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We study generalized multifractality that characterizes eigenstate fluctuations and correlations in disordered
systems of chiral symmetry classes AIII, BDI, and CII. By using the nonlinear sigma-model field theory, we
construct pure-scaling composite operators and eigenfunction observables that satisfy Abelian fusion rules. The
observables are labeled by two multi-indices λ, λ′ referring to two sublattices, at variance with other symmetry
classes, where a single multi-index λ (that can be viewed as a generalized version of a Young diagram) is needed.
Further, we analyze Weyl symmetries of multifractal exponents, which are also peculiar in chiral classes, in view
of a distinct root system associated with the sigma-model symmetric space. The analytical results are supported
and complemented by numerical simulations that are performed for a 2D lattice Hamiltonian of class AIII, both in
the metallic phase and at the Anderson transition. Both in the metallic phase and at the transition, the numerically
obtained exponents satisfy Weyl symmetry relations, confirming that the sigma model is the right theory of
the problem. Furthermore, in the metallic phase, we observe the generalized parabolicity (proportionality to
eigenvalues of the quadratic Casimir operator), as expected in the one-loop approximation. On the other hand,
the generalized parabolicity is strongly violated at the metal-insulator transition, implying violation of local
conformal invariance.
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I. INTRODUCTION

Disorder is ubiquitous in nature, which stimulates in-
terest in the physics of Anderson localization [1]. Of
great importance in this context are Anderson transitions
between localized and delocalized phases, which include
metal-insulator transitions as well as transitions between topo-
logically different localized phases [2].

Field theories of Anderson localization are nonlinear sigma
models characterized by non-Abelian continuous symme-
tries, and Anderson transitions bear a certain similarity with
conventional second-order phase transitions known from sta-
tistical mechanics. At the same time, the physics of Anderson
transitions turns out to be distinct in many respects, which
is related to the fact that the corresponding sigma-model
field theories involve either the replica limit, n → 0, or, al-
ternatively, supersymmetry. One of consequences is that, at
variance with the Mermin-Wagner theorem that forbids or-
dering in spatial dimensionalities d � 2, there is a wealth
of Anderson transitions in two-dimensional (2D) geometries.
The richness of the problem is enhanced by a rather large
number (ten) of symmetry classes [3–5] and by topological
phenomena giving rise to topological insulators and supercon-
ductors [6].

Another remarkable property of Anderson transitions is the
multifractality of critical states: Different moments 〈|ψ |2q〉
of the wave-function amplitude (or, equivalently, of the local
density of states) scale with distinct exponents that depend on
q in a nonlinear way [2,7]. Furthermore, the notion of multi-
fractality has been promoted to “generalized multifractality”

[8] characterizing fluctuations and correlations of multiple
eigenstates at criticality. In the field-theory (sigma-model)
language, the generalized multifractality involves a full set of
pure-scaling gradientless composite operators. These compos-
ite operators can be translated to the language of pure-scaling
observables characterizing eigenfunctions of the Hamilto-
nian. This program has been started by Ref. [9], where the
construction was developed for the symmetry class A; the
results were verified in Ref. [8] by a numerical investiga-
tion of the integer quantum Hall transition. Subsequently,
the generalized multifractality was explored in class C in
Ref. [8,10], with a focus on the spin quantum Hall tran-
sition. Most recently, an analytical and numerical study of
the generalized multifractality was carried out for symmetry
classes AII, D, and DIII, which are characterized by weak
antilocalization and exhibit metal-insulator transitions in two
dimensions [11].

The scaling of generalized multifractality observables is
characterized by an infinite set of exponents xλ, where λ is
a multi-index, λ = (q1, . . . , qn), and q j can be in general ar-
bitrary complex numbers. It was shown in Refs. [9,12,13] that
the multifractal spectra xλ in five symmetry classes (Wigner-
Dyson classes A, AI, and AII, as well as Bogoliubov-de
Gennes classes C and CI) satisfy certain exact symmetry
relations (“Weyl symmetry”) that imply identity of scaling
exponents characterizing seemingly unrelated observables.
(This extends the earlier result [12] for conventional mul-
tifractality in Wigner-Dyson classes.) Furthermore, it was
pointed out in Ref. [9] that the Weyl symmetry should hold
also in Bogoliubov-de Gennes classes D and DIII as long as
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jumps between the disjoint components of the corresponding
sigma-model manifolds are suppressed.

Numerical results in Refs. [8,10,11] for the generalized
multifractality in the classes A, C, AII, D, and DIII confirm
the construction of pure-scaling observables as well as the
Weyl symmetry (in the cases when it should hold according to
the analytical derivation). Furthermore, the numerical results
in the metallic phases confirm the generalized parabolicity
(proportionality to eigenvalues of the quadratic Casimir op-
erator) that follows from the one-loop approximation. Since
all these analytical predictions are based on the sigma-model
formalism, these numerics have provided a clear validation of
the sigma models as field theories of Anderson localization.
Another important result of the numerics is a strong violation
of generalized parabolicity at the SQH transition and at 2D
metal-insulator transitions in classes AII, D, and DIII. (In
the case of SQH transition, this is also proven analytically
in Ref. [10] where exact results for a set of the generalized
multifractal exponents are found.) As shown in Ref. [8], this
implies a violation of local conformal invariance at these
2D transitions. This striking result puts strong constraints on
fixed-point theories of the above 2D Anderson transitions; in
particular, it excludes models of the Wess-Zumino-Novikov-
Witten class.

The goal of the present paper is to study the gener-
alized multifractality in the chiral classes AIII, BDI, and
CII. These symmetry classes possess a variety of proper-
ties that distinguish them from other symmetry classes. On
the level of the field theory, these properties result from
an additional Abelian [U(1)] degree of freedom charac-
terizing the sigma-model target space. As a consequence,
random-matrix models of these classes may have an ar-
bitrary number of strictly zero modes [14]. As a closely
related hallmark of chiral classes, quasi-one-dimensional
models of these classes are Z topological insulators, i.e., they
undergo multiple transitions between topologically distinct
insulating phases. At these transitions, the density of states
exhibits a strong singularity (first identified by Dyson in
1953) [15–17], and the localization length diverges [18–26].
These critical points have infinite-randomness character, and
the corresponding critical eigenfunctions show very strong
fluctuations [21,27].

It was understood long ago that 2D systems in the chiral
symmetry classes also have very peculiar properties. Early
numerical investigations demonstrated a resilience of chiral-
class systems to localization, which led to a suggestion that
2D and 3D systems in the chiral classes always remain delo-
calized [28]. The sigma-model field theories for chiral classes
were derived by Gade and Wegner, who have also performed
the renormalization-group (RG) analysis of these theories
[29,30]. These sigma-model theories and the RG flows have
a number of remarkable features. First, the sigma models in-
volve an additional term (known as the Gade term) associated
with the U(1) degree of freedom mentioned above. Second,
the renormalization of the conductivity is absent to all orders
in perturbation theory, which provides an apparent support
to the absence of localization transition. Instead, this RG
implies an extended metallic phase, with conductivity taking
an arbitrary value, i.e., a line of metallic infrared fixed points.
Furthermore, there is a logarithmic flow of the Gade term,

implying that a power-law singularity of the density of states
at zero energy (chiral-symmetry point) is slowly enhanced
along the flow to an infrared fixed point and becomes very
strong in the asymptotic infrared limit.

The Gade-Wegner sigma models, and some extensions of
them, were subsequently rederived and analyzed in the context
of various microscopic models of chiral symmetry classes
[31–37]. It was understood that the ultimate infrared behavior
in the metallic phase is of infinite-randomness nature and
is associated with a “freezing” of the multifractality spec-
trum, which also leads to a refinement of the density-of-states
asymptotics [35,38–40]. On the numerical side, most of the
studies found critical properties of the metallic phase char-
acterized by nonuniversal exponents for various observables
(such as the density of states, the finite-energy localization
length, and multifractality) [41–46], at variance with what
is expected in the infinite-randomness infrared limit. This is,
however, by no means surprising, since the Gade-Wegner flow
towards the line of infrared fixed points is logarithmically
slow. Thus, for many models and parameter ranges, the in-
frared limiting behavior cannot be reached on any realistic
length scale. At the same time, several papers [47–49] re-
ported evidence of the asymptotic behavior in some of the
observables.

Contrary to earlier proposals mentioned above, more re-
cent numerical investigations of suitably designed 2D models
have provided evidence of Anderson metal-insulator tran-
sitions in chiral classes [38,50]. Very recently, the phase
diagram and the critical behavior at the metal-insulator tran-
sition in chiral unitary class AIII was studied in Ref. [51].
On the analytical side, a theory of Anderson transitions in
2D systems in chiral symmetry classes was developed in
Ref. [36]. The central idea of Ref. [36] is that the sigma-
model manifolds for chiral classes are not simply connected
due to the U(1) degree of freedom and therefore allow for
topological excitations—vortices. These vortices, character-
ized by a fugacity y, should be included in the RG analysis
of the sigma-model, in analogy with the famous theory of
the Berezinskii-Kosterlitz-Thouless (BKT) transition in the
XY model in two dimensions. Derivation of the RG flow in
Ref. [36] indeed yielded a metal-insulator transition. At the
same time, an important difference with the BKT transition
was found: the fixed point for the chiral-class transition is
at a finite fugacity, y > 0, which should be contrasted to the
BKT fixed point value y = 0. Thus, while one may expect
that the theory of Ref. [36] describes correctly the RG flow at
the qualitative level, (as indeed supported by Ref. [51]), it is
not parametrically controllable in what concerns quantitative
characteristics of the transition (in particular, critical expo-
nents). This additionally emphasizes importance of numerical
studies of these transitions.

In this paper, we explore the generalized multifractality
in systems of chiral symmetry classes by a combination of
analytical and numerical approaches. Key results of the work
are as follows:

(1) By using the Iwasawa decomposition, we derive the
pure-scaling observables in terms of sigma-model composite
operators and in terms of eigenfunction observables. In agree-
ment with our earlier arguments based on the sigma-model
RG and on the physical considerations [11], the construction
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of observables follows the “spinless” pattern for classes AIII
and BDI and the “spinful” pattern for class CII. At the same
time, there is a crucial difference between the chiral classes
and all other symmetry classes: for the chiral classes, the
observables are labeled by a pair of multi-indices λ, λ′, with
λ corresponding to one sublattice and λ′ to another one. The
developed construction satisfies Abelian fusion rules, both for
the sigma-model composite operators and for the eigenfunc-
tion observables.

(2) We derive Weyl symmetry relations for the chiral
classes, which are very peculiar for several reasons. First,
the observables are labeled by two multi-indices λ, λ′ (one
for each sublattice), see above. Second, the scaling expo-
nents xλ,λ′ contain U(1) contributions that originate from the
Gade term. Third, the root systems associated with the sigma-
model manifolds of chiral classes are of type An, so that
the corresponding Weyl group contains permutations but not
reflections. The resulting symmetry can be written as xλ,λ′ =
xw(λ,λ′ ), where the Weyl group element w involves permuta-
tions of all components of both multi-indices λ and λ′. We
show, however, that for the subclass of “balanced” observables
with λ′ = λ we have xλ,λ = xw(λ),w(λ), where w(λ) is obtained
from λ by an arbitrary combination of Weyl reflections and
permutations.

(3) Using a tight-binding model of class AIII, we provide
a numerical verification of the construction of pure-scaling
observables. Furthermore, our simulations yield numerical
values of the generalized multifractal scaling exponents. The
numerical analysis is carried out both in the metallic phase
and at the metal-insulator transition.

(4) In the metallic phase, we find that the Weyl symme-
try, as predicted analytically, is fulfilled. Furthermore, for
weak disorder, the generalized multifractal exponents are
in excellent agreement with the one-loop predictions of the
sigma-model RG (and thus with the generalized parabolicity).
With increasing disorder, sizable deviations from general-
ized parabolicity are observed, as expected analytically form
higher-loop contributions.

(5) The analytically predicted Weyl symmetry relations
hold also at the metal-insulator transition. At the same time,
the generalized parabolicity gets strongly violated, which im-
plies the violation of the local conformal invariance.

II. SIGMA MODELS FOR 2D DISORDERED
SYSTEMS OF CHIRAL SYMMETRY CLASSES

The sigma-model field theories for 2D disordered sys-
tems of chiral symmetry classes were derived by Gade and
Wegner [29,30]. In the fermionic replica formalism, the
sigma-model manifolds for the chiral unitary class AIII, chi-
ral orthogonal class BDI, and chiral symplectic class CII
are U(n), U(2n)/Sp(2n), and U(n)/O(n), respectively. The
sigma-model action reads

S[U ] = −
∫

d2r
[ σ

8πs
tr(U −1∇U )2 + κ

8πs
(trU −1∇U )2

+ i
πρ0

2s
ε tr(U + U −1)

]
, (1)

where s = 1 for class AIII and s = 2 for classes BDI and CII.
Here σ is the conductivity in units of e2/πh; the second term

TABLE I. Target spaces of sigma models for three chiral sym-
metry classes.

Symmetry Compact (fermionic) Noncompact (bosonic)
class space space

AIII U(n) GL(n,C)/U(n)

BDI U(2n)/Sp(2n) GL(n,R)/O(n)

CII U(n)/O(n)
GL(n,H)/Sp(2n)
≡ U∗(2n)/Sp(2n)

(known as the Gade term) couples only to the U(1) degree of
freedom and is specific for chiral classes. In the last term, ε is
a running coupling whose bare value is the energy E (which
breaks the chiral symmetry), and ρ0 is the bare density of
states. Within the replica formalism, one should take the limit
n → 0 in the end of the calculation. An alternative formalism
involves bosonic replicas, with noncompact symmetric spaces
as target spaces of the sigma model, see Table I. Finally, the
third option is to use supersymmetry, in which case the sigma-
model target space is a product of the compact (fermionic) and
noncompact (bosonic) spaces “dressed” by anticommuting
variables (and no n → 0 replica limit is needed). While the
supersymmetric formalism is more accurate from the mathe-
matical point of view, it is frequently sufficient to use one of
the replica approaches.

Let us briefly recall the implications of the RG flow that
follow from Eq. (1). For definiteness, we focus in this dis-
cussion on the chiral unitary class AIII (for which we will
also perform numerical simulations presented below). The RG
results for the other two chiral classes are very similar.

Perturbative RG equations for the couplings σ , κ , and ε in
class AIII read [30,36,37]

∂σ

∂ ln L
= 0, (2)

∂κ

∂ ln L
= 1, (3)

∂ ln ε

∂ ln L
= 2 + κ

σ 2
. (4)

Remarkably, Eq. (2) (the absence of renormalization of the
conductivity) is exact to all orders in perturbation theory in
all three chiral classes [29]. Moreover, in class AIII, Eq. (3) is
also perturbatively exact [34].

