KIT | KIT-Bibliothek | Impressum | Datenschutz

A unified framework for bivariate clustering and regression problems via mixed-integer linear programming

Warwicker, John Alasdair 1; Rebennack, Steffen 1
1 Institut für Operations Research (IOR), Karlsruher Institut für Technologie (KIT)

Abstract:

Clustering and regression are two of the most important problems in data analysis and machine learning. Recently, mixed-integer linear programs (MILPs) have been presented in the literature to solve these problems. By modelling the problems as MILPs, they are able to be solved very quickly by commercial solvers. In particular, MILPs for bivariate clusterwise linear regression (CLR) and (continuous) piecewise linear regression (PWLR) have recently appeared. These MILP models make use of binary variables and logical implications modelled through big-$\mathcal{M}$ constraints. In this paper, we present these models in the context of a unifying MILP framework for bivariate clustering and regression problems. We then present two new formulations within this framework, the first for ordered CLR, and the second for clusterwise piecewise linear regression (CPWLR). The CPWLR problem concerns simultaneously clustering discrete data, while modelling each cluster with a continuous PWL function. Extending upon the framework, we discuss how outlier detection can be implemented within the models, and how specific decomposition methods can be used to find speedups in the runtime. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000157833
Veröffentlicht am 18.04.2023
Originalveröffentlichung
DOI: 10.1016/j.dam.2023.03.010
Scopus
Zitationen: 4
Web of Science
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.09.2023
Sprache Englisch
Identifikator ISSN: 0166-218X, 1872-6771
KITopen-ID: 1000157833
Erschienen in Discrete Applied Mathematics
Verlag Elsevier
Band 336
Seiten 15 – 36
Vorab online veröffentlicht am 01.04.2023
Schlagwörter Clustering, Regression, Mixed-integer linear programming, Outlier detection, Decomposition, Function fitting
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page