a container, if none takes place, 1 mole hydrogen, Fig. 13.5a.
(3) State at time $t=t_{0}$, Fig. 13.5b: In the left compartment there is air of $T=\ldots, p=\ldots$ At time $t_{0}-10^{-8} \mathrm{~s}$ the wall is pulled out.
(4) Put 10^{5} molecules one after the other into a container according to the following procedure: Go from your laboratory to the elevator, see how many men and how many women leave. Put one O_{2} molecule for each man and one N_{2} molecule for each woman into the container. Go back to the elevator etc.

Fig. 13.5
(a) in the right container there is with a certain probability pure hydrogen and with another probability pure oxygen. (b) At time to the gas has partially tainer.
b

13.3 Entropy of a distribution

Fig. 13.6 shows the probability distribution $p(x)$ over the values of a variable x. With this distribution several quantities or numbers can be defined.

mean of $x:$	$\bar{x}=\sum_{i} p\left(x_{i}\right) x_{i}$
variance of $x:$	$\mathrm{S} \overline{(\Delta x)^{2}}=\sum_{i} p\left(x_{i}\right)\left(x_{i}-\bar{x}\right)^{2}$
entropy of the distribution:	$\eta=-\sum_{i} p\left(x_{i}\right) \ln p\left(x_{i}\right)$

The square root of the variance is called the standard deviation.

Fig. 13.7 shows three particular distributions, all with the same mean value.

The entropy has a finite value only if the distribution is discrete, i.e. if x can only assume a finite number of different values. The entropy concept defined in this way can be applied to any physical system.
We consider a system with a single independent variable, such as a system of N particles whose magnetic moments can be oriented in one of two directions: up or down, Fig. 13.8. If the magnitude of the magnetic moment of a single particle is m_{0}, the total magnetic moment can assume the values $N m_{0},(N-2) m_{0},(N-4) m_{0}, \ldots, 0, \ldots$, $-(N-4) m_{0},-(N-2) m_{0},-N m_{0}$.

Fig. 13.8
The only variable of the system is the magnetic moment. The magnetic moment of each particle can only assume two values.

We now describe a state of the system by specifying the system preparation, for example: Bring the system into thermal contact with a heat reservoir of temperature T. If we do this with all members of Gibbs' ensemble, we obtain a frequency distribution over the values of m and thus a probability distribution. From this the entropy η could be calculated.

Instead of the cumbersome description of the preparation of the system, we can simply specify the probability distribution $p\left(m_{i}\right)$, and calculate the associated entropy. Among the probability distributions over m there is a class of particular distributions: those where all p except one are zero. The entropy of such a distribution is zero. Each such distribution corresponds to a particular state. So there is a class of states with entropy zero. If we number the states $i=1, \ldots$, we can also say: In the equation

$$
\eta=-\sum_{i} p\left(x_{i}\right) \ln p\left(x_{i}\right)
$$

it has to be summed over all states with entropy zero.

13.4 The physical entropy of a system

We now claim that the entropy η defined in the previous section is equal to the physical entropy except for a constant factor:
$S=-k \sum p(i) \ln p(i)$

where

$k=1.380 \cdot 10^{-23} \mathrm{JK}^{-1}$
is the Boltzmann constant
To sum is over all states with $S=0$. We will illustrate this with the example of the previous section. The system consists of four energetically degenerate magnetic moments. The 16 states with entropy zero are listed in Fig. 13.9.

1. S increases spontaneously

We bring the system into a state with $\eta=0$, e.g. into the state with $p_{1}=1, p_{2}=\ldots=p_{16}=0$. If one now waits for a sufficient time, then η increases from 0 to $\ln 16$. The state $p_{1}=p_{2}=\ldots=p_{16}=1$. Thus of equilibrium: all probabilities p are equal. The entropy n which we had defined in the previous section thus has one property in common with the physical entropy S : If a system is left to itself, it increases.
2. Substancelikeness