In the right-hand side of Eq. (4), the first term is the
normal dimension; the second term represents the one-loop
anomalous dimension responsible for a nontrivial scaling of
the density of states. Substituting the solution of Eq. (3),

κ (L) = κ0 + ln L (5)

into Eq. (4) and integrating the latter, we get

ln ε(L) = ln E + B0 ln L + 1

2σ 2
ln2 L, (6)

where κ0 is the bare (ultraviolet) value of the coupling κ and
B0 = 2 + κ0/σ

2. The RG transformation is performed until
the running coupling ε(L) ceases to be small, reaching the
ultraviolet energy scale 
 of the problem (usually set by
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the bandwidth). At this scale, which we denote as Lc(E ),
a crossover from class AIII to class A happens. Thus, the
localization length ξ (E ) is given by ξ (E ) ∼ Lc(E ) exp(σ 2).
Furthermore, the density of states ρ(E ) is determined by
Lc(E ) as follows:

ρ(E ) ∼ 1

EL2
c (E )

. (7)

Solving Eq. (6) with ε = 
, one gets

ln Lc(E ) = σ 2

⎡
⎣
√

B2
0 + 2

σ 2

∣∣∣∣ln E




∣∣∣∣ − B0

⎤
⎦. (8)

For asymptotically low energies,∣∣∣∣ln E




∣∣∣∣ 
 B0σ
2

2
, (9)

Eq. (8) yields ln Lc(E ) ≈ σ
√

2| ln(E/
)| and thus a very
strong singularity of the density of states,

ρ(E ) ∼ 1

E
exp{−2

√
2 σ | ln(E/
)|1/2}. (10)

As was shown in Refs. [35,38–40], this regime is accompa-
nied by freezing of the multifractal spectrum, which leads to
a modification of Eq. (10): the exponent 1/2 in the second
(subleading) factor is changed to 2/3.

In the intermediate-energy range,∣∣∣∣ln E




∣∣∣∣  B0σ
2

2
, (11)

one has from Eq. (8) Lc ∼ B−1
0 | ln(E/
)| and a nonuniversal

power-law scaling of the density of states,

ρ(E ) ∼ E−1+2/B0 . (12)

To shed more light on the crossover between the asymp-
totic regimes (12) and (10), it is useful to consider a running
differential exponent of ρ(E ),

d ln ρ(E )

d ln E
= −1 − 2

d ln Lc(E )

d ln E
= −1 + 2

B
,

B ≡ B(Lc(E )). (13)

Here B(L) = 2 + κ (L)/σ 2 has the meaning of a dynamical
exponent. It should be emphasized that the bare coupling κ0

is of order unity even in a good metal with σ 
 1 [31–33].
In this situation, the bare value B0 of the dynamical expo-
nent is close to 2, and the density of states ρ(E ) exhibits a
relatively weak dependence on energy in a broad range of
not too low energies. With decreasing energy, the running
differential exponent (13) varies logarithmically according to
Eq. (5). In the asymptotic limit, B(L) becomes large, ulti-
mately leading to the strong divergence (10) of the density
of states (with the subleading term modified by freezing as
mentioned above). This happens, however, only at extremely
low energies, | ln(E/
)| 
 2σ 2. Furthermore, the existence
of the asymptotic regime (10) requires very large system sizes,
ln L 
 2σ 2. Clearly, such values of L become unreachable al-
ready for moderately large σ . It is thus not surprising that most
numerical studies of the metallic phase of 2D systems in chiral
classes found a power-law behavior of the local density of

states with nonuniversal exponents of the localization length
and the density of states [41–46]. Numerical observations of
the ultimate infrared asymptotic behavior required much care
in the choice of models and of observables to be studied, as
well as special computational efforts for reaching very low
energies [47–49].

The perturbative RG, Eqs. (2)–(4), describes a flow towards
a line of metallic fixed points labeled by the value of σ . At
the same time, it fails to describe a transition to the localized
phase, since Eq. (2) is exact within this framework. This ap-
pears to be in contradiction with numerical studies [38,50,51]
that indicated existence of a metal-insulator transition in
2D chiral-class systems. A nonperturbative extension of the
Gade-Wegner theory that does describe the metal-insulator
transition was developed in Ref. [36]. The key ingredient
added by this paper is topological configurations—vortices,
which lead to the violation of Eq. (2), i.e., to renormalization
of conductivity, and thus may induce localization. This leads
to a more complex RG flow in the space of three couplings
(σ , κ , and the vortex fugacity y) and to a critical surface in
this parameter space separating the metallic and the insulating
phases. The metal-insulator-transition fixed point of the mod-
ified RG equations derived in Ref. [36] is at σ = 0, κ = 8,
and y = 1

4 . Furthermore, there is a very slow RG flow of
σ on the critical surface towards this fixed point, implying
an apparent nonuniversality in some characteristics of the
transition when studied in systems of realistic size. However,
as was also pointed out in Ref. [36], the quantitative predic-
tions should be taken with caution, since the equations are
parametrically controlled at y  1, while the obtained fixed
point is characterized by a finite value of y. Thus, quantitative
characteristics of the transition may differ substantially and
need to be determined numerically. We refer the reader to
a separate publication [51] for a numerical investigation of
key characteristics of this metal-insulator transition (such as
the critical exponent of the localization length and the critical
conductance) and for a comparison of numerical results with
analytical expectations.

III. GENERALIZED MULTIFRACTALITY OBSERVABLES
IN SYSTEMS OF CHIRAL CLASSES

A. Observables in the sigma-model language

As was shown by Gade and Wegner in Ref. [29] and by
Gade in Ref. [30], gradientless pure-scaling operators in chi-
ral classes are labeled by two multi-indices λ = (q1, . . . , qm)
and λ′ = (q′

1, . . . , q′
m′ ), which are highest weights of the

corresponding representations. Here λ characterizes the de-
pendence on U , and λ′ the dependence on U † ≡ U −1. For
polynomial composite operators considered in Refs. [29,30],
λ and λ′ correspond to conventional Young diagrams, with
integer positive qi and q′

i being the lengths of ith rows of the
two diagrams.

More generally, qi and q′
i may be fractional, negative, and

even complex, in analogy with construction and classification
of composite operators in other symmetry classes [8–11]. The
pure-scaling composite operators for chiral classes can be
chosen in a product form,

Pλ,λ′ [U ] = Pλ[U ]Pλ′[U −1]. (14)
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Here Pλ[U ] and Pλ′[U −1] have the same form as pure-scaling
operators in the corresponding Wigner-Dyson class. We refer
the reader to Appendix B of Ref. [11] for a discussion of
invariant pure-scaling operators in all ten symmetry classes
and of relations between different classes. For the chiral or-
thogonal class BDI, an explicit construction of polynomial
pure-scaling operators can also be found in Ref. [35].

In Refs. [8–11], two complementary approaches to con-
struction and analysis of pure-scaling operators have been
discussed. One of them is based on the analysis of one-loop
RG equations and yields polynomial eigenoperators as well as
associated one-loop results for scaling exponents. These one-
loop formulas for the exponents can be extended to generic
pure-scaling operators by analytic continuation. The second
approach is based on the Iwasawa decomposition and al-
lows one to construct generic pure-scaling operators satisfying
Abelian fusion rules. In this paper we use both approaches,
with details of the RG analysis of composite operators in
chiral classes, as well as simple examples of such operators,
are presented in Appendix A. A detailed exposition of the Iwa-
sawa approach for chiral classes is then given in Appendix B.

As shown in Appendix A 2, the scaling dimensions xλ,λ′

of the operators Pλ,λ′ in class AIII are given, in the one-loop
order, by

xλ,λ′ = − 1

σ
(zλ + zλ′ ) + (|λ| − |λ′|)2xν + O(σ−4), (15)

where

|λ| =
∑

j

q j, |λ′| =
∑

j

q′
j, (16)

and xν is the scaling dimension of the average density of
states. In class AIII, an exact formula for xν holds,

xν = − κ

σ 2
. (17)

Furthermore,

zλ = λ · (λ + ρ) ≡
∑

i

qi(qi + ci ) (18)

is the eigenvalue of the class-A Laplacian, where ρ =
(c1, . . . , cn) is the half-sum of positive roots, with c j = 1 −
2 j. In classes BDI and CII, formulas analogous to Eq. (15)
hold, with some modifications, see Eqs. (A34)–(A36) in Ap-
pendix A 2.

In Sec. III B we consider a correspondence between the
pure-scaling operators Pλ,λ′[U ] of the sigma-model and pure-
scaling observables expressed in terms of eigenfunctions of a
Hamiltonian.

B. Observables in the eigenfunction language

Here, we analyze the connection between the sigma-
model composite operators and wave-function observables.
The bosonic replica formalism is used; a generalization to
fermions or supersymmetry is straightforward. We closely
follow the steps in Refs. [10,11] and focus on class AIII,
briefly commenting on classes BDI and CII in the end.

In a generic chiral system, we can write the Hamiltonian as

H =
(

0 Z
Z† 0

)
σ

, (19)

in the basis where the chiral operation is given by σz. A
conventional realization of the chiral symmetry is a bipar-
tite lattice. The chiral symmetry prohibits hopping inside the
sublattices A and B, permitting only hopping between the sub-
lattices. Thus, we refer to the 2 × 2 space σ as the sublattice
space.

We sketch now the derivation of the sigma model, which
follows the usual steps [4]. We start by defining the action in
the presence of a disorder field V in the chiral Hamiltonian H ,

S[ψ,ψ†,V ] =
∫

d2r ̄(H + iτ3η)

=
∫

d2r(ψ† iψ†σz )τ

×
(

H + iη
H − iη

)
τ

(
ψ

iσzψ

)
τ

, (20)

where a convenient choice of the bosonic integration variables
 was used,

 =
(

ψ

iσzψ

)
τ

, ̄ = (ψ† iψ†σz )τ . (21)

Here we introduced an additional auxiliary (“retarded-
advanced”) space τ . The field ψ is a vector in replica and σ

spaces. (In the case of classes BDI and CII, we would need
one more 2 × 2 space to take into account the time-reversal
symmetry.)

To perform disorder average, we need to compute Gaus-
sian integrals over the matrices V . These integrals are fully
determined by the second moment [4],∫

dμ(V ) tr(AV ) tr(BV ) = λ tr(AB − AσzBσz ). (22)

The matrices A, B acting in sublattice space are of the form
Aσ,σ ′ ≡ ∑

a,τ σ,a,τ (r)̄σ ′,a,τ (r), where a is the replica index.
Using Eq. (22) to average over disorder, we obtain, as usual, a
quartic term in the action,

Sint = λ

∫
dr

∑
ab,ττ ′,σσ ′

σ,a,τ ̄σ ′,a,τσ ′,b,τ ′̄σ,b,τ ′ . (23)

Next, we decouple this “interaction” term using a Hubbard-
Stratonovich field Q, which has a matrix structure in the
replica space and the τ space. The coupling of the Q field to
the ψ,ψ† fields reads

∑
σ

tr

[(
ψσψ†

σ i(−1)σψσψ†
σ

i(−1)σψσ ψ†
σ −ψσ ψ†

σ

)(
QRR QRA

QRA −QRR

)]
,

(24)

where we have explicitly displayed the structure in the
retarded-advanced (τ ) space. (For the brevity of notation,
replica indices are suppressed here.) This means that the wave
functions on sublattices A, B couple to different linear combi-
nations of the Q field,

ψAψ
†
A ↔ QRR + iQRA, ψBψ

†
B ↔ QRR − iQRA. (25)
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We verify that these distinct combinations of Q live in dif-
ferent representations of the unitary group by means of the
Iwasawa decomposition discussed in Sec. III C and in more
detail in Appendix B. Another way to see this is to note
that these combinations can be used as building blocks of
generic K-invariant sigma-model operators. Specifically, not
only traces of products of Q� are gauge-invariant as in
nonchiral classes but also traces of products of Q�± with
�± = τ3 ± iτ1.

After restriction to slow variations on the saddle-point
manifold, the matrix field Q fulfills the nonlinear constraint
Q2 = 1 characteristic for sigma models. Thus, we have, using
the structure of the Q field in the retarded-advanced space [see
Eq. (24)],

(QRR + iQRA)(QRR − iQRA)

= (QRR)2 + (QRA)2 + i[QRA, QRR] = 1. (26)

Indeed, the first two terms in the second line of Eq. (26) sum
up to (Q2)RR = 1, whereas the commutator equals (Q2)RA =
0. This allows us to identify

U ≡ QRR + iQRA, U −1 ≡ QRR − iQRA, (27)

in the notations of Sec. II and Sec. III A. In view of Eq. (25),
we thus see that U [and correspondingly the multi-index λ in
Eq. (14)] is associated with the sublattice A, while U −1 (and
correspondingly the multi-index λ′) with the sublattice B.

In terms of the Q field, the action (1) reads

S[Q] =
∫

d2r

[
σ

16πs
tr(∇Q)2 − κ

32πs
(trQ∇Q)2

− i
πρ0

2s
ε tr Q

]
. (28)

In this form, the action is presented in Refs. [32,35].
An analysis along the lines of Refs. [10,11] allows us to

translate now the sigma-model composite operators to the
eigenfunction language. The building blocks of the eigenfunc-
tion construction are Slater determinants (spinless for class
AIII)

P(1k ),(0)[ψ] = det(ψi(r j, A))k×k,

P(0),(1k )[ψ] = det(ψi(r j, B))k×k, (29)

where we use the notation qk for a multi-index (q, . . . , q) with
k equal elements. The distinct feature of the chiral symmetry
classes is that these determinants should be defined separately
for each of the sublattices A and B. A generic sigma-model
pure-scaling operator (14) now corresponds to

Pλ,λ′ [ψ] = Pq1−q2
(1),(0)[ψ] . . . Pqm−1−qm

(1m−1 ),(0)[ψ]Pqm
(1m ),(0)[ψ]

× P
q′

1−q′
2

(0),(1)[ψ] . . . P
q′

m′−1
−q′

m′
(0),(1m′−1 )

[ψ]Pqm′
(0),(1m′ )

[ψ]. (30)

A precise correspondence (worked out for class A in Ref. [9]
and extended to other classes in Refs. [10,11]) establishes
the pure-scaling nature of the observables (30) by mapping
them to the N-radial functions φλ,λ′ (Q) of the sigma model
described in the next section. The correspondence implies
that the eigenfunction observables (30) share the Abelian fu-
sion property with the sigma-model operators φλ,λ′ (Q), see

Eq. (36),

Pλ1,λ
′
1
[ψ]Pλ2,λ

′
2
[ψ] = Pλ1+λ2,λ

′
1+λ′

2
[ψ]. (31)

The scaling of these generalized multifractal wave-
function observables (averaged over disorder realizations)
with the system size L is determined by the generalized-
multifractality exponents 
λ,λ′ ,

L2q+2q′ 〈Pλ,λ′ [ψ]〉 ∼ L−
λ,λ′ , (32)

where q = |λ| and q′ = |λ′|. The factor L2q+2q′
takes care

of the normal dimension of 〈Pλ,λ′ [ψ]〉 (i.e., that in a perfect
metal), so that 
λ,λ′ is the anomalous dimension. The scaling
dimension 
λ,λ′ of an eigenfunction observable is related
to the corresponding field-theoretical composite-operator di-
mension xλ,λ′ via

xλ,λ′ = 
λ,λ′ + (|λ| + |λ′|)xν . (33)

The same construction of pure-scaling eigenfunction ob-
servables, Eqs. (30) and (29), applies also to the chiral
orthogonal class BDI, since it is also spinless. On the other
hand, the chiral symplectic class CII is spinful (it possesses
time-reversal invariance satisfying T 2 = −1), so that Eq. (29)
is replaced by a spinful version of Slater determinants, see
Ref. [11].

C. The Iwasawa construction

In this section, we briefly discuss the Iwasawa construc-
tion; details can be found in Appendix B. We begin by
recalling general properties of the Iwasawa decomposition
that has been developed earlier for other symmetry classes and
then describe features that are specific to chiral classes.

Within the sigma model field theory, observables char-
acterizing the generalized multifractality are represented by
gradientless composite operators P (Q). Here the sigma model
field Q ∈ G/K is a matrix, Q = g�g−1, where � is a matrix
that commutes with all k ∈ K [a standard choice is � =
diag(Im,−Im), where the identity blocks are in the retarded-
advanced space, and the integer m depends on the symmetry
class], and g ∈ G. Since Q does not change when g is multi-
plied on the right (g → gk) by any element k ∈ K , the set of
matrices Q realizes the symmetric space G/K .

The pure-scaling sigma model observables Pλ(Q) can
be constructed in different ways. One important choice is
provided by the Iwasawa decomposition [52,53]. (In the
supersymmetric approach we need a generalization to Lie
supergroups that was worked out in Ref. [54].) The Iwa-
sawa decomposition was explicitly performed for class A in
Ref. [9], for class C in Ref. [8], and for classes AII, D, and
DIII in Ref. [11]. Here is a brief description of the method in
the classical setting. In this context the label λ is the highest
weight of an irreducible representation of the group G.

Any connected noncompact semisimple Lie group G has
a global Iwasawa decomposition G = NAK , where N is a
nilpotent group, A is an Abelian group, and K is the maximal
compact subgoup of G. This factorization provides a very use-
ful parametrization of the target space G/K . An element a ∈ A
is fully specified by n real numbers xi, which play the role of
radial coordinates on G/K . In terms of the radial coordinates,
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the pure-scaling operators φλ(Q) are simply “plane waves”,

φλ(Q) = φλ(x) = e−2
∑

i qixi . (34)

(Note that, in the supersymmetric formulation, xi are the Iwa-
sawa radial coordinates in the boson sector.)

To construct the pure-scaling operators explicitly as combi-
nations of matrix elements of Q, we use the key fact that there
exists a choice of basis in which elements of a ∈ A are diag-
onal matrices, while elements of n ∈ N are upper triangular
with units on the diagonal. This has immediate consequences
for the matrix Q�: since elements of K commute with �, the
Iwasawa decomposition g = nak leads to Q� = na2�n−1�,
which is a product of an upper triangular, a diagonal, and
a lower triangular matrices. In this form the lower principal
minors of the advanced-advanced block of Q� are simply
products of diagonal elements of a2, which are exponentials
of the radial coordinates xi on G/K . These minors are basic
building blocks, which can be raised to arbitrary powers and
multiplied to produce the most general exponential functions
(34). A great advantage of this choice is that the functions
φλ(x) are positive highest-weight vectors. Thus, they satisfy
Abelian fusion and can be raised to any power,

φλ1 (x)φλ2 (x) = φλ1+λ2 (x), (φλ(x))c = φcλ(x). (35)

Let us now focus on the features that are specific to the
chiral classes (see Appendix B for detail). First of all, as was
discussed in Sec. III B, microscopic models in these classes
have two sublattices, and this leads to a block-diagonal struc-
ture of the sigma model field, where the two blocks can be
used to construct generalized MF scaling observables for each
sublattice using the Iwasawa construction described above.
The most general multifractal observables are then products
over the two sublattices, and they depend on two sets of radial
variables, x1, . . . , xn and x′

1, . . . , x′
n, one for each sublattice,

and also labeled by two weights λ and λ′: φλ,λ′ (x, x′). The
corresponding scaling dimensions xλ,λ′ also depend on two
weights. The general scaling observables satisfy the Abelian
fusion

φλ1,λ
′
1
(x, x′)φλ2,λ

′
2
(x, x′) = φλ1+λ2,λ

′
1+λ′

2
(x, x′). (36)

As we discussed above in Sec. III B, the observables φλ,λ′

are in direct correspondence with the pure-scaling eigenfunc-
tion observables satisfying analogous properties, including
Abelian fusion, Eq. (31).

Secondly, another distinctive feature of the chiral classes is
that the groups G and K involved in the construction are not
semisimple. The nonsemisimplicity allows for the presence of
the Gade term in the sigma model action [the second term
in Eqs. (1) and (28)]. This term then leads to contributions in
the scaling dimensions of generalized multifractal observables
and thus should be taken into account in the analysis of the
Weyl symmetry of the spectra of generalized multifractality.
Results of the analysis of the Weyl symmetries performed in
Appendix B are presented in Sec. III D.

It is worth mentioning here that there is an alternative
method of construction of pure scaling operators in the sigma
model that employs the Cartan decomposition G = KAK , and
leads to the so-called K-invariant (or K-radial) eigenfunctions
Pλ,λ′ (Q). These functions naturally appear in the perturbative

RG construction described in detail in Appendix A, see, for
example, Eq. (A13). While the K-radial scaling operators
Pλ,λ′ (Q) do not satisfy Abelian fusion, they belong to the same
G representation as the N-radial functions φλ,λ′ (Q), and have
the same RG eigenvalues (the scaling dimensions) xλ,λ′ .

D. Weyl symmetries: Specifics for chiral classes

The generalized multifractal scaling dimensions xλ in all
symmetry classes satisfy a set of symmetry relations that fol-
low from the symmetry of their weights λ under the action of a
Weyl group W . The Weyl group W depends on the symmetry
class, and may involve two types of actions on components qi

of the weights: reflections

qi → −ci − qi, (37)

and permutations

qi → q j + (c j − ci )/2, q j → qi + (ci − c j )/2. (38)

In both cases, the numbers ci are components of the so-called
Weyl vector ρ (which was already introduced in Sec. III A)
equal to the half-sum of positive restricted roots. For the chiral
classes these are

c j = 1 − 2 j, class AIII, (39)

c j = 1
2 − j, class BDI, (40)

c j = 2 − 4 j, class CII. (41)

In all symmetry classes studied by us earlier in
Refs. [8,9,11], the relevant Weyl groups included both reflec-
tions and permutations. Let us call such a group “type A”
and denote it by WA. On the other hand, in the chiral classes
the Weyl groups include only permutations. At first sight, this
substantially reduces implications of the Weyl symmetry. It is
important, however, that the Weyl groups in chiral classes in-
clude permutations between all components of both weights,
which can be of three different types, see Appendix B 2 b [Eq.
(B66) and the text around it] for detail,

qi → q j + (c j − ci )/2, q j → qi + (ci − c j )/2,

q′
i → q′

j + (c j − ci )/2, q′
j → q′

i + (ci − c j )/2,

qi → −q′
j − (ci + c j )/2, q′

j → −qi − (ci + c j )/2. (42)

Let us call such a group “type AIII” and denote it by WAIII.
Thus, the most general observables φλ,λ′ (x, x′) characterized
by two different weights λ �= λ′ satisfy the type AIII symme-
try relations,

xλ,λ′ = xw(λ,λ′ ), w ∈ WAIII. (43)

Notice that if the weights λ and λ′ contain equal entries
at the position i: qi = q′

i, then the last type of exchange in
Eq. (42) is equivalent to simultaneous reflections (38) of both
qi and q′

i! This leads to the following result: For “balanced”
observables characterized by two equal weights λ′ = λ, the
dimensions xλ,λ enjoy both the permutation and reflection
Weyl symmetries (i.e., those of class A) in the sense that

xλ,λ = xw(λ),w(λ), w ∈ WA, (44)

which are among the class-AIII symmetries (43).
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The natural equivalence of the two sublattices also implies
that the scaling dimensions should be symmetric under the
exchange of the two weights that label them

xλ,λ′ = xλ′,λ. (45)

This sublattice symmetry combined with a perturbative anal-
ysis also leads to the above results (43) and (44), see
Appendix B for details.

IV. MODEL

The model that we study numerically is defined by a bipar-
tite tight-binding Hamiltonian defined on a square lattice,

H =
∑
i, j

[
c†

i, jt
(x)
i, j ci+1, j + c†

i, jt
(y)
i, j ci, j+1 + H.c.

]
. (46)

Clearly, this Hamiltonian possesses chiral symmetry since the
only nonzero matrix elements are nearest-neighbor hopping
terms, which are off-diagonal in the sublattice space. The
hoppings t (x) or t (y) are complex, so that the time-reversal
symmetry is broken, and the model belongs to the unitary
chiral symmetry class AIII. We leave numerical analyses of
generalized multifractality in models in the chiral orthogonal
(BDI) and the chiral symplectic (CII) classes to future studies.

We choose the following form of the hopping matrix ele-
ments:

t (x)
i, j =

{
e−δ (1 + vi, j ), i even,

1 + vi, j, i odd,

t (y)
i, j =

{
e−δ (1 + wi, j ), j even,

1 + wi, j, j odd.
(47)

The disorder is introduced via complex terms vi, j and wi, j ,
whose real and imaginary parts are independent random vari-
ables with a box distribution on [−W/2,W/2]. Further, δ is a
real parameter that controls the staggering. For δ = 0 there is
no staggering, while for δ → ±∞ the staggering is maximal
and the system breaks up into 2 × 2 plaquettes. The model is
illustrated in Fig. 1, where the sites of two sublattices A and
B are shown by red and blue dots, respectively. Because of
staggering, δ �= 0, there are strong and weak bonds, which are
presented by thick and thin lines, respectively.

The metal-insulator transition in this model was explored
numerically in Ref. [51]. In that paper, we determined the
metal-insulator transition line Wc(δ) in the parameter plane
spanned by the disorder W and the staggering δ (see Fig. 3
in Ref. [51]), and investigated the behavior of various ob-
servables. The results were in agreement with analytical
predictions of Ref. [36] (within the σ -model formalism) of
the RG flow and the metal-insulator transition driven by vor-
tices. Among other observables, we studied in Ref. [36] the
“conventional” multifractality (the scaling of eigenfunction
moments) at the critical line. In Sec. V below, we extend
this analysis to the generalized multifractality at the metal-
insulator transition line Wc(δ). It is worth noting that, in the
absence of staggering (δ = 0), we do not find a transition up
to the strongest disorder studied (W = 20). It is thus likely
that for δ = 0 the model remains in the metallic phase for all
values of disorder W .

A B

FIG. 1. Schematic presentation of the tight-binding model (47)
used for numerical investigation of the generalized multifractality.
The sites of two sublattices A and B are shown by red and blue colors,
respectively. In view of a nonzero staggering δ, there are strong (thin
lines) and weak (thick lines) bonds.

FIG. 2. Generalized multifractality in the metallic phase: disor-
der W = 0.3, no staggering (δ = 0). Scaling of averaged balanced
eigenfunction observables with r/L is shown in three panels (upper
row and bottom left) for polynomial observables with q ≡ |λ| = 2, 3,
and 4, respectively. Data points for the smallest r ∼ 1 are shown by
large dots. The fitted slopes (straight lines) determine the exponents

λ,λ. Bottom right panel: Density of states ν(E ) for different system
sizes L = 24, . . . , 192. There is a very weak power-law dependence
ν(E ) ∼ Eα with α ∼ −0.01 (straight line).
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FIG. 3. Generalized multifractality in the metallic phase: disor-
der W = 0.3, no staggering (δ = 0). Left panels: exponents x(qm

1 ),(qm
1 )

for m = 1 (top), m = 2 (middle), and m = 3 (bottom). Black
symbols are numerical data; red dotted lines represent parabolic
approximation xλ,λ = −2bzλ with b = 0.045. The parabolicity holds
with a high accuracy as expected for week disorder (i.e., large con-
ductivity, σ = 1/b � 22). Deviations at large q1 in the bottom panel
are due to insufficient averaging. Right panels: same data shown as
−x(qm

1 ),(qm
1 )/z(qm

1 ).

In Sec. V, we carry out the generalized-parabolicity anal-
ysis for the metallic phase, W < Wc(δ). In Ref. [36], the
model defined above was used to study numerically the
“conventional” multifractality in this phase. Here, we choose
for this purpose a slightly modified model, with imaginary
parts of vi, j and wi, j having a box distribution on [0,1] (the
real parts are still characterized by the box distribution on
[−W/2,W/2] as above). While both models have similar
properties, finite-size effects in the metallic phase turn out to
be somewhat weaker in the latter model.

V. NUMERICAL STUDY OF GENERALIZED
MULTIFRACTALITY: METALLIC PHASE

We perform numerical studies of the generalized multifrac-
tality by using the tight-binding model defined in Sec. IV.
Employing sparse-matrix libraries, we extract a few wave
functions around zero energy for systems of linear sizes L
between 24 and 1024. For each realization, we calculate the
generalized-multifractality observables Pλ,λ′ [ψ] as defined in
Sec. III B. The spatial arguments ri of all involved wave func-
tions are chosen within a distance r  L from their “center of
mass”; the smallest r is of order of the lattice spacing.

In the numerical studies in the present paper, we focus
on two classes of the generalized-multifractality observables:
one-sublattice observables Pλ,(0)[ψ] and balanced observables
Pλ,λ[ψ]. For each simulation, we perform ensemble averaging
over 105 configurations of disorder and over L2 points in the
sample. The scaling of 〈Pλ,λ′ [ψ]〉 with the system size L yields
the generalized-multifractality exponents 
λ,λ′ . The analysis
proceeds along the lines of Refs. [8,10,11], where more details
on the numerical scaling analysis of the generalized multifrac-
tality are provided. Our first goal here is to verify correctness
of the analytical construction of the pure-scaling observables
Pλ,λ′ [ψ].

Within one-loop approximation, the sigma-model RG
predicts [see Eq. (15) above as well as Eq. (A20) in Ap-
pendix A 2] a generalized parabolic form of the spectrum xλ,λ′

with two independent parameters b and xν ,

xλ,λ′ � −b(zλ + zλ′ ) + (|λ| − |λ′|)2xν . (48)

We recall (see Sec. III A) that zλ are eigenvalues of the class-A
Laplacian, b = 1/σ , and that the exponents xλ,λ′ and 
λ,λ′

are related via xλ,λ′ = 
λ,λ′ + (|λ| + |λ′|)xν [see Eq. (33)].
Further, the exponent xν controls the scaling of the density
of states,

ν(L) ∼ L−xν , ν(E ) ∼ Eαν , αν = xν

2 − xν

. (49)

The one-loop approximation is parametrically controlled
when the dimensionless conductivity is large, σ 
 1. Cor-
rections to Eq. (48) predicted by the sigma-model are of the
order σ−4; they break the generalized parabolicity. It is thus
expected from analytical consideration that for a “bad metal”,
with a not too large σ , deviations from parabolicity should
become sizable. Verification of these predictions (parabolicity
deeply in the metallic phase and its violation for smaller σ ,
i.e., stronger disorder) is another goal in this part of the paper.

A further important prediction of the field theory is the
Weyl symmetry, which is discussed in detail in Sec. III D.
It implies multiple relations between the generalized multi-
fractality exponents. In particular, the balanced exponents xλ,λ

obey invariance under the conventional Weyl reflections and
permutations as in class A. Relations that are relevant for our
analysis include

x(1),(1) = 0, x(2,1),(2,1) = 0, x(22 ),(22 ) = 0. (50)

Furthermore, the Weyl invariance predicts that the exponents
x(qm

1 ),(qm
1 ) should exhibit the symmetry q1 ←→ m − q1. The

numerics presented here allow us to verify these relations.
The Weyl relation x(1),(1) = 0 implies that


(1),(1) = −2xν . (51)

We have checked that our results—with the exponent xν

obtained from the energy scaling of the density of states
ν(E ) (see, e.g., the lower right panel of Fig. 2)—are in full
consistency with this relation. Furthermore, it turns out that
this relation allows us to determine xν more accurately than
from the ν(E ) scaling. Thus, we use the numerically obtained

(1),(1) exponent to calculate xν , which is then in turn used to
translate other exponents 
λ,λ′ into xλ,λ′ .