We consider the independent systems A and B. We assume that A has N_{A} and B has N_{B} states with $\eta=0$. Thus
$\eta_{\mathrm{A}}=-\sum_{i} p_{\mathrm{A}}(i) \ln p_{\mathrm{A}}(i)$
$\eta_{\mathrm{B}}=-\sum p_{\mathrm{B}}(j) \ln p_{\mathrm{B}}(j)$
The system $A B$ consisting of A and B together has $N_{A B}=N_{A} \cdot N_{B}$ states with $\eta=0$. The probability of the state characterized by i and j is $p_{A}(\eta) \cdot p_{B}(\eta)$. So it is
$\eta_{A B}=-\sum p_{A}(i) \cdot p_{B}(j) \ln \left[p_{A}(i) \cdot p_{B}(j)\right]$
$=-\sum_{i} p_{\mathrm{A}}(i) \sum_{i} p_{\mathrm{B}}(j) \ln p_{\mathrm{B}}(j)-\sum_{i} p_{\mathrm{B}}(j) \sum_{i} p_{\mathrm{A}}(i) \ln p_{\mathrm{A}}(i)$
With
$\sum_{i} p_{\mathrm{A}}(i)=1$ and $\sum p_{\mathrm{B}}(j)=1$
we ge
$\eta_{\mathrm{AB}}=-\sum p_{\mathrm{B}}(j) \ln p_{\mathrm{B}}(j)-\sum p_{\mathrm{A}}(i) \ln p_{\mathrm{A}}(i)$
$=\eta_{\mathrm{A}}+\eta_{\mathrm{B}}$
The entropy η_{AB} of the compound system AB is therefore equal to the sum of the entropies η_{A} and η_{B} of the subsystems.
3. If heat flows, η also flows

We consider two systems A and B consisting of four magnetic moments each, but this time in an external magnetic field, Fig. 13.10. Thus there is no degeneration.

The zero point of the energy is set so that $E=0$ when the magnetic moments point in the direction of the field vector. If a magnetic moment is reversed, the energy of the system increases by E_{0}. The two systems are energetically isolated from each other and from the environment. The initial state is like this: The energy of A is two units E_{0}, i.e. $2 E_{0}$, the energy of B is zero. Fig. 13.9 shows that A has six states with $\eta=0$ (no. 6 to 11) and B has one (no. 1). Each of the systems A and B is in equilibrium, i.e. in the state of maximum entropy. It is therefore (index "in": initial):
$\eta_{A^{\text {in }}}=\ln 6=1.79$ and $\eta_{\mathrm{B}^{\text {in }}}=\ln 1=0$.
We now bring A and B into thermal contact with each other. We know that (1) entropy S flows from A to B and (2) entropy S is produced. We want to check whether this also applies to our statistically defined entropy η
By counting, we find that the overall system has 28 states with $\eta=0$ (in which $E=2 E_{0}$). If both sub-systems are in thermal equilibrium, all of them are equally probable and it is (index "fin": final):
$\eta_{\mathrm{AB}}^{\text {fin }}=\ln 28=3.33>\eta_{\mathrm{A}^{\text {in }}}+\eta_{\mathrm{B}^{\text {in }}}$
n addition we know
$\eta_{\mathrm{A}}^{\text {fin }}=\eta_{\mathrm{B}^{\text {fin }}}^{\text {fin }}=0.5 \cdot \eta_{\mathrm{AB}}^{\text {fin }}=0.5 \cdot \ln 28=1,67$
Thus
$\eta_{A^{\text {fin }}}<\eta_{\mathrm{A}^{\text {in }}}$ and $\eta_{\mathrm{B}^{\text {fin }}}>\eta_{\mathrm{B}^{\text {in }}}$
Thus the entropy η of A has decreased, that of B has increased. Furhermore, the total entropy η_{AB} has increased - everything as we know it from the physical entropy S

13.5 Entropy and temperature

A small class of probability distributions, namely that of equilibrium, can be described very simply: by specifying a single number, the temperature. For an isolated system in equilibrium it is

$$
\begin{aligned}
p(1)=p(2)=\ldots \Rightarrow S & =-k \sum_{i=1}^{\Omega} p(i) \ln p(i) \\
& =-k \Omega \frac{1}{\Omega} \ln \frac{1}{\Omega} \\
S & =k \ln \Omega
\end{aligned}
$$

With $d E=T d S$ we obtain

$$
k T=\frac{1}{d(\ln \Omega) / d E}
$$

13.6 Entropy and amount of data

From the equality of the expressions for S and H it follows that the entropy can be interpreted as an amount of data. If one looks at the four magnetic moments in our example to see how each individual moment is oriented, one obtains the amount of data

$$
H=-f \sum p(i) \ln p(i)
$$

where i stands for the states with $S=0$.
Instead of saying "the system contains the entropy S" one can also say "the system contains the amount of data H ".
If we identify S and H, we can write:

$$
f=\frac{\mathrm{bit}}{\ln 2}=k=1.380 \cdot 10^{-23} \mathrm{JK}^{-1}
$$

and thus

$$
1 \text { bit }=0.9565 \cdot 10^{-23} \mathrm{JK}^{-1}
$$

or

$$
1 \mathrm{bit} \approx 10^{-23} \mathrm{~J} / \mathrm{K}
$$

The fact that a system containing entropy also contains data does not imply that the system can be used as a technical data store. A data memory should not come into internal equilibrium or into equilibrium with the environment by itself.

Table of chemical potentials and molar entropies

The values in the table are valid for substances under standard conditions, i.e. for a temperature of $25^{\circ} \mathrm{C}$ and a pressure of 1 bar . For dissolved substances, the values refer to one-molar solutions: 1 liter of the solution contains 1 mole of the dissolved substance.

For some of the dissolved substances, the molar entropies listed in the table are negative. For example, for Ca^{++}: $\mathrm{S} / \mathrm{n}=-55,23 \mathrm{Ct} / \mathrm{mol}$. In fact, of course, there are no negative entropies. The negative value is only the result of an arithmetic trick. In aqueous solutions, ions are surrounded by so-called hydrate shells: A certain number of water molecules are attached to each ion. Ion and hydrate shell together form a kind of large molecule. When dissolving CaCl_{2}, for example, the reaction
$\mathrm{CaCl}_{2}+n \mathrm{H}_{2} \mathrm{O}$ (normal) $+2 \mathrm{mH}_{2} \mathrm{O}$ (normal) \rightarrow
$\mathrm{Ca}^{++}+2 \mathrm{Cl}^{-}+n \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Ca}^{++}\right.$hydrate shell $)+2 \mathrm{mH}_{2} \mathrm{O}\left(\mathrm{Cl}^{-}\right.$hydrate shell $)$
takes place. CaCl_{2} transforms into Ca^{++}and Cl^{-}ions, and "normal" water is converted into water in the hydrate shells. But now one usually writes this reaction simply like that:
$\mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}^{++}+2 \mathrm{Cl}^{-}$
i.e. the water on both sides of the reaction equation is omitted. To ensure that the entropy balance remains correct, the entropy that is released during the formation of the hydrate shell is simply added to the entropy of the ions. The entry in the table under Ca^{++}therefore contains the molar entropy of
$\mathrm{Ca}^{++}+n\left[\mathrm{H}_{2} \mathrm{O}\left(\mathrm{Ca}^{++}\right.\right.$hydrate shell) $-\mathrm{H}_{2} \mathrm{O}$ (normal) $]$
and under Cl^{-}there is the molar entropy of
$\mathrm{Cl}^{-}+m\left[\mathrm{H}_{2} \mathrm{O}\left(\mathrm{Cl}^{-}-h y d r a t e ~ s h e l l\right)-\mathrm{H}_{2} \mathrm{O}\right.$ (normal) $]$
Taking these values, the simplified reaction equation can be used to establish the entropy balance of the reaction.
Since the molar entropy of normal water is much greater than that of water in a hydrate shell, it can happen that the total molar entropy listed for an ion is negative.
Ag ... Br (Silver to bromine)