In Fig. 2, we present numerical results for the scaling of
balanced (λ′ = λ) eigenfunction observables 〈Pλ,λ[ψ]〉 deeply
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TABLE II. Numerically determined scaling exponents of generalized multifractality for polynomial eigenstate observables with q ≡ |λ| �
4 in the metallic phase (disorder W = 0.3, 1.0, and 3.0; no staggering). In the left part of the table, balanced exponents xλ,λ are presented.
The right half of the table reports one-sublattice exponents xλ,(0). To translate eigenfunction exponents 
λ,λ′ into field-theoretical operator
dimensions xλ,λ′ , the values xW =0.30

ν = −0.008, xW =1.00
ν = −0.037, and xW =3.00

ν = −0.295 of the density-of-states exponent were used, as
obtained from the relation 
(1),(1) = −2xν . To emphasize the generalized parabolicity and deviations from it, the exponents are divided by bW

obtained from the parabolic approximation to x(q),(q) in the range q ∈ [0, 2]. The obtained values of bW are bW =0.30 = 0.045, bW =1.00 = 0.083,
and bW =3.00 = 0.24.

xnum
λ,λ /bW (xnum

λ,(0) − |λ|2xν )/bW

rep. λ W = 0.30 W = 1.00 W = 3.00 −2zλ W = 0.30 W = 1.00 W = 3.00 −zλ

(2) −4.046 ± 0.030 −3.985 ± 0.028 −4.589 ± 0.100 −4 −1.990 ± 0.006 −1.951 ± 0.007 −1.601 ± 0.015 −2
(12) 4.017 ± 0.011 3.877 ± 0.014 3.990 ± 0.023 4 1.979 ± 0.006 1.940 ± 0.006 2.307 ± 0.014 2
(3) −12.280 ± 0.164 −12.190 ± 0.233 −11.490 ± 0.374 −12 −5.995 ± 0.022 −5.826 ± 0.029 −3.161 ± 0.080 −6
(2, 1) 0.040 ± 0.046 −0.083 ± 0.054 0.097 ± 0.180 0 −0.005 ± 0.014 0.024 ± 0.020 1.833 ± 0.105 0
(13) 11.740 ± 0.019 11.540 ± 0.021 11.320 ± 0.081 12 5.886 ± 0.015 5.833 ± 0.016 7.582 ± 0.065 6
(4) −24.510 ± 0.787 −23.480 ± 0.848 −18.520 ± 0.649 −24 −12.050 ± 0.056 −11.440 ± 0.120 −2.990 ± 0.175 −12
(3, 1) −8.194 ± 0.261 −8.019 ± 0.295 −5.831 ± 0.567 −8 −4.000 ± 0.030 −3.715 ± 0.065 2.458 ± 0.294 −4
(22) 0.204 ± 0.106 −0.256 ± 0.226 1.358 ± 0.276 0 0.032 ± 0.027 0.071 ± 0.062 5.170 ± 0.282 0
(2, 12) 7.752 ± 0.059 7.634 ± 0.107 7.422 ± 0.289 8 3.927 ± 0.027 4.025 ± 0.037 9.180 ± 0.182 4
(14) 23.940 ± 0.032 23.050 ± 0.036 21.830 ± 0.181 24 12.040 ± 0.027 11.770 ± 0.031 16.440 ± 0.201 12

in the metallic phase (W = 0.3, no staggering). Specifically,
polynomial observables with q ≡ |λ| = 2, 3, and 4 are dis-
played. The data are presented on log-log scale, so that
straight lines correspond to power-law scaling with r/L, and
their slopes to scaling exponents 
λ,λ. The results confirm
that the analytically derived composite objects Pλ,λ[ψ], see
Sec. III, are indeed pure-scaling observables. Large dots rep-
resent the data for the smallest r ∼ 1. Straight lines are
power-law fits to these data. The bottom right panel of Fig. 2
shows the density of states ν(E ) for system sizes in the
range L = 24, . . . , 192. The data exhibit a power-law be-
havior ν(E ) ∼ Eα with a very small negative exponent, α ∼
−0.01. As discussed above, a more accurate way to extract the
density-of-state exponent is to use the relation (51): 
(1),(1) =
−2xν . For the disorder W = 0.3, this yields xν = −0.008.
This value is used to convert the exponents 
λ,λ to xλ,λ, which
are presented in Table II. As seen from this table (and dis-
cussed in more detail below), the W = 0.3 exponents satisfy
the generalized parabolicity with an excellent accuracy, in full
agreement with analytical predictions for weak disorder.

In Fig. 3, the generalized parabolicity at weak disorder
(W = 0.3) is probed in a different way. We show there the
balanced exponents x(qm

1 ),(qm
1 ) for m = 1, m = 2, and m = 3.

The parabolic approximation for them [see Eqs. (15) and (18)]
reads

x(qm
1 ),(qm

1 ) � −2bz(qm
1 ) ≡ 2mbq1(m − q1). (52)

This approximation holds with a very good accuracy as ex-
pected. Strong deviations of numerical data from a parabola
that are observed for the m = 3 case for q > 2 are explained
by the fact that the ensemble averaging becomes insufficient
for high-order correlators.

In Table II, we collect numerical results for scaling expo-
nents xλ,λ and xλ,(0) corresponding to polynomial observables
with q ≡ |λ| � 4 in the metallic phase. Specifically, we con-
sider three values of disorder, W = 0.3 (as in Fig. 2), W =
1.0, and W = 3.0, with no staggering, δ = 0, in all the cases.

We also show in the table statistical error bars (one standard
deviation). Within the generalized-parabolicity approximation
(that holds in the one-loop order), we have

xλ,λ = −2bzλ, xλ,(0) = −bzλ + |λ|2xν . (53)

To demonstrate the accuracy of the parabolic approximation
and to quantify the deviations, we show in Table II the ratios
xλ,λ/bW and (xλ,(0) − |λ|2xν )/bW . The first of them is equal to
−2zλ and the second one to −zλ in the parabolic approxima-
tion; the corresponding values are also included in the table for
convenience of comparison. The parameters bW are obtained
by fitting the exponents x(q),(q) to the corresponding parabolic
approximation 2bq(1 − q) within the range q ∈ [0, 2]; the
results are

bW =0.30 = 0.045, bW =1.00 = 0.083, bW =3.00 = 0.24.

(54)

By inspecting the table, we see that, whereas deviations from
the generalized parabolicity are very small for weak disorder
(W = 0.3), they become progressively stronger when the dis-
order increases, as expected.

As we have shown analytically, two of the exponents pre-
sented in the table—x(2,1),(2,1) and x(22 ),(22 )—should be in fact
exactly zero. We observe that the Weyl-symmetry relations
x(2,1),(2,1) = 0 and x(22 ),(22 ) = 0 indeed perfectly hold for our
numerical values when statistical error bars (which are rather
small) are taken into account. The only exception is the expo-
nent x(22 ),(22 ) for the strongest disorder W = 3.0, in which case
the deviation from zero is five times larger than the statistical
standard deviation. These indicates some systematic errors in
this case: presumably, the averaging is not fully sufficient,
or finite-size corrections to scaling intervene, or both. We
note that the exponent x(22 ),(22 ) corresponds to an observable,
which is of the 16th order in wave-function amplitudes, so that
emergence of such a deviation (still quite small) in the case of
a rather strong disorder is not so surprising.
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FIG. 4. Generalized multifractality at the metal-insulator transition: disorder W = 0.3 and staggering δ = δc(0.3) = 1.64 (left side), and
W = 0.5, δ = δc(0.5) = 1.22 (right side). For each of the disorder values, left panels present exponents x(qm

1 ),(qm
1 ) for m = 1 (top), m = 2

(middle), and m = 3 (bottom), whereas right panels show the same data in the form −x(qm
1 ),(qm

1 )/z(qm
1 ), as in Fig. 3. Black symbols are numerical

data; red dotted lines represent parabolic approximation xλ,λ = −2bzλ with b = 0.24 for W = 0.3 and b = 0.27 for W = 0.5.

It is worth recalling that the sigma-model coupling κ flows
to infinity in the metallic phase, see Sec. II. This implies a flow
to an infinite-randomness fixed point, with xν → −∞ (and,
correspondingly, αν → −1) for the density-of-states expo-
nent. The values of xν that we find numerically are, however,
rather small,

xW =0.30
ν = −0.008,

xW =1.00
ν = −0.037,

xW =3.00
ν = −0.295. (55)

The explanation for this was discussed in Sec. II: reaching
the ultimate infrared behavior in our model requires astro-
nomically large system sizes L. The exponents xν that we
find correspond to the accessible range of L; they are in fact
slowly changing with L. This applies also to most of the
generalized-multifractality exponents. A notable exception is
provided by the class of balanced exponents xλ,λ, which are
not influenced by the renormalization of xν [see Eq. (53)] and
thus should stay finite in the limit L → ∞.

VI. NUMERICAL STUDY OF GENERALIZED
MULTIFRACTALITY: METAL-INSULATOR TRANSITION

We turn now to a numerical investigation of the gener-
alized multifractality at the metal-insulator transition, which

is carried out analogously to the study of the metallic phase
in Sec. V. We perform this numerical analysis at five points
(W, δc(W )) on the critical line in the plane (W, δ) with W =
0.3, 0.5, 1.0, 2.0, and 3.0. The critical values of staggering
δc(W ) at which the transition occurs were determined in
Ref. [51], where transport properties and conventional mul-
tifractality of our model (46) were studied. They are

δc(0.3) = 1.64, δc(0.5) = 1.22, δc(1.0) = 0.73,

δc(2.0) = 0.33, δc(3.0) = 0.22. (56)

We focus here on balanced observables Pλ,λ, which allows
us to use the Weyl symmetry as an indicator of the accuracy
of the numerics. In Fig. 4, we present the behavior of the
exponents x(qm

1 ),(qm
1 ) as functions of q1 for W = 0.3 and W =

0.5. For each of these disorder values, the presentation of the
data is fully analogous to that in Fig. 3: the left panels show
x(qm

1 ),(qm
1 ) for m = 1, 2, and 3, and the right panels show the

ratio −x(qm
1 ),(qm

1 )/z(qm
1 ). The red dashed lines show the parabolic

approximation, xλ,λ = −2bzλ. For the x(q1 ),(q1 ) exponent, the
parabolicity holds with a good accuracy. In fact, there are de-
viations, as the panels −x(q1 ),(q1 )/z(1) show, but they are quite
small, on the level of a few percent. On the other hand, when
one considers the results for x(q2

1 ),(q2
1 ) and x(q3

1 ),(q3
1 ), strong devi-

ations from the generalized parabolicity become obvious. We
also note that the data are consistent with the Weyl symmetry,
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TABLE III. Numerically determined scaling exponents of generalized multifractality xλ,λ for balanced polynomial observables Pλ,λ with
q ≡ |λ| � 4 on the metal-insulator-transition line (W, δc(W )). The disorder values are W = 0.3, 0.5, 1.0, 2.0, and 3.0. For each disorder, the
staggering δ is fixed to the corresponding critical value, δc(W ) given by δc(0.3) = 1.64, δc(0.5) = 1.22, δc(1.0) = 0.73, δc(2.0) = 0.33, and
δc(3.0) = 0.22. Statistical errors are indicated.

xnum
λ,λ

rep. λ W = 0.3 W = 0.5 W = 1.0 W = 2.0 W = 3.0

(2) −0.972 ± 0.010 −1.054 ± 0.017 −1.515 ± 0.033 −1.628 ± 0.045 −1.657 ± 0.082
(12) 0.813 ± 0.003 0.883 ± 0.003 1.165 ± 0.006 1.247 ± 0.008 1.289 ± 0.009
(3) −2.590 ± 0.047 −2.780 ± 0.070 −3.671 ± 0.103 −3.786 ± 0.118 −3.602 ± 0.187
(2, 1) −0.021 ± 0.027 0.001 ± 0.022 0.014 ± 0.048 0.002 ± 0.071 −0.024 ± 0.070
(13) 2.223 ± 0.007 2.423 ± 0.007 3.107 ± 0.021 3.347 ± 0.025 3.526 ± 0.031
(4) −4.277 ± 0.099 −4.553 ± 0.123 −5.782 ± 0.175 −5.888 ± 0.184 −5.472 ± 0.277
(3, 1) −1.464 ± 0.078 −1.486 ± 0.064 −1.774 ± 0.120 −1.788 ± 0.164 −1.909 ± 0.177
(22) 0.048 ± 0.057 0.202 ± 0.036 0.313 ± 0.089 0.485 ± 0.077 0.345 ± 0.124
(2, 12) 1.468 ± 0.022 1.663 ± 0.032 2.196 ± 0.070 2.564 ± 0.051 2.577 ± 0.069
(14) 4.195 ± 0.013 4.564 ± 0.012 5.796 ± 0.044 6.337 ± 0.078 6.817 ± 0.084

which implies that the curves x(qm
1 ),(qm

1 ) possess a symmetry
q1 ←→ m − q1 and thus have a maximum at q1 = m/2.

In Table III, we show the critical exponents xλ,λ at the
metal-insulator transition, δ = δc(W ), for different disorder
strengths W . In analogy with Table II, we present results for
polynomial observables with q ≡ |λ| = 2, 3, and 4, and indi-
cate statistical errors (which grow with q for obvious reasons).

Let us first consider the values of the exponents with q = 2
and 3 (i.e., the first five lines of the table). A special role is
played here by the exponent x(2,1),(2,1), since the Weyl sym-
metry implies an exact equality x(2,1),(2,1) = 0. This equality
indeed holds to an excellent precision (well within the small
statistical error bars) for all values of W , thus providing a clear
confirmation of a high accuracy of our numerics. Another
important observation is a strong violation of the generalized
parabolicity, in full agrement with the above discussion of
Fig. 4. This is evident already after an inspection of values
of q = 2 exponents, which have a particularly high accuracy.
Indeed, for a spectrum satisfying generalized parabolicity, we
would have x(2),(2) = −x(12 ),(12 ). It is immediately seen from
the two upper lines of the table that this equality (and thus the
generalized parabolicity) is strongly violated.

One more striking result is an apparent nonuniversality of
the critical behavior: the exponents xλ,λ change when we move
along the critical line in the phase diagram. This corroborates
results of Ref. [51] on (the apparent) nonuniversality of other
observables characterizing the transition. The reason for this
was discussed in Ref. [51]: the sigma-model RG equations of
Ref. [36] predict a very slow flow along the critical line
towards the ultimate fixed point (which is expected to have a
zero conductivity and very strong multifractality). It is worth
recalling that a somewhat similar situation of an apparent
nonuniversality because of a slow RG flow towards an infrared
fixed point has been discussed above in the context of the
metallic phase.

We proceed now to a discussion of the q = 4 part of Ta-
ble III. Here, there is also an exponent that should be exactly
zero due to Weyl symmetry, x(22 ),(22 ) = 0. At variance with the
perfectly fulfilled Weyl-symmetry relation x(2,1),(2,1) = 0, we
observe substantial deviations of x(22 ),(22 ) from zero (several
times larger than statistical error) for W = 0.5 and stronger

disorder. This shows an importance of systematic errors (due
to insufficient averaging and/or finite-size corrections) and
provides an estimate of the magnitude of such errors for
q = 4 exponents. Note that these errors are still quite small in
comparison with a typical magnitude of q = 4 exponents. A
similar effect appeared for our strongest disorder (W = 3.0)
in the metallic phase, see Sec. V. As discussed there, the
emergence of such deviations for q = 4 observables (involv-
ing observables that are of the 16th order in wave-function
amplitudes) does not come as a big surprise.