Formula	Name, phase	μ inka	S/nin CUmol
c	caron, gaseous	669.58	157.99
c	diamond, solid	2.9	2.38
c	graphie, solid	0	5.74
$\mathrm{CBra}^{\text {a }}$	gaseus	66.94	357.94
cers	monosinic, solid	47.7	212.55
CCBO	carbony chloride, gas	-204.6	283.42
${ }^{\text {cala }}$	gaseus	-60.63	309.74
${ }^{\text {cla }}$	Iquid	-65.27	216.4
CF_{4}	gaseous	-878.64	261.5
с	gaseous	56.75	182.92
CHCl_{3}	chlorotorm, gaseous	-70.41	5.51
CH_{2}	gaseous	37.187	181.04
CH_{2}	polyethyene, solid	4.4	25.34
	dichlormethane, gas	-68.97	18
СНеО	formadenyde, gas	-112.97	218.66
СНеО2	formic aci, gaseous	-350.03	1.6
$\mathrm{CH}_{2} \mathrm{O} 2$	formic acid, ITquid	${ }^{-359.57}$	129
$\mathrm{CH}_{2} \mathrm{O} 2$	formic acid, aqueous solution	${ }^{-372.38}$	8.18
СН3	gaseus	147.92	4.05
CHber	methy bromide, gas	-25.94	6.27
CHECI	chloromethane, gas	-62.95	234.26
CHaNO_{2}	nitromethan, gas	-6.92	275
CHNO_{2}	nitromethane, liuid	-14.55	171.9
CHANO	methy nitata, , iquid	-40.52	217
CH_{6}	melhane, gaseous	-50.81	188.1
CHaneo	urea, solid	-196.82	1046
CH\%O	methanol, gaseous	-162.52	2397
снıO	methano, İquid	-166.34	126.7
co	gaseous	-137.15	197.56
CO_{2}	gaseous	-394.36	213.64
CO_{2}	aqueous solution	-386	${ }^{113}$
$\mathrm{CO}_{3}{ }^{-}$	carbonate ion, aqueous solution	-527.9	-56.9
Cost	aqueus solution	-568.85	91.21
cs	gaseus	184.1	210.46
CS_{2}	gaseus	66.91	237.79
CS_{2}	Iiquid	65.27	151.34
$\mathrm{C}_{2} \mathrm{Cl}$	dichloroethine, gas	198.41	21.96
$\mathrm{C}_{2} \mathrm{Cl} 4$	terachloreethene, gas	21.56	${ }^{343.31}$
$\mathrm{C}_{2} \mathrm{OC}$	hexachloroethane, gaseous	-50	397.77
CaH_{2}	ethyne, gaseous	209.2	200.83
$\mathrm{Ca}_{2} \mathrm{H}_{4}$	ethene, gaseous	68.12	9.45
Catho	acelaldenyde, gast.	-132.92	64.2
Cetho	epoxyethan, gaseous	-11.84	23.7
$\mathrm{C}_{2} \mathrm{HHO} \mathrm{O}_{2}$	aceitic aci, gaseous	${ }^{-378.95}$	28.5
$\mathrm{CaH}_{2} \mathrm{HO}_{2}$	acefic acid, ITuid	-389.95	159.83
$\mathrm{C}_{2} \mathrm{H} \mathrm{H}_{\mathrm{O}}$	aceitic aci, aqu. sol.	-396.56	178.66
$\mathrm{C}_{2} \mathrm{HGCl}$	ethy chloride, gaseous	-60.46	55.89