VII. SUMMARY AND OUTLOOK

In this paper, we have explored generalized multifractality
in systems of chiral symmetry classes. On the analytical side,
we have studied all three chiral classes: chiral unitary AIII,
chiral orthogonal BDI, and chiral symplectic CII. We have
supported and complemented the analytical results by numer-
ical simulation of a class-AIII model on a bipartite square
lattice. These simulations were performed for several points
(W, δc(W )) on the critical line of metal-insulator transition
in the parameter plane (W, δ) spanned by disorder W and
staggering δ. Furthermore, we carried out the numerical anal-
ysis for several points (W, 0) in the metallic phase. Our main
results are as follows:

(1) We have developed a construction of pure-scaling
observables of generalized multifractality, both in the field-
theory (sigma-model) language and in terms of Hamiltonian
eigenfunctions, and verified it numerically. While it is largely
analogous to the corresponding construction for other symme-
try classes [8–11], there is one major difference. Specifically,
for chiral classes, the observables are labeled by two multi-
indices (weights), λ = (q1, . . . , qm) and λ′ = (q′

1, . . . , q′
m′ ),

corresponding to two sublattices.
(2) We have explored the impact of the Weyl symmetry

for the generalized-multifractality exponents xλ,λ′ in chiral
classes. At variance with other symmetry classes, the Weyl
group for the chiral classes contains only permutations but not
reflections. This substantially reduces the impact of the Weyl
symmetry if one considers exponents xλ,(0) corresponding to
one-sublattice observables. At the same time, we show that,
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for generic observables, the allowed symmetry transforma-
tions include also permutations between the sublattices. This
implies, in particular, that exponents for balanced (λ = λ′)
observables satisfy symmetries xλ,λ = xw(λ),w(λ), with w be-
longing to the conventional Weyl group (like, e.g., in class A),
including both permutations and reflections.

(3) Deeply in the metallic phase (large conductivity,
σ 
 1), the sigma-model RG predicts the generalized-
multifractality spectrum satisfying the generalized parabolic-
ity (up to corrections of order σ−4). At variance with other
symmetry classes, such a generalized parabolic spectrum in
chiral classes is parametrized by two (rather than by one)
parameters. The second parameter is associated with an addi-
tional U(1) degree of freedom, which is a peculiarity of the
sigma models for the chiral classes. Our numerical results
for the metallic phase fully confirm these predictions of the
generalized parabolicity for weak disorder. At the same time,
with increasing disorder (i.e., for smaller σ ), we observe clear
deviations from the generalized parabolicity, in consistency
with analytical expectations. On the other hand, the Weyl
symmetry holds for balanced observables even for stronger
disorder—again in agreement with analytical predictions.

(4) Numerical results for balanced exponents xλ,λ at the
metal-insulator transition also exhibit the Weyl symmetry. At
the same time, we find that the generalized parabolicity is
strongly violated. This implies, according to Ref. [8], that
the local conformal invariance is violated (at least partly) at
these 2D transitions, in analogy with several 2D Anderson-
localization critical points studied earlier [8,10,11].

The numerically determined exponents xλ,λ exhibit an
apparent nonuniversality along the critical line. This is con-
sistent with the analytical prediction of a very slow RG flow
along the critical line towards the ultimate fixed point [36,51],
and with numerical results on the apparent nonuniversality of
other observables at criticality in the same model [51].

Before closing the paper, we briefly discuss some prospects
for future investigations of chiral-class systems. The analyt-
ical results derived here allow one to extend the numerical
analysis of the generalized multifractality in chiral classes
(performed in this work for a 2D class-AIII model on a square
lattice) in several directions. First, numerical investigations of
different models that would provide access to the ultimate in-
frared critical behavior is of much interest. Second, we foresee
an extension of our numerical studies to models of the other
two chiral classes (BDI and CII). Third, investigations of the
generalized multifractality at chiral Anderson transitions in
three dimensions would be important. (Such transitions were
recently discussed in Refs. [55,56].) Fourth, the generalized
multifractality may serve as a sensitive tool of “stacked criti-
cality” that is conjectured to emerge on surfaces of class-AIII
topological superconductors [57]. Fifth, we envision that our
results can be extended to non-Hermitian Anderson transitions
that currently attract much interest [58–61] and are closely
related [61–63] to models of chiral symmetry classes. Sixth,
the status of conformal invariance and its violation requires a
better understanding. In this paper, we have demonstrated a
strong violation of the generalized parabolicity and thus of
local conformal invariance. At the same time, we found in
Ref. [51] that the invariance with respect to a particular global
conformal transformation—the exponential map [64]—holds

within the numerical accuracy. It remains to be understood
whether Anderson transitions possess a partial conformal
symmetry. The situation in this respect is similar to that for
2D critical points in other disordered systems. Finally, one
may attempt an extension of our results (both analytical and
numerical) to interacting models; some analytical results in
this direction are available for other symmetry classes [65,66].
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APPENDIX A: RG FOR SIGMA MODELS OF CHIRAL
SYMMETRY CLASSES AND ONE-LOOP

RENORMALIZATION OF COMPOSITE OPERATORS

Target manifolds G/K for the fermionic-replica sigma
models of chiral classes are U(n) for the class AIII, U(n)/O(n)
for the class CII, and U(n)/Sp(n) with even n for the class
BDI, see Table I. Thus, in class AIII (i.e., in the absence of
time-reversal symmetry), the sigma-model field U is a generic
unitary matrix. In classes CII and BDI, there are additional
constraints due to time-reversal symmetry. Specifically, in
class CII the unitary matrix U is symmetric, Ū ≡ U T = U ,
while for class BDI, the matrix field U satisfies Ū ≡ CU T C =
U with C = σy acting in time-reversal space. (In the latter
case, the size of the matrix is doubled to incorporate the
time-reversal symmetry.)

The action is given by Eq. (1) of the main text,

S[U ] = −
∫

d2r
[ σ

8πs
Tr(U −1∇U )2 + κ

8πs
(TrU −1∇U )2

+ i
πρ0

2s
ε Tr(U + U −1)

]
, (A1)

where s = 1 for the class AIII and s = 2 for the classes BDI
and CII, σ is the conductivity in units of e2/πh, ρ0 is the bare
density of states, and ε is a running coupling whose bare value
is the energy E .

1. Background-field RG formalism for the chiral classes

We begin by reviewing the RG formalism and the renor-
malization of coupling constants of the sigma-model action,
Eq. (A1). In this part of the presentation, we follow Ref. [36].
After this, in Sec. A 2, we extend the one-loop RG analysis to
composite operators describing the generalized multifractal-
ity.

Following Ref. [36], we parametrize the sigma-model
field as

U = V̄ ŨV, (A2)

where V̄ and V are slow fields whereas Ũ is a fast field. In
class AIII, the slow fields V̄ and V are independent unitaries.
In classes BDI or CII, V̄ and V are related by the respective
time-reversal operation

V̄ = V T , CII,
V̄ = CV T C, BDI,

(A3)

as the notation suggests.

104202-13



KARCHER, GRUZBERG, AND MIRLIN PHYSICAL REVIEW B 107, 104202 (2023)

a. Fast-mode action

For all three chiral classes, the D-dimensional sigma-
model target space is spanned by D − 1 traceless Hermitian
generators T a and the unit matrix 1. In class AIII, the target
space is the full unitary group U (n), and its dimension is
D = n2. In the class CII, the time-reversal symmetry con-
straint eliminates the U (n) generators that are antisymmetric,
yielding the dimension D = 1

2 n(n + 1), whereas in BDI the
symmetry constraint leaves D = 1

2 n(n − 1) degrees of free-
dom.

The fast field Ũ can be parametrized as

Ũ = eiW , W = n− 1
2 w01 + W1, W1 =

∑
a

waT a. (A4)

Here, w0 parametrizes the diagonal U (1) subgroup, while
T a are traceless generators fulfilling Tr(T aT b) = δab. Taken
together, T a and n−1/21 form an orthonormal basis in the
tangent space to the target manifold.

As a consequence of the tracelessness of the generators T a,
a term singular in the replica limit appears in their complete-
ness identity,

∑
a

T a
i j T

a
kl = −n−1δi jδkl +

⎧⎪⎪⎨
⎪⎪⎩

δilδ jk, AIII,

1
2 (δilδ jk + δikδ jl ), CII,

1
2 (δilδ jk + CikCjl ), BDI.

(A5)

As we will see, the divergent terms cancel with terms from
w0n− 1

2 contractions when we consider the RG of physical
operators.

With this parametrization, the gaussian fast-field action
becomes (discarding the energy term)

SL[W ] =
∫

d2r

8πs

{
(σ0 + nκ0)(∇w0)2 + σ0L−2(w0)2

+ σ0

∑
a

[(∇wa)2 + L−2(wa)2]

}
. (A6)

Here L is the running RG scale and a mass ∼1/L ensures
that W contains only fast modes [36]. The corresponding
propagators are

〈w0(q)w0(−q)〉 f = 4πs

(σ0 + nκ0)q2 + σ0L−2
, (A7)

〈wa(q)wa(−q)〉 f = 4πs

σ0q2 + σ0L−2
. (A8)

This leads to the one-loop integrals

I (0)
f =

∑
q

〈w0(q)w0(−q)〉 f

=
∫ a−1

d2q

(2π )2

4πs

(σ0 + nκ0)q2 + σ0L−2

= 2s

σ0 + nκ0
ln

(
L

a

)
, (A9)

I (a)
f =

∑
q

〈wa(q)wa(−q)〉 f

=
∫ a−1

d2q

(2π )2

4πs

σ0q2 + σ0L−2
= 2s

σ0
ln

(
L

a

)
, (A10)

where a−1 is the ultraviolet cutoff in the momentum space. In
the w0 contraction, this fast mode integral comes generically
with a factor n−1 [due to a factor n−1/2 in Eq. (A4)],

n−1
∑

q

〈w0(q)w0(−q)〉 f = 2s

σ0

[
n−1 − κ0

σ0
+ · · ·

]
ln

(
L

a

)
.

(A11)

The first term in square brackets on the right-hand side of
Eq. (A11) diverges in the replica limit n → 0. We expect,
however, that all RG functions have a finite replica limit.
Indeed, as we will see below, this singular term cancels with
singular terms from wa contractions.

b. Renormalization of σ and κ

As a first step in application of the RG formalism, we
recall the renormalization of the coupling constants σ and κ

as carried out in Ref. [36]. Upon integration over fast fields
Ũ , the effective action S[V̄ ,V ] depends only on the gauge-
invariant combination Us = V̄V of the slow fields. The action
in terms of Us takes the same form (A1) but with renormalized
couplings. Evaluating these renormalized couplings, one gets
the RG equations [36]

∂σ

∂ ln L
= −n + n O(1/σ ),

∂κ

∂ ln L
= 1 + O(1/σ ). (A12)

In the replica limit n → 0, they take the form (2) and (3). As
also emphasized in Sec. II, the absence of renormalization of
σ in the n → 0 limit holds to all orders of the perturbation
theory in all three chiral classes [29]. Also, ∂κ/∂ ln L = 1
is perturbatively exact in the class AIII [34]. These pertur-
batively exact statement are violated when one takes into
account vortices [36].

2. Renormalization of composite operators

After having reviewed the RG formalism and the renor-
malization of the couplings σ and κ , we turn to the
renormalization of composite operators representing the gen-
eralized multifractality. We will perform this RG analysis
within the one-loop approximation for all three chiral classes.
The results of this RG analysis in this section are presented in
Sec. III of the main text.

a. General analysis

It is well established [29,30,35], that gradientless pure-
scaling operators in chiral classes are labeled by two
multi-indices λ = (q1, . . . , qm) and λ′ = (q′

1, . . . , q′
m′ ). Here

λ characterizes the dependence on U , and λ′ the dependence
on U † ≡ U −1.

For the RG, we choose the pure-scaling composite in a
product form like Eq. (14) in Sec. III of the main text. As a
simple example for this form, consider polynomial operators
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of total degree |λ| + |λ′| = 2 for class AIII. (Here |λ| = ∑
i qi

and |λ′| = ∑
i q′

i.) It is easy to see that there are five such irre-
ducible representations. Choosing the operators invariant with
respect to U �→ kUk−1, we get the following pure-scaling
operators:

P(2),(0)[U ] = tr(U 2) − tr(U )tr(U ),

P(0),(2)[U ] = tr(U −2) − tr(U −1)tr(U −1),

P(1,1),(0)[U ] = tr(U 2) + tr(U )tr(U ),

P(0),(1,1)[U ] = tr(U −2) + tr(U −1)tr(U −1),

P(1),(1)[U ] = tr(U )tr(U −1). (A13)

In order to find scaling dimensions of the operators Pλ,λ′ ,
we employ the background field method described in Sec. A 1.
Specifically, as detailed in Sec. A 1, we split U in fast and
slow field, U = V̄ ŨV , see Eq. (A2), with the slow degrees of
freedom Us = V̄V and all the fast modes being contained in

Ũ = eiw0n− 1
2 +iW1 .

Scaling dimensions xλ,λ′ of the composite operators Pλ,λ′

are defined as

∂

∂ ln L
ln〈Pλ,λ′ [V̄ ŨV ]〉 f = −xλ,λ′ . (A14)

At one-loop level, the dimension xλ,λ′ by inspecting the lead-
ing logarithmic correction resulting from the renormalization,

〈Pλ,λ′ [V̄ ŨV ]〉 f =
[

1 − x(1)
λ,λ′ ln

(
L

a

)]
Pλ,λ′[V̄V ]. (A15)

Here the superscript “(1)” refers to the one-loop order. We
thus need to evaluate the fast-mode averages in the left-hand
side of Eq. (A15) to find the scaling dimensions. Let us begin
with considering the contribution of the U (1) part of the fast
field that is proportional to the identity matrix and therefore
factors out exactly,

Pλ,λ′[V̄ ŨV ] = eiw0n− 1
2 (|λ|−|λ′|)

× Pλ[V̄ eiW1V ]Pλ′[V −1e−iW1 (V̄ )−1].

(A16)

Evaluating the average of the U(1) fast-mode factor, we get

〈eiw0n− 1
2 (|λ|−|λ′|)〉 f

= 1 − 1

2n
(|λ| − |λ′|)2

∑
q

〈w0(q)w0(−q)〉

= 1 − (|λ| − |λ′|)2 s

σ0

[
n−1 − κ0

σ0
+ · · ·

]
ln

(
L

a

)
.

(A17)

There is a contribution here that is divergent in replica limit
n → 0. As was pointed out in Sec. A 1, such contributions
originating from the divergent (at n → 0) term in Eq. (A11)
generically cancel with singular terms originating from the
structure factors (A5). Indeed, the divergent contribution from

the contractions of the wa fields in W1 reads

− n−1

(
1

2
|λ|(|λ| − 1)i2 + |λ|1

2
i2 + 1

2
|λ′|(|λ′| − 1)(−i)2

+|λ′|1

2
(−i)2 + |λ′||λ|i(−i)

)
I f (a)

= (|λ| − |λ′|)2 s

σ0
n−1 ln

(
L

a

)
, (A18)

which cancels exactly with the singular term in Eq. (A17).
As a consequence, we obtain for the fast mode average in

the one-loop order

〈Pλ,λ′[V̄ ŨV ]〉 f =
[

sκ0(|λ| − |λ′|)2

σ 2
0

ln

(
L

a

)
Pλ,λ′[V̄V ]

+ 〈Pλ,λ′[V̄ eiW1V ]〉(ns)
f

]
. (A19)

The superscript “(ns)” here indicates that the corresponding
fast-mode average is understood as a nonsingular part, i.e.,
without the singular (1/n) contribution of the W1 contractions.

To evaluate the last term on the right-hand side of
Eq. (A19), we recall that, in the one-loop order, RG eigenval-
ues are proportional to eigenvalues zλ of the Laplace operator
on the corresponding symmetric space [8,11,67,68]. This
yields, in the one-loop order,

xλ,λ′ = −b(zλ + zλ′ ) − sκ0

σ 2
0

(|λ| − |λ′|)2, (A20)

where b is a prefactor (to be determined below) and zλ are
Laplace-operator eigenvalues on the symmetric spaces gener-
ated by W1 modes, i.e., SU(n) for class AIII, SU(n)/Sp(n) for
class BDI, and SU(n)/SO(n) for class CII. The explicit form
of zλ is

zλ =
∑

j

q j (q j + c j ), (A21)

where c j (with j = 1, 2, . . .) are coefficients of the half-
sum of positive roots for the corresponding symmetric space,
which are given by [9]

c j = 1 − 2 j, class AIII, (A22)

c j = 1
2 − j, class BDI, (A23)

c j = 2 − 4 j, class CII. (A24)

It remains to determine the prefactor b in Eq. (A20) for
each of the three chiral classes. Since b originates from
the one-loop integral (A10), it is clear that b ∼ 1/σ0 up
to a numerical factor. To fix the constant, it is sufficient
to evaluate the required average 〈Pλ,λ′[V̄ eiW1V ]〉(ns)

f for one
nontrivial choice of λ, λ′. For the classes BDI and CII, the
simplest choice λ, λ′ = (1), (0) does the job. For the class
AIII, we have z(1) = 0, so that we choose λ, λ′ = (2), (0) to
determine b.
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b. Class AIII

For λ, λ′ = (2), (0), the last term in the square brackets in
Eq. (A19) is

〈tr(V̄ ŨVV̄ŨV ) − tr(V̄ ŨV )tr(V̄ ŨV )〉(ns)
f , (A25)

with Ũ = eiW1 . We expand this to the second order in W1 and
evaluate the contractions. Terms with both factors W1 coming
from the same fast field Ũ vanish in the replica limit (n → 0),
since we have in class AIII〈

1

2
(iW1)2

〉(ns)

f

= −n
1

σ0
ln

(
L

a

)
1. (A26)

We are thus left with the following terms:

〈tr(V̄ iW1VV̄ iW1V )〉(ns)
f = − 2

σ0
ln

(
L

a

)
tr(V̄V )tr(V̄V ),

〈tr(V̄ iW1V )tr(V̄ iW1V )〉(ns)
f = − 2

σ0
ln

(
L

a

)
tr(V̄VV̄V ).

(A27)

Combining them, we obtain

〈P(2),(0)[V̄ eiW1V ]〉(ns)
f = 2

σ0
ln

(
L

a

)
P(2),(0)[V̄V ]. (A28)

Since z(2) = 2 in class AIII according to Eq. (A21), we find
for the coefficient b in Eq. (A20)

b = 1

σ0
, class AIII. (A29)

c. Class CII

For λ, λ′ = (1), (0), the calculation is very simple. Ex-
panding 〈P(1),(0)[V̄ eiW1V ]〉(ns)

f = 〈tr[V̄ eiW1V ]〉(ns)
f up to the

second order in W1 and calculating the contraction, we get〈
tr

(
V̄

1

2
(iW1)2V

)〉(ns)

f

= − 1

σ0
ln

(
L

a

)
tr(V̄V ). (A30)

Since z(1) = −1 in class CII according to Eq. (A21), we find
for the coefficient b in Eq. (A20)

b = 1

σ0
, class CII. (A31)

d. Class BDI

The calculation for the class BDI proceeds in the same way
as for CII. We have, in analogy with Eq. (A30),〈

tr

(
V̄

1

2
(iW1)2V

)〉(ns)

f

= 1

σ0
ln

(
L

a

)
tr(V̄V ). (A32)

Since z(1) = 1
2 in class BDI according to Eq. (A21), we find

for the coefficient b in Eq. (A20)

b = 2

σ0
, class BDI. (A33)

e. One-loop scaling dimensions of composite operators: Summary

Summarizing, we have obtained Eq. (A20) for the one-loop
scaling dimensions of composite operators, with the coeffi-
cient b given by Eqs. (A29), (A31), and (A33). The derivation

was performed assuming that the sigma-model couplings are
given by their bare value σ0 and κ0 (i.e., the system is close
to their ultraviolet cutoff). Under RG, the couplings flow,
and the same analysis applies with σ0, κ0 replaced by their
renormalized values σ, κ . Thus, we have the following results
for one-loop scaling dimensions in three chiral classes:

xλ,λ′ = − 1

σ
(zλ + zλ′ ) − κ

σ 2
(|λ| − |λ′|)2, class AIII, (A34)

xλ,λ′ = − 1

σ
(zλ + zλ′ ) − 2κ

σ 2
(|λ| − |λ′|)2, class CII, (A35)

xλ,λ′ = − 2

σ
(zλ + zλ′ ) − 2κ

σ 2
(|λ| − |λ′|)2, class BDI. (A36)

f. Energy scaling

As is evident from the action (A1), the coupling ε (whose
bare value is the energy E ) couples to the operator P(1),(0) +
P(0),(1). According to Eq. (A20), this operator has the scaling
dimension

xν ≡ x(1),(0) = x(0),(1) = −bz(1) − sκ

σ 2
. (A37)

Explicitly, we have for each of the three chiral classes,

xν =

⎧⎪⎨
⎪⎩

− κ
σ 2 , AIII,

1
σ

− 2κ
σ 2 , CII,

− 1
σ

− 2κ
σ 2 , BDI.

(A38)

We use the notation xν for this exponent since it determines the
scaling of the density of states ν(E ). Specifically, ν(E ) ∝ Eαν

with αν = xν/(2 − xν ).

APPENDIX B: THE IWASAWA CONSTRUCTION

In this Appendix, we describe the construction of pure-
scaling σ -model observables φλ,λ′ (Q) based on the Iwasawa
decomposition, see Refs. [52,69] for rigorous definitions
and details. The pure-scaling observables obtained in this
way satisfy the Abelian fusion. The construction explicitly
demonstrates the difference between “spinless” and “spinful”
symmetry classes. We first focus on the “spinless” class AIII,
and emphasize the role of the U(1) sector on the scaling di-
mensions of the scaling operators and their Weyl symmetries.
Results for the other two chiral classes are presented at the
end of this Appendix.

1. Generalities

The Iwasawa construction has already been presented for
class A by two of us and M. Zirnbauer in Ref. [9], for class
C by the present authors and N. Charles in Ref. [8], and
for classes AII, D, and DIII in Ref. [11], so here we only
provide basic steps. Further details relevant to the three chiral
symmetry classes, AIII, CII, and BDI, studied in this paper,
will be presented in the subsequent sections.

It is sufficient for our purposes in this paper to work
within the bosonic replica formalism. This requires to take the
limit n → 0, where n is the number of bosonic replicas. The
replica limit will be often implicitly assumed in equations that
follow. The bosonic σ -model target spaces have the form
MB = G/K where G is a real noncompact group and K is
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its maximal compact subgroup. As we explained in Ref. [9],
the pure-scaling operators Pλ(Q) are joint eigenfunctions of
the G-invariant differential operators on G/K , also known as
the Laplace-Casimir operators. The Iwasawa decomposition
allows us to construct the desired eigenfunctions as the N-
radial spherical functions φλ(Q) on G/K .

An essential feature of the chiral classes that makes them
different from other symmetry classes, is that the groups
G and K are not semisimple. They have nontrivial centers
(Abelian subgroups) Z (G) and Z (K ) that lead to the factor-
ization

MB = R+ × M (s)
B , M (s)

B = G(s)/K (s), (B1)

where G(s) = G/Z (G) and K (s) = K/Z (K ) are semisimple
subgroups of G and K . The Abelian factors R+ are noncom-
pact counterparts of the U(1) factors present in the fermionic
replicas. The factorization allows for the presence of two
terms in the sigma-model action on MB: the usual kinetic term,
and the so-called Gade term, with two independent coupling
constants. The factor R+ and the associated Gade term give
a contribution to the scaling dimensions of generalized mul-
tifractal observables (gradientless operators) that affects the
Weyl symmetry of the MF spectra. For brevity, we will refer
to the relevant degrees of freedom as “the U(1) sector”.

The classical Iwasawa construction applies to semisim-
ple groups. However, we can largly ignore the issue of the
semisimplicity and work out the Iwasawa decomposition for
the full MB. It will be easy to impose the semisimplicity
(tracelessness) condition on the relevant Lie algebras at any
moment. We will see the role of the U(1) sector in the process,
and it will mostly present itself via the tracelessness condition
on the Abelian subalgebra a, which will lead to an equivalence
relation between N-radial functions on M (s)

B .
Another essential feature of the chiral classes is that the

matrices Q ∈ MB have (after an appropriate transformation,
see below) a block-diagonal form in the retarded-advanced
space. The two diagonal blocks are related to the two sub-
lattices in the microscopic models of the chiral symmetry
classes. Then we can separately construct generalized multi-
fractal observables for each sublattice from the corresponding
block of the Q matrix using two different weights (multi-
indices) λ and λ′.

We begin with the Cartan decomposition

g = k ⊕ p (B2)

of the Lie algebra of G, g = Lie(G), into a maximal com-
pact subalgebra k and the complementary subspace p. The
two parts of the Cartan decomposition are the +1 and −1
eigenspaces of a Cartan involution (a Lie algebra automor-
phism that squares to the identity) θ . If we write an element
Z ∈ g as Z = X + Y where X ∈ k and Y ∈ p, then θ (X +
Y ) = X − Y . The parts of the Cartan decomposition satisfy
the commutation relations

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k. (B3)

Then we choose a maximal Abelian subalgebra a ⊂ p and
consider the adjoint action of elements H ∈ a on g. The eigen-
vectors Eα of this action satisfy

[H, Eα] = α(H )Eα (B4)

and are called restricted root vectors, and the eigenvalues α

are called restricted roots. The dimension mα of the restricted
root space gα = span {Eα} is called the multiplicity of the
restricted root α, and can be bigger that 1. Restricted roots
are linear functions on a, and lie in the space a∗ dual to a. The
dimension n of both a and a∗ is the rank of the symmetric
space G/K . This is what we earlier called the number of
bosonic replicas. Basis elements of a will be denoted by Hk ,
so that a generic element H ∈ a is H = ∑n

k=1 hkHk . The dual
basis in a∗ is defined as elements xi such that xi(H ) = hi

(i = 1, . . . , n). In terms of this basis the restricted roots for
all chiral classes will be

±αi j = ±(xi − x j ), i < j. (B5)

These are ordinary roots with multiplicities mo known for all
classes, and the system of these roots in An−1 in the standard
Cartan notation. In what follows, we will compute these mul-
tiplicities for the three classes AIII, BDI, and CII that are the
focus of this paper.

A system of positive restricted roots is defined by choosing
some hyperplane through the origin of a∗, which divides a∗ in
two halves, and then defining one of these halves as positive.
We will choose αi j as the positive roots. The Weyl vector ρ is
defined as the half-sum of positive restricted roots accounting
for their multiplicities. In the replica limit n → 0 this gives

ρ = lim
n→0

1

2

∑
α>0

mαα =
∑

i

cixi, ci = mo

(
1

2
− i

)
. (B6)

Positive restricted roots generate the nilpotent Lie algebra n =∑
α>0 gα . The Iwasawa decomposition at the Lie algebra level

is

g = k ⊕ a ⊕ n. (B7)

Exponentiation of Eq. (B7) gives the global form of the
Iwasawa decomposition

G = NAK, (B8)

which allows us to represent any element g ∈ G in the form
g = nak, with n ∈ N = en, a ∈ A = ea, and k ∈ K = ek. This
factorization is unique once the system of positive restricted
roots is fixed, and provides a very useful parametrization of
the target space G/K . An element a ∈ A is fully specified by
n real numbers xi(ln a), which play the role of radial coor-
dinates on G/K . For simplicity, we will denote these radial
coordinates simply by xi. Thus xi may now have two different
meanings: either its original meaning as a basis element in
a∗, or the new one as an N-radial function xi(ln a) on G/K . It
should be clear from the context which of the two meanings
is being used.

Using the radial coordinates, the joint N-radial eigenfunc-
tions of the Laplace-Casimir operators on G/K take a very
simple exponential form

φμ(Q) = e(μ+ρ)(ln a), (B9)

where a is the a factor in the Iwasawa decomposition of g in
Q = g�g−1, and μ = ∑

i μixi is a weight vector in a∗ with
arbitrary real or even complex components μi. We will also
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use the notation

λ = −μ + ρ

2
= (q1, q2, . . . , qn), qi = −μi + ci

2
, (B10)

and the exponential functions (B9) become

φλ(x) = exp

(
−2

∑
i

qixi

)
. (B11)

To construct the exponential N-radial eigenfunctions ex-
plicitly as combinations of matrix elements of Q, we use the
key fact that there exists a choice of basis in which elements
of a and a ∈ A are diagonal matrices, while elements of n

are strictly upper triangular, and elements n ∈ N are upper
triangular with units on the diagonal. This has immediate
consequences for the matrix Q�: since elements of K com-
mute with �, the Iwasawa decomposition g = nak leads to
Q� = na2�n−1�, which is a product of an upper triangular,
a diagonal, and a lower triangular matrices. In this form the
lower principal minors of the advanced-advanced (AA) block
of Q� are simply products of diagonal elements of a2, which
are exponentials of the radial coordinates xi on G/K . These
minors are basic N-radial spherical functions on G/K , which
can be raised to arbitrary powers and multiplied to produce the
most general exponential functions (B9). A great advantage of
this construction is that is directly gives the general positive
scaling operators that can be raised to arbitrary powers and
satisfy the Abelian fusion rules.

The block-diagonal structure of the Q matrix mentioned
above makes it useful to completely separate the xi variables
that are used to describe observables on the two sublattices.
To this end, we will double the number of replicas, which en-
larges the root system to A2n−1, use xi and qi with i = 1, . . . , n
for one sublattice, and redefine

x′
i ≡ x2n+1−i, q′

i ≡ q2n+1−i, (B12)

also with i = 1, . . . , n, for the other sublattice. These two sets
of the radial variables are not overlapping. Then we consider
N-radial eigenfunction of the form

φλ,λ′ (x, x′) = exp

(
−2

n∑
i=1

qixi

)
exp

(
2

n∑
i=1

q′
ix

′
i

)
, (B13)

where the subscripts now stand for two independent weights

λ = (q1, q2, . . . , qn), λ′ = (q′
1, q′

2, . . . , q′
n), (B14)

one for each sublattice. For our purposes, it is important to
consider multi-indices λ and λ′ such that all components qi

and q′
i beyond the first m (respectively, m′) are zero. We omit

these zero components, using the notations

λ = (q1, q2, . . . , qm), λ′ = (q′
1, q′

2, . . . , q′
m′ ). (B15)

The replica limit n → 0 is taken at fixed m and m′.
Let us now present elements of the Iwasawa construction

that are the same for all symmetry classes. The groups G and
K will act in the space

C4n = C2 ⊗ C2 ⊗ Cn, (B16)

where the factors in the tensor product correspond in this order
to advanced-retarded, spin, and replica spaces. We will use the
standard Pauli matrices σi including the identity matrix σ0.

These act in either of the two first factors in Eq. (B16), and
we introduce short-hand notations for various tensor products

�i ≡ σi ⊗ In, σ jk ≡ σ j ⊗ σk,

� jk ≡ σ jk ⊗ In = σ j ⊗ σk ⊗ In. (B17)

For example �00 = I4n, and �30 = �, the usual � matrix
from the sigma model. In “spinless” symmetry classes, like
AIII and BDI studied in this paper, we can omit the second
factor in the space (B16), resulting in

C2n = C2 ⊗ Cn. (B18)

We will use a standard notation for the matrix units: Ei j

is the matrix with 1 in the ith row and jth column, all other
entries being zero. The symmetric and antisymmetric combi-
nations of matrix units are denoted as

E+
i j = Ei j + Eji, i � j, E−

i j = Ei j − Eji, i < j.

(B19)

Another common element in the constructions below are
basis rotations in the spaces (B16) or (B18) facilitated by the
unitary matrix

R = (σ0 + iσ1)/
√

2. (B20)

The conjugation by R permutes the Pauli matrices as follows:

Rσ1R−1 = σ1, Rσ2R−1 = −σ3, Rσ3R−1 = σ2. (B21)

2. Class AIII

In this section we present details of the Iwasawa con-
struction for class AIII, which is the simplest of the three
classes considered in this paper. In class AIII we have MB =
GL(n,C)/U(n), which is not irreducible and can be factorized
as

MB = GL(1,C)

U(1)
× SL(n,C)

SU(n)
= R+ × M (s)

B , (B22)

where R+ is the multiplicative group of positive real numbers.
As we mentioned in the previous section, we will ignore the
issues related to the presence of the Abelian factor R+, which
will be taken into account later.

We write the elements of g = gl(n,C) as matrices in the
space (B18)

Z = σ0 ⊗ X + iσ2 ⊗ Y =
(

X Y
−Y X

)
, (B23)

where all entries are n × n blocks in the RA space satisfying
X † = −X and Y † = −Y . This definition is equivalent to the
standard one where the algebra g = gl(n,C) consists of all
complex n × n matrices. In the semisimple case we also need
to impose the conditions

tr X = 0, trY = 0. (B24)

The elements Z ∈ g satisfy the conditions

Z†�3 + �3Z = 0, Z�2 − �2Z = 0, (B25)

and their combinations. The subalgebra u(n) is the one with
Y = 0.
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The Cartan involution is

θ (Z ) = −Z† = �3Z�3, (B26)

and its eigenspaces are characterised as follows: Z ∈ k if Y =
0, and Z ∈ p if X = 0. We have two groups of generators in
both k and p,

X (0)
i j = σ0 ⊗ E−

i j , Y (0)
i j = σ2 ⊗ E+

i j , (B27)

X (1)
i j = iσ0 ⊗ E+

i j , Y (1)
i j = iσ2 ⊗ E−

i j . (B28)

We choose the maximal Abelian subspace a ⊂ p as

a = span
{
Hk = σ2 ⊗ Ekk = Y (0)

kk /2
}
. (B29)

The tracelessness condition for the semisimple case is im-
posed by the requirement that we only consider elements
H = ∑

k hkHk ∈ a with
∑

k hk = 0. Straightforward compu-
tations show that the system of restricted roots is An−1 given
by Eq. (B5) with mo = 2. The positive restricted root vectors
are

E (0)
αi j

= X (0)
i j + Y (0)

i j , E (1)
αi j

= X (1)
i j + Y (1)

i j , (B30)

and the Weyl vector in the replica limit is

ρ =
n∑
i

cixi, ci = 1 − 2i. (B31)

We note that the values of the components ci obtained here are
the same as in class A.

The unitary transformation that makes the generators of a
diagonal and the generators of n strictly upper triangular is
accomplished with the help of the matrix

RAIII = R ⊗ In, (B32)

where the matrix U was defined in Eq. (B20). We also need
the permutation matrix � with elements �i j = δπ1(i), j where
the permutation π of the basis of the space (B18) is given by
π (i) = n + 1 − i for i ∈ 1, . . . , n. The unitary transformation

M̃ = �−1RAIIIMR−1
AIII� (B33)

leads to

�̃ = σ2 ⊗ In, (B34)

where In is the n × n matrix with units on the “antidiagonal”,
that is, (In)i j = δi,n+1− j . It is easy to show that in the new
basis the positive restricted root vectors Ẽ are strictly upper
triangular.

We can visualize the restricted root vectors for n = 3 as a
schematic matrix diagram by indicating the matrix positions
where various generators have nonzero entries. For brevity we
write α(i) ≡ Ẽ (i)

αkl
with indices suppressed since they can be

inferred from the matrix grid (empty cells have zero entries),

Ẽ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−x3 α(01) α(01)

−x2 α(01)

−x1

x1 α(01) α(01)

x2 α(01)

x3

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B35)

The block-diagonal structure of the matrix in Eq. (B35)
transfers to the subgroups A and N that are necessary to

construct the Q matrix. As a result, the Q = Q� matrix itself
is block-diagonal in the rotated basis. Indeed, we have

Q̃ = ñã2�̃ñ−1�̃. (B36)

The matrices ñ and ñ−1 are block diagonal, and each block
is upper triangular with units on the diagonals, while ã is
diagonal,

ã = diag(e−xn , . . . , e−x1 , ex1 , . . . , exn ). (B37)

Conjugation by �̃ converts ñ−1 into �̃ñ−1�̃, which is block
diagonal with lower-triangular blocks with units on the diag-
onal. This results in the following structure of the matrix Q̃:

Q̃ =
(
Q̃RR 0

0 Q̃AA

)
, (B38)

where the diagonal blocks in the RA space have the follow-
ing structure of their lower-right m × m submatrices for any
m � n:

Q̃(m)
RR =

⎛
⎜⎝1 . . . ∗

...
. . .

...

0 . . . 1

⎞
⎟⎠
⎛
⎜⎝e−2xm . . . 0

...
. . .

...

0 . . . e−2x1

⎞
⎟⎠
⎛
⎜⎝1 . . . 0

...
. . .

...

. . . 1

⎞
⎟⎠,

Q̃(m)
AA =

⎛
⎜⎝1 . . . ∗

...
. . .

...

0 . . . 1

⎞
⎟⎠
⎛
⎜⎝e2xn−m+1 . . . 0

...
. . .

...

0 . . . e2xn

⎞
⎟⎠
⎛
⎜⎝1 . . . 0

...
. . .

...

. . . 1

⎞
⎟⎠.

(B39)

The transformation of the basis used above is very natural
since it is directly related to the way the sublattice structure is
present in the Q matrix. In the original basis we have

Q =
(

QRR QRA

QRA −QRR

)
= σ3 ⊗ QRR + σ1 ⊗ QRA (B40)

(the restrictions on the blocks follow from the symmetries of
the problem), and it is easy to see that

RAIIIQR−1
AIII = σ0 ⊗ QRR + iσ3 ⊗ QRA

=
(

QRR + iQRA 0
0 QRR − iQRA

)
. (B41)

The two diagonal subblocks here are inverses of each other
and couple to the two sublattices. Thus, we can use the sub-
block Q̃RR to construct scaling observables for sublattice A,
and the subblock Q̃AA to construct scaling observables for
sublattice B.

As we mentioned above, it is useful to separate the xi

variables that are used to describe observables on the two
sublattices. To this end, let us double the number of replicas,
which enlarges the root system to A2n−1, and use xi with
i = 1, . . . , n for one sublattice, and x′

i ≡ x2n+1−i also with
i = 1, . . . , n for the other sublattice. These two sets of the
radial variables are not overlapping. Then we define two types
of elementary building blocks as determinants of the matrices
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Q̃(m)
RR and Q̃(m)

AA ,

dm(x) = det Q̃(m)
RR = exp

(
−2

m∑
i=1

xi

)
,

d ′
m(x′) = det Q̃(m)

AA = exp

(
2

m∑
i=1

x′
i

)
, (B42)

and form two N-radial eigenfunctions, each labeled by its own
weight vector,

φλ(x) =
n∏

k=1

dqk−qk+1

k (x) = exp

(
−2

n∑
i=1

qixi

)
,

φλ′ (x′) =
n∏

k=1

d
′ q′

k−q′
k+1

k (x′) = exp

(
2

n∑
i=1

q′
ix

′
i

)
. (B43)

As in other symmetry classes, the components of the weights
λ and λ′ are arbitrary complex numbers, and we denote qn+1 =
0. Products of such functions labeled by the pair of weights

φλ,λ′ (x, x′) = exp

(
−2

n∑
i=1

qixi

)
exp

(
2

n∑
i=1

q′
ix

′
i

)
(B44)

are the most general N-radial eigenfunctions with separated
contributions of the two sublattices. They can also be written
as φλ,λ′ = eρ+μ, where

ρ =
n∑

i=1

(cixi + c′
ix

′
i ), μ =

n∑
i=1

(μixi + μ′
ix

′
i ), (B45)

ci = 1 − 2i, μi = −2qi − ci,

c′
i = −ci = 2i − 1, μ′

i = 2q′
i − c′

i = 2q′
i + ci. (B46)

a. The role of the U(1) sector

Let us now consider the role of the U(1) sector. We use
the noncompact (bosonic) replicas, but many steps and equa-
tions will be similar to the ones in Ref. [29] by Gade and
Wegner, which we will denote as GW in this Appendix.

In the semisimple case the elements of a are restricted by
the condition

∑2n
k hk = 0, which implies ∀H ∈ a,

n∑
i=1

xi(H ) +
n∑
i

x′
i (H ) =

2n∑
i

hi = 0. (B47)

Thus, the dual basis in a∗ automatically satisfies

n∑
i=1

(xi + x′
i ) = 0, (B48)

which is a constraint selecting the subspace M (s)
B in the coset

G/K . Restricting our consideration to this subspace has sev-
eral consequences.

First of all, the representation of an arbitrary element of a∗
as μ = ∑n

i (μixi + μ′
ix

′
i ) is not unique. In this notation all μi

and μ′
i can be shifted by an arbitrary constant without chang-

ing the result. This defines an equivalence relations between
weights: μ ∼ μ + c(12n), and all members of the equivalence
class [μ] of a weight μ give the same N-radial function

φμ = eρ+μ on M (s)
B . Let us adopt the following terminology.

We will call

Qμ ≡
n∑

i=1

(μi + μ′
i ) = 2

n∑
i=1

(q′
i − qi ) = 2(|λ′| − |λ|) (B49)

the charge of the weight μ and the corresponding N-radial
function (B44).

Among all members of the equivalence class [μ] of a
weight μ there is a unique element

μ(0) = μ − Qμ

2n
(12n) (B50)

whose charge is zero, Qμ(0) = 0. We will call such weights
(and the corresponding N-radial functions) “neutral”. An ar-
bitrary N-radial exponential function on MB can be factorized
as

φμ = eρ+μ = eρ+μ(0)
e(Qμ/2n)

∑n
i=1(xi+x′

i ). (B51)

This factorization is analogous to Eq. (14) in GW. The first
factor here is neutral, and is thus a function on M (s)

B . The sum∑
i(xi + x′

i ) in the second factor plays the role of the generator
of the group R+ in Eq. (B1). It is the analog of the phase φ in
Eq. (14) in GW.

The second consequence of Eq. (B48) is that the radial
variables xi, x′

i are not independent on the space M (s)
B . Its di-

mension is 2n − 1 as opposed to the dimension of MB, which
is 2n. Then all commuting differential operators on MB should
separate into parts, one for M (s)

B and one for the “U(1)” part
R+, and the same is true for their eigenvalues and the scaling
dimensions of the scaling operators. This is seen in Eq. (15)
in GW, which for our purposes can be written in terms of the
scaling dimensions as

xλ,λ′ = x(s)
λ,λ′ + xU(1)

λ,λ′ . (B52)

Gade and Wegner have argued that

xU(1)
λ,λ′ = α(n)Q2

μ = 4α(n)(|λ| − |λ′|)2 (B53)

exactly to all orders in perturbation theory. The coefficient
α(n) depends on the coupling constant of the Gade term and
on the number of replicas n, see Eq. (16) in GW. The splitting
(B52) of the scaling dimension is singular in the sense that
both terms in the right-hand side diverge in the replica limit.
The divergences, however, cancel out and the result for xλ,λ′ is
finite as n → 0. It is easy to see how this works in the pertur-
bative RG at weak coupling, where the scaling dimensions at
one loop are proportional to the eigenvalues of the quadratic
Casimir-Laplace operators.

Let us denote ∂i ≡ ∂/∂xi, ∂ ′
i ≡ ∂/∂x′

i . Then on the space
MB the quadratic Casimir-Laplace operator is


 = 1

4
eρ

n∑
i=1

(
∂2

i + ∂ ′2
i

) ◦ e−ρ. (B54)

Its eigenvalues corresponding to the eigenfunctions (B44) are

zλ,λ′ = 1

4

n∑
i=1

(
μ2

i + μ′2
i

) = zA
λ + zA

λ′ , (B55)
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where we denote

zA
λ =

n∑
i=1

qi(qi + ci ), zA
λ′ =

n∑
i=1

q′
i(q

′
i + ci ). (B56)

These are eigenvalues of the quadratic Casimir-Laplace oper-
ator that appear in class A, as indicated by the superscript.

On the “U(1)” part R+ there is only one basic differential
operator: the total “momentum” operator

D = eρ

n∑
i=1

(∂i + ∂ ′
i ) ◦ e−ρ =

n∑
i=1

(∂i + ∂ ′
i ), (B57)

whose eigenvalue on e(Qμ/2n)
∑

i (xi+x′
i ) is Qμ. The function

(B51) on MB is also an eigenfunction of the operator D with
the eigenvalue Qμ. Therefore, the operator D nullifies all
neutral φμ. It is now easy to see that the combination


(s) = 
 − 1

2n
D2 (B58)

nullifies any function on R+, that is, a function of
∑

i(xi +
x′

i ) only. Thus, it is the quadratic Casimir-Laplace operator on
M (s)

B . The eigenvalue of this operator on φλ,λ′ is

z(s)
λ,λ′ = zλ,λ′ − Q2

μ

2n
. (B59)

It is easy to see that this eigenvalue is the same for any two
equivalent weights, that is, it depends only on the equivalence
classes [μ] of weights, as it should.

Now, the splitting of the scaling dimensions (B52) at the
level of a one-loop RG looks like

x1 loop
λ,λ′ = −bz(s)

λ,λ′ + α(n)Q2
μ

= −bzλ,λ′ +
(

α(n) + b

2n

)
Q2

μ. (B60)

It is the cancellation of the 1/n terms in the brackets in the
right-hand side that leads to a finite result

x1 loop
λ,λ′ = −b

(
zA
λ + zA

λ′
) + α̃(|λ| − |λ′|)2, (B61)

in agreement with the RG derivation in Appendix A 2 that
leads to Eq. (A34), see also Eq. (15) in the main text. This
result is consistent with Eqs. (17) and (22) in GW. The special
case λ = (1), λ′ = 0 corresponds to the scaling of the average
local density of states, so that

α̃ = xν, (B62)

where xν is the scaling dimension of the average local density
of states.

b. The Weyl and sublattice symmetry

Let us now discuss Weyl symmetries of the scaling dimen-
sions xλ,λ′ . We begin with the neutral observables. The charge
of the exponential function φλ,λ′ (B13) is given by Eq. (B49),
the function is neutral if

|λ′| = |λ|. (B63)

Neutral observables have equal total powers of matrix ele-
ments of the Q matrix (or the wave functions) from both
sublattices. This includes the cases when one of the weights

is zero (say λ′ = 0), while the other has to satisfy |λ| = 0.
An important subclass of neutral observables consists of “bal-
anced” observables with λ′ = λ.

The scaling dimensions of neutral observables are given
by the “semisimple” term x(s)

λ,λ′ in the decomposition (B52).
Their perturbative one-loop RG values are given by the first
(proportional to b) term in Eq. (B61) and thus satisfy Weyl
symmetries of class A, including the sign changes of μi or μ′

i
that lead to

qi → q̃i = −ci − qi, q′
i → q̃′

i = −ci − q′
i. (B64)

This is surprising in view of the fact that the relevant Weyl
group is that of the root system A2n−1, that is, the permutation
group S2n of all 2n radial coordinates xi and x′

i . This group
does not contain sign changes of xi’s. Thus, we expect that
in higher orders of perturbation theory the symmetries (B64)
should be violated. This is also expected because the com-
mutative algebra of invariant differential operators on M (s)

B is
generated via the Harish-Chandra isomorphism by the poly-
nomial invariants

Dk = eρ

n∑
i=1

(
∂k

i + ∂ ′k
i

) ◦ e−ρ (B65)

for all k = 1, 2, . . . , 2n. In particular, there are invariant oper-
ators of odd orders that are not invariant under sign changes
xi → −xi and x′

i → −x′
i . If these operators appear in the RG

transformation (and they generically are not forbidden), they
will spoil the symmetries (B64). Thus, the class-A-type Weyl
symmetry of the perturbative dimensions (B61) for generic
neutral observables is likely accidental.

Even without an explicit knowledge of the nonperturba-
tive scaling dimensions x(s)

λ,λ′ , we can use the general results
on the Iwasawa decomposition and the Harish-Chandra iso-
morphism, which tell us that x(s)

λ,λ′ should be symmetric with
respect to exchanges of any two components of μ = (λ, λ′).
We can distinguish three possibilities for such exchanges,

qi → q̃i = q j + c j − ci

2
, q j → q̃ j = qi + ci − c j

2
,

q′
i → q̃′

i = q′
j + c j − ci

2
, q′

j → q̃′
j = q′

i + ci − c j

2
,

qi → q̃i = −q′
j − ci + c j

2
, q′

j → q̃′
j = −qi − ci + c j

2
.

(B66)

The first of them corresponds to a permutation of components
pertinent to the sublattice A, and the second one corresponds
to a permutation of components pertinent to the sublattice
B. Importantly, there is also the third type of permutations,
with an exchange of components corresponding to different
sublattices. The first two types of the permutations separately
preserve |λ| and |λ′|, while the third type preserves the total
charge Qμ = 2(|λ′| − |λ|). Thus, in fact, all Weyl group per-
mutations preserve also the U(1) part of the dimension (B52).
This allows us to predict symmetries of the most general
observables: their scaling dimensions should be symmetric
under any “legitimate” Weyl transformations, that is, permu-
tations (B66),

xλ,λ′ = xwAIII (λ,λ′ ). (B67)
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Let us discuss implications of this Weyl symmetry for
two important subclasses of observables (which are studied
numerically in the present version). First, let us restrict our
attention to one-sublattice (say, sublattice-A) observables, i.e.,
exponents xλ,(0). If we want to stay within this subclass,
only permutations within the sublattice A are relevant, which
are represented by first line of Eq. (B66). This symmetry
subgroup is strongly reduced in comparison to the Weyl
symmetry of exponents xλ in class A and does not provide
particularly useful relations. Second, consider the subclass
of balanced observables (i.e., those with λ′ = λ) and the
corresponding exponents xλ,λ. Here, we make the following
important observation: if the weights λ and λ′ contain equal
entries at the position i, qi = q′

i, then the last type of exchange
in Eq. (B66) with j = i is equivalent to simultaneous reflec-
tions (B64) of both qi and q′

i! In combination with the first
two types of transformations in Eq. (B66), this leads to the
following result: within the subclass of balanced observables
(λ′ = λ), the dimensions xλ,λ enjoy the Weyl symmetries wA

of class-A type (permutations and reflections),

xλ,λ = xwA(λ),wA(λ). (B68)

Additional constraints on the scaling dimensions and their
symmetry properties come from physical considerations of the
sublattice symmetry. It is clear that in a microscopic model
the two sublattices should be equivalent, and their interchange
should be a symmetry of the system. For example, the scaling
dimensions of moments of the local density of states on the
two sublattices should be the same, and a similar statement
should be valid for generalized MF observables. Translated
into the language of the sigma model, the sublattice symmetry
is seen as the invariance of the sigma-model actions under the
exchange of the fields U and U −1. In our formulation these
correspond to the diagonal subblocks Q̃RR and Q̃AA of the
rotated Q matrix. Permuting these two subblocks is equivalent
to the exchange xi ↔ −x2n+1−i = −x′

i . In turn, this exchange
leads to the exchange qi ↔ q′

i (same as λ ↔ λ′) in the radial
functions (B13). This means that the scaling dimensions of the
generalized-multifractality observables should be symmetric
under the exchange of the two weights that label them

xλ,λ′ = xλ′,λ. (B69)

This symmetry imposes constraints on how Casimir eigenval-
ues can contribute to the scaling dimensions.

Let us recall that the basic Casimir operators are obtained
from the basic Weyl group invariants. For the root system of
type A2n−1 relevant in our case, these are the symmetric power
sums

Ck (λ, λ′) =
n∑

i=1

(
μk

i + μ′k
i

)

=
∑

i

[(−1)k (2qi + ci )
k + (2q′

i + ci )
k], (B70)

[The first of these, C1(λ, λ′) is the same as the charge Qμ.] It
follows that if we interchange the two weights, we get

Ck (λ, λ′) = (−1)kCk (λ′, λ). (B71)

The scaling dimensions can be written as linear combina-
tions of products of the Casimir eigenvalues,

xλ,λ′ =
∑

k

∑
π�k

απ

l (π )∏
i=1

Cπi (λ, λ′), (B72)

where π are partitions of the integer k, and l (π ) = ∑
i πi are

their lengths. The U(1) term is included as a part of the k = 2
term with π = (1, 1), since

xU(1)
λ,λ′ = xν (|λ′| − |λ|)2 = 1

4 xνC2
1 (λ, λ′). (B73)

Now we use Eq. (B71) here, and get

xλ′,λ =
∑

k

(−1)k
∑
π�k

απ

l (π )∏
i=1

Cπi (λ, λ′). (B74)

This form is consistent with the sublattice symmetry (B69)
only if απ = 0 for all odd values of |π | = k. Thus, the sub-
lattice symmetry imposes a constraint on the possible terms
in the expansion (B73): only partitions of even integers k are
allowed. Notice that this does not exclude odd-order Casimirs
from showing up. For example, at the order k = 4 we can have
a term with the product C1C3. If such terms are present in the
scaling dimensions, they spoil the class-A type symmetries.
Thus, in general, we only have the class-AIII symmetries
(B67). However, if the two weights are the same, λ′ = λ, then
all odd Casimirs simply vanish, and we get back our result
(B68) for the scaling dimensions of balanced observables.

3. Class BDI

In this section we present details of the Iwasawa construc-
tion for class BDI. In this case

MB = GL(n,R)

O(n)
= GL(1,R)

O(1)
× SL(n,R)

SO(n)
= R+ × M (s)

B .

(B75)

We write the elements of g = gl(n,R) as real matrices in the
space (B18)

Z = σ0 ⊗ X + σ2 ⊗ Y =
(

X −iY
iY X

)
, (B76)

where X and Y are n × n blocks in the RA space satisfying
X T = −X and Y T = Y , and in the semisimple case we also
need to impose the condition

trY = 0. (B77)

The elements Z ∈ g satisfy the conditions

Z†�3 + �3Z = 0, Z�2 − �2Z = 0, (B78)

and their combinations. The subalgebra o(n) is the one with
Y = 0.

The Cartan involution is

θ (Z ) = −Z† = �3Z�3, (B79)

Z ∈ k if Y = 0, and Z ∈ p if X = 0. The generators for k and
p are

Xi j = σ0 ⊗ E−
i j , Yi j = σ1 ⊗ E+

i j . (B80)

These are the same as X (0)
i j and Y (0)

i j in Eq. (B27).
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We choose the maximal Abelian subspace a ⊂ p as

a = span{Hk = σ1 ⊗ Ekk = Ykk/2}. (B81)

The system of restricted roots is An−1 given by Eq. (B5) with
mo = 1. The positive restricted root vectors are the same as
E (0)

αi j
in Eq. (B30):

Eαi j = Xi j + Yi j, (B82)

and the Weyl vector in the replica limit is

ρ =
n∑
i

cixi, ci = 1

2
− i. (B83)

The rest proceeds exactly as in class AIII.

4. Class CII

In this section we present details of the Iwasawa construc-
tion for class CII. In this case

MB = U∗(2n)

Sp(2n)
= R+ × SU∗(2n)

Sp(2n)
= R+ × M (s)

B . (B84)

We realize the elements of g = u∗(2n) as matrices in the
space (B16)

Z = σ0 ⊗
(

X1 X2

−X ∗
2 X ∗

1

)
+ σ2 ⊗

(
Y1 Y2

−Y ∗
2 Y ∗

1

)
, (B85)

where the n × n blocks satisfy

X †
1 = −X1, X T

2 = X2, Y †
1 = Y1, Y T

2 = −Y2, (B86)

and in the semisimple case we also need to impose the condi-
tion tr Y1 = 0.

In this realization the elements Z ∈ g of u∗(2n) satisfy

Z†�30 + �30Z = 0, Z�20 − �20Z = 0,

ZT �02 + �02Z = 0. (B87)

The Cartan involution is

θ (Z ) = −Z† = �30Z�30, (B88)

and its eigenspaces are characterised as follows: Z ∈ k if Y1 =
Y2 = 0, and Z ∈ p if X1 = X2 = 0. We have four groups of
generators in both k and p,

X (0)
i j = σ00 ⊗ E−

i j , Y (0)
i j = σ20 ⊗ E+

i j ,

X (1)
i j = iσ01 ⊗ E+

i j , Y (1)
i j = iσ21 ⊗ E−

i j ,

X (2)
i j = iσ02 ⊗ E+

i j , Y (2)
i j = iσ22 ⊗ E−

i j ,

X (3)
i j = iσ03 ⊗ E+

i j , Y (3)
i j = iσ23 ⊗ E−

i j . (B89)

We choose the maximal Abelian subspace a ⊂ p as

a = span
{
Hk = σ20 ⊗ Ekk = Y (0)

kk /2
}
. (B90)

The system of restricted roots is An−1 given by Eq. (B5) with
mo = 4. The positive restricted root vectors are

E (0)
αi j

= X (0)
i j + Y (0)

i j , E (1)
αi j

= X (1)
i j + Y (1)

i j ,

E (2)
αi j

= X (2)
i j + Y (2)

i j , E (3)
αi j

= X (3)
i j + Y (3)

i j , (B91)

and the Weyl vector in the replica limit is

ρ =
n∑
i

cixi, ci = 2 − 4i. (B92)

The unitary transformation that makes the generators of a
diagonal and the generators of n strictly upper triangular is
accomplished with the help of the matrix

RCII = R ⊗ σ0 ⊗ In, (B93)

where the matrix R was defined in Eq. (B20). We also need the
permutation matrix �1 with elements (�1)i j = δπ1(i), j where
the permutation π1 of the basis of the space (B16) can be
described as follows: for i ∈ 1, . . . , n, we have

π1(i) = 2n + 2 − 2i, π1(n + i) = 2n + 1 − 2i,

π1(2n + i) = 2n + 2i − 1, π1(3n + i) = 2n + 2i. (B94)

The unitary transformation

M̃ = �−1
1 RCIIMR−1

CII�1 (B95)

rotates the � matrix to

�̃ = σ2 ⊗ I2n, (B96)

makes the elements of a diagonal, and the positive restricted
root vectors Ẽ strictly upper triangular.

The subsequent construction is almost verbatim as in class
AIII, except that each entry in the diagonal matrix ã ∈ A is
now repeated twice,

ã = diag(ex1σ0, . . . , exnσ0, e−xnσ0, e−x1σ0). (B97)

This doubling of the elements of ã is characteristic for
all “spinful” symmetry classes (AII, C, CI, DIII, and CII),
which possess either time-reversal symmetry with T 2 = −1,
or particle-hole symmetry with P2 = −1, or both.

The structure of the matrix Q̃ is again lock diagonal as in
Eq. (B38). The lower-right 2m × 2m submatrices Q̃(2m)

RR and
Q̃(2m)

AA of the blocks Q̃RR and Q̃AA are the same as in Eq. (B39),
except that now all entries are understood as 2 × 2 matrices,
with the blocks on the diagonals proportional to the identity
matrix σ0. Determinants of Q̃(2m)

RR give the basic positive N-
radial eigenfunctions

d2m(x) = exp

(
−4

m∑
i=1

xi

)
. (B98)

We can form the most general N-radial eigenfunctions for the
sublattice A as products

φλ(x) =
n∏

k=1

d (qk−qk+1 )/2
2k (x). (B99)

It is easy to see that the product (B99) is the same as the expo-
nential eigenfunction (B11), while the basic function d2m(x)
is φ(2,2,...)(x) with m twos in the subscript. The construction
of the other sublattice is identical but uses the determinants of
Q̃(2m)

AA .
Notice that the doubling of the diagonal entries e−2xi for

each i in Eq. (B97) compelled us to take determinants of
submatrices of even size and raise the resulting functions to
powers written as (qi − qi+1)/2. In the Iwasawa formalism it
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is also possible to obtain directly the basic solutions φ(1m ).
Using definitions above, it is straightforward to show that
the matrices Q̃(2m)

RR (Im ⊗ iσ2) and Q̃(2m)
AA (Im ⊗ iσ2) are anti-

symmetric, and that their Pfaffians gives the basic N-radial
eigenfunctions

pm(x) = Pf
[
Q̃(2m)

RR (Im ⊗ iσ2)
] = exp

(
−2

m∑
i=1

xi

)
,

p′
m(x′) = Pf

[
Q̃(2m)

AA (Im ⊗ iσ2)
] = exp

(
2

m∑
i=1

x′
i

)
. (B100)

The general N-radial functions are then obtained as products
of powers of pm,

φλ,λ′ (x, x′) =
n∏

k=1

pqk−qk+1

k (x)
n∏

k=1

p
′ q′

k−q′
k+1

k (x′). (B101)

The resulting form of the Iwasawa construction for class
CII as given by Eqs. (B97)–(B101) is fully analogous to that
in other “spinful” classes Ref. [11].
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