$\mathrm{C}_{2} \mathrm{HGO}$	ethy Colorice, Iluid	-59.41	190.79
$\mathrm{Ca}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$	aminoacetic acil, solid	-367.02	109.2
$\mathrm{C}_{2} \mathrm{H}_{6}$	ethane, gaseous	-32.62	229.5
$\mathrm{C}_{2} \mathrm{H}$ Ho	dimethy ener, gas	-14.07	26.6
$\mathrm{CaH}_{2} \mathrm{O} \mathrm{O}$	ethanol, gaseous	-168.57	282
$\mathrm{C}_{2} \mathrm{H} \mathrm{HO}$	eltano, ilquid	-174.89	160.67
$\mathrm{C}_{2} \mathrm{H} \mathrm{O}_{2}$	ethyene glyol, İquid	${ }^{-327.07}$. 5
CaHa_{4}	propadiene, gaseus	20238	234.9
$\mathrm{Ca}_{3} \mathrm{H}_{4}$	propyne, gaseous	194.16	248.1
$\mathrm{CaH}_{3} \mathrm{H}^{\text {c }}$	propene, gaseous	74.66	226.9
$\mathrm{CaH}_{3} \mathrm{C}_{6}$	cyclopropane, gaseous	104.11	37.9
$\mathrm{CaH}_{\text {cho }}$	acetone, gaseous	-151.82	294.9
$\mathrm{CaH}_{\text {Ho }} \mathrm{O}$	aceione, Iluid	-154.83	200
$\mathrm{CaH}_{3} \mathrm{H}^{\text {a }}$	propane, gaseous	-23.43	269.9
$\mathrm{CaH}_{4} \mathrm{H}_{\mathrm{c}}$	butene-(1) gaseous	72.03	307.4
$\mathrm{CaH}_{4} \mathrm{H}_{5} \mathrm{O}_{2}$	ethy acelate, Iluid	-323.19	259
Catho	butane, gaseous	-15.62	310
C.tho	2-methylpropane, gaseous	-17.92	294.6
$\mathrm{C}_{\text {SHO}}$	cyclopentane, gaseous	38.67	292.9
C.tho	cyclopenane, Iluid	36.49	204.1
$\mathrm{C}_{\text {SHI }}$	pentane, gaseous	-8.11	348.4
$\mathrm{C}_{\text {sth }}$	pentane, İquid	-9.21	262.7
Cofticl	chlorobenzene, iquid	93.65	194.1
CoHANO_{2}	nitroenzene, Iluid	141.62	4.3
$\mathrm{CaH}_{\text {ch }}$	benzere, gaseus	${ }^{129.73}$	269.2
$\mathrm{CobH}_{\text {cha }}$	cycohexeane, gaseus	31.75	298.2
$\mathrm{CaH}_{\text {dit }}$	cyconexene, Ilauid	26.83	204.1
Cotha	hexane, gaseous	0.3	386.8
$\mathrm{Coblha}^{\text {a }}$	hexane, Iluwid	-4.26	296
$\mathrm{C}_{\mathrm{H}} \mathrm{HB}_{8}$	methybenzene, gas	122.39	319.7
$\mathrm{C}_{\mathrm{c}}^{\mathrm{H}}$ B	methybenzene, Iquid	110.61	219
$\mathrm{Cathe}^{\text {che }}$	octane, gaseus	17.44	468.7
	octane, Iquid	6.41	361.2
	sucrose, solid	-1543.52	360

Mg ... Ni (Magnesium to nickel)

Si．．．．2r（Silicon to zirconium）		
	Lamememe	
s	20	4128
s	${ }^{\text {apa }}$	\％
\％	${ }^{\text {axb }}$	$\bigcirc{ }^{1880}$
sed	moaed	（ex
s		8025
sc		
sc	semem	${ }^{67701} \quad 30808$
	${ }_{\text {mad }}$	（1589
six	amems	（ex
so	mease	${ }_{1088}{ }^{215}$
so	semas	${ }^{3088} 8$
sols	${ }_{\text {lose }}$	（ex
so		asas
sa	Osamember	${ }^{388}$
	，	（toset
	${ }^{\text {mu }}$	
	${ }^{\text {ow }}$	－193\％
		（ex
soms	momem	cose
\％	cosememe	${ }_{0}^{0.3}$
sor	semem	3198 ${ }^{\text {ches }}$
	${ }^{\text {axim }}$	${ }^{3}$
sion	deat	－
smos		Hex
	${ }^{\text {axb }}$	${ }^{268}{ }^{\text {cosem }}$
	moem	Hene 1 sase
8	${ }^{0}$	\％38 ${ }^{2680}$
s	somed	
s．	aspos sumem	5939
so		
so	\％	－ 5 mas
	\％	\％ax
${ }^{\circ}$	${ }_{\text {mom }}$	${ }^{\text {7\％}}$
tor	mad	${ }^{2008} 80$
\％	amame	（eame
Tex	\％	seas
${ }_{\text {cose }}$	）	
\％	）	
remer	${ }_{\text {ata }}$	${ }^{\text {Esass }}$
\％		（taseme
mum	ded	\％88 ${ }^{208}$
${ }^{\text {m }}$	）	${ }^{37888}$
mo	\％emem	
\％	meme obl	ats
		边
＂	nemmeneme	178
\％		\％
T	mame	246a
¢		－
m	soud	${ }^{12388}$
\％	emad	182．68
		（1048
ns	${ }^{\text {max }}$	$41428{ }^{128585}$
ns	边	（en
	umamm meases	mase mese
\bigcirc		5sa
－		
\％	med	边
wis		－100．4 ${ }^{\text {asem }}$
\％	${ }^{\text {ata }}$	1794．te
\％	en	2878
m	＊	${ }^{3858} \quad 738$
wo	${ }^{\text {exd }}$	107898
		483
v	asid	－${ }^{290}$
vold		${ }_{\substack{2785 \\ 2085}}$
va	${ }^{\text {mad }}$	Hesse
va	${ }^{\text {axd }}$	（1）
，	，	（eme ${ }^{24585}$
vis	mas	（10）
m	${ }^{\text {and }}$	（1022 ${ }^{3128}$
\％	${ }_{\text {axa }}$	404t）
vo	ded	（nese
va	${ }^{\circ}$ o．ase	－13sese
w	mome	cos
${ }^{*}$	\％os	$\cdots{ }^{\circ}{ }^{2260}$
wes	${ }^{\text {a }}$ ．ased	${ }_{\text {cosem }}$
we	neas	Hestit
w	${ }^{\text {andem}}$	sexe ${ }^{5054}$
	amb	${ }_{\text {reme }}$
x	amenememe	${ }^{188}$
隹	amem	
${ }^{2}$		1778
	${ }_{\text {max }}$	32，${ }^{3}$
	${ }_{\substack{\text { and } \\ \text { aub }}}$	cose
2	）	（incose
${ }^{20}$	${ }^{\text {ax }}$	${ }^{2085} 5$
	${ }^{\text {aid }}$	
${ }_{20}^{20}$	momemo	${ }^{2018}$
	som	
z		cosit
ze	en	
za	${ }_{\text {max }}$	${ }^{\text {mesea }}$
	mammen	（12008
20	${ }_{0}$	${ }_{\text {3888 }}{ }^{3888}$
		－10ese ${ }^{\text {cose }}$

farmua

I thank my teacher Gottfried Falk, from whom I learned thermodynamics, and my friend and colleague Georg Job, from whom I learned how simple thermodynamics can be.
The present course is based on the following three books:
G. FALK, Theoretische Physik, II Thermodynamik, Heidelberger Taschenbücher, Springer-Verlag 1968.
G. JOB, Neudarstellung der Wärmelehre - die Entropie als Wärme, Akademische Verlagsgesellschaft Frankfurt am Main, 1972.
G. FALK, W. RUPPEL, Energie und Entropie, Springer-Verlag, 1976.

In the meantime, further books have been written, which are based on Job's ideas.

First, there is one written by Job himself, together with Regina Rüffler, which is aimed at physicochemists.
G. JOB, R. RÜFFLER, Physical chemistry from a different angle, Springer, New York, 2016.
Then by Hans Fuchs a work whose target group are mainly engineers:
H. U. FUCHS, The dynamics of heat, Springer, New York 1996.

And finally a work by Christoph Strunk for physicists:
C. STRUNK, Moderne Thermodynamik, De Gruyter, Berlin 2015

[^0]:

