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Kinetic theory of the nonlocal electrodynamic response in anisotropic metals:
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The electrodynamic response of ultrapure materials at low temperatures becomes spatially nonlocal. This
nonlocality gives rise to phenomena such as hydrodynamic flow in transport and the anomalous skin effect
in optics. In systems characterized by an anisotropic electronic dispersion, the nonlocal dynamics becomes
dependent on the relative orientation of the sample with respect to the applied field, in ways that go beyond
the usual, homogeneous response. Such orientational dependence should manifest itself not only in transport
experiments, as recently observed, but also in optical spectroscopy. In this paper, we develop a kinetic theory
for the distribution function and the transverse conductivity of two- and three-dimensional Fermi systems with
anisotropic electronic dispersion. By expanding the collision integral into the eigenbasis of a collision operator,
we include momentum-relaxing scattering as well as momentum-conserving collisions. We examine the isotropic
2D case as a reference, as well as anisotropic hexagonal and square Fermi-surface shapes. We apply our theory
to the quantitative calculation of the skin depth and the surface impedance, in all regimes of skin effect. We find
qualitative differences between the frequency dependence of the impedance in isotropic and anisotropic systems.
Such differences are shown to persist even for more complex 2D Fermi surfaces, including the “supercircle”
geometry and an experimental parametrization for PdCoO2, which deviate from an ideal polygonal shape. We
study the orientational dependence of skin effect due to Fermi-surface anisotropy, thus providing guidance for
the experimental study of nonlocal optical effects.
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I. INTRODUCTION

The symmetry and nonlocality of many-body correlations
are responsible for a variety of quantum phenomena ob-
served in solid-state electronic systems. The nonequilibrium
response of strongly correlated metals to external probes, like
electromagnetic fields or thermal gradients, is in general spa-
tially nonlocal: the external perturbation, applied at one spatial
coordinate r, elicits an electronic reaction in an extended
region of space {r′} �= r surrounding the probe; see Fig. 1(a).
The radius of such region, depicted for an isotropic material
by the yellow sphere in Fig. 1(a), is often determined by the
carrier mean-free path lmr = vF /γmr, where vF is the Fermi
velocity and γmr is the momentum-relaxation rate. In Fourier
space, the nonlocality entails a dependence of the response
functions on wave vector q.

Striking consequences of nonlocal behavior are electronic
viscosity and elasticity. In the regime where momentum-
conserving electron collisions at rate γmc are the dominant
source of scattering, electrons collectively respond as a
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macroscopic viscous substance [1] described by the laws of
hydrodynamics [2–20]. Evidence of such phenomena is re-
trieved in transport experiments, where crossovers between
hydrodynamic and ballistic flow of electron fluids have been
reported in systems as diverse as (Al,Ga)As [21,22], graphene
[23–27], PdCoO2 [28], WP2 [29,30], Sb [31], and WTe2 [32].

Likewise, for finite-frequency and low-momentum exci-
tations in the collisionless regime γmr � γmc → 0+, dissi-
pationless correlations due to interactions between electrons
are encoded by elastic moduli [20,34–45]. This viscoelas-
tic regime can be detected through optical spectroscopy, as
testified by the analysis of plasmon resonances in In:CdO
nanofilms [46] and coaxial nanoapertures [47].

Besides recently engineered applications, nonlocality is
firmly established as the origin of anomalous skin effect,
whereby an oscillating electromagnetic field at frequency ω,
applied at a vacuum-metal interface, generates currents at
anomalously long depths into the metal [48–55]. In turn, the
generated bulk currents significantly enlarge the penetration
depth (skin depth) of radiation inside the metal, with respect
to the usual exponential damping due to relaxational dynam-
ics and ensuing Ohmic conduction. The anomalous response
regime manifests itself for ω � vF q, where vF is the ve-
locity of charged carriers (i.e., the Fermi velocity), and it is
due to ballistic conduction: the motion of electrons in the
metal is essentially unimpeded by any form of scattering, i.e.,
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FIG. 1. (a) Visual representation of the spatially nonlocal di-
electric response in three dimensions: the application of an electric
field E(r, t ) at coordinate r excites a response of electrons (blue
spheres) in an extended coherence volume (yellow-shaded sphere).
(b) Schematics of part of the unit cell of PdCoO2, showing a conduct-
ing Pd layer with hexagonal in-plane coordination and out-of-plane
bonds with CoO2 tetrahedra. (c) The anisotropic, hexagonal Fermi
surface of PdCoO2 from a tight-binding fit of de Haas-van Alphen
magnetotransport data [33].

ω � {γmr, γmc}. Moreover, if momentum-conserving colli-
sions are sufficiently strong compared to relaxation, i.e.,
γmr � γmc, electron hydrodynamics shows in a finite-
frequency window between the normal and anomalous
regime, thus producing a viscous form of skin effect
[17,39,44,56]. All aforementioned regimes can be distin-
guished by their distinct dependence of the skin depth on ω,
γmc, and γmr, as we will appreciate in the following. Thus
the skin effect, observed through surface impedance mea-
surements [57–59], represents an ideal probe of the nonlocal
transverse current response in multiple regimes of momentum
and frequency.

The above picture of nonlocality is convoluted in the
solid state by the interactions of electrons with their chemi-
cal surroundings: the crystalline lattice and impurities break
translational and rotational invariance. In particular, strong
electron-lattice interactions mold the electronic bandstructure,
producing anisotropic Fermi surfaces with reduced symme-
try in accordance with the crystalline potential. For instance,
the hexagonal coordination of Pd atoms in the conducting
planes of the delafossite compound PdCoO2, represented by
the red spheres in Fig. 1(b), produces an essentially 2D
Fermi surface with in-plane section shaped as a hexagon with

rounded corners [33,60]. The reduced symmetry of the elec-
tronic dispersion may also be accompanied by a variation of
the momentum-relaxation rates along different spatial coordi-
nates. The ensuing anisotropic conductivity tensor generates
a sizable anisotropy in the electrodynamic properties of novel
materials, as observed in quasi-2D layered systems like de-
lafossites [33,61–66] and van der Waals compounds [67–72].
Notice that, if the local (q = 0) conductivity tensor is not
rotational-invariant, the electrodynamic anisotropy manifests
itself already in the local limit. However, even in systems
possessing isotropic conductivities at q = 0, anisotropic trans-
port and optical effects may emerge in the finite-q response,
due to the lack of Fermi-surface rotational invariance. These
effects, which are symmetry-forbidden within local response,
entail a number of novel phenomena [73], such as the ap-
pearance of rotational [74] and Hall [75] components of the
viscosity tensor in hydrodynamic regime. Different dissipative
components, including the rotational viscosity, may then be
selectively studied in systems with dihedral symmetry, by
measuring the local heat generated at the center of a square
sample by electric currents injected in a 8-contact geometry
on the sample perimeter [76]. Therefore nonlocality can un-
veil novel electrodynamic regimes due to anisotropic Fermi
surfaces, which would be invisible in the q = 0 response.

Various phenomenological and microscopic theories have
been developed for modeling the nonequilibrium momentum-
dependent electronic response. Such valuable efforts are often
grounded on the Boltzmann kinetic equation, which deter-
mines the response in terms of a local-equilibrium distribution
function. The latter is influenced by external driving forces
and interactions, as well as by a collision integral that models
the specific scattering channels (conserving or relaxing mo-
mentum) available for the given electron liquid. However, in
three- (3D) and two-dimensional (2D) materials alike, most
earlier treatments have focused on isotropic systems with
quadratic electronic dispersion εk ∝ k2, where the shape of
the Fermi surface is spherical and circular respectively. There,
the local velocity field vk ∝ ∇kεk and the associated current
density Jk ∝ vk are proportional to the crystal momentum
h̄k. This assumption underlies the seminal work of Reuter
and Sondheimer [48,54], which elucidates the crossover at
finite excitation frequency ω between normal and anomalous
skin effect, within a Boltzmann treatment that includes relax-
ation but not momentum-conserving collisions. At finite γmc,
isotropy allows one to relate the charge and current suscep-
tibilities with the dependence of the electronic response on
exchanged momentum q, encoded, e.g., by the viscosity tensor
[77]. The proportionality between current and crystal mo-
mentum is invalidated in anisotropic systems, having Fermi
surfaces that explicitly break rotational invariance. Hence, the
ensuing electrodynamic properties can be very different from
the isotropic case, as they depend on the orientation of the
Fermi surface with respect to the direction of the driving
field. Such dependence was shown quantitatively by Sond-
heimer [78], generalizing his surface impedance calculations
to single- and two-band systems with spheroidal Fermi sur-
faces; in these examples, the finite-q optical properties show a
different anisotropy than the one at q = 0, but the conductivity
already breaks rotational invariance in the local limit. The sen-
sitivity of optics to Fermi-surface shape was also qualitatively
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FIG. 2. Summary of skin effect regimes as a function of relax-
ation rate γmr, collision rate γmc, and frequency ω, normalized to the
plasma frequency ωp, assuming a Fermi velocity vF /c = 0.001. This
skin effect “phase diagram” applies to both isotropic and anisotropic
systems.

discussed by Pippard [79], for generic dispersion anisotropy in
2D and 3D by the means of the ineffectiveness concept, which
we will discuss in Sec. VII. These works considered relaxation
but not momentum-conserving collisions, which further en-
rich the theoretical analysis with various crossovers between
hydrodynamic, ballistic and anomalous response regimes as a
function of ω, γmr, and γmc. All crossovers are qualitatively
described by specific ratios between characteristic length
scales for skin effect, as summarized in Sec. II, Fig. 2, and
Table I. Such complexity invariably complicates the analysis
of experimental data, and calls for a theory that is general
enough to capture and distinguish all essential manifestations
of electrodynamic nonlocality, while being adaptable enough
to allow for quantitative comparisons among different static
and dynamic probes.

In this paper, we develop a kinetic theory for the distribu-
tion function and the conductivity tensor σαβ (q, ω) of a 2D or
3D Fermi system endowed with an arbitrary electronic struc-
ture εk. Technically, we recast the Boltzmann equation into
an infinite system of algebraic equations in the collision op-
erator formalism. In this approach, both the local-equilibrium
distribution function and the collision integral are expanded in
terms of the eigenfunctions (modes) of the collision operator.

TABLE I. Characteristic length scales which determine the
crossovers between different regimes of skin effect, as a function of
momentum-relaxing rate γmr, momentum-conserving collision rate
γmc, and radiation frequency ω, for an electron liquid with Fermi
velocity vF .

Symbol Definition Description

λL c/ωp London penetration depth
lω vF /ω Distance traveled during

one field oscillation
lmr vF /γmr Relaxational mean-free path
lmc vF /γmc Collision length
lG

√
lmclmr Gurzhi length

δv [(λL )2lωlmc]1/4 Skin depth in viscous regime

FIG. 3. Summary of skin effect regimes as a function of re-
laxation rate γmr, momentum-conserving collision rate γmc, and
frequency ω, normalized to the plasma frequency ωp, for an isotropic
2D (circular) Fermi surface. The boundaries are calculated assuming
a Fermi velocity vF /c = 0.001.

These modes are constrained by the conservation of charge,
and include slow momentum relaxation occurring at rate γmr,
as well as momentum-conserving collisions at rate γmc � γmr.
Here we make the central assumption of our approach that all
momentum-conserving processes are governed by the same
rate. The two scattering rates γmr and γmc are not tied to a
specific scattering process, i.e. the detailed nature of these
rates is not important for our considerations. The advantage
of our formulation is that the conductivity can be evaluated
independently of the explicit form of the collision operator
eigenmodes, for an arbitrarily shaped Fermi surface. Under
the minimal assumption that two mirror symmetry planes
exist in k space, we concentrate on the response to transverse
electric fields E(q, ω) = Ey(qx, ω)ûy ⊥ q = qxûx, in a 2D ref-
erence system with unit vectors ûx and ûy. We obtain a closed
expression for the 2D transverse conductivity σyy(qx, ω) as
a function of frequency ω, scattering rates γmr and γmc, and
angle θ describing the angular dependence of the anisotropic
Fermi-surface velocity vk. Our formalism retrieves the known
results for circular Fermi surfaces in the hydrodynamic limit
and generalizes them to arbitrary frequencies and scatter-
ing rates. In addition, we discuss results for an hexagonal
shape, inspired by systems like ultrapure PdCoO2 [33,64] and
transition-metal dichalcogenides like NbSe2 [80–82], and for
a square shape, relevant for, e.g., PrTe3 [83], GdTe3 [84].
For both hexagonal and square shapes, the dependence of
the conductivity on momentum and frequency qualitatively
changes as a function of Fermi-surface orientation with re-
spect to the applied field. In particular, we show that whenever
large Fermi-surface segments with velocity parallel to the ap-
plied field exist, the dependence of σyy(qx, ω) on qx vanishes,
i.e., the contribution of these segments to the conductivity is
completely local. This insensitivity to qx qualitatively changes
the character of conduction in anomalous regime, and in the
case of a square Fermi surface—see Fig. 8(b)—nonlocality is
completely suppressed and the material responds like a Ohmic
(Drude) conductor. We apply our kinetic theory for σyy(qx, ω)
to the calculation of the skin depth and of the associated
surface impedance Z (ω), assuming specular scattering at the
vacuum-metal boundary. Our results for Z (ω) as a function of
ω, γmr, and γmc, are summarized in the qualitative skin effect
“phase diagrams” of Figs. 3–6, which are discussed in Sec. II.
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FIG. 4. Summary of skin effect regimes as a function of re-
laxation rate γmr, momentum-conserving collision rate γmc, and
frequency ω, normalized to the plasma frequency ωp, for the hexag-
onal and square Fermi surface, oriented as depicted on the left of
the figure. The two polygonal geometries share a similar “phase
diagram” of the frequency scaling exponent η. The boundaries are
evaluated assuming a Fermi velocity vF /c = 0.001.

These figures compare all impedance regimes existing for
an isotropic dispersion with the ones resulting from different
orientations of hexagonal and square Fermi surfaces. It is seen
that the boundaries between different skin effect regimes, as
well as the dependence of the surface impedance on frequency
and scattering rates, significantly depend on Fermi-surface
geometry and orientation. Such results are confirmed both
numerically and analytically by the explicit computations of
|Z (ω)| shown in Figs. 10, 13, and 24. In particular, the ef-
fect of flat Fermi-surface portions with velocity parallel to
the field qualitatively affects |Z (ω)| in anomalous regime:
for ω < {γmc, γmr}, we have |Z (ω)| ∝ ω1/2, which would be
normally associated with normal skin effect in isotropic sys-
tems, while for ω > {γmc, γmr} the metal in anomalous regime
behaves as a perfect conductor characterized by σyy(ω) ∼ i/ω.
In addition, in the absence of scattering, we present analytical
expressions for the skin depth and the surface impedance for
specular boundary conditions in hexagonal and square geome-
tries, valid at all ratios ω/(vF qx ).

FIG. 5. Summary of skin effect regimes as a function of re-
laxation rate γmr, momentum-conserving collision rate γmc, and
frequency ω, normalized to the plasma frequency ωp, for the hexag-
onal Fermi surface oriented as depicted on the left of the figure, and
rotated with respect to Fig. 4 by an angle φ = π/2. All boundaries
are calculated assuming a Fermi velocity vF /c = 0.001.

FIG. 6. Summary of skin effect regimes as a function of re-
laxation rate γmr, momentum-conserving collision rate γmc, and
frequency ω, normalized to the plasma frequency ωp, for the square
Fermi surface oriented as depicted on the left of the figure, and
rotated with respect to Fig. 4 by an angle φ = π/4. All boundaries
are evaluated assuming a Fermi velocity vF /c = 0.001.

Hence, we construct a compact formalism that covers all
forms of normal, anomalous, and viscous skin effects, and
that makes direct contact to the basic electrodynamic quantity
Z (ω). It also allows to make contact to Pippard’s effective
carrier number n∗ in the nonlocal regime, as discussed in
Sec. VII A.

This paper is organized as follows. Section II contains a
summary of main results and a qualitative discussion of all
regimes of skin effect encountered in subsequent sections,
for both isotropic and anisotropic 2D systems. In Sec. III,
we present and solve the kinetic equation for the distribu-
tion function of a metal with arbitrary Fermi surface in 2D
and 3D, using the collision-operator formalism constructed in
Sec. III A. Section III D hosts the calculation of the transverse
conductivity, which is specialized to the 2D isotropic case and
to hexagonal and square geometries in Sec. IV, at arbitrary
Fermi-surface orientations with respect to the transverse elec-
tric field. The skin depth in the anisotropic case is discussed in
Sec. V, and applied to the hexagonal and square cases. Using
the results in the preceding sections, the numerical and analyt-
ical results for the anisotropic surface impedance are collected
and analyzed in Sec. VI. Section VII presents a generalization
of Pippard’s “ineffectiveness concept” for anisotropic disper-
sions, discusses the possible impact of short-ranged Landau
interactions and long-ranged Coulomb forces on the results of
this paper, as well as the effect of assuming different boundary
conditions at the vacuum-metal surface. Section VII D dis-
cusses the influence of Fermi-surface nonidealities, such as
segments curvature and rounded corners, on the impedance
“phase diagrams”. Our conclusions and perspectives for future
work are summarized in Sec. VIII.

II. SUMMARY OF MAIN RESULTS

The fundamental theoretical result of this paper is the trans-
verse conductivity for an arbitrary 2D or 3D Fermi-surface
geometry that possesses mirror symmetry planes in reciprocal
space. Assuming an electric field Eβ (qα, ω) and momentum
qα pointing in the spatial directions β and α respectively (e.g.,
{α, β} = {x, y} in 2D), the nonlocal transverse conductivity
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can be written as

σββ (qα, ω) = ε0�
2
p

G0(qα, ω)

1 − c2
βδγ G0(qα, ω)

, (1)

where

δγ = γmc − γmr (2)

is the difference between momentum-conserving collision
rate γmc and relaxation rate γmr. cβ is a geometry-dependent
numerical constant, independent from qα and ω, and
G0(qα, ω) is an average of the angular variation of the Fermi
velocity vk on the Fermi surface; see Eq. (63). ε0 is the vac-
uum dielectric constant, and �p is a characteristic frequency
for the anisotropic system, which is defined in Eq. (64) be-
low. For the polygonal geometries that we analyze, assuming
an isotropic Fermi velocity modulus vF , �p = 2ωp where
ωp =

√
(ne2)/(mε0) is the electronic plasma frequency of

the isotropic electron gas, where n = N /A is the electron
density, i.e., the number of electrons N per unit area A ,
e is the electron charge, m is the free electron mass. The
conductivity (1) allows us to treat isotropic and anisotropic
systems on equal footing. This property is crucial for the ap-
plication of our kinetic theory to the skin effect phenomenon,
where qualitative criteria to distinguish all electrodynamic
regimes can be traced on the basis of ratios among char-
acteristic length scales, which are qualitatively independent
from Fermi-surface geometry. Such length scales are listed in
Table I. Among these, the most fundamental quantity is the
frequency-dependent skin depth

δs(ω) ∝ ωη−1, (3)

which defines the damping constant of electromagnetic fields
inside the metal and has a scaling exponent η in frequency.
Throughout the (γmr, γmc, ω) parameter space in Fig. 2, the
skin depth (3) can be qualitatively linked with the experimen-
tally observable surface impedance Z (ω) as

Z (ω) ∝ e−i π
2 ηωη, (4)

as explicit computations in Secs. VI and VII A show. We will
focus on the quantities δs(ω) and |Z (ω)| to characterize skin
effect throughout this paper.

Additional length scales employed in the optics literature
are: the London penetration depth λL = c/ωp, which is the
skin depth associated with a perfect conductor; the distance lω
traveled by electrons during one oscillation cycle of radiation;
the mean-free path lmr connected to momentum relaxation.
These length scales are useful to identify the skin effect “phase
diagram” in the (γmr, ω) plane assuming γmr = γmc (see the
left-hand panel of Fig. 2). In addition, new regimes arise
when γmc > γmr (cf. the right-hand panel of Fig. 2). Corre-
spondingly, new relevant length scales emerge: the collision
length lmc, linked with momentum-conserving scattering; the
Gurzhi length lG, which governs the hydrodynamic skin ef-
fect, whereby electrons respond to radiation like a viscous
fluid [2,3,17]; the associated skin depth δv in viscous regime
[17,44]. Hence, Fig. 2 emphasizes that γmc offers a new “axis”
in the skin-effect “phase diagram”: momentum-conserving
collisions represent an additional and experimentally control-
lable parameter, to explore the full parameter space for skin

TABLE II. Criteria for all possible crossovers between different
regimes of skin effect in the (γmr, ω) plane of Fig. 2. δs(ω) is the skin
depth in the analyzed regime.

Boundary Criterion by length scales Criterion by ω, γmr

A©– B©, D1©– D2© lω = lmr ω = γmr
A©– D1© δs(ω) = lmr ω = (λL/vF )2(γmr )3

B©– E© δs(ω) = lmr γmr = vF /λL
D2©– E© δs(ω) = lω ω = vF /λL
B©– C©, E©– C© lω = λLvF /c ω = ωp
A©– C© lω = lmr(ω/ωp)2 ω = ω2

p/γmr

effect. The qualitative criteria to characterize the crossovers
between adjacent regions of the “phase diagram” are collected
in Tables II and III, and produce the colored lines in Fig. 2.
The classification in the (γmr, ω) plane is well established for
isotropic materials [50,51,53,55,85]. The traditional nomen-
clature of known regimes in optics reads: A© for normal or
classical skin effect, where lmr � δs(ω) and lmr � lω and
the electrodynamics in the skin layer is local and diffusive
in nature; B© for the relaxational regime, where lω � lmr �
δs(ω), where many oscillations of the electric field occur be-
tween relaxation events, which are still as strong as to keep
the electrodynamics local and diffusive; E© for the “extreme
anomalous” skin effect, or “anomalous reflection,” where
lω � δs(ω) � lmr: here electrons experience many radiation
cycles in the skin layer, and relaxation is weak enough for
the conductivity to become spatially nonlocal. In practice, the
regimes B© and E© differ only slightly, as the metal behaves in
both cases as a perfect conductor with skin depth δs ≡ λL. The
regions D1© and D2©, where δs(ω) � lmr and lω � lmr and the
conduction is essentially ballistic and nonlocal, are known to-
gether as anomalous skin effect. They are collectively labeled
D© in isotropic systems; this is because the scaling η = 2/3 is
identical in regions D1© and D2© if the Fermi surface is spherically
symmetrical [48,54,58]. We will shortly appreciate that, in
anisotropic systems, regions D1© and D2© can exhibit different
scaling exponents η. For this reason, in the following we
refer to cases D1© and D2© as “anomalous-1’ and “anomalous-2”,
respectively. The regime C© is transparent: it occurs above
the plasma edge ω � ωp, and the radiation absorption by
the metal is frequency-independent. Notice that the criteria
involving δs(ω) actually refer to the skin depth in the regime
where the crossover occurs. For instance, to estimate the

TABLE III. Criteria for all possible crossovers between different
regimes of skin effect in the (γmc, ω) plane of Fig. 2. δs(ω) denotes
the skin depth in the analyzed regime.

Boundary Criterion by length scales Criterion by ω, γmc

D1©–D2© lω = lmc ω = γmc
D1©– V© δs(ω) = lmc ω = (λL/vF )2γ 3

mc
D2©– E© δs(ω) = lω ω = vF /λL
E©– F© δs(ω) = lmc γmc = vF /λL
A©– V© δs(ω) = lG ω = (λL/vF )2γ 2

mrγmc
V©– F© δv = λL ω = (vF /λL )2γ −1

mc
E©– C©, F©– C© lω = λLvF /c ω = ωp
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boundary between A© and D1© we need to employ the skin
depth for normal skin effect, which is δs(ω) ∼ λL(γmr/ω)1/2

[cf. Eq. (145)], while the boundaries B©– E© and D2©– E© require
δs(ω) ≡ λL in perfect-conductor regime.

In the (γmc, ω) plane for γmc > γmr, hydrodynamic behav-
ior occurs when the Gurzhi length becomes larger than the
skin depth in normal regime [17,44]: lG > δs(ω). In viscous
regime, the skin depth becomes δs(ω) ≡ δv . Still, one needs
δv > λL, or equivalently lG > λL, for hydrodynamics to be
enabled, with δv = λL marking the crossover to the regime
F©. In the latter region F© the metal also responds as a perfect
conductor, similarly to the cases B© and E©. A notable feature
is that, increasing frequency at fixed and small γmc, the value
of ω at which hydrodynamics breaks down actually depends
on Fermi-surface geometry, as we will see below. Such feature
also has consequences in the (γmr, ω) plane.

In all cases, the boundaries between confining regions in
Fig. 2 are to be considered order-of-magnitude estimates of
crossovers, as they neglect numerical prefactors: they amount
to ratios

l1 = αgl2 (5)

between given length scales l1 and l2 with αg ≡ 1. In reality,
the numerical coefficient αg does depend on Fermi-surface
geometry and orientation, and may contain higher-order
corrections in γmc and δγ . These details are analyzed in
Appendix E, where we derive explicit expressions for the
impedance in all relevant regimes, for a circular, hexagonal,
and square Fermi surface, as well as more precise crossover
boundaries which include the geometry- and orientation-
dependent coefficient αg. These precise estimations yield the
dashed lines in Figs. 10, 13, and 24: there, we see that de-
viations of αg from unity are especially important where two
crossover boundaries are close to each other.

Figure 3 summarizes the frequency dependence of the
skin depth and surface impedance, for a material endowed
with a circular Fermi surface and a Fermi velocity vF =
0.001c with c speed of light in vacuum. We retrieve all the
properties and regimes of skin effect known for isotropic
systems: normal skin effect A© at low frequencies, exhibiting
η = 1/2; anomalous regimes D1© and D2©, where η = 2/3 as pre-
viously mentioned; the viscous regime V©, existing exclusively
for γmc > γmr and where η = 3/4; the “perfect-conductor”
regimes B©, E©, and F©, where the skin depth is ω-independent
and so η = 1. We notice that the diagram 3 is qualitatively
similar for isotropic dispersions in 2D and 3D. Fermi-surface
anisotropy significantly alters the exponent η in many regions
of the “phase diagram.” We can appreciate such modifications
in Fig. 4, which pertains to two polygonal geometries with
similar behavior: the hexagonal Fermi surface with two faces
parallel to the electric field, and the “diamond-shaped” Fermi
surface, as depicted on the left of Fig. 4. Here and for all
polygonal geometries discussed in this section, we assume for
simplicity that the Fermi velocity modulus vF is isotropic in
the 2D plane, although the conductivity (62) is also capable
of treating cases where vF depends on orientation. The most
striking changes with respect to the isotropic case of Fig. 3 are
that the anomalous-1 and anomalous-2 regimes have different
scaling exponents, η = 3/4 and 1/2, respectively. This means
that the viscous regime extends throughout regions V© and D1©

for these orientations and for γmc � γmr. The viscous physics
at play is the same, as one can confirm through the analysis of
the impedance for the present orientations: we have

|Z (ω)| ∝
√

vF

c

ω
3
4

γ
1
4

mc

(6)

in both areas V© and D1© [see Eqs. (E23) and (E38)], which
indicates that the two regions are indistinguishable. Equally
outstanding is the fact that the region D1© in the (γmr, ω) for
γmc = γmr is characterized by viscous skin effect, analogously
to the regime V© that occurs for γmc > γmr. This phenomenon
appears because hydrodynamics persists in region D1©. In turn,
this is compatible with the hydrodynamic condition lG >

δs(ω), that is satisfied even for γmc = γmr and it corresponds to
δs(ω) ≡ δv < lmr, i.e., to the crossover A© → D1© for equal scat-
tering rates. Hence, if viscous skin effect is at play in region D1©
for γmc > γmr, as for the present orientations, it also appears
for γmc = γmr in D1©. We expect such feature to bear significant
consequences for DC transport experiments as well, for the
anisotropic configurations in Fig. 4. Indeed, Fermi-surface
anisotropy has been shown to significantly affect the DC
conductance and the ballistic-to-hydrodynamic crossover in
narrow channels [74,76], leading to nonmonotonic depen-
dence of the conductance with channel width and temperature,
and to the appearance of a new anisotropy-related component
of the viscosity tensor.

Furthermore, notice that in anomalous (ballistic) regime
D2©, the isotropic case shows η = 2/3, while η = 1/2 in the
presence of anisotropy. This change is surprising, as a scaling
η = 1/2 is usually associated with normal (diffusive) skin
effect in isotropic materials [48–55].

However, the regions A© and D2© are physically distinct: in
the former regime, one has

|Z (ω)| ∝
√

ωγmr

ωp
, (7)

which depends on relaxation and signals diffusive dynamics
[see Eqs. (E18)], while in the latter regime, we obtain

|Z (ω)| ∝
√

vF

c

√
ω

ωp
, (8)

which is independent from γmc and γmr, and thus indicates bal-
listic behavior [see Eqs. (E20) and (E37)]. Hence, even though
they share the same frequency scaling η = 1/2, the regions A©
and D2© host normal and anomalous skin effect, respectively,
and can be distinguished on the basis of the dependence on
the scattering rates.

To highlight the dependence of skin effect on the orien-
tation of the anisotropic Fermi surface with respect to the
applied field, we now rotate the hexagonal geometry of Fig. 4
by φ = π/2. This produces the Fermi surface displayed on
the left of Fig. 5. There are evident differences with respect
to the orientations of Fig. 4: the perfect-conductor regime
with η = 1 extends down to the regime D2©, while the region
D1© has η = 1/2 as for the normal regime A©. Nevertheless,
the physics is not identical: for γmc � γmr in the normal
regime, the impedance still follows Eq. (7) as for φ = 0, while
in the anomalous region |Z (ω)| = √

(γmc + 2γmr )ω)/2 [see
Eq. (E22)]. In the (γmr, ω) plane for γmc = γmr, there is no
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viscous region, and the regime D2© shows η = 1 (perfect con-
ductivity): from the point of view of the scaling exponent η,
the “phase diagram” is identical to the one of the Drude model
of free electrons with relaxation rate γmr, where the electrody-
namics is completely local and diffusive. The regions A© and
D1© have |Z (ω)| ∝ √

γmrω and |Z (ω)| ∝ √
3/2

√
γmrω, respec-

tively, so they differ only in the numerical factor
√

3/2, as
deduced from Eqs. (E18) and (E22). In essence, Fig. 5 shows
that Fermi-surface anisotropy is able to completely suppress
the nonlocality (dependence on qx) of the conductivity in the
(γmr, ω) plane, which would yield anomalous (ballistic) and
viscous skin effect.

Such suppression of nonlocality is total for the special
case of a square Fermi surface with two sides parallel to
the electric field, as depicted on the left of Fig. 6. This ge-
ometry is obtained by rotating the “diamond-shaped” case
of Fig. 4 by φ = π/4. Here we find the striking result that
ballistic and viscous skin effects are completely absent from
the “phase diagram,” which reduces identically to the one of
the Drude model with relaxation rate γmr. Thus only normal
and perfect-conductor regimes of skin effect persist for this
orientation: the material behaves as a local conductor even at
finite momentum.

The aforementioned analysis of the conductivity (see
Sec. IV), and of the skin depth (see Sec. V), suggests that
large Fermi-surface segments with velocity vF parallel to
the applied field tend to suppress the nonlocal character of
conduction, i.e., to inhibit anomalous skin effect. In fact,
if vF is locally parallel to the field, there is no component
of vF along the direction of momentum q = qxûx, so non-
local currents depending on qx cannot be generated. The
exemplary case is in Fig. 6: there, two Fermi-surface sides
have vF ‖ ûy. Hence, the diagram is identical to the Drude
model because the conductivity for such square geometry is
momentum-independent: see Eq. (120). We can intuitively
view this feature from the alternative viewpoint of Pippard’s
ineffectiveness concept, which postulates that only the fraction
of electrons with velocity nearly parallel to E can contribute
to screening of electromagnetic fields when δs(ω) � lmr: the
screening is reduced by all other electrons being ineffective,
and this determines the long penetration depth δs(ω), the spa-
tial nonlocality, and ballistic character of conduction typical
of anomalous skin effect. However, if vF ‖ ûy, all electrons on
that Fermi-surface segment are effective, and the ineffective-
ness concept does not apply. These metallic electrons respond
like in a perfect conductor, in the absence of scattering, and
generate the smallest possible skin depth δs(ω) ≈ λL; see,
e.g., the skin depths (134) and λL at large momentum for the
geometries in Figs. 5 and 6. Notice that the aforementioned
geometric effect is different from the familiar behavior in re-
gions B© and E©: these perfect-conductor regions occur because
ω � {γmr, γmc} and also exist in the isotropic case (cf. Fig. 3).
On the contrary, the perfect-conductor behavior in the high-
momentum regime D2© of Fig. 5 is due to the effective electrons
in anisotropic systems. For the isotropic case, the anomalous
regime is characterized by σyy(qx, ω) ∝ q−1

x , which has the
special property that the separating line between regions D1©
and D2© is irrelevant; however, on anisotropic Fermi-surface
segments with velocity parallel to E the dependence on qx is
removed, so that those electrons are again affected by the rel-

ative size of ω, γmr, and γmc, and regions D1© and D2© are distinct.
If scattering is dominant over frequency, we have η = 1/2, as
seen through Eqs. (135) for the skin depth (region D1©). In the
opposite high-frequency limit, η = 1 (region D2©). The different
character of conduction in the scattering-less regime is further
analyzed in Appendixes E 2 a and E 3 a. The ineffectiveness
concept also yields a simple geometrical interpretation of the
factor-

√
3/2 difference between regions D1© and A© in Fig. 5: in

this orientation, two sides of the hexagon have Fermi velocity
parallel to E, therefore they are acting locally (similarly to
normal skin effect), while the Fermi velocity on the remaining
four sides is almost perpendicular to E, so that those sides
negligibly contribute to skin effect; therefore, the response in
region D1© is local, as if there were a q-independent conduc-
tivity, analogously to region A©, but in D1© the density (or the
effective plasma frequency) of electrons that respond to the
field is reduced compared to A©, due to only two hexagon sides
being effective.

To rationalize the frequency behavior of the skin depth and
the impedance in all nonlocal regimes, we generalize the in-
effectiveness concept to momentum-dependent conductivities
and anisotropic geometries (see Sec. VII A), thus showing that
if the conductivity scales as σyy(qx, ω) ∝ ωη/qζ

x , then the skin
depth behaves as δs(ω) ∝ ω−(η+1)/(ζ+2). Through Eq. (4), this
scaling is seen to be completely consistent with the impedance
“phase diagrams” in Figs. 3–5.

The equivalence of the scaling exponent η in physically
distinct regions of the “phase diagrams” 3–5, demonstrates
that the frequency dependence of the impedance is not suf-
ficient, by itself, to uniquely characterize some skin effect
regimes in anisotropic systems. In these situations, one can
refer to the analytical dependence of the impedance on γmr

and γmc, to evaluate whether the “ω-degenerate” regions share
the same physics or are distinguishable on the basis of the
scattering rates; see Appendix E. An example of this method is
the aforementioned difference between Eqs. (7) and (8), which
allows us to discern normal skin effect in region A© from the
anomalous character of region D2© in Fig. 4. Conversely, the
regimes V© and D1© are seen to correspond to the same viscous
behavior, based on Eq. (6).

To practically investigate how anisotropic skin effect de-
pends separately on γmr and γmc, one can refer to the
γmc-dependent saturation of the surface resistance ReZ (ω) in
the relaxationless limit γmr → 0: this is a well-established
method for the experimental observation of anomalous skin
effect in isotropic materials [48,54,58], and can be readily
extended to anisotropic configurations, as shown in Figs. 11
and 14. The relaxation rate γmr may be tuned in practice by
controlling the amount of disorder in the crystal, while both
γmr and γmc can be varied with temperature.

Furthermore, to assess the robustness of our results for
the anisotropic “phase diagrams” 4 and 5 with respect
to Fermi-surface nonidealities, we consider more complex
shapes which are qualitatively similar to the ideal square
and hexagon: these are the “supercircle”—see Sec. VII D 1—
which allows us to controllably introduce a finite curvature of
individual Fermi-surface segments and/or rounded corners,
and a 2D parametrization of the approximately hexagonal
Fermi surface of PdCoO2 stemming from quantum oscilla-
tions experiments [33]—see Sec. VII D 2—to make contact
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with a more realistic case of anisotropic system. In all cases,
we find that the effect of anisotropy is quantitatively modified
by the nonpolygonal shape, but the orientational dependence
of skin effect and the alterations in the exponent η with respect
to the isotropic case are qualitatively robust features of our
kinetic theory.

In the next section, we begin constructing the kinetic theory
that underlies all results summarized so far.

III. KINETIC THEORY FOR ARBITRARY
FERMI SURFACE

The Boltzmann equation with collision term is given as

∂ fk(r, t )

∂t
− eE(r, t ) · ∇k fk(r, t ) + vk · ∇r fk(r, t ) = −(C f )k,

(9)

where (C f )k is the collision integral. Let εk be the single-
particle dispersion relation with velocity vk = ∇kεk. We
expand the distribution function around its equilibrium value
fk = f (0)

k + δ fk. To leading order in δ fk, we obtain after a
Fourier transformation from the space of coordinates and time
{r, t} to momenta and frequencies {q, ω}:

− iωδ fk(q, ω) − eE(q, ω) · vk
∂ f (0)(εk)

∂εk
+ iq · vkδ fk(q, ω)

= −(C f )k. (10)

Equation (10) determines the deviation δ fk(q, ω) of the distri-
bution function from the equilibrium solution f (0)

k ≡ f (0)(εk)
in the presence of the driving field E(q, ω) and of collisions
parametrized by the integral (C f )k.

A. Operator formalism and inner product

In order to efficiently analyze the linearized Boltzmann
equation (10) for arbitrary εk, it is convenient to expand both
δ fk and the collision term (C f )k in terms of a complete set
of eigenfunctions, which define the collision operator Ĉ as
follows. First, we the write our distribution function in the
form

δ fk(q, ω) = −kBT
∂ f (0)(εk)

∂εk
ψk(q, ω). (11)

The linearization of the collision integral can be expressed as

(C f )k =
∫

k′

δ(C f )k

δψk′ (q, ω)
ψk′ (q, ω). (12)

With this formulation, it follows that

(−iω + iq · vk)ψk(q, ω) + Ĉψk(q, ω) = − e

kBT
E(q, ω) · vk

(13)

with collision operator

Ĉψk =
[
−kBT

∂ f (0)(εk)

∂εk

]−1 ∫
k′

δ(Cδ f )k

δψk′ (q, ω)
ψk′ (q, ω). (14)

Let ψk be an element of a function space with inner product
[4,74,86,87]

〈φ|ψ〉 =
∫

k
wkφ

∗
kψk, (15)

where we use the weight function wk = −kBT ∂ f (0)(εk)/
∂εk = f (0)(εk)[1 − f (0)(εk)] > 0. This definition obeys all the
usual properties of a scalar product. Notice that all functions,
and henceforth the scalar product, depend parametrically on
frequency ω and momentum q.

For the matrix elements of the collision operator, it holds
in particular that

〈φ|Ĉ|ψ〉 =
∫

k
wkφ

∗
kĈψk

=
∫

kk′
φ∗

k
δ(Cδ f )k

δψk′ (q, ω)
ψk′ (q, ω). (16)

The quantity (16) is associated with production of entropy
S in the system. The density of the entropy production rate
Q(r, t ) = ∂s(r, t )/∂t with entropy density s(r, t ) can be writ-
ten as

Q(r, t ) = −kB

∫
k
(Cδ f )k ln

[
1

fk(r, t )
− 1

]
≈ −kB〈ψ |Ĉ|ψ〉, (17)

where we expanded the distribution function around equilib-
rium in the second step. Hence, it follows that the entropy
production vanishes in the local equilibrium, and that it is
equal to 〈ψ |Ĉ|ψ〉 per unit volume. To ensure that Q(r, t ) > 0,
the operator Ĉ must be positive definite, the reason for the
variational formulation of the Boltzmann approach. In partic-
ular, it follows that

Cδ f k =
∫

k′

δ(Cδ f )k

δψk′
ψk′ = 1

2

δQ[ψ]

δψk
, (18)

a property that can be used to show that 〈ψ | Ĉφ〉 = 〈Ĉψ | φ〉,
i.e. the operator Ĉ is Hermitian under the above scalar product.
Therefore the eigenvalues of Ĉ are real, and its eigenfunctions
form an orthonormal set of basis functions.

Let the eigenfunctions of the collision operator be χk,m

with eigenvalues γm [88]:

Ĉχk,m = γmχk,m, (19)∑
m

|χk,m〉〈χk,m′ | = 1, (20)

and

〈χk,m|χk,m′ 〉 = δmm′ . (21)

We can now expand our distribution function

ψk =
∑

m

amχk,m (22)

with coefficients

am =
∫

k
wkχ

∗
k,mψk. (23)

We insert the ansatz (22) into the Boltzmann equation (13)
and expand the source term

Sk ≡ − e

kBT
E(q, ω) · vk =

∑
m

smχk,m, (24)
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such that

sm = − e

kBT
E(q, ω)

∫
k
wkχ

∗
k,mvk. (25)

Now the Boltzmann equation takes the form

(γm − iω)am +
∑

m′
iq · 〈m|v|m′〉am′ = sm, (26)

where the matrix elements of the velocity operator are

〈m|v|m′〉 =
∫

k
wkχ

∗
k,mvkχk,m′ . (27)

Hence, at q = 0 the distribution function am = sm/(γm − iω)
gives rise to a Drude response while nonlocal events at finite-q
couple the distinct eigenmodes. Once this coupled system of
equations is solved, one obtains expressions for the distribu-
tion function δ f in terms of the eigenvalues of the collision
operator. Such formulation will be useful for the evaluation
of the conductivity tensor. Recently, a full solution of this
problem was achieved for graphene in the limit of weak
electron-electron interaction [89,90].

B. Conservation laws

Before proceeding with our analysis, it is convenient to
express conservation laws for the system in terms of the
eigenfunctions χk,m. The associated continuity equations are
the result of the conservation of electric charge, energy, and
possibly momentum. They enter the analysis as zero modes
Ĉχk,a = 0 of the collision operator. If we multiply the Boltz-
mann equation (13) with no applied sources [i.e., E (q, ω) =
0] by such a zero mode wkχ

∗
k,a, we find that

ρa(q, ω) =
∫

k
wkχ

∗
k,aψk(q, ω) (28)

is a conserved quantity with current

ja,α (q, ω) =
∫

k
wkχ

∗
k,avk,αψk(q, ω) (29)

and obeys the continuity equation

−iωρa(q, ω) + iq · ja(q, ω) = 0. (30)

Charge conservation corresponds to χk,ρ = 1, while energy
conservation gives χk,ε = εk, and momentum conservation
would demand χk,a = vk,a. Notice, these modes are not nor-
malized to unity with our scalar product (15).

C. Distribution function

Equipped with the constraints given by the continuity
equations, we proceed to solve the infinite set of linear equa-
tions (26) to find δ fk. The spirit of our analysis is similar to
the one used in Ref. [91], yet we also allow for momentum
relaxation. As we will see below, our results will depend
on two aspects of the electronic structure εk: the electronic
plasma frequency �p, to be defined in Eq. (64) below, and the
Fermi velocity vk, as it depends on wave vector k.

Let us consider the Boltzmann equation (13) with the colli-
sion operator (14) and the scalar product (15) for an arbitrary
Fermi surface. In the eigenvalue equation (19) for the colli-
sion operator, we impose charge conservation, which demands

γ0 = 0, and momentum relaxation with scattering rate γmr.
The other eigenfunctions are assumed to be equal, i.e., they
all correspond to the eigenvalue γmc. Hence, we choose the
complete set of basis states

χk,0 = c0 : γ0 = 0, (31a)

χk,i = c0ciṽk,i : γi ≡ γmr, (31b)

χk,m : γm ≡ γmc, ∀m �= {0, i}, (31c)

where i = {x, y} for d = 2 while i = {x, y, z} for d = 3, and

ṽk = vk

〈vk〉0
(32)

is the velocity vector for state k normalized to the average
velocity 〈vk〉0 at the Fermi wave vector k = kF (which is a
function of electron density, kF = kF (n)).

The states (31c) are assumed to be orthonormal to the states
(31a) and (31b), and to each other, according to Eq. (21).
While in the hydrodynamic limit it holds γmc � γmr, our
results are valid for all γmc � γmr and for all values of the
scattering rates in comparison to typical frequencies and mo-
menta. Of course the rates have to be small compared to the
Fermi energy to justify the Boltzmann approach. We further
use the notation (2) for the difference between the two rates.

In performing the scalar product (15), we conveniently
choose to integrate over surfaces S(ε) of constant energy ε

[55] assuming twofold spin degeneracy, as∫
k

≡
∫

2dk
(2π )d

= 2

(2π )d h̄

∫
dε

∫
S(ε)

dS

vk
. (33)

From now on, we assume that the reciprocal-space integral
(33) is confined to states on the Fermi surface SF , S(ε) ≈ SF ,
for sufficiently low temperature T � TF with TF Fermi tem-
perature of the electron ensemble. This way, −∂ fFD(ε)/∂ε ≈
δ(ε). Thus the average velocity 〈vk〉0 in Eq. (32) results

〈vk〉0 =
∫

SF

dS
vkF

vkF∫
SF

dS
vkF

= SF∫
SF

dS
vkF

, (34)

where we have defined the Fermi-surface area for arbitrary,
possibly anisotropic, shape

SF =
∫

SF

dS. (35)

For an isotropic free-electron gas, Eq. (35) gives S = 2πkF

and S = 4π (kF )2 in 2D and 3D, respectively. Notice that with
Eq. (34) we take into account the possibility that the Fermi
velocity itself is anisotropic in space, i.e., that it varies in
magnitude along the Fermi surface. We will return on this
point in Sec. III E, where we will suitably parametrize the
possible Fermi-velocity anisotropy.

We assume that the distribution function only depends on
the direction k̂ = k/k: ψk ≡ ψk̂ . The normalization of the
eigenfunction χk,0 requires

c0 =
[

2kBT

(2π )d h̄

∫
SF

dS

vkF

]− 1
2

. (36)
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Notice that the integral in Eq. (36) is connected to the spinful
Fermi-level density of states Nel

0 (0) per unit volume:

Nel
0 (0) = 2

1

V
δ(ε − EF ) = 1

V

∫
2dk

(2π )d
δ(ε − EF )

≡ 2

(2π )d

∫
SF

dS

vkF

, (37)

where V is the system volume. In the same way, the normal-
ization coefficient ci results

ci =
⎡
⎣
∫

SF

dS
vkF

(ṽk,i )2∫
SF

dS
vkF

⎤
⎦− 1

2

. (38)

Equations (36) and (38) are proved in Appendix A.
Within the above assumptions, we obtain for the collision

operator

Ĉψk = Ĉψk̂ = γmcψk̂ − γmcn0(q, ω)

− δγ
∑

i

[
c2

i ṽk,i pi(q, ω)
]

(39)

with particle density

n0(q, ω) =
∫

SF

dS
vkF

ψk̂ (q, ω)∫
SF

dS
vkF

(40)

and momentum density

pi(q, ω) =
∫

SF

dS
vkF

ṽk,iψk̂ (q, ω)∫
SF

dS
vkF

. (41)

along the spatial directions i, as shown in Appendix A.

This finally yields for the distribution function

|ψk̂〉 = 1

−iω + γmc + iq · vk

{
− e

kBT
E(q, ω) · vk

+ γmcn0(q, ω) + δγ
∑

i

[
c2

i ṽk,i pi(q, ω)
]}

. (42)

Equation (42) is the main result of this section: it relates the
distribution function (11) with the conserved density (40), the
momenta (41), as well as with the scattering rates γmr and
γmc, as a function of the anisotropic Fermi-surface velocity
vk. The explicit form of ψk̂ naturally depends on the relative
orientation of E, q, and vk̂ . In the next section, we specialize
Eq. (42) to purely transverse excitations exerted by an electric
field E ⊥ q.

D. Transverse conductivity

Let us consider an electric field E(q, ω) ≡ Eβ (q, ω)ûβ

along the β axis, and focus on momenta q = qα ûα pointing
along the α �= β direction: this setup will give rise to a trans-
verse conductivity. Then, it follows

|ψk̂〉 = 1

−iω + γmc + iqαvkF ,α

{
− e

kBT
Eβ (qα, ω)vkF ,β

+ γmcn0(qα, ω) + δγ
∑

i

[
c2

i ṽk,i pi(qα, ω)
]}

. (43)

Notice that we can arrange the equations for the moments of
|ψk̂〉 in a matrix form, by conveniently defining the average

〈〈A〉〉 =
[∫

SF

dS

vkF

]−1 ∫
SF

dS

vkF

A

γmc − iω + iqαvkF ,α

(44)

for the quantity A. These equations for the moments are ob-
tained by multiplying Eq. (43) by [dS/vkF ]/[

∫
SF

dS/vkF ] and
[dS/vkF ṽk,i]/[

∫
SF

dS/vkF ], i = {α, β}, and integrating over the
Fermi surface SF .

For d = 2, where {α, β} = {x, y}, we obtain

⎡
⎢⎣γmc〈〈1〉〉 − 1 c2

αδγ 〈〈ṽk,α〉〉 c2
βδγ

〈〈
ṽk,β

〉〉
γmc〈〈ṽk,α〉〉 c2

αδγ
〈〈
ṽ2

k,α

〉〉− 1 c2
βδγ

〈〈
ṽk,α ṽk,β

〉〉
γmc〈〈ṽk,β〉〉 c2

αδγ 〈〈ṽk,α ṽk,β〉〉 c2
βδγ

〈〈
ṽ2

k,β

〉〉− 1

⎤
⎥⎦
⎡
⎣n0(qα, ω)

pα (qα, ω)
pβ (qα, ω)

⎤
⎦ = e

kBT
Eβ

⎡
⎣

〈〈
vkF ,β

〉〉〈〈
vkF ,β ṽk,α

〉〉〈〈
vkF ,β ṽk,β

〉〉
⎤
⎦. (45)

Equation (45) is simplified if we assume that there are two mirror planes in reciprocal space of momenta h̄k, in the xy plane
formed by q and E. This means that, if we take a unit vector û(kx, ky) such that |û(kx, ky)| = 1,

û(kx, ky) = û(kx,−ky ) = û(−kx, ky). (46)

The condition (46) ensures a good integration property for a function a(ṽk,x, ṽk,y) which is odd under reflection about the x
or y axis: in particular, a generic function F (ṽk,x ) multiplied by a(ṽk,x, ṽk,y) = −a(−ṽk,x, ṽk,y) produces a null result upon
integration over the Fermi surface:

[∫
SF

dS

vkF

]−1 ∫
SF

dS

vkF

a(ṽk,x, ṽk,y)F (ṽk,x ) = 0. (47)
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An example is a(ṽk,x, ṽk,y) = ṽk,y. Within the hypothesis (46), the matrix equation (45) simplifies to⎡
⎣γmc〈〈1〉〉 − 1 c2

αδγ 〈〈ṽk,α〉〉 0
γmc〈〈ṽk,α〉〉 c2

αδγ
〈〈
ṽ2

k,α

〉〉− 1 0
0 0 c2

βδγ
〈〈
ṽ2

k,β

〉〉− 1

⎤
⎦
⎡
⎣n0(qα, ω)

pα (qα, ω)
pβ (qα, ω)

⎤
⎦ = e

kBT
Eβ

⎡
⎣ 0

0〈〈
vkF ,β ṽk,β

〉〉
⎤
⎦. (48)

For d = 3, where {α, β, γ } = {x, y, z}, we obtain⎡
⎢⎢⎢⎣

γmc〈〈1〉〉 − 1 c2
αδγ 〈〈ṽk,α〉〉 c2

βδγ 〈〈ṽk,β〉〉 c2
γ δγ 〈〈ṽk,γ 〉〉

γmc〈〈ṽk,α〉〉 c2
αδγ

〈〈
ṽ2

k,α

〉〉− 1 c2
βδγ 〈〈ṽk,α ṽk,β〉〉 c2

γ δγ 〈〈ṽk,α ṽk,γ 〉〉
γmc〈〈ṽk,β〉〉 c2

αδγ 〈〈ṽk,α ṽk,β〉〉 c2
βδγ

〈〈
ṽ2

k,β

〉〉− 1 c2
γ δγ 〈〈ṽk,β ṽk,γ 〉〉

γmc〈〈ṽk,γ 〉〉 c2
αδγ 〈〈ṽk,α ṽk,γ 〉〉 c2

βδγ 〈〈ṽk,β ṽk,γ 〉〉 c2
γ δγ

〈〈
ṽ2

k,γ

〉〉− 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

n0(qα, ω)
pα (qα, ω)
pβ (qα, ω)
pγ (qα, ω)

⎤
⎥⎥⎦ = e

kBT
Eβ

⎡
⎢⎢⎣

〈〈
vkF ,β

〉〉〈〈
vkF ,β ṽk,α

〉〉〈〈
vkF ,β ṽk,β

〉〉〈〈
vkF ,β ṽk,γ

〉〉
⎤
⎥⎥⎦. (49)

Similarly to the 2D case of Eq. (48), Eq. (49) simplifies if we assume that there are three mirror planes in reciprocal space of
momenta h̄k. Taking a unit vector û(kx, ky, kz ) such that |û(kx, ky, kz )| = 1, we have

û(kx, ky, kz ) = û(kx,−ky, kz ) = û(−kx, ky, kz ) = û(kx, ky,−kz ). (50)

Assuming Eq. (50) to hold, the matrix equation (49) becomes⎡
⎢⎢⎢⎣

γmc〈〈1〉〉 − 1 c2
αδγ 〈〈ṽk,α〉〉 0 0

γmc〈〈ṽk,α〉〉 c2
αδγ

〈〈
ṽ2

k,α

〉〉− 1 0 0
0 0 c2

βδγ
〈〈
ṽ2

k,β

〉〉− 1 0
0 0 0 c2

γ δγ
〈〈
ṽ2

k,γ

〉〉− 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

n0(qα, ω)
pα (qα, ω)
pβ (qα, ω)
pγ (qα, ω)

⎤
⎥⎥⎦ = e

kBT
EβvF

⎡
⎢⎢⎣

0
0〈〈

vkF ,β ṽk,β

〉〉
0

⎤
⎥⎥⎦. (51)

In the following, we will work within the mirror-planes assumptions (46) and (50), which lead to Eqs. (48) and (51) in 2D and
3D, respectively.

Since the electric field Eβ (q, ω) only couples to momentum in the same direction ûβ , we have to ensure that ψk̂ vanishes for
Eβ (q, ω) = 0. This is accomplished if n0(q, ω) = 0 and pi(q, ω) = 0 for i �= β. Then, it follows for the momentum density

pβ (qα, ω) = − e

kBT

Eβ (qα, ω)
〈〈
vkF ,β ṽk,β

〉〉
1 − δγ c2

β

〈〈
ṽ2

k,β

〉〉 . (52)

Therefore Eq. (52) specifies the relation between the induced momentum density and the applied transverse electric field. For
the distribution function (43), this means

|ψk̂〉 = − e

kBT

Eβ

−iω + γmc + iqαvkF ,α

[
vkF ,β + c2

βδγ ṽk,β

〈〈
ṽk,βvkF ,β

〉〉
1 − c2

βδγ
〈〈
ṽ2

k,β

〉〉
]
. (53)

Since the electrical current density is

J(q, ω) = −e
∫

k
vkδ fk(q, ω) = −e

∫
k
wkvk|ψk(q, ω)〉, (54)

the transverse conductivity results

σββ (qα, ω) = Jβ (qα, ω)

Eβ (qα, ω)

= 2e2

(2π )d h̄

∫
SF

dS

vkF

1

−iω + γmc + ivkF ,αqα

[(
vkF ,β

)2 + c2
βδγ vkF ,β ṽk,β

〈〈
ṽk,βvkF ,β

〉〉
1 − c2

βδγ 〈〈(ṽk,β )2〉〉

]

= 2e2

(2π )d h̄

[∫
SF

dS

vkF

]⎡⎣〈〈(vkF ,β

)2〉〉+ c2
βδγ

(〈〈
ṽk,βvkF ,β

〉〉)2

1 − c2
βδγ

〈〈(
ṽk,β

)2〉〉
⎤
⎦. (55)

Thus we have derived a closed expression for the transverse
conductivity of an arbitrary Fermi surface, that covers the
ballistic, Ohmic, and viscous regimes. Besides the premise
of quasiparticle transport in the Boltzmann regime, the only
major assumption is that all momentum-conserving processes
are governed by the same relaxation rate γmc. Notice that
Eq. (55) holds whenever the symmetry planes (46) or (50)
exist for the dispersion relation, which is the case when the
Fermi surface is approximated by, e.g., a regular polygon in

2D or solid in 3D. This approximation can easily be relaxed
by referring to the general expressions (45) and (49).

E. Parametrization of the anisotropic Fermi-surface velocity

The transverse conductivity (55) may be recast in a more
compact form, if we select a convenient parametrization of the
velocity vkF . We employ

vkF = 〈
vkF

〉
0νkn̂k ≡ vF νkn̂k, (56)
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where vF = 〈vkF 〉0, in accordance with Eq. (34), n̂k is the unit
vector (|n̂k| = 1)in the direction of k, while νk encodes the
orientational variation of the Fermi-surface velocity and is
unitary upon averaging:∫

SF

dS
vkF

νk∫
SF

dS
vkF

= 1. (57)

Equation (56) also implies that ṽk = vkF /vF ≡ νkn̂k. Notice
that vF in Eq. (56) is a free parameter: this means that, by
fixing a value for vF , we impose a value for the average (34) of
the Fermi velocity over all orientations. With the parametriza-
tion (56), Eq. (40) simplifies to

n0(q, ω) =
∫

SF

dS
νk

ψk̂ (q, ω)∫
SF

dS
νk

(58)

with normalization coefficient (36) translating as

c0 =
[

2kBT

(2π )d h̄vF

∫
SF

dS

νk

]− 1
2

. (59)

In the same way, using Eq. (56), the momentum density com-
ponents (41) become

pi(q, ω) =
∫

SF

dS
νk

νknk,iψk̂ (q, ω)∫
SF

dS
νk

(60)

with coefficients

ci =
[∫

SF

dS
νk

(νknk,i )2∫
SF

dS
νk

]− 1
2

. (61)

This way, the transverse conductivity (55) results

σββ (qα, ω) = 2e2vF

(2π )d h̄

∫
SF

dS

νk

〈〈(νknk,β )2〉〉
1 − c2

βδγ 〈〈(νknk,β )2〉〉

≡ ε0�
2
p

G0(qα, ω)

1 − c2
βδγ G0(qα, ω)

, (62)

where we define

G0(q, ω) =
[∫

SF

dS

νk

]−1 ∫
SF

dS
νk(nk,β )2

γmc − iω + ivF νknk,αq

≡ 〈〈(νknk,β )2〉〉. (63)

We also define the plasma frequency

�2
p =

∑
i

ω2
p,ii ≡ 2e2vF

(2π )d h̄ε0

∫
SF

dS

νk
(64)

with individual contributions

ε0ω
2
p,ii = e2v2

F

c2
0kBT

∫
SF

dS

νk
n2

k,i = ε0�
2
p

∫
SF

dS

νk
n2

k,i. (65)

The anisotropy taken into account by the conductivity (62) is
twofold: the Fermi-surface shape is allowed to be anisotropic,
and in addition the Fermi velocity (56) may vary along differ-
ent orientations due to the factor νk; both anisotropies are only
constrained by the assumed existence of two or three symme-
try planes in reciprocal space, in accordance with Eqs. (46)
and (50). In the next section and in the rest of this paper,

for simplicity, we will work under the assumption that the
Fermi velocity is isotropic in space, while we will retain the
anisotropy in the Fermi-surface shape.

F. Transverse conductivity for constant Fermi-velocity modulus

In the limit where all states at the Fermi surface share the
same velocity modulus, we have

vkF ≈ vF = vF n̂k, (66)

that is, νk ≡ 1∀k, and Eqs. (58)–(65) considerably simplify.
Specifically, we obtain for the coefficient (59) that

c0 =
[

2kBT

(2π )d h̄vF
SF

]−1/2

, (67)

while Eq. (61) translates as

ci =
[∫

SF

dS

SF
n2

k,i

]−1/2

. (68)

The particle density (58) and the momentum density (60)
become

n0(q, ω) =
∫

SF

dS

SF
ψk̂ (q, ω) (69)

and

pi(q, ω) =
∫

SF

dS

SF
nk,iψk̂ (q, ω), (70)

respectively. Finally, the transverse conductivity (62) reduces
to

σββ (qα, ω) = ε0�
2
p

G0(qα, ω)

1 − c2
βδγ G0(qα, ω)

, (71)

where from Eq. (63), we have

G0(q, ω) =
∫

SF

dS

SF

n2
k,β

−iω + γmc + ivF qnk,α

. (72)

The plasma frequency (64) for a constant Fermi-velocity mod-
ulus translates as

�2
p =

∑
i

ω2
p,ii ≡ 2e2SF vF

(2π )d h̄ε0
, (73)

where

ε0ω
2
p,ii = e2v2

F

c2
0kBT

∫
SF

dS

SF
n2

k,i ≡ 2e2SF vF

(2π )d h̄

∫
SF

dS

SF
n2

k,i. (74)

Moreover, notice that the DC conductivity in the limit qα →
0, ω → 0 implied by Eq. (71) depends on the relaxation rate
γmr but not on the momentum-conserving rate γmc:

σββ (0, 0) = ε0ω
2
p,ββ

γmr
. (75)

Equation (71) can, among others, be used to analyze the
various versions of the skin effect, as we will appreciate in
Secs. V and VI. In the following section, we first check that
the conductivity (71) reduces to the known expression for
isotropic 2D systems, and then we specialize to the anisotropic
examples of hexagonal and square Fermi-surface shapes.
More complicated Fermi-surface geometries are discussed in
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Sec. VII D and compared with the polygonal symmetries.
Selected solutions for 3D systems are left for further work.

IV. TRANSVERSE CONDUCTIVITY FOR 2D ISOTROPIC
AND POLYGONAL GEOMETRIES

In applying the theory of Sec. III D to cases of 2D circular
and polygonal Fermi surfaces, we have to span a substantially
large parameter space as a function of γmr, γmc, vF , q, and
ω. This space can be conveniently constrained by considering
how the ratio γmr/γmc evolves in practice as a function of tem-
perature. At room temperature, where phase-space constraints
become less crucial and anharmonic phonon effects suppress
phonon drag behavior one often expects γmr ≈ γmc. On the
other hand γmc � γmr is expected for ultraclean systems at
cryogenic temperatures. These two separate cases will be
considered in the following analysis. For definiteness, we fix
the spatial coordinates α = x and β = y in the what follows.
The expression for �p and cy is common to all Fermi-surface
shapes and orientation here considered. This is because, from
the respective definitions (74) and (68), we have

ω2
p,ii = �2

p

c2
i

, (76)

and this quantity is set by the symmetry of the crystal system,
analogously to the local (qx = 0) conductivity tensor [85]. In
all example Fermi surfaces discussed herein, the local conduc-
tivity tensor is isotropic and so by symmetry

c2
y = �2

p/ω
2
p = 2. (77)

In Eq. (77), we have defined the plasma frequency of the
isotropic electron gas [55,92]

ωp =
√

ne2

mε0
. (78)

Furthermore, another simplification occurs in the Fermi-
surface integrations for all polygonal geometries, within the
assumption that the scattering rates γmr and γmc, and the
Fermi-velocity modulus vF , do not depend on orientation:
in this case, since the regular polygon of NS sides can be

decomposed into NS regular triangles, and the normal vectors
nk,i do not vary within each individual side i = {1, . . . NS}, the
integrals

∫
SF

F (nk)dS/SF = [
∑NS

i=1 F (nk,i )]/NS for any func-
tion F (nk). In other words, the Fermi-surface integrations can
be taken as discrete sums which depend on the values nk,i

of the normal vector assumed on each polygon side. We will
see concrete examples of this simplification in Secs. IV B and
IV C, but first we analyze the simplest case of a circular Fermi
surface.

A. The isotropic limit

Let us check the expression (71) for a circular Fermi sur-
face, in 2D. In this case, it is convenient to parametrize the
Fermi-surface integrations with the angle θ ∈ [0, 2π ]:

nk,x ≡ nθ,x = cos θ, (79a)

nk,y ≡ nθ,y = sin θ. (79b)

The Fermi-surface integrations reduce to∫
SF

dS

SF
=
∫ 2π

0

kF dθ

2πkF
=
∫ 2π

0

dθ

2π
. (80)

The distribution function |ψk̂〉 ≡ |ψθ 〉 follows:

|ψθ 〉 = − e

kBT

Ey(qx, ω)vF sin θ

−iω + γmc + ivF qx cos θ

× 1

1 − 2δγ G0(qx, ω)
, (81)

where we have

G0(q, ω) ≡ 〈〈
n2

k,y

〉〉
=
∫ 2π

0

dθ

2π

(sin θ )2

−iω + γmc + ivF q cos θ

= −γmc + iω +
√

(γmc − iω)2 + (vF q)2

(vF q)2
(82)

in accordance with Eq. (72). The full distribution function
δ fk(q, ω) is then

δ fk = −kBT
∂ f 0(εk)

∂εk
|ψθ 〉 = eEy

∂ f 0(εk)

∂εk

vF sin θ

−iω + γmc + ivF qx cos θ − 2δγ (−iω + γmc + ivF qx cos θ )G0(qx, ω)
. (83)

Using Eqs. (71), (77), (81), and (82), we obtain the transverse conductivity

σyy(qx, ω) = 2ε0ω
2
p

1

−iω + 2γmr − γmc +
√

(vF qx )2 − (ω + iγmc)2
, (84)

which simplifies in the limit δγ = 0 to

σyy(qx, ω) = 2ε0ω
2
p

∫
dθ

2π

sin2 θ

−iω + γ + ivF qx cos θ
, (85)

consistently with the literature [74,93]. Equivalently, Eqs. (83)
and (84) can be derived by recognizing that the eigenfunctions
χk,m for isotropic Fermi surfaces are the angular momentum

states χk,m = c0eimθ [74]; see Appendix B for the alternative
derivation.

In particular, in the limit of large γmc, we retrieve the
hydrodynamic result [17,74]

σyy(qx, ω) = ε0ω
2
p

−iω + γmr + (vF qx )2/(4γmc)
. (86)
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TABLE IV. Piecewise-constant orientation of the Fermi velocity
for a hexagonal Fermi surface with two faces aligned with the direc-
tion of the applied electric field; see Fig. 7(a). n̂(θ ) is the unit vector
in the velocity direction (locally orthogonal to the Fermi surface).

θ [− π

6 , π

6 ] [ π

6 , π

2 ] [ π

2 , 5π

6 ]

n̂(θ ) (1, 0) ( 1
2 ,

√
3

2 ) (− 1
2 ,

√
3

2 )

θ [ 5π

6 , 7π

6 ] [ 7π

6 , 3π

2 ] [ 3π

2 , 11π

6 ]

n̂(θ ) (−1, 0) (− 1
2 , −

√
3

2 ) ( 1
2 , −

√
3

2 )

B. Hexagonal Fermi surface

We consider a perfectly hexagonal Fermi surface. This
seems to be a good approximation for the 2D conducting Pd
planes of PdCoO2, while it neglects the slight Fermi-surface
warping in the direction orthogonal to the planes [94]; see
Fig. 1(c). The in-plane approximately hexagonal shape is
supported by the careful analysis of Ref. [95], which shows
that the directional distribution of Fermi-velocity unit vectors
is strongly peaked in six directions. Moreover, band-structure
calculations fitted to angle-resolved photoemission data sup-
port the view that the Fermi velocity is essentially constant
within given sectors of the hexagon [65]. The unphysical
consequences of the discontinuities in the velocity derivative
at the hexagon edges may be removed by rounding the edges
themselves with smooth arcs, with a however small radius
of curvature [74], but we will relegate this refinement to
Sec. VII D 2.

1. Reference geometry: parallel configuration

It is again convenient to parametrize the Fermi-surface
integrations in terms of an angle θ ∈ [0, 2π ]. The normal
vector nk = nk(θ ) is normalized as n̂k = nk/nk (for a general
definition, see Appendix H), and its Cartesian components are

nk,x ≡ nx,θ , (87a)

nk,y ≡ ny,θ . (87b)

The vectors nx,θ and ny,θ , pointing towards the Fermi velocity,
assume different lengths depending on the orientation of the
hexagon. From Eq. (46), we then have

n̂k = n̂(θ ) = nx,θ ûx + ny,θ ûy. (88)

For a crystal that is perfectly aligned with the surface—
i.e., ky and kx are oriented parallel and perpendicular to the
surface, respectively—the unit vector n̂(θ ) takes the values
given in Table IV. This allows us to perform the momentum
integrations

∫
SF

dS/SF in Eq. (72) for a function F (vk) =
F (vx,θ , vy,θ ) as discrete sums over the NS = 6 sides of the
hexagon, as mentioned earlier in Sec. IV. It works as follows:∫

SF

dS

SF
F (vx,θ , vy,θ ) =

∫
SF

nk(θ )dθF (vx,θ , vy,θ )∫
SF

nk(θ )dθ

≡
∑6

i=1 At F (vF nx,i, vF ny,i )

6At

= 1

6

6∑
i=1

F (vF nx,i, vF ny,i ), (89)

where n̂(θ ) ≡ n̂i = (nx,i, ny,i ) are the six unit vectors given in
Table IV. At = ∫ θi,b

θi,a
dθnk(θ ) is the integral of the line element

nk along each side, corresponding to angles θ ∈ [θi,a, θi,b]; this
integral is the same for each side i = {1, . . . , 6} for regular
polygons.

Next, we have to compute Eq. (72). We find

G0(qx, ω) = − 2

(γmc − iω)(λ2 − 4)
, (90)

where

λ = vF qx

ω + iγmc
. (91)

Using Eqs. (90) and (71), we finally have the transverse con-
ductivity

σyy(qx, ω)

ε0(ωp)2
= − 4

(γmc − iω)(λ2 − 4)

×
[

1 + 4δγ

(γmc − iω)(λ2 − 4)

]−1

. (92)

Equation (92) considerably simplifies for δγ = 0. In this case,
we have

σyy(qx, ω)

ε0ω2
p

= 4

(γ − iω)(4 − λ2)
(93)

with γ = γmc = γmr. In particular, in the absence of scattering
rates, that is for γmr = γmc = 0, Eq. (93) translates as the
simple result

σyy(qx, ω)

ε0ω2
p

= 4iω

4ω2 − (vF qx )2
, (94)

which displays a pole at ω = ±vF qx/2.
Now consider the general case γmr �= γmc. In the high-

momentum regime qx → +∞, the expansion at leading order
of Eq. (92) produces

σyy(qx, ω)

ε0ω2
p

= 4
γmc − iω

(vF qx )2
+ o[(vF qx )−4]. (95)

In the limit qx → 0, i.e., for long-wavelength excitations, we
have

σyy(qx, ω)

ε0(ωp)2
= 1

γmr − iω
+ (vF qx )2

4(γmc − iω)(ω + iγmr )2

+ o[(vF qx )4], (96)

so at zero momentum the conductivity is governed by γmr

but not γmc. Finally, expanding Eq. (92) to linear order in
1/γmc → 0+, we obtain the conductivity in hydrodynamic
regime dominated by momentum-conserving collisions:

σyy(qx, ω)

ε0ω2
p

= 1

γmr − iω
− 1

γmc

(vF qx )2

4(γmr − iω)2
+ o[(γmc)−2].

(97)

The present configuration, with two hexagonal faces
aligned with the y axis, serves as a reference for the analysis
of the conductivity for an arbitrary Fermi-surface orientation
with respect to the applied field: to perform such general-
ization, it is convenient to introduce rotated Fermi-surface
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(a) (b)

FIG. 7. Schematic representation of the hexagonal Fermi-surface
geometry with electric field E = Eyûy aligned with the y axis. Red
arrows show the local Fermi velocity vectors vF = vF n(θ ). (a) “Par-
allel” configuration with two hexagon faces aligned with the y axis.
(b) Configuration obtained by rotating the hexagon in (a) by an angle
φ = π/2, formed by the axes x′ = {x′, y′} with respect to the frame
x = {x, y} in which the field E = Eyûy.

coordinates with respect to the field axis, as described in the
next section.

2. Arbitrary crystal orientation

Let us now analyze arbitrary crystal orientations. Let x =
(x, y) refer to the coordinates along and perpendicular to the
applied field E(q, ω) ≡ Ey(qx, ω)ûy. We then call x′ = (x′, y′)
the coordinates that are aligned with the crystalline axes,
where x′ = R−1x and the 2D rotation matrix R is

R =
[

cos φ − sin φ

sin φ cos φ

]
(98)

if the axes x′ are rotated by an angle φ with respect to the axes
x; see Fig. 7(b). This implies that the velocities in the frame
aligned with the surface are vkF = Rv′

k = vF Rn̂(θ ). It follows
that the velocities can be written as

vkF ≡ v(θ, φ) = vF m(θ, φ)

= mx(θ, φ)ûx + my(θ, φ)ûy (99)

with rotated unit vector. The components are given as

mx(θ, φ) = cos (φ)nx,θ − sin (φ)ny,θ ,

my(θ, φ) = sin (φ)nx,θ + cos (φ)ny,θ . (100)

Inserting the parametrization (99) into Eq. (72), and per-
forming the discrete summation according to Eq. (89), we
obtain

G0(qx, ω, φ)

=
∫

SF

dS

SF

[my(θ, φ)]2

−iω + γmc + ivF qmx(θ, φ)

= 1

γmc − iω

−16 + 20λ2 + λ4[cos (6φ) − 5]

−32 + 48λ2 − 18λ4 + λ6[1 + cos (6φ)]
,

(101)

where we have used Eq. (91). The transverse conductivity then
follows from Eq. (71), and formally it is

σyy(qx, ω)

2ε0(ωp)2
= G0(qx, ω, φ)

1 − 2δγ G0(qx, ω, φ)
. (102)

Setting φ = 0, we recover of course Eq. (92) for Gi(qx, ω, 0).
Also, notice that the conductivity has a sixfold periodicity in
rotation angle φ due to the D3d symmetry. The conductivity
(102) significantly depends on the orientation angle φ: in
particular, we see from Eq. (101) that G0(qx, ω, φ) ∝ λ−2 for
λ � 1, which is the high-momentum regime where anoma-
lous skin effect takes place; see Secs. V and VI. However, for
φ = π/2, two corners of the hexagon intersect the x axis and
1 + cos(6φ) = 0. Then we obtain G0(qx, ω, π/2) = [3(γmc −
iω)]−1 + o(λ−2) for λ � 1. Thus we do expect a qualitative
difference between the orientations φ = 0 and φ = π/2 in the
regime of anomalous skin effect.

For φ = π/2 and γmr = γmc = γ , we obtain for the con-
ductivity

σyy(qx, ω, π/2)

ε0ω2
p

= 4(γ − iω)2 + 2(vF qx )2

(γ − iω)[4(γ − iω)2 + 3(vF qx )2]
,

(103)

which is manifestly different from the φ = 0 case (93). In
particular, for γ = 0,

σyy(qx, ω, π/2)

ε0ω2
p

= 2i

ω

2ω2 − (vF qx )2

4ω2 − 3(vF qx )2
, (104)

that has a pole for ω = ±√
3/4vF qx.

We now turn to the general case δγ �= 0. Remarkably, the
differences between different orientations of the hexagonal
Fermi surface actually vanish both in the low-momentum
regime qx → 0+ to order q2

x and in the hydrodynamic limit
γmc → +∞. In fact, expanding Eq. (102) for a generic angle
φ to order q2

x , we exactly obtain Eq. (96), as in the φ = 0 case.
Similarly, expanding Eq. (102) to linear order in 1/γmc → 0+,
we obtain Eq. (97) for any φ. Hence, the conductivity does
not depend on orientation in the low-momentum and hydro-
dynamic regimes, for a hexagonal Fermi surface. In fact, the
independence from φ in hydrodynamic regime can be also in-
ferred from the structure of the Navier-Stokes equations with
D3d symmetry [74]; see Appendix C.

The conductivity does show orientational dependence in
the high-momentum regime qx → +∞: the leading-order ex-
pansion of Eq. (102) for generic angle φ �= απ/6, α ∈ Z gives

σyy(qx, ω, φ)

ε0ω2
p

= (γmc − iω)[5 − cos(6φ)]

[vF qx cos(3φ)]2 + o[(vF qx )−4],

(105)

which correctly reduces to Eq. (95) for φ = 0. However,
Eq. (105) diverges for φ = π/2, which is an indication of the
special nature of conduction and skin effect in this configu-
ration, as we will analyze in Sec. V. To avoid this apparent
divergence, we set φ = π/2 in Eq. (102) before performing
the expansion for qx → +∞, with the leading-order result

σyy(qx, ω, π/2)

2ε0ω2
p

= 2

γmc + 2γmr − iω

+ (4γmc − iω)3

(γmc + 2γmr − 3iω)2(vF q)2

+ o[(vF qx )−4]. (106)
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(a) (b)

FIG. 8. Schematic representation of the square Fermi-surface ge-
ometry with electric field E = Eyûy aligned with the y axis of the
frame x = {x, y}. Red arrows show the local Fermi velocity vectors
vF = vF n̂(θ ). (a) “Diamond-shaped” configuration with vertices in-
tersecting the x and y axes. (b) Configuration obtained by rotating
the square in panel (a) by an angle φ = π/4, formed by the axes
x′ = {x′, y′} with respect to the frame x.

In the large-momentum regime, there is a qualitative differ-
ence in the conductivity, depending on the presence or absence
of scattering: the limits ω → 0 and γ → 0 do not commute.
This is most evident in the limit δγ = 0 for Eq. (106), which
yields

σyy(qx, ω, π/2)

ε0ω2
p

= 2

3(γ − iω)
. (107)

Then, we see a qualitative difference in the presence or
absence of scattering: for γ � ω, the conductivity (107) is in-
versely proportional to ω for γmr = γmc = 0; on the contrary,
if γ � ω, the conductivity is approximately frequency-
independent. A similar dichotomy appears for the more
general Eq. (106) with arbitrary γmr � γmc. This difference
will be at the origin of a qualitative distinction for the skin
depths in anomalous regime, in the absence or presence of
scattering; see Sec. V A.

To investigate how the anisotropic electrodynamics de-
pends on the specific Fermi-surface shape, in the next section,
we analyze another exemplary case, namely the square point
group D4.

C. Square Fermi surface

To get a better intuition for the origin of the rather distinct
behavior of the two orientations of the sample edge relative
to the crystalline axis, we consider a square Fermi surface, as
shown in Fig. 8. The procedure is identical to the one for the
hexagonal Fermi surface: we assume that the Fermi velocity
is constant in the four segments.

1. Reference geometry: diamond-shaped configuration

In analyzing the diamond-shaped case, we again use the
parametrization (88) in terms of θ . With the piecewise ap-
proximation for the Fermi velocity, the angular integrations
over the Fermi surface in Eq. (72) reduce to the discrete sum∫

SF

dS

SF
F (vx(θ ), vy(θ )) = 1

4

4∑
i=1

F (vF nx,i, vF ny,i ), (108)

where n̂ again satisfies Eq. (88). Equation (108) for the square
Fermi surface is analogous to its counterpart (89) for the
hexagonal geometry. For the geometry in which each pair of

TABLE V. Piecewise-constant orientation of the Fermi velocity
for a square Fermi surface with two vertices intersecting the x axis,
and two intersecting the y axis; see Fig. 8(a). n̂(θ ) is the unit vector
in the velocity direction (locally orthogonal to the Fermi surface).

θ [0, π

2 ] [ π

2 , π ] [π, 3π

2 ] [ 3π

2 , 2π ]
n̂(θ ) 1√

2
(1, 1) 1√

2
(−1, 1) 1√

2
(−1, −1) 1√

2
(1,−1)

vertices of the square intersect the x and y axis, as in Fig. 8(a),
the unit vectors n̂(θ ) are collected in Table V.

The angular sum in Eq. (72) leads to

G0(qx, ω) = − 2

(γmc − iω)(2 − λ2)
. (109)

Equations (109) and (71) yield the transverse conductivity

σyy(qx, ω)

ε0(ωp)2
= 2

(γmc − iω)(2 − λ2)

×
{

1 − 2δγ

(γmc − iω)(2 − λ2)

}−1

. (110)

Let us first analyze the conductivity for equal momentum-
relaxing and momentum-conserving scattering rates. For
δγ = 0, Eq. (110) simplifies to

σyy(qx, ω)

ε0ω2
p

= 2

(γ − iω)
[
2 − (

vF qx

ω+iγ

)2] , (111)

which in the scattering-less limit γmr = γmc = 0 becomes sim-
ply

σyy(qx, ω)

ε0ω2
p

= 2i

ω
[
2 − (

vF qx

ω

)2] (112)

with a pole at ω = ±vF qx/
√

2.
Let us now focus on γmr �= γmc. In the low-momentum

regime qx → 0+, an expansion of the conductivity (110) to
order q2

x gives

σyy(qx, ω)

ε0ω2
p

= 1

γmr − iω
+ (vF q)2

2(γmc − iω)(iγmr + ω)2

+ o[(vF qx )4]. (113)

The extreme hydrodynamic limit is obtained by expanding
Eq. (110) to order 1/γmc:

σyy(qx, ω)

ε0ω2
p

= 1

γmr − iω
− (vF q)2

2γmc(γmr − iω)2
+ o[(γmc)−2].

(114)

In the high-momentum regime qx → +∞, the conductivity
(110) gives at leading order

σyy(qx, ω)

ε0ω2
p

= 2
γmc − iω

(vF qx )2
+ o[(vF qx )−4], (115)

which differs only by a factor of 2 from the hexagonal result
(95).

In the next section, we generalize the above results to an
arbitrary orientation of the square Fermi surface with respect
to the applied field, in the same way as done in Sec. IV B 2
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for the hexagonal Fermi surface. This analysis will allow us
to draw general criteria to link the form of the transverse con-
ductivity for polygonal geometries to the given Fermi-surface
orientation.

2. Arbitrary crystal orientation

For an arbitrary orientation, we rotate the velocities by the
angle φ, in accordance with Eq. (99), analogously to the case
of a hexagonal Fermi surface in Sec. IV B 2. Then, the velocity
vectors in the frame aligned with the applied field are given by
Eq. (100), and the conductivity follows from Eq. (102). The
only difference with respect to the hexagonal case is that the
expression for G0(qx, ω, φ), with φ ∈ [0, 2π ] and γmr �= γmc,
is modified for a square Fermi surface:

G0(qx, ω, φ) = 1

γmc − iω

4 − λ2[−3 + cos (4φ)]

8(1 − λ2) + λ4[1 + cos (4φ)]
,

(116)

where we have used the variable (91). Setting φ = 0 in
Eqs. (116) we retrieve Eq. (110).

There is a qualitative difference between square and hexag-
onal conductivities in the qx → 0+ limit. In fact, in the
low-momentum regime and the extreme hydrodynamic limit,
the conductivity for a square Fermi surface displays signifi-
cant orientational dependence. This is best seen by expanding
the conductivity (102) for generic φ to order q2

x :

σyy(qx, ω)

ε0ω2
p

= 1

γmr − iω
+ [vF q cos(2φ)]2

2(γmc − iω)(iγmr + ω)2

+ o[(vF q)4]. (117)

In particular, an expansion of Eq. (102) to order 1/γmc (hydro-
dynamic regime) yields

σyy(qx, ω)

ε0ω2
p

= 1

γmr − iω
+ [vF q cos(2φ)]2

2γmc(iγmr + ω)2
+ o[(vF q)4].

(118)

The dependence on φ shown by Eqs. (117) and (118) is in
stark contrast with the respective counterparts (96) and (97)
for a hexagonal Fermi surface, which do not depend on orien-
tation. Hence, we expect an angle-dependent electrodynamics
in hydrodynamic regime for a square-shaped Fermi surface,
but not for a hexagonal one; see also Appendix C.

In the high-momentum regime, Eq. (102) becomes

σyy(qx, ω)

ε0ω2
p

= (γmc − iω)[3 − cos(4φ)]

[vF qx cos(2φ)]2 + o[(vF qx )−4],

(119)

for generic angle φ �= απ/4, α ∈ Z, which correctly gives
Eq. (115) for φ = 0. The expression (119) diverges for φ =
π/4, that is for two square faces parallel to the applied field,
in a similar way as what found for Eq. (105), φ = π/2 in the
hexagonal case.

The conductivity for φ = π/4, which corresponds to
Fig. 8(b), displays a remarkable property: it is identically
equivalent to the one of the Drude model, for a local conductor

with relaxation rate γmr:

σyy(qx, ω)

ε0ω2
p

≡ 1

γmr − iω
, (120)

independently from qx and γmc. This result is of course dra-
matically different from the φ = 0 case of Eq. (110): for
φ = π/4, the nonlocal character of the transverse conductiv-
ity completely disappears.

The appearance of perfect conductivities for specific ori-
entations is actually linked with large Fermi-surface segments
parallel to the electric field for polygonal geometries, as de-
tailed in the following section.

D. Comparison between polygonal geometries

The expressions for the conductivity found in Secs. IV B–
IV C 2 give us insight into how sensitive different anisotropic
Fermi-surface geometries are to the orientation of the applied
electric field. Both in the regime q → 0+ and γmc → +∞
(hydrodynamic limit), the leading-order expansions of the
conductivity do not depend on orientation for a hexagonal
Fermi surface; see Eqs. (96) and (97). Hence, we expect no
variation of the electrodynamic properties with angle φ in
this case. On the contrary, for a square geometry Eqs. (117)
and (118) predict a significant angular dependence of the
low-momentum and hydrodynamic transverse conductivity.

Let us now turn to the high-momentum regime charac-
teristic of anomalous skin effect. Comparing Figs. 7(a) and
8(b), one finds that the common aspect is the propagation of
electrons parallel to the surface, on a large portion of the Fermi
surface. These flat segments, with velocity parallel to the
current, give rise to a momentum-independent conductivity.
To see this, consider the expression (1) for the 2D conductivity
with γmr = γmc = 0, α = x, and β = y:

σyy(qx, ω) = e2

−iω

∫
k

v2
k,y

1 − qx

ω
vk,x

. (121)

For a piecewise-constant Fermi surfaces, the momentum inte-
gral in Eq. (121) depends on r = vF qx/ω and it usually decays
as r−2, while for a spherical Fermi surface it decays like r−1;
see Eq. (85). These different power laws determine the dif-
ference in the ω evolution of the conductivities for polygonal
and circular Fermi surfaces. However, if there is a flat piece of
the Fermi surface with velocity vk ‖ ûy parallel to the applied
field, then vk,x = 0 and the dependence on qx disappears from
the conductivity (121) even at finite momentum, as exempli-
fied by Eq. (120) for a square Fermi surface. Ultimately, this is
due to the fact that we are looking at a transverse conductivity
with momentum (decay mode) direction q ‖ ûx, orthogonal to
the direction of the current J ‖ ûy.

The presence of Fermi-surface segments with velocity par-
allel to the current influences all the electrodynamic properties
of the anisotropic system through the conductivity. To inves-
tigate this impact, in the next sections we apply our kinetic
theory for the electrodynamic response to the calculation of
the skin depth and the surface impedance.
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V. POLARITONS AND SKIN DEPTH

The dependence of the anisotropic conductivity on mo-
mentum and on orientation qualitatively has an immediate
measurable consequence on the damping of electromagnetic
fields inside the metal, i.e., skin effect. To investigate the
spatial profile of the electric field Ey(qx, ω), we start from the
electromagnetic wave equation [48,55,85]

∇2E(r, ω) + ω2

c2
E(r, ω) = −μ0iωJ(r, ω), (122)

stemming from Maxwell’s equations for a medium with no
bound charges or magnetization. Eq. (122) is supplemented
by the nonlocal relation between the free current density and
the electric field, i.e., the generalized Ohm’s law

Jα (r, ω) =
∫

dr′σαβ (r − r′, ω)Eβ (r′, ω), (123)

which provides a definition of the rank-2 conductivity ten-
sor σαβ (r − r′, ω). Consider a geometry where the crystal is
cut along the yz plane, i.e., vacuum occupies x < 0 while
our material takes the other half space x > 0. We again
choose a polarization of the electric field along the y direc-
tion, E(x, ω) ≡ E (x, ω)ûy, which varies in space along the
x direction. Notice that these coordinates do not have to be
aligned with any of the crystalline axes. Hence, the wave
equation (122) and the linear-response relation (123) yield

∂2Ey(x, ω)

∂x2
+ ω2

c2
Ey(x, ω)

= −μ0iω
∫

dx′σyy(x − x′, ω)Ey(x′, ω). (124)

It is convenient to Fourier-transform the nonlocal wave equa-
tion (124) to reciprocal space of momenta qx, assuming
the oscillatory evolution Ey(x, ω) = E0ei(qxx−ωt ), where E0 =
Ey(0, 0). The current density also follows the same oscillatory
pattern. Then, we have

− q2
x Ey(qx, ω) + ω2

c2
Ey(qx, ω) = −μ0iωσyy(qx, ω)Ey(qx, ω).

(125)

Using the relation between the dielectric function εyy(qx, ω)
and the conductivity, σyy(qx, ω) = −iε0ω[εyy(qx, ω) − 1], we
can implicitly solve Eq. (125) for complex-valued momentum
qx ∈ C and obtain

q2
x = ω2

c2

[
1 + i

ε0ω
σyy(qx, ω)

]
≡ ω2

c2
εyy(qx, ω). (126)

In essence, Eq. (126) determines the self-consistent electro-
magnetic field inside the metal, i.e. the polaritons. In local
metals, where σyy(qx, ω) is approximated by its value at zero-
momentum σyy(0, ω) ≡ σyy(ω), there is only one polariton
mode satisfying Eq. (126): this is the standard case, whereby
Fresnel’s laws of refraction completely determine reflection
and transmission at a boundary. However, when nonlocality
in the electrodynamic response is non-negligible, there can be
multiple polariton branches which satisfy the self-consistent
relation (126). For instance, the transverse dielectric func-
tion of isotropic viscous charged fluids [17,39], and of Fermi
liquids at leading order in the expansion at low momenta

ω � vF q [44,45], give rise to two degenerate polaritons for
each ω.

At frequencies ω � ωp we can neglect the displacement-
current term in Eq. (125) (second term on the left-hand side)
[44,55], so that the polariton momentum is

q2
x = iμ0ωσyy(qx, ω). (127)

If we explicitly write the dispersion and attenuation of the
electric field as Ey(x, ω) ≡ E0ei(Re{qx}x−ωt )e−x/δs for a given
polariton branch stemming from Eqs. (126) or (127), we can
identify a skin depth

δs = δs(ω) = 1

Im{qx(ω)} (128)

for the given polariton mode [55]. When Np branches
Ey,α (x, ω), α = {1, . . . , Np} are present, the electric field that
propagates inside the metal is a coherent superposition of all
Np modes. The resulting spatial profile Ey(x, ω) may not be
a simple damped exponential as a function of x, and may
even exhibit interference patterns when the individual inten-
sities |Ey,α (x, ω)|2 of some modes are comparable [39,44].
Nevertheless, we can always identify a skin depth for each
mode α, and the damping of Ey(x, ω) at the largest depths
is determined by the mode which possesses the largest skin
depth δs,α .

Using the definition (128), in the next sections we proceed
to extract a value for the skin depth, at low and high frequen-
cies compared to vF qx, for the hexagonal- and square-shaped
Fermi surfaces studied in Sec. IV. We will work in the ab-
sence of scattering for simplicity, to illustrate the connections
among the conductivity, the skin depth and the impedance.
The generalization to finite γmc and γmr is straightforward,
using the results of Secs. IV B and IV C, and only the results
for δs(ω) that qualitatively affect the dependence on ω will
be explicitly given. In general, the dominance of momentum-
relaxing scattering γmr > 0 or of collisions γmc > 0 enables
two additional regimes, those of normal (Ohmic) skin ef-
fect and hydrodynamic skin effect, where δs(ω) ∝ ω−1/2 and
δs(ω) ∝ ω−1/4 [17,44], respectively. A more comprehensive
analysis with scattering is provided in terms of the surface
impedance in Appendix E. In Sec. VI, we will see that the
extracted skin depths determine the asymptotic value of the
surface impedance for polygonal geometries in the scattering-
less limit.

A. Hexagonal Fermi surface

Let us begin with the hexagonal Fermi surface in the “par-
allel” configuration of Fig. 7(a). Then, the angle φ = 0 and,
for γmr = γmc = 0, we can employ Eq. (127) together with
the conductivity (94) to determine the polariton dispersion:

q2
x = −

(ωp

c

)2 4ω2

4ω2 − (vF qx )2
. (129)

In the limit ω � vF |qx|, Eq. (129) yields qx ≈ i/λL, where
λL = c/ωp is the London penetration depth. Then, the skin
depth from Eq. (128) is frequency-independent:

δs ≡ λL = c

ωp
. (130)
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In the opposite regime ω � vF |qx|, Eq. (129) gives qx = (1 ±
i)

√
ω/(vF λL ) so that the skin depth

δs(ω) =
√

vF λL

ω
∝ ω− 1

2 . (131)

The result (131) is surprising: it implies that the anomalous
skin depth δs(ω) ∝ ω−1/3, valid for isotropic systems, changes
into δs(ω) ∝ ω−1/2 for the anisotropic hexagonal case, a
power law usually associated with normal skin effect; see,
e.g., Refs. [48,54,55,85]. This behavior corresponds to region
D2© in Fig. 4. However, if scattering is dominant over frequency,
we enter the viscous regime of region D1© and the skin depth is
changed qualitatively. For instance, using the limit of Eq. (95)
for γmc � ω, we obtain

δs(ω) =
√

λLvF√
2(ωγmc)1/4

1

cos(π/8)
∝ ω−1/4. (132)

This behavior persists for γmc = γmr.
For the crystal orientation φ = π/2 of Fig. 7(b), the

conductivity is given by Eq. (104), therefore the polariton
dispersion (127) stems from

q2
x = −2

(ωp

c

)2 2ω2 − (vF qx )2

4ω2 − 3(vF qx )2
. (133)

The limit ω � vF |qx| still yields qx ≈ i/λL for Eq. (133),
so that the skin depth is (130) for both φ = 0 and φ = π/2
in such regime. The difference between the two orientations
emerges for ω � vF |qx|, as Eq. (133) implies qx = i

√
2/3/λL

and hence the skin depth is ω-independent:

δs =
√

3

2
λL. (134)

The comparison between the results (131) and (134) indicates
a significant orientational dependence of anomalous skin ef-
fect in the hexagonal system, which deviates from the standard
isotropic case δs(ω) ∝ ω−1/3. Notice that, in the presence of
strong scattering ω � {γmr, γmc}, the skin depth in anomalous
regime ω � vF |qx| from the conductivity (106) at leading
order changes to

δs(ω) = λL

√
γmc + 2γmr

ω
. (135)

Hence, scattering changes the anomalous skin depth from
the constant value (134) to δs(ω) ∝ ω−1/2 for φ = π/2. This
is a consequence of the noncommuting limits ω � γmc and
ω � γmc in the conductivity for this geometry, as analyzed in
Sec. IV B 2; see Eq. (106). The angular sensitivity of the con-
ductivity persists in the square-shaped case, as shown below.

B. Square Fermi surface

We now analyze the square Fermi surface in the φ = 0
configuration of Fig. 8(a) and γmr = γmc = 0, to compare with
the hexagonal shape. The conductivity follows Eq. (112), and
the complex momentum (127) results from

(qx )2 = −2
(ωp

c

)2 1

2 − (vF qx/ω)2
. (136)

In the regime ω � vF |qx|, we have qx ≈ i/λL for Eq. (133) as
for the other geometries, giving the London skin depth (130).

In the opposite limit ω � vF |qx|, there is a decaying solution
qx = i21/4√ω/(λLvF ), which gives the skin depth

δs(ω) = 2− 1
4

√
vF λL

ω
∝ ω− 1

2 . (137)

As for the hexagonal shape with φ = 0, the square Fermi
surface gives δs(ω) ∝ ω−1/2 in anomalous regime (region D2©
in Fig. 4), in contrast with the isotropic case (see Fig. 3). When
scattering is dominant over frequency, we find ourselves in the
viscous regime, and δs(ω) ∝ ω−1/4, analogously to the hexag-
onal case (see region D1© in Fig. 4); this can be obtained from
the high-momentum conductivity (115) in the limit γmc � ω.

The configuration shown in Fig. 8(b), with φ = π/4,
gives equally surprising results, as the conductivity (120) is
momentum-independent. Thus, for any ω/(vF |qx|) ratio we
obtain the London skin depth δs ≡ λL for γmr = γmc = 0. On
the other hand, for γmr � ω, we obtain δs(ω) = λL

√
γmr/ω ∝

ω−1/2. Thus momentum-relaxing scattering changes the skin
depth for the square Fermi surface with φ = π/4, in the same
way as in the Drude model.

C. London penetration depth and flat Fermi-surface segments

The polygonal examples analyzed in Secs. V A and V B
help us deducing a general property of the skin depth with
piece-constant Fermi surfaces: large portions of Fermi sur-
face parallel to the surface generate the smallest possible
skin depth λL, which is usually associated with the penetra-
tion depth of electromagnetic fields into a superconductor.
With the benefit of hindsight, we have already seen through
Eq. (121) that Fermi-surface segments with velocity parallel
to the applied field Ey(qx, ω)ûy possess vk,x = 0 and generate
a momentum-independent conductivity. This is the origin of
the equivalence δs ≡ λL found in the hexagonal- and square-
shaped examples. The limit ω � vF |qx| is equivalent for all
geometries, as a perfect conductivity is found for all shapes.
However, even in the regime ω � vF |qx| where anomalous
skin effect takes place, the portions vF ‖ ûy modify the skin
depth with respect to the isotropic result δs(ω) ∼ ω−1/3: in
the hexagonal case with φ = 0, the segments are not exactly
parallel to the field and cannot completely suppress the qx

dependence of the conductivity, but the power δs(ω) ∼ ω−1/2

is modified by anisotropy; the square geometry with φ = π/4
is even more extreme, as in this case, the segments of vF

parallel to the field completely suppress nonlocality.
The local contribution to the conductivity, for electrons

propagating parallel to the field, also has the consequence that
the two anomalous regions (D1© and D2© in Fig. 2) acquire two
distinct scaling exponents for the frequency dependence of the
skin depth. This is because the locally responding electrons
are sensitive to the relative ratios of ω, γmr, and γmc. Such
effect is in contrast with the indistinguishability of regions D1©
and D2© in the isotropic case, where the conductivity depends
on qx in anomalous regime (see Fig. 3).

We can anticipate that the orientational dependence of
the skin depth will affect the surface impedance, due to the
connection between the two quantities. We substantiate this
statement with the numerical and analytical calculations pre-
sented in the next section.
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VI. SURFACE IMPEDANCE FOR SPECULAR
SURFACE SCATTERING

The surface impedance is defined as the ratio between the
electric field impinging at the surface of the sample, located
at x = 0, and the generated current density inside the metal
[48,55]:

Z (ω) = Ey(0, ω)∫ +∞
0 dxJy(x, ω)

= iωμ0
Ey(0, ω)

∂Ey (x,ω)
∂x

∣∣
x=0+

. (138)

The second step in Eq. (138) can be obtained using Eq. (123)
combined with the wave equation (124), neglecting the dis-
placement current term in the latter, and integrating the
current density Jy(x, ω) over x under the assumption that
lim|x|→+∞ ∂Ey(x, ω)/∂x = 0. The explicit calculation of the
surface impedance requires modeling the electron dynamics
at the interface between the external medium (here assumed
to be vacuum for simplicity) and the interior of the metal.
In our setup, we assume specular boundary conditions at the
surface x = 0. In such a configuration, if we consider the
vacuum-packed half of space x < 0 filled with another piece
of the same metal, the electrons in each half will have the
same history as if the reflection were specular: the only infor-
mation required is E (0, ω) and the gradient of this specular
field at x = 0, since Ey(x, ω) forms a cusp at x = 0 due to
being damped both for x < 0 and x > 0 [55,96,97]. Hence,
∂Ey(x, ω)/∂x|x=0+ = −∂Ey(x, ω)/∂x|x=0− . The latter condi-
tion can be incorporated into the wave equation (124) by
adding a delta-function boundary term:

∂2Ey(x, ω)

∂x2
+ ω2

c2
Ey(x, ω)

= −μ0iω
∫

dx′σyy(x − x′, ω)Ey(x′, ω)

+ 2
∂Ey(x, ω)

∂x

∣∣∣∣
x=0+

δ(z). (139)

Fourier transforming Eq. (139) to momentum space, we have

Ey(qx, ω) = 2
∂Ey(x, ω)

∂x

∣∣∣∣
x=0+

× 1

ω2/c2 + μ0iωσyy(qx, ω) − q2
x

. (140)

Notice that Eq. (140) allows us to express both the electric
field and the conductivity σyy(qx, ω) in momentum space
even in the presence of a surface, which breaks translational
invariance, thanks to the specular boundary conditions. An
inverse Fourier transform of the electric field Ey(x, ω) =
(2π )−1

∫ +∞
−∞ dqEy(qx, ω)e−iqxx at the interface x = 0 yields

Ey(0, ω) = 1

π

∂Ey(x, ω)

∂x

∣∣∣∣
x=0+

×
∫ +∞

−∞
dqx

1

ω2/c2 + μ0iωσyy(qx, ω) − q2
x

.

(141)

Finally, inserting Eq. (141) into the definition (138) gives the
surface impedance in terms of the conductivity for specular

boundary conditions:

Z (ω) = i
ωμ0

π

∫ +∞

−∞
dqx

1

ω2/c2 + μ0iωσyy(qx, ω) − (qx )2

= i
Z0

π

ω

ωp

∫ +∞

−∞
dz

1

ω2/ω2
p + Syy(z, ω) − z2

, (142)

where Z0 = μ0c is the vacuum surface impedance, and we
defined

Syy(qx, ω) = μ0c2iωσyy(qx, ω)

ω2
p

= iω

ε0ω2
p

σyy(qx, ω). (143)

The displacement-current term ω2/c2 in Eq. (142), contained
in the integrand at the denominator, is essentially responsible
for the development of the transparent regime (region C© in
Fig. 2), and it is negligible for frequencies below the plasma
edge [50,51,53,55]. Hence, if we analyze the impedance for
for ω < ωp, we can neglect the displacement-current term in
Eq. (142), with the result

Z (ω) = i
Z0

π

ω

ωp

∫ +∞

−∞
dz

1

Syy(z, ω) − z2
. (144)

In the following, we will employ the full Eq. (142) for nu-
merical computations of the impedance “phase diagrams,”
while we will revert to Eq. (144) without the displacement
current, to derive analytical results for the boundaries between
different skin effect regimes. In any case, the conductivity that
enters into the momentum-space integral for the impedance
is given by Eq. (1) in general. The 2D isotropic limit, where
the conductivity follows Eq. (84), is analyzed for reference in
Appendix E 1. We checked that our results for the impedance
modulus |Z (ω)| are qualitatively robust with respect to the
choice of interface boundary conditions: the difference be-
tween specular and diffusive surface scattering is negligible
for all Fermi-surface geometries here considered. Boundary
conditions do significantly influence the surface resistance
[real part of the impedance, ReZ (ω)] in the relaxation regime
B© and in the extreme anomalous regime E© indicated in Fig. 2.
We postpone the detailed analysis of this sensitivity to differ-
ent boundary conditions to a subsequent work; see also the
discussion in Sec. VII C.

In what follows, we will discuss the dependence of the
surface impedance, stemming from Eqs. (144) and (143), on
frequency, scattering rates and orientation angle θ , for the
anisotropic 2D geometries of hexagonal and square Fermi
surfaces, at fixed Fermi velocity vF . For analyzing the de-
pendence of Z (ω) on momentum-relaxing scattering rate, we
focus on “Pippard” graphs of 1/ReZ (ω) as a function of
1/γmr, as reported in Figs. 11 and 14. These figures assume
γmc = max{γmr, γ̄ }, to simulate the saturation of γmc to a con-
stant in the low-temperature limit. For completeness, graphs
of the respective imaginary parts 1/ImZ (ω), for the same
parameters as in Figs. 11 and 14, are reported in Figs. 21 and
22 in Appendix D. The latter also hosts additional numerical
results on the frequency dependence of the real and imaginary
parts of Z (ω), in the case γmr = γmc.

As we will shortly appreciate, all numerical and an-
alytical results for the impedance confirm the qualitative
“phase diagrams” sketched in Figs. 3–6, and agree with the
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discussion anticipated in Sec. II. In particular, let us stress
that the anomalous regime is the most sensitive to anisotropy:
while all other forms of skin effect depend quantitatively but
not qualitatively on Fermi-surface geometry, the impedance
in anomalous regime changes from |Z (ω)| ∝ ω2/3 in isotropic
systems [48,54], to different power laws. For example, for the
geometries of Figs. 5 and 6, |Z (ω)| ∝ ω1/2 for the hexagonal
and square geometries in the presence of scattering. This
remarkable difference highlights that the

√
ω behavior of

the impedance, usually associated with normal skin effect, is
also encountered in anomalous regime in anisotropic systems.
Such peculiar power-law further changes in the scattering-less
limit to a perfect-conductor frequency-independent behavior.
To identify the exponent η such that |Z (ω)| ∝ ωη, we will fol-
low Eq. (4), which shows that η can be equivalently extracted
from ArgZ (ω)/(−π/2); see also Sec. VII A. This way, in the
following we will span the skin-effect parameter space as a
function of ω, γmc, and γmr.

A. Hexagonal Fermi surface

To obtain the surface impedance for an hexagonal Fermi
surface, we use Eqs. (144) and (143) in conjunction with the
conductivity (92) or (102), for the “parallel” configuration
φ = 0 and for generic rotation angle φ respectively.

Numerical results for the impedance modulus |Z (ω)|, di-
vided by the vacuum impedance Z0 and by (ω/ωp)1/2 for
visual clarity, are displayed as a function of ω/ωp by the solid
red curves in Fig. 9. We use the parameters vF /c = 0.0025
(corresponding to the Fermi velocity of PdCoO2 [65,95]),
γmr = 10−10ωp, and γmc = 10−6ωp. Figures 9(a) and 9(b)
show the results for φ = 0 and π/2, respectively.

Analytical expressions, collected in Appendix E 2, are
available in each regime of skin effect, and are displayed as
dashed lines in Fig. 9. Specifically: dashed blue lines show
normal skin effect, given by Eq. (E18) for φ = 0 and φ =
π/2; dashed orange lines display viscous skin effect, given
by Eq. (E23) for φ = 0; dashed green lines show anoma-
lous skin effect, according to Eq. (E19) [Eq. (E21)] for φ =
0 (φ = π/2); light-blue dashed lines showing the perfect-
conductivity result, common to both orientations. In Fig. 9(b),
we also barely distinguish an intermediate frequency range
between the anomalous and perfect-conductivity regimes,
where the scattering rates are negligible in comparison with
frequency, but still ω < vF |qx|. In this frequency window,
the impedance is Z (ω) = −iμ0

√
3/2λLω, in accordance with

Eq. (E17).
The intersection points of the analytical results (dashed

lines in Fig. 9) provide a natural criterion to identify the
crossover frequency between different skin effect regimes.
Such intersections are highlighted by the green, blue, and
red dots in Fig. 9. The resulting respective crossover
frequencies ωnv , ωva, and ωap between normal/viscous,
viscous/anomalous, and anomalous/perfect-conductor skin
effect, are functions of γmr, γmc and vF in general, and their
analytical expressions are reported in Appendix E 2, together
with a viscous/perfect-conductor boundary ωvp not visible
in Fig. 9. These functions generate the dashed curves in the
“phase diagrams” presented in Figs. 10(a)–10(d).

FIG. 9. Absolute value of the surface impedance |Z (ω)|, divided
by the vacuum impedance Z0 and by (ω/ωp)1/2, as a function of
ω/ωp, for a hexagonal Fermi surface. We employ the parameters
vF /c = 0.0025, and γmr = 10−4γmc = 10−6ωp. Dashed curves show
analytical results valid in each regime, derived in Appendix E 2. The
yellow-shaded area gives a qualitative estimation of the parameter
space accessible to experiments [55]. (a) “Parallel” configuration
with rotation angle φ = 0. (b) Configuration with rotation angle
φ = π/2.

The density plots of ArgZ (ω)/(−π/2) in Fig. 10 stem from
Eq. (142) (including the displacement current), and hence
they include the transparent regime (light blue-shaded area)
found for ω � ωp; see also region C© in Fig. 2. Notice how
the extension of each skin effect region in Fig. 10 depends on
orientation, and excellently agrees with the qualitative discus-
sion of Figs. 4 and 5 in Sec. II. In particular, for φ = 0 the
viscous regime extends throughout regions D1© and V©, and it is
present even for γmr = γmc; cfr. Figs. 10(a), 10(b), and 4. For
φ = π/2 and γmr = γmc, the viscous regime (green-shaded
region) shrinks and there is a direct crossover from normal
to anomalous skin effect, which share the same power law
|Z (ω)| ∝ ω1/2 but with different numerical prefactors. This is
fully consistent with the difference between regions A© and D1©
in Fig. 5.

In the absence of scattering rates, a qualitative difference
in anomalous regime appears, as shown in Appendix E 2 a:
while for φ = 0, the impedance still follows |Z (ω)| ∝ ω1/2,
for φ = π/2, the impedance is purely imaginary and |Z (ω)| ∝√

3/2λLω. This aspect explains the distinction between re-
gions D1© and D2© in Fig. 5. Hence, the anomalous impedance is
very sensitive to the presence or absence of scattering, either
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FIG. 10. Orientational dependence of skin effect regimes for a hexagonal Fermi surface, as measured by the surface impedance Z (ω) as
a function of relaxation rate γmr, momentum-conserving collision rate γmr, and frequency ω/ωp, where ωp is the plasma frequency (78). The
corresponding orientation is sketched on the left-hand side of each plot, together with the applied electric field E = Eyûy aligned with the y axis.
Red arrows depict the local Fermi velocity vectors. (a) “Parallel” configuration in the (γmr, ω) plane, for γmr = γmc. (b) “Parallel” configuration
in the (γmc, ω) plane, for fixed γmr = 10−8ωp. (c) Fermi surface rotated by φ = π/2 with respect to panels (a) and (b), in the (γmr, ω) plane,
for γmr = γmc. (d) Fermi surface rotated by φ = π/2 in the (γmc, ω) plane, for fixed γmr = 10−8ωp. The color palette is the density plot of
ArgZ (ω)/(−π/2), giving the exponent η of Z (ω) ∝ ωη. Dashed lines are the analytical crossover boundaries derived in Appendix E 2 e.

momentum-conserving or relaxing. We emphasize that this
contrasts with the isotropic case: for circular, spherical, or
spheroidal Fermi surfaces, the regions D1© and D2© are indistin-
guishable [55,85]; see Fig. 3.

Another way to recognize the occurrence of anomalous
forms of skin effect is to plot the inverse surface resistance
1/ReZ (ω) as a function of inverse momentum-relaxation rate
ωp/γmr, at fixed frequency ω, as traditionally performed in
the analysis of skin effect after Pippard [48,54,57,58]. Since
γmr is an increasing function of temperature T (e.g., γmr ∝ T 2

for Fermi-liquid electron-electron interactions), these graphs
can be interpreted as the evolution of the impedance with
decreasing T . Figures 11(a) and 11(b) show our numerical
results for 1/ReZ (ω) in the hexagonal Fermi-surface geom-
etry, for φ = 0 and φ = π/2 respectively, which correspond
to the geometries shown in Figs. 7(a) and 7(b). Since we
expect γmr ≈ γmc at high T , while γmr � γmc at low T , we
have taken γmc = max{γmr, γ̄ }, with γ̄ = {10−5, 1, 103} for
the blue, red, and gold curves in each panel respectively.
We see the characteristic saturation of the inverse surface
resistance, the value of which parametrically depends on γmc

and on Fermi-surface orientation parametrized by the angle
φ. In Reuter and Sondheimer theory of isotropic systems,
such saturation is associated with anomalous skin effect. As

we include momentum-conserving collisions as well, Fig. 11
shows that the asymptotic saturation value depends on γmc,
which corresponds to either viscous or anomalous skin effect,
depending on whether ω � γmc or ω � γmc respectively. The
specific saturation value for a given γmc is influenced by
Fermi-surface orientation, as shown by comparing curves of
the same color in Figs. 11(a) and 11(b).

Hence, the relaxationless saturation of the surface resis-
tance in hydrodynamic regime ω � γmc constitutes evidence
for viscous skin effect, governed by momentum-conserving
collisions, and quantitatively influenced by the orientation of
the anisotropic Fermi surface. Analogous conclusions hold
for a square Fermi-surface geometry, as detailed in the next
section.

B. Square Fermi surface

For a square Fermi surface, the surface impedance follows
from Eqs. (144) and (143), and from the conductivity (110) or
(102), for the “diamond-shaped” configuration φ = 0 and for
generic rotation angle φ, respectively.

Numerical calculations for the impedance modulus |Z (ω)|,
divided by the vacuum impedance Z0 and by (ω/ωp)1/2, are
displayed as a function of ω/ωp by the solid red curves in
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FIG. 11. Inverse surface resistance 1/ReZ (ω) normalized to
the vacuum-impedance Z0, as a function of inverse momentum-
relaxation rate ωp/γmr, for a hexagonal Fermi surface with Fermi-
velocity modulus vF = 2.5 × 10−3c, ω/ωp = 10−4, and γmc =
max{γmr, γ̄ }, with γ̄ = {10−5, 1, 103} for the blue, red, and gold
curves respectively. Specular boundary conditions are assumed, ac-
cording to Eq. (144). The dashed gray lines represent the limit
γmr = γmc = 0. (a) Results from Eq. (92), for tilting angle φ = 0 with
respect to the surface; see Fig. 7(a). The scattering-less limit is given
by Eq. (E13). (b) Results from Eqs. (101) and (102), for φ = π/2;
see Fig. 7(b). The scattering-less limit stems from Eq. (E16).

Fig. 12. All parameters are the same as the ones employed
for Fig. 9. Figures 12(a) and 12(b) display the calculations for
φ = 0 and φ = π/4, respectively, and the two configurations
are visually represented in Fig. 8(a) and 8(b). Appendix E 3
reports analytical expressions in each regime of skin effect,
which are displayed by dashed lines in Fig. 12: dashed blue
lines show normal skin effect, given by Eq. (E18) for φ = 0
and φ = π/4; the dashed orange line displays viscous skin
effect, given by Eq. (E38) for φ = 0; the dashed green line
shows anomalous skin effect, according to Eq. (E37) for φ =
0; light-blue dashed lines showing the perfect-conductivity
result, which is equal for both orientations.

Analogously to the hexagonal case, we define the crossover
frequencies between all skin effect regimes, as the intersec-
tion points between different analytical limits (dashed lines
in Fig. 12). These intersections are marked by the green,
blue, and red dots in Fig. 12, and correspond to the crossover
frequencies ωnv , ωva, and ωap between normal/viscous,
viscous/anomalous, and anomalous/perfect-conductor skin
effect. Together with a viscous/perfect-conductor crossover
ωvp, not visible in Fig. 12, the functions ωnv , ωva and ωap

produce the dashed curves in the impedance “phase diagrams”
of Fig. 13.

FIG. 12. Absolute value of the surface impedance |Z (ω)|, di-
vided by the vacuum impedance Z0 and by (ω/ωp)1/2, as a function
of ω/ωp, for a square Fermi surface. We use the parameters vF /c =
0.0025, and γmr = 10−4γmc = 10−6ωp. Dashed curves show ana-
lytical results valid in each regime, derived in Appendix E 3. The
yellow-shaded area represents a qualitative estimation of the param-
eter space accessible to experiments [55]. (a) “Diamond-shaped”
configuration with rotation angle φ = 0. (b) Configuration with rota-
tion angle φ = π/4.

As for Fig. 10, the density plots of ArgZ (ω)/(−π/2) in
Fig. 13 stem from Eq. (142) and include the effect of the
displacement current. The qualitative behavior of |Z (ω)| in
each regime is similar for Figs. 10(a), 10(b), and 13(a), 13(b).
However, Figs. 10(c), 10(d) and 13(c), 13(d) are radically
different, as the former includes effects of nonlocality due
to the momentum-dependent conductivity, while the latter is
equivalent to the “phase diagram” of the local Drude model.
The lack of nonlocality is due to the large Fermi-surface
portions with velocity parallel to the surface and the electric
field, as described in Sec. II. Overall, the boundaries between
different regimes in Figs. 10 and 13 are consistent with the
qualitative “phase diagrams” in Figs. 4–6.

In the scattering-less limit, the frequency dependence in
anomalous regime is altered, as demonstrated analytically in
Appendix E 3 a; for φ = 0, the impedance obeys |Z (ω)| ∝
ω1/2 as with γmc > 0, although with a different prefactor. This
shows that, similarly to the hexagonal case of Sec. VI A, scat-
tering (either momentum-conserving or relaxing) qualitatively
influences the impedance in anomalous regime. This feature
reflects the crossover between regions D1© and D2© in Fig. 5.
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FIG. 13. Orientational dependence of skin effect regimes for a square Fermi surface, as measured by the surface impedance Z (ω) as
a function of relaxation rate γmr, momentum-conserving collision rate γmr, and frequency ω/ωp, where ωp is the plasma frequency (78).
The corresponding orientation is sketched on the left-hand side of each plot, together with the applied electric field E = Eyûy aligned with
the y axis. Red arrows depict the local Fermi velocity vectors. (a) “Diamond-shaped” configuration in the (γmr, ω) plane, for γmr = γmc.
(b) “Diamond-shaped” configuration in the (γmc, ω) plane, for fixed γmr = 10−8ωp. (c) Fermi surface rotated by φ = π/4 with respect to
panels (a) and (b), in the (γmr, ω) plane, for γmr = γmc. (d) Fermi surface rotated by φ = π/4 in the (γmc, ω) plane, for fixed γmr = 10−8ωp.
The color palette is the density plot of ArgZ (ω)/(−π/2), giving the exponent η of Z (ω) ∝ ωη. Dashed lines are the analytical crossover
boundaries derived in Appendix E 3 e.

The presence of anomalous and viscous skin effect for the
square Fermi-surface shape with φ = 0 can also be deduced
by the saturation of the inverse surface resistance 1/ReZ (ω)
as a function of ωp/γmr, at fixed frequency ω, as previously
shown for the hexagonal case in Fig. 11. Our numerical re-
sults for 1/ReZ (ω) are reported in Figs. 14(a) and 14(b), for
orientations φ = 0 and φ = π/4 of the square Fermi surface
respectively: these configurations correspond to Figs. 8(a) and
8(b). For φ = 0, the results are very similar for the square
and hexagonal shapes, by comparison between Figs. 14(a)
and 11(a). The surface resistance saturates to a γmc-dependent
value in the limit γmr → 0, which signals either anomalous
skin effect (for ω � γmc) or viscous skin effect (for ω � γmc).
A significative difference emerges in Fig. 14(b), in that the
surface resistance vanishes in the limit γmr = 0, and it is
independent from γmc, due to absence of nonlocal effects.

VII. DISCUSSION

The results of Sec. VI quantitatively describe the “phase
diagrams” of skin effect, and corroborate the qualitative inter-
pretation of such diagrams in terms of characteristic length
scales, as discussed in Sec. II. This consistency demon-

strates that the surface impedance is an ideal probe of spatial
nonlocality in the electrodynamic response of isotropic and
anisotropic systems. Our collision-operator formalism can
be readily generalized to include the effects of short- and
long-ranged interactions among conducting electrons, and to
estimate the influence of different interface boundary con-
ditions. Below we comment on the extent to which such
generalizations interplay with the relations among flat Fermi-
surface segments, scattering, nonlocal conductivity, and skin
effect. We also offer a method, based on the “ineffectiveness
concept,” to infer the frequency scaling of the skin depth and
impedance from how the conductivity scales with qx and ω in
all regimes discussed in Sec. VI.

A. A generalized “ineffectiveness concept”
for anisotropic skin effect

The relations between conductivity, skin depth, and
impedance in different anisotropic regimes lend themselves
to an intuitive physical interpretation, which is based on the
“ineffectiveness concept” introduced by Pippard to estimate
the crossover between normal and anomalous skin effect in
isotropic systems [55,57,58]. The argument is summarized as
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FIG. 14. Inverse surface resistance 1/ReZ (ω) normalized to
the vacuum-impedance Z0, as a function of inverse momentum-
relaxation rate ωp/γmr, for a square Fermi surface with Fermi-
velocity modulus vF = 2.5 × 10−3c, ω/ωp = 10−4, and γmc =
max{γmr, γ̄ }, with γ̄ = {10−5, 1, 103} for the blue, red, and gold
curves respectively. Specular boundary conditions are assumed, ac-
cording to Eq. (144). The dashed gray lines represent the limit
γmr = γmc = 0. (a) Results from Eq. (110), for tilting angle φ = 0
with respect to the surface; see Fig. 8(a). The scattering-less limit
is given by Eq. (E35). (b) Results from Eqs. (109) and (102), for
φ = π/4; see Fig. 8(b). The scattering-less limit is purely imaginary,
as it follows from Eq. (E15).

follows: when the skin depth δs(ω) is much shorter than the
mean free path lm = vF τmr, only those electrons that travel
approximately parallel to the sample surface are able to react
to the incident electric field, and they perceive a constant field.
Assuming that those electrons lie within a small angle ±θeff ≈
βδs(ω)/lm with respect to the normal to the surface, the
effective density of reacting electrons is neff = nβδs(ω)/lm,
where n is the physical electron density per unit volume.
This can be interpreted as an effective Ohmic (Drude-like)
conductivity σeff (ω) = neff e2τmr/m = nβe2nδs(ω)/vF , which
now depends on the skin depth itself. Alternatively, one can
think about σeff (ω) as containing an effective scattering time
τeff = βδs(ω)/vF for electrons. Inserting this effective con-
ductivity into the expression for normal (Ohmic) skin effect
[48,54,55]

δs(ω) =
√

2/[μ0ωδs(ω)], (145)

we obtain a self-consistent relation for the skin depth that
leads to δs(ω) = [2lm/(μ0βσ0ω)]1/3, with σ0 = ne2τmr/m:
this is indeed the skin depth in anomalous regime for isotropic
systems. The assumption on which the above line of thought
relies is that the effective conductivity σeff (ω) ∝ 1/qx ∝
δs(ω). Besides, momentum-conserving collisions γmc �= γmr

are not explicitly considered, which excludes the occurrence

of viscous skin effect. Pippard also applied his qualitative
arguments to anisotropic systems in 2D and 3D [79,98],
maintaining the above fundamental assumptions, and later
Sondheimer quantitatively confirmed these arguments for el-
lipsoidal Fermi surfaces [78].

Following the ineffectiveness concept, we can generalize
the qualitative estimations as follows. Suppose that the con-
ductivity evolves as

σyy(qx, ω)

ε0ω2
p

= α1

ωβqα
x

, (146)

with α1 a numerical factor independent of frequency and mo-
mentum, and {η, ζ } ∈ Z. From the considerations of Sec. V,
there will eventually be a single polariton branch that is
damped less that others at the highest depths into the metal,
for which we can employ Eq. (128): hence, we can estimate
δs(ω) ≈ α2/qx, with α2 a numerical factor. This gives

σyy[δs(ω), ω]

ε0ω2
p

= α3
δα

s (ω)

ωβ
, (147)

with α3 = α1α
−α
2 . Identifying Eq. (147) with the effective

Ohmic conductivity to utilize for the ineffectiveness argu-
ment, we equate

σyy[δs(ω), ω] ≡ σeff (ω) = ε0ω
2
pτeff (ω), (148)

from which we deduce an effective scattering time τeff (ω) =
α3ω

−βδα
s (ω), or an effective carrier density alternatively.

Inserting the effective conductivity (148) into the Ohmic
skin-depth expression Eq. (145), we obtain a self-consistent
relation that we can solve for δs(ω):

δs(ω) =
(

2

α3

) 1
2+α

λ
2

2+α

L ω
β−1
α+2 , (149)

which links the skin depth with the dependence of the conduc-
tivity (146) on frequency and momentum. The estimation for
the impedance then follows from Eq. (4). The latter relation
is derived for specular surface scattering in Appendix F. The
qualitative estimation provided by Eq. (149) can be applied
even when the conductivity has various forms of momentum
dependence, which occurs for the anomalous and viscous
regimes, and to both isotropic and anisotropic cases in dif-
ferent orientation. For instance, in anomalous regime for
isotropic systems, we have β = 0 and α = 1, so that δs(ω) ∝
ω−1/3, consistently with Eq. (E4); in the hexagonal and square
geometries with φ = 0 we have β = −1 and α = 2, which
yields δs(ω) ∝ ω−1/2, in agreement with Eqs. (131) and (137),
and their counterparts for γmc > 0; in extreme hydrodynamic
regime and for isotropic and anisotropic systems alike, we
have β = 0 and α = 2, so that δs(ω) ∝ ω−1/4, which agrees
with Figs. 10, 13(a), 13(b) and 24. Therefore the generaliza-
tion of the ineffectiveness concept to momentum-dependent
conductivities, as here outlined, can help in guessing the qual-
itative evolution of the skin depth and the impedance modulus
with frequency, from the expression of the conductivity itself.

B. Quasiparticle interactions

The kinetic approach employed in this work is ulti-
mately phenomenological, as it does not depend on the
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microscopic origin of momentum-conserving and relaxing
scattering. However, by the same logic, the results here de-
rived can be applied regardless of the specific mechanisms
available for electron scattering, i.e., to different origins of
spatial nonlocality, as long as the kinetic approach remains
valid. For example, the awareness that nonlocal hydrodynamic
behavior can not only emerge from electron-electron interac-
tions, but also through the interaction of carriers with phonons
[17,99,100] and impurities [101,102] has recently been raised.
In all these cases, the electrodynamic phenomenology can be
investigated through the Boltzmann theory outlined in this
paper, in the presence or absence of anisotropy. A micro-
scopic account, on how distinct forms of electron self-energies
from different interaction channels produce viscoelastic phe-
nomenologies in electrodynamics, will be reported elsewhere
[103].

A natural extension of the present work involves the in-
clusion of quasiparticle interactions, both long-ranged (i.e.,
the Coulomb potential) and short-ranged (e.g., electron-hole
excitations) [104]. In the isotropic 3D case, this procedure is
at the basis of Landau-Silin theory of charged Fermi liquids
[105,106], where short-ranged interactions are expanded into
the basis of spherical harmonics. Likewise, in isotropic 2D
systems, the appropriate expansion basis is given by angular
momentum states [104]; see also Appendix B. Schematically,
the inclusion of interactions modifies the Boltzmann equa-
tion (9) to [38,104]

∂ fk(r, t )

∂t
+ Ft (r, t ) · ∇k fk(r, t ) + vk · ∇r fk(r, t ) = −(C f )k,

(150)

where now Ft (r, t ) contains the contribution of the external
electric field, and of the gradient of the interacting quasiparti-
cle dispersion:

Ft (r, t ) = −eE(r, t ) − ∇rEk(r, t ). (151)

In turn, the interacting dispersion Ek(r, t ) = εk +
εL[δ fk(r, t )] + εC

k (r, t ) contains the Landau short-ranged
interaction εL[δ fk(r, t )] and the long-ranged Coulomb
term εC

k (r, t ) in a self-consistent Vlasov approach.
Both interactions have to be expanded in terms of the
eigenfunctions of the collision operator (14), which are
known to be χk,m = c0eimθ in the isotropic case, but differ in
the presence of anisotropy. Then, from Eq. (151), it is evident
that interactions affect the source term (25) at the right-hand
side of the infinite linear system (26), which modifies the
form of collective modes [104] and generates an effective
renormalized Fermi velocity v∗

F . We defer the details of this
treatment to a subsequent work. Equally interesting is the
case where interactions stem from an external magnetic field,
which is able to generate novel forms of anomalous skin
effect, such as the anomaly-induced nonlocality due to the
chiral anomaly in Weyl semimetals [56].

C. Influence of interface boundary conditions

Another crucial aspect of the surface-impedance
calculations are the interface boundary conditions
[15,39,44,107,108]. In Sec. VI, we assumed specular
scattering at the vacuum-metal interface, which is physically

similar to a smooth surface with no-stress boundary
conditions. Recently, this type of boundary conditions
were experimentally realized in transport measurements
on GaAs/AlGaAs accumulation-mode heterostructures
[109]. To investigate the influence of a different degree of
specularity in interface scattering, one can proceed similarly
to Reuter and Sondheimer [48,54,78], by considering the
extreme cases of specular or diffusive surface scattering for
electrons in the metal. An interpolation between these two
extremes can be achieved by assuming a specularity factor
p ∈ [0, 1] for both electric field and current density, which
means that a portion p of scattering is specular, while a part
1 − p happens diffusively. In the diffusive-scattering case,
the surface electric field Ey(0+, ω) can then be linked to the
conductivity σyy(qx, ω) through a momentum integration over
the half-space occupied by the metal, in a similar way as for
the specular-scattering case of Eq. (141). In Appendix G, we
checked our calculations for the surface impedance modulus
|Z (ω)| assuming diffusive scattering (p = 0), and we found
negligible differences with respect to the specular-scattering
case of Sec. VI. Therefore the results for the impedance
modulus are robust against the effect of boundary conditions.

However, the surface resistance ReZ (ω) is dramatically
sensitive to boundary conditions in the anomalous reflection,
or extreme anomalous, regime ( E© in Fig. 2). This sensitiv-
ity appears because the region E© is least affected by bulk
scattering, with both relaxation and momentum-conserving
collisions being negligible, so that interface scattering at the
vacuum-metal surface assumes a major role for the conduction
properties [51,53,110]. We reserve the detailed comparison of
boundary conditions for the surface resistance to a follow-up
work.

D. Effect of rounded corners and Fermi-surface curvature

In Sec. VI, we obtained the impedance “phase diagrams”
of Figs. 10 and 13 under the assumption that the 2D Fermi
surface is a perfect regular polygon. While such geometry al-
lowed us to clearly identify how the different regimes for Z (ω)
are affected by the anisotropy and orientation of the polygonal
shape, realistic Fermi surfaces possess more complex shapes.
In particular, even when these shapes approximately resemble
a polygon, the corresponding faces are not perfectly flat, and
the sharp angles of the idealized polygonal cases are replaced
by rounded corners. For this reason, it is interesting to inves-
tigate the effect of small curvature of Fermi-surface segments
and of rounded corners on the shapes studied in Sec. VI.
Do the effects of anisotropy on the surface impedance persist
(at least partially), when we take into account Fermi-surface
nonidealities? We will demonstrate in this section that the
answer is yes, considering specific examples of nonpolygonal
geometries.

To generalize the treatment of Secs. IV–VI, let us consider
an arbitrarily varying Fermi wave vector kF (θ ) in the 2D
plane, as a function of angle θ . Then, in accordance with the
parametrization (66), the components of the unit vector n̂k

along the x and y axes are

nk,x = N−1

[
cos θkF (θ ) + sin θ

dkF (θ )

dθ

]
, (152a)

013212-26



KINETIC THEORY OF THE NONLOCAL ELECTRODYNAMIC … PHYSICAL REVIEW RESEARCH 5, 013212 (2023)

FIG. 15. The “supercircle” Fermi-surface geometry, for different
values of the parameter p which controls the curvature of individual
segments. The “diamond-shaped” Fermi surface of Fig. 8 is retrieved
for p = 1, while for p = 2 one retrieves a circular Fermi surface.

nk,y = N−1

[
sin θkF (θ ) − cos θ

dkF (θ )

dθ

]
, (152b)

N = nk =
√

[kF (θ )]2 +
[

dkF (θ )

dθ

]2

, (152c)

as shown in Appendix H. Hence, given a parametrization
kF (θ ), Eqs. (152) allow us to compute the transverse con-
ductivity through Eqs. (71) and (72), as well as the surface
impedance through Eqs. (142) and (143). This way, we can
compare the corresponding “phase diagrams” for Z (ω) with
the ones of the previously considered polygonal shapes. No-
tice that the integration line element dS = nk(θ )dθ varies
along the Fermi surface, in accordance with Eq. (152c). This
feature holds for polygonal geometries as well, but in the
present nonideal case we cannot split the integration over dS
into discrete sums as done in the polygonal case.

As an example, in Sec. VII D 1, we consider the “super-
circle” geometry, in which a square Fermi surface can be
morphed into shapes with nonzero curvature of segments
and rounding of corners by the means of a single parame-
ter p. Our investigation culminates in Sec. VII D 2 with the
analysis of a more realistic 2D case: the in-plane experi-
mental Fermi surface of PdCoO2, as parametrized through
angle-resolved photoemission and quantum oscillations mea-
surements [33,65,95].

1. The “supercircle” geometry

The “supercircle,” a special case of Lamé curve or “su-
perellipse” for equal semiaxes, satisfies the equation |x|p +
|y|p = rp, p > 0, for radius r. This equation allows one to
smoothly interpolate an astroid (for p < 1), a “diamond-
shaped” geometry (for p = 1), a circle (for p = 2), and a
square with rounded corners (for p > 2), as a function of a
single parameter p which controls the shape curvature. In our
case, the radius is the Fermi wave vector: r ≡ kF . Using polar
coordinates kx = kF cos θ and ky = kF sin θ , the supercircle
radius results

kF = kF (θ ) = (|cos θ |p + |sin θ |p)−1/p
. (153)

Figure 15 shows the Fermi surface corresponding to Eq. (153),
for different values of p > 0. In Appendix H, we show that

the results for the “diamond-shaped” and circular geome-
tries, presented in Secs. IV C 1, VI B, and IV A, Appendix
E 1 respectively, are indeed retrieved as special cases of the
parametrization (153).

Figure 16 shows the results for the intermediate case p =
3/2, which corresponds to a “diamond” shape with addi-
tional curvature of the four Fermi-surface segments. Such
curvature is further enhanced for p > 3/2, until for p = 2
the Fermi surface becomes perfectly circular. Hence, the case
1 < p < 2 is suitable to analyze the effect of deforming the
polygonal geometries by introducing a finite curvature into
the flat segments. We notice subtle differences with respect
to the “diamond-shaped” dispersion of Figs. 13(a) and 13(b):
the exponent η in region D1© becomes slightly smaller than
η = 3/4 (for example, we have η ≈ 0.73 around the center
of region D1© in Fig. 16(b)), while in region D2© η is slightly
larger than η = 1/2 [specifically, η ≈ 0.55 around the center
of region D2© in Fig. 16(b)]. This effect is due to the finite
curvature of the Fermi-surface segments, which also produces
a visually distinguishable difference between regions D1© and
V© in Fig. 16(b). Such differences are gradually enhanced for
3/2 < p < 2, until for p = 2 we retrieve the isotropic “phase
diagram” of Fig. 24, where η = 2/3 in both regions D1© and D2©.

Hence, Fig. 16 provides us a practically relevant informa-
tion: if Fermi-surface segments are not exactly flat in practice,
then the exponents η in the anomalous regions D1© and D2©
quantitatively differ with respect to the ideal flat-segments
case. Still, even for a deformation of the “diamond-shaped”
case as large as p = 3/2, the “phase diagrams” of Figs. 13(a),
13(b), and 16 are qualitatively consistent, and the effect of
Fermi-surface anisotropy is robust with respect to the cur-
vature of Fermi-surface segments. Such robustness may be
rationalized by realizing that a small curvature of segments
predominantly affects the low-frequency part of the “phase
diagram,” where the response is anyway diffusive and local;
e.g., in region A© the exponent η = 1/2 is insensitive to the
change in Fermi-surface curvature because the response is
dominated by momentum relaxation at rate γmr. Therefore we
conclude that the “phase diagrams” derived for the polygonal
shapes of Secs. VI A and VI B provide qualitative guidance on
the effect of dispersion anisotropy on the surface impedance,
even in the presence of a small curvature of Fermi-surface
segments, for shapes that can still be approximated by an ideal
polygonal geometry. Quantitative difference with respect to a
perfect polygon emerge at the level of the numerical value of
the exponent η, especially in the anomalous regions D1© and D2©
which are the most sensitive to Fermi-surface geometry.

Furthermore, to selectively analyze the effect of rounded
corners, we show the results for p = 10 in Fig. 17: this geom-
etry consist of a square with additional rounding of corners
and as such it can be directly compared with Figs. 13(c)
and 13(d). The case of a perfect square is retrieved in the
limit p → +∞. Here we appreciate a qualitative difference
in Fig. 17(b) with respect to Fig. 13(d): the rounding of
corners has reintroduced the viscous regime V© with η = 3/4,
which was absent in the idealized square shape of Fig. 13(d).
Moreover, the crossovers between the viscous, anomalous
and perfect-conductor regions are all altered with respect to
the square shape. In fact, the “phase diagram” of Fig. 17 is
qualitatively consistent with the hexagonal case of Fig. 13(c)
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FIG. 16. Skin effect regimes for a “supercircle” Fermi surface (153) with p = 3/2, as measured by the surface impedance Z (ω) as a
function of relaxation rate γmr, momentum-conserving collision rate γmr, and frequency ω/ωp, where ωp is the plasma frequency (78). The
Fermi-surface geometry is sketched on the left-hand side of the plot, together with the applied electric field E = Eyûy aligned with the y axis,
and the local Fermi velocity vectors shown by red arrows. (a) Regimes in the (γmr, ω) plane, for γmr = γmc. (b) Regimes in the (γmc, ω) plane,
for fixed γmr = 10−8ωp. The color palette is the density plot of ArgZ (ω)/(−π/2), which yields the exponent η of Z (ω) ∝ ωη.

and 13(d): this is because such hexagonal geometry shares
all its relevant geometrical features with the “supercircle”
for p = 10: two Fermi-surface segments have velocity essen-
tially parallel to the applied field—see also Secs. IV D and
V C—while the rest of the Fermi surface does not have a
velocity identically orthogonal to the field as is the case for
a perfect square. Hence, we realize that the perfect square
is an idealized special case, for which the nonlocal character
of the response vanishes entirely from the “phase diagram”
in Figs. 13(c) and 13(d). In reality, rounded corners of an
approximately polygonal geometry qualitatively impact the
exponent η of the surface impedance. Still, the “phase dia-
gram” of Fig. 17 qualitatively differs from the isotropic case of
Fig. 24, which demonstrates that rounded corners do not com-

pletely suppress the effect of Fermi-surface anisotropy on the
electrodynamic response.

The idealized polygons of Secs. IV B and IV C serve
as an illustration of the effect of dispersion anisotropy, as
they allow for a clear-cut analysis of the different regimes
of anisotropic skin effect. However, in order to test our ki-
netic theory by comparing it with optical spectroscopy data,
it is advantageous to consider more realistic Fermi-surface
shapes, which properly model the experimental dispersion of
the material under investigation. For this reason, in the next
section we consider the exemplary case of the experimen-
tal parametrization of the Fermi surface of PdCoO2, which
involves both portions with finite curvature and rounded
corners.

FIG. 17. Skin effect regimes for a “supercircle” Fermi surface (153) with p = 10, as measured by the surface impedance Z (ω) as a function
of relaxation rate γmr, momentum-conserving collision rate γmr, and frequency ω/ωp, where ωp is the plasma frequency (78). The Fermi-surface
geometry is sketched on the left-hand side of the plot, together with the applied electric field E = Eyûy aligned with the y axis, and the local
Fermi velocity vectors displayed by red arrows. (a) Regimes in the (γmr, ω) plane, for γmr = γmc. (b) Regimes in the (γmc, ω) plane, for fixed
γmr = 10−8ωp. The color palette is the density plot of ArgZ (ω)/(−π/2), which gives the exponent η of Z (ω) ∝ ωη.
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FIG. 18. Orientational dependence of skin effect regimes for the 2D parametrization (154) of the Fermi surface of PdCoO2, as measured
by the surface impedance Z (ω) as a function of relaxation rate γmr, momentum-conserving collision rate γmr, and frequency ω/ωp, where ωp is
the plasma frequency (78). The corresponding orientation is sketched on the left-hand side of each plot, together with the applied electric field
E = Eyûy aligned with the y axis. Red arrows depict the local Fermi velocity vectors. (a) Configuration with θ0 = π/2 in the (γmr, ω) plane,
for γmr = γmc. (b) Configuration with θ0 = π/2 in the (γmc, ω) plane, for fixed γmr = 10−8ωp. (c) Geometry with θ0 = 0 in the (γmr, ω) plane,
for γmr = γmc. (d) Results for θ0 = 0 in the (γmc, ω) plane, for fixed γmr = 10−8ωp. The color palette is the density plot of ArgZ (ω)/(−π/2),
giving the exponent η of Z (ω) ∝ ωη.

2. The 2D Fermi surface of PdCoO2

The experimental parametrization of the Fermi surface
of the delafossite compound PdCoO2, according to quantum
oscillations experiments, shows a quasi-2D geometry with a
slight warping in the direction perpendicular to the Pd planes
[33,94]. Here we adopt another common 2D parametrization
[111]:

kF (θ ) = ρ(θ − θ0)(cos θ ûx + sin θ ûy), (154a)

ρ(θ − θ0) = k0 + k6 cos [6(θ − θ0)]

+ k12 cos [12(θ − θ0)]. (154b)

θ characterizes the angular dependence of kF in the (kx, ky)
plane, while θ0 takes into account a possible in-plane rotation
of the Fermi surface with respect to the x and y axes. The
angular harmonics are k0 = 0.9518Å−1, k6 = 0.0444Å−1,
and k12 = 0.0048Å−1. Equations (154) allows us to illus-
trate the effect of a more realistic 2D parametrization on
our impedance “phase diagrams,” while still taking advan-
tage of the simplification (46) due to the existence of two
mirror symmetry planes in reciprocal space. A more gen-
eral parametrization is employed in Ref. [94], where we

directly compare our kinetic theory with surface resistance
measurements on PdCoO2. In accordance with the fits of
bandstructure calculations to angle-resolved photoemission
data in Ref. [65], we still employ Eq. (66), i.e., we assume
that the Fermi-velocity modulus has no angular dependence
and equals vF = 7.5 × 105 m/s [33].

Equations (154) produce the Fermi surfaces on the left
of Fig. 18: θ = π/2 and θ = 0 correspond to the sketch at
the left of Figs. 18(a) and 18(c), respectively. The numerical
results for the corresponding impedance “phase diagrams” are
shown in Figs. 18(a)–18(d), which can be directly compared
with the ideal hexagonal geometry of Fig. 10. As remarked
in Sec. VII D 1 for the rounded-square shape, the rounded
corners produced by Eq. (154) quantitatively modify the ex-
ponent η in anomalous regime with respect to the one for
a perfect hexagonal Fermi surface. In particular, the differ-
ences between the orientations of Figs. 18(a), 18(b) and 18(c),
18(d) are diminished, with respect to the sharper differences
between Figs. 10(a), 10(b) and 10(c), 10(d) for a hexagonal
geometry. Therefore relaxing the approximation of a perfect
hexagonal shape quantitatively smoothens some of the fea-
tures resulting from anisotropy, since the rounded corners and
slightly curved segments decrease the overall anisotropy of
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the Fermi surface. However, there are still discernible differ-
ences between Figs. 18(a), 18(b) and 18(c), 18(d) particularly
in the anomalous regimes D1© and D2©, which qualitatively still
resemble the idealized cases of Figs. 10(a), 10(b) and 10(c),
10(d). Hence, we conclude that anisotropic effects in the
skin effect are not completely suppressed, once we model
Fermi surfaces that are more realistic than idealized polyg-
onal geometries. Indeed, surface resistance measurements on
PdCoO2 using a bolometric microwave spectrometer confirm
the anisotropy of skin effect in such compound, in full agree-
ment with our kinetic theory [94].

VIII. CONCLUSIONS

By expanding the collision integral in the eigenbasis of the
collision operator, we solved the Boltzmann equation with
an electric-field source term and obtained the distribution
function and the transverse conductivity for arbitrary elec-
tronic dispersion, under the minimal assumption of two (in
2D) or three (in 3D) symmetry planes in momentum space,
taking into account momentum-preserving collisions at rate
γmc as well as momentum relaxation at rate γmr � γmc. The
conductivity (1) is valid for both isotropic and anisotropic
Fermi surfaces, which allows us to treat spherically symmetric
and polygonal geometries within the same formalism. After
checking the isotropic case of a circular Fermi surface, we
specialized to the polygonal geometries of a hexagonal and
a square Fermi-surface shape, with isotropic Fermi-velocity
modulus. We analyzed the connection between the conduc-
tivity and the skin depth for both geometries, and their
dependence on Fermi-surface orientation with respect to the
direction of the applied field. Assuming specular surface scat-
tering, we numerically calculated the surface impedance in
all regimes of skin effect, for circular, hexagonal and square
geometries, and for different Fermi-surface orientations for
the latter two cases. We also analyzed the impedance in
each skin-effect regime and traced quantitative boundaries
to characterize the crossovers among the different regimes.
Our main results are the impedance “phase diagrams” shown
in Figs. 10, 13 and 24, where the crossovers between dif-
ferent skin effect regimes are determined, both numerically
and analytically, as a function of frequency and ratio be-
tween momentum-conserving and relaxing scattering rates.
We also interpreted these diagrams, in the presence or absence
of anisotropy, in a unified fashion: the qualitative bound-
aries between adjacent regimes are described in terms of
ratios between characteristic lengths for skin effect, collected
in Table I and visualized in Fig. 2. This way, we classify
the orientational behavior of anisotropic skin effect in all
regimes in the diagrams 4–6, which highlight that skin effect
regimes must be identified within the parameter space set by
γmr, γmc, and ω.

In classifying the dependence of |Z (ω)| on Fermi-surface
geometry, a crucial role is played by the presence of Fermi-
surface segments with velocity aligned (or nearly parallel) to
the direction of the incident electric field. This alignment is
capable of altering the frequency scaling exponent η of the
skin depth and the impedance, and even suppress altogether
the nonlocal character (dependence on qx) of conduction in

the anisotropic system. In the light of such phenomenon, one
can rationalize the different extension and boundaries among
the viscous and anomalous regimes, i.e., regions V©, D1© and D2©
in Fig. 2, for different orientations.

Furthermore, we interpreted the frequency dependence of
the skin depth and impedance, demonstrated in our theory, in
terms of a generalized version of the “ineffectiveness concept”
introduced by Pippard, which allows one to infer the evolution
of skin effect with frequency, from the dependence of the
conductivity on frequency and momentum.

The orientational dependence of skin effect, as well as
the modifications of the impedance “phase diagrams” due to
anisotropy, persist even if we consider more complex non-
polygonal Fermi-surface geometries, as we demonstrated by
explicitly treating the case of a “supercircle” (in Sec. VII D 1)
and of a simplified 2D experimental parametrization of the
Fermi surface of PdCoO2 [33,65,112] (in Sec. VII D 2). In a
companion paper, the full 3D parametrization for PdCoO2 is
employed in our kinetic theory and found in agreement with
surface-resistance microwave measurements [94]. There, it is
shown that the nonzero dispersion perpendicular to the hexag-
onally coordinated Pd layers has to be taken into account,
to provide an accurate description of the nonlocal electrody-
namics of PdCoO2. However, our 2D calculations serve as a
useful reference, to estimate to what extent the anisotropic
transport in the intralayer dimension affect skin effect, and to
locate in which regime the optical data lies in the parameter
space of Fig. 2. A detailed study of the impact of different
dimensionality on nonlocal optics in the collision-operator
formalism represents an interesting future development of our
theory.

Thus our theory provides a flexible and compact for-
malism, which makes contact with a basic electrodynamic
quantity, the surface impedance, that is a consolidated and
accurate method to investigate the spatially nonlocal current
response. Our methods are practically adaptable to many
classes of 2D materials with anisotropic Fermi surfaces. More
generally, our work provides new guidelines for the theoret-
ical and experimental investigation of the ballistic, viscous,
and Ohmic regimes of conduction in novel 2D and 3D ma-
terials, and for the orientational dependence of the optical
properties in anisotropic electronic systems. The potential
technological impact of such guidelines encompasses many
future applications of ultrahigh-conductivity materials and in-
tegrated circuits operating at GHz frequencies [113].
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APPENDIX A: COLLISION OPERATOR AND
EIGENMODES IN TWO-TIMES APPROXIMATION

Given the assumptions (31) for the eigenfunctions χk and
the eigenvalue equations (19), the collision operator Ĉ in
spatial dimensions {i} can be written as

Ĉ =
∑

m

|χk,m〉γm〈χk,m|

= |χk,0〉0〈χk,0| + γmr

∑
i

|χk,i〉〈χk,i|

+ γmc

∑
α �={0,{i}}

|χk,α〉〈χk,α|. (A1)

From the completeness property (20), we can write∑
α �={0,{i}}

|χk,α〉〈χk,α| = 1 − |χk,0〉〈χk,0| −
∑

i

|χk,i〉〈χk,i|,

(A2)

which upon insertion in Eq. (A1) yields

Ĉ = γmc(1 − |χk,0〉〈χk,0|) − (γmc − γmr )
∑

i

|χk,i〉〈χk,i|.

(A3)

Acting with the collision operator (A3) on a generic eigen-
function |φk〉 produces

Ĉ|φk〉 = γmc|φk〉 − γmc|χk,0〉〈χk,0|φk〉 − (γmc − γmr )

×
∑

i

|χk,i〉〈χk,i|φk〉. (A4)

By virtue of the definition of the scalar product (15), Eq. (A4)
is equivalent to Eq. (39).

The normalization of the eigenfunction χk,0 imposes

〈χk,0|χk,0〉 =
∫

k′
wk′χ∗

k′,0χk,0

= 2

(2π )d h̄

∫
dε

[
−kBT

∂ f (0)(ε)

∂ε

] ∫
S(ε)

dS

vk′
c∗

0c0

≈ 2kBT

(2π )d h̄

∫
dε

−∂ f (0)(ε)

∂ε︸ ︷︷ ︸
1

∫
SF

dS

vk′
F

|c0|2

= 2kBT

(2π )d h̄

∫
SF

dS

vk′
F

|c0|2 ≡ 1. (A5)

Inverting the last step of Eq. (A5), we find the coefficient (36).
In the same way, the normalization condition for χk,i demands

〈χk,i|χk,i〉 =
∫

k′
wk′χ∗

k′,iχk,i

= 2

(2π )d h̄

∫
dε

[
−kBT

∂ f (0)(ε)

∂ε

]

×
∫

S(ε)

dS

vk′
c∗

0c0c∗
i ciṽk′,iṽk,i

≈ 2kBT

(2π )d h̄

∫
dε

−∂ f (0)(ε)

∂ε︸ ︷︷ ︸
1

×
∫

SF

dS

vk′
F

|c0|2|ci|2(ṽk,i )
2 ≡ 1. (A6)

The last step of Eq. (A6) leads to the coefficient (38).

APPENDIX B: TRANSVERSE CONDUCTIVITY OF
ISOTROPIC 2D FERMI SYSTEMS: DERIVATION WITH

ANGULAR MOMENTUM STATES

Let us apply the collision-operator formalism to the case
of isotropic 2D Fermi systems, by specifying the form of
the eigenfunctions χk,m. In this case, we know that rotational
invariance implies that the eigenfunctions are angular momen-
tum states [104]. If we confine ourselves to energies small
compared to the Fermi level EF , we can use

χk,m = c0eimθ , (B1)

where θ is the angle formed by the wave vector k =
kF (cos θ, sin θ ) in the xy plane. We neglect the dependence of
the eigenfunctions on the magnitude of the momentum, as it is
small by |k − kF |/kF � 1. The coefficient c0 follows from the
normalization condition (21), which translates in the present
case as

〈m | m′〉 =
∫

k
wkχ

∗
k,mχk,m′ = δm,m′ . (B2)

Using the definition (15) of the scalar product, we have

〈m | m′〉 =
∫

k

[
−kBT

∂ f 0(εk)

∂εk

]
χ∗

k,mχk,m′

=
∫ 2π

0

dθ

2π

∫
dεNel(ε)

[
−kBT

∂ f 0(ε)

∂ε

]
c∗

0e−imθ c0eim′θ

≈ Nel(0)kBT |c0|2
∫ +∞

−∞
dε

[
−∂ f 0(ε)

∂ε

]
︸ ︷︷ ︸

1

×
∫ 2π

0

dθ

2π
eiθ (m−m′ )

︸ ︷︷ ︸
δm,m′

≡ δm,m′ (B3)

such that c0 = 1/
√

Nel(0)kBT . Here we have used the elec-
tronic density of states Nel(ε) = ∑

k δ(ε − εk). With the above
formalism, we only have to determine the matrix elements of
the velocity operator

〈m|v|m′〉 =
∫

k
wkχ

∗
kmvkχk,m′

= vF

∫
dθ

2π

(
cos θ

sin θ

)
e−iθ (m−m′ )

= vF

2

[
δm′,m+1

(
1
i

)
+ δm′,m−1

(
1
−i

)]
(B4)
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and the source term

sm = − e

kBT
E ·

∫
k
wkχ

∗
k,mvk

= − e

kBT
EvF

∫
dθ

2π

∫
dεNel(ε)

[
−kBT

∂ f 0(ε)

∂ε

]

× c∗
0e−imθ

(
cos θ

sin θ

)

≈ − e

kBT
ENel(0)kBT c∗

0vF

∫
dθ

2π
e−imθ

(
cos θ

sin θ

)

=
√

Nel(0)

kBT

evF

2
E ·

[
δm,1 + δm,−1

i(δm,1 − δm,−1)

]
. (B5)

Hence, we obtain the Boltzmann equation with q =
q(cos θ ûx + sin θ ûy):

(γm − iω)am + i
vF q

2
(eiθam+1 + e−iθ am−1) = sm. (B6)

A closely related problem was in fact recently studied in
Ref. [104], where the collective modes of the system were
analyzed. Here we determine the full distribution function,
which shall then give us the transverse conductivity where
q ‖ ûx and E ‖ ûy. The assumption q = qxûx implies θ = 0.
Consistently with Eqs. (31), we take γ0 = 0 for charge conser-
vation, γ1 = γmr � 0 for slow momentum relaxation, and for
higher-order modes γm = γmc � 0 ∀m � 2. The source term
sm is relaxing just the mode with m = ±1 for electric field
parallel to the y axis, hence we write

s±1 = ±iYE , (B7)

where

YE = e

kBT

vF

2c0
Ey (B8)

is proportional to the electric field. Now we have the set of
equations

−iωa0 + i
vF qx

2
(a1 + a−1) = 0, (B9a)

(γmr − iω)a±1 + i
vF qx

2
(a0 + a±2) = ±iYE , (B9b)

(γmc − iω)am + i
vF qx

2
(am+1 + am−1) = 0, |m| � 2.

(B9c)

Next, we divide all equations by vF qx to get

−isa0 + i
1

2
(a1 + a−1) = 0, (B10a)

(�mr − is)a±1 + i
1

2
(a0 + a±2) = ±i

YE

vF qx
, (B10b)

(�mc − is)am + i
1

2
(am+1 + am−1) = 0, |m| � 2,

(B10c)

where �i = γi/(vF qx ), i = {mr, mc}, and s = ω/(vF qx ). We
now introduce an = bnYE/(vF qx ), to get the equations

sb0 − 1
2 (b1 + b−1) = 0,

(s + i�mr )b±1 − 1
2 (b0 + b±2) = ∓1, (B11)

while for |m| � 2, we have

(s + i�mc)bm − 1
2 (bm+1 + bm−1) = 0. (B12)

We start our analysis by assuming that q is real, and we
will make the analytic continuation to q ∈ C at the end. The
recursion relation for m � 2 has the two solutions

bm = c+λm
+ + c−λm

−,

where λ± = z ± √
z2 − 1 with z = s + i�mc. Those are the

roots of

z = 1
2 (λ + λ−1). (B13)

To achieve convergence it must hold |λ±| � 1. Let us assume
without restriction that ω > 0. Under the assumption of real
qx, we know that both, the real part and the imaginary part of
z are positive. If we write λ = reiϕ , we can analyze separately
the real and imaginary parts of Eq. (B13):

s = cos ϕ

2
(r + r−1) > 0,

�mc = sin ϕ

2
(r − r−1) > 0. (B14)

To ensure convergence, it must hold |λ| = r � 1, hence we
obtain the conditions cos ϕ > 0 and sin ϕ < 0, which imply
that ϕ ∈ [ 3

2π, 2π ], i.e., Reλ > 0 and Imλ < 0. If one analyzes
the above solutions λ±, one then finds that only λ = λ− is
acceptable. Hence, it must hold that c+ = 0. Most important is
that one of the two constants must always be zero. This should
survive the analytical continuation to complex momenta qx.
Now we can always write that bm = λm−1b1, which yields
in particular b2 = λb1. We can perform the same analysis
for negative m and find bm = λ−m−1b−1, and in particular
b−2 = λb−1, with the same λ for positive and negative m.

This yields a closed set of equations with the solution b0 =
0 as well as

b±1 = ∓ 1

s + i�mr − λ
2

= ∓ 1

s + i�mr − s+i�mc−
√

(s+i�mc )2−1
2

. (B15)

We are now in the position to determine the distribution func-
tion ψθ from Eq. (22). The linear system to solve is

ψθ =
∞∑

m=−∞
amχk,m

= c0

∞∑
m=−∞

ameimθ = YE c0

vF qx

∞∑
m=−∞

bmeimθ

= −i
2YE c0

ω + iγmr − λ
2 vF qx

∞∑
m=1

λm−1 sin (mθ )

= 2YE c0

iω − γmr − i λ
2 vF qx

sin θ

1 + λ2 − 2λ cos θ
.
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From Eq. (11), we obtain the distribution function

δ fk(qx, ω) = e
∂ f (0)(εk)

∂εk

vk,yEy

−iω + γmr + i λ
2 vF qx

× 1

1 + λ2 − 2λvk,x/vF
, (B16)

with

λ = 1

vF qx
(ω + iγmc −

√
(ω + iγmc)2 − (vF qx )2),

vk,x = vF cos θ , and vk,y = vF sin θ . Let us analyze the de-
nominator in the distribution function (B16):

D =
(

−iω + γmr + i
λ

2
vF qx

)(
1 + λ2 − 2λ

vk,x

vF

)

=
(

−iω + γmr + γmc − γmc + i
λ

2
vF qx

)

×
(

1 + λ2 − 2λ
vk,x

vF

)
= −iω + γmc + ivk,xqx

− (γmc − γmr )2λ

(
ω + iγmc

vF qx
− vk,x

vF

)
. (B17)

In deriving the above result, we used

D1 ≡
(

−iω + γmc + i
λ

2
vF qx

)(
1 + λ2 − 2λ

vk,x

vF

)

= −ivF qx

(
z − λ

2

)(
1 + λ2 − 2λ

vk,x

vF

)
. (B18)

Inserting Eq. (B13) gives

D1 = −ivF qx

(
λ−1 + λ

2
− vk,x

vF

)

= −ivF qx

(
z − vk,x

vF

)
= −iω + γmc + ivk,xqx. (B19)

This gives the first term in Eq. (B17) for D.
All in all, we obtain the following expression for the distri-

bution function:

δ fk(qx, ω) = e
∂ f (0)(εk)

∂εk

× vk,yEy

−iω + γmc + ivk,xqx + Mk(qx, ω)
, (B20)

where

Mk(qx, ω) = − 2
γmc − γmr

vF qx

× (ω + iγmc −
√

(ω + iγmc)2 − (vF qx )2)

×
(

ω + iγmc

vF qx
− vk,x

vF

)
. (B21)

The distribution function (B20) can be used to describe
Ohmic transport, ballistic transport, and viscous or hydrody-
namic transport, including the crossover among these distinct

regimes for a circular Fermi surface. Equation (B20) coincides
with Eq. (83), which was obtained using a completely differ-
ent strategy, namely as a special case of the collision-operator
formalism in the isotropic limit.

APPENDIX C: ANISOTROPIC HYDRODYNAMICS
IN TRIGONAL SYSTEMS

We want to analyze the hydrodynamic flow in anisotropic
systems. In particular we are interested in the case of a trigonal
system with point group D3d . The problem was already dis-
cussed in Ref. [74] for two-dimensional systems with square
and hexagonal symmetry. In the case of a hexagonal Fermi
surface it was found that no dependency on the direction of the
flow velocity w.r.t. the crystalline axes exists. Since Ref. [74]
made one simplifying assumption for the symmetry of the
viscosity tensor (see below), we are double-checking their
conclusion for the most general structure of the tensor. We
confirm that the flow is indeed independent on the orientation
of the sample, in agreement with Ref. [74].

The dissipative contribution to the momentum current is re-
lated to the velocity gradient by ταβ = ηαβ,γ δ∂γ uδ. This gives
rise to the linearized Navier-Stokes equation of an anisotropic
system [41]

m∂t uβ − eEβ = ∂αηαβ,γ δ∂γ uδ − γβαuα. (C1)

Here γβα refers to the tensor momentum-relaxing rate. The
point group of PdCoO2 is the trigonal group D3d . This im-
plies that the second-rank tensor γαβ = diag(γ , γ , γ⊥) has
no in-plane anisotropy. If we confine the analysis to in-plane
transport there are three distinct viscosity elements

η1 = ηxxxx = ηyyyy,

η2 = ηxxyy = ηyyxx,

ηr = ηxyxy − ηxyyx, (C2)

where by symmetry 1
2 (η1 − η2) = ηxyxy + ηxyyx. The momen-

tum current in the plane is then given as

⎛
⎜⎜⎝

τxx

τxy

τyx

τyy

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

η1 0 0 η2

0 η1−η2+ηr

2
η1−η2−ηr

2 0
0 η1−η2−ηr

2
η1−η2+ηr

2 0
η2 0 0 η1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

∂xux

∂xuy

∂yux

∂yuy

⎞
⎟⎟⎠. (C3)

It holds by symmetry ηxyxy = ηyxyx and ηxyyx = ηyxxy. If we set
the rotational viscosity ηr = 0, we recover the usual structure
of the elastic constants of a trigonal system, where η1 = η11

and η2 = η12 within the Voigt notation. However, as pointed
out in Ref. [41], the broken rotational symmetry of a system
implies that the momentum current is no longer a symmetric
tensor yielding ηr �= 0. Then the Voigt notation is no more
useful. The name rotational viscosity was coined in Ref. [74].
There, the form of the viscosity tensor of a hexagonal system
was also studied. Notice, in Ref. [74], the additional assump-
tion of η2 = −η1 was made.

We are now in a position to write down the two Navier-
Stokes equations for the two in-plane velocity components. In
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full glory of the tensor elements, it holds

m∂t ux − eEx = ∂xηxx,xx∂xux + ∂xηxx,yy∂yuy

+ ∂yηyx,xy∂xuy + ∂yηyx,yx∂yux − γ ux, (C4a)

m∂t uy − eEy = ∂yηyyyy∂yuy + ∂yηyy,xx∂xux

+ ∂xηxy,yx∂yux + ∂xηxy,xy∂xuy − γ uy. (C4b)

If we insert our above results for the viscosity tensor, we
obtain

m∂t ux − eEx = η1�ux + η′∂y(∂yux − ∂xuy) − γ ux, (C5a)

m∂t uy − eEy = η1�uy − η′∂x(∂yux − ∂xuy) − γ uy, (C5b)

where we introduced η′ = −(η1 + η2 − ηr )/2. Without the
terms proportional to η′, the behavior predicted by Eqs. (C5)
would be identical to the rotation-invariant case.

Let us now look at the viscous skin effect, or any other
effect where we cut the sample along a given direction with
flow parallel to the surface. Let x and y be along the crystal
axes. We want to consider a sample which is cut along the y′
direction, where x′ = Rθx with

Rθ =
(

cos θ − sin θ

sin θ cos θ

)
. (C6)

The velocity transforms as u = R−1
θ u′. With flow along the

y′ axis we expect that u′
x′ = 0, i.e., no flow orthogonal to the

surface and ∂y′uy′ = 0. Then it follows

∂2
x → cos2 θ∂2

x′ ,

∂2
y → sin2 θ∂2

x′, (C7)

∂x∂y → − cos θ sin θ∂2
x′

as well as ux → sin θu′
y′ and uy → cos θu′

y′ . If we insert this
and transform the electric field accordingly, it follows:

∂t uy′ − e

m
Ey′ = (η1 + η′)∂2

x′uy′ − γ uy′ . (C8)

The effective viscosity η1 + η′ is independent on the angle
θ . This result implies that for a trigonal system with flow
in the xy plane, there is no dependency of the Navier-Stokes
equation w.r.t. the orientation of the surface.

APPENDIX D: ADDITIONAL PLOTS FOR THE
SURFACE IMPEDANCE

1. Surface impedance for equal scattering rates

In the main text, it is argued that two conditions on the
ratio between momentum-relaxation rate γmr and momentum-
conserving collision rate γmc are the most interesting for
realistic scenarios: γmr ≈ γmc at high temperatures, and γmr �
γmc at low temperatures. The latter case is analyzed in detail
in the main text, while in the following we show results for
the surface impedance assuming equal scattering rates and
specular interface scattering.

Since the hydrodynamic regime is realized for γmc �
γmr, we can already anticipate that, in all cases considered
in this section, viscous skin effect will be absent. There-
fore only normal, anomalous, and perfect-conductor skin
effects are possible for equal scattering rates. Figure 19

FIG. 19. Surface impedance Z (ω) normalized to the vacuum-
impedance Z0, as a function of ω/ωp, for a hexagonal Fermi surface
with Fermi-velocity modulus vF = 2.5 × 10−3c, γmr = γmc = γ , and
specular boundary conditions. Solid (dashed) lines refer to ReZ (ω)
[−ImZ (ω)]. (a) Results for tilting angle φ = 0; see Fig. 7(a). (b) Re-
sults for φ = π/2; see Fig. 7(b).

shows the real part (solid curves) and imaginary part (dashed
curves) of the surface impedance Z (ω), normalized to the
vacuum-impedance Z0, calculated numerically as a func-
tion of dimensionless frequency ω/ωp using Eqs. (143) and
(144), for a hexagonal Fermi-surface shape. We use the
Fermi-velocity modulus vF = 2.5 × 10−3c and γmr = γmc =
γ . Blue, red and gold curves refer to γ = {2 × 10−4, 0.02, 20}
respectively. Figure 19(a) displays the results in the “par-
allel” configuration for tilting angle φ = 0 with respect to
the surface [see Fig. 7(a)] using the conductivity (92), while
Fig. 19(b) shows the results for φ = π/2 [see Fig. 7(b)],
employing the conductivity given by Eqs. (101) and (102).

Focusing on low frequencies, in all panels of Fig. 19, we
retrieve {Re, Im}Z (ω) ∝ ω1/2: this is the regime of normal
skin effect, where ωγ � 1 and ω � vF |qx|, and nonlocal
effects are negligible. At high frequency, the impedance is pre-
dominantly imaginary and given by the perfect-conductivity
result Z (ω) = −iλLμ0ω. The first-order correction to the lat-
ter behavior for ω → +∞ gives a subdominant real part
ReZ (ω) = γ /2, which is constant with frequency and is ev-
ident in all panels of Fig. 19. To see this correction, we can
analyze the conductivity and the impedance at high frequency.
The analysis is analogous for φ = 0 and φ = π/2, and here
we explicitly report only on the φ = 0 case for compactness.
In the “parallel” configuration of Fig. 7(a), the conductivity
follows Eq. (93) in the case δγ = 0. Series-expanding for
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ω → +∞, we have

σyy(qx, ω)

ε0ω2
p

= iω + γ

ω
+ i

(vF qx )2 − 4γ 2

4ω3
. (D1)

Inserting this result into Eqs. (143) and (144), we obtain the
surface impedance

Z (ω)

Z0
= 2ω3

ωp

√
γ 2 + iγω − ω2[(vF /c)2 + 4ω2]

. (D2)

Expanding again Eq. (D2) for ω → +∞, we obtain
Z (ω)/Z0 = −iω/ωp + γ /(2ωp) + o(1/ω), which implies a
frequency-linear imaginary part and a constant real part, ex-
actly as shown in Fig. 19.

For the lowest scattering rate γ = 2 × 10−4 (blue curves
in Fig. 19), we see a bump in the real part of Z (ω) before its
saturation to a constant value: this happens in the crossover
between normal and anomalous regimes, when the scatter-
ing rate γ is low enough that a small frequency window of
ballistic (anomalous) skin effect appears between normal and
perfect-conductor regimes. A similar nonmonotonic evolution
occurs in the surface impedance as a function of temper-
ature in the crossover regime between hydrodynamic and
anomalous skin effect, as analyzed by Gurzhi for electrons
interacting with phonons [3].

In the case of a square Fermi surface, we obtain the
impedance shown in Fig. 20: again, the real part (solid curves)
and imaginary part (dashed curves) of the surface impedance
Z (ω), normalized to the vacuum-impedance Z0, are calcu-
lated numerically as a function of dimensionless frequency
ω/ωp using Eqs. (143) and (144), and we employ the same
parameters as for Fig. 19. Figure 20(a) displays the results
in the “diamond-shaped” configuration for tilting angle φ = 0
[see Fig. 8(a)] using the conductivity (110), while Fig. 19(b)
presents the results for φ = π/4 [see Fig. 8(b)] employing
the conductivity given by Eqs. (102) and (116). The analysis
of Fig. 20 is analogous to the one of 19, as is evident by
visually comparing the two figures. Notice that the bumps
in the impedance are absent from Fig. 19(b), because the
conductivity (120) does not allow for anomalous skin effect:
the only crossover as a function of frequency is directly from
normal skin effect to the high-frequency result Z (ω)/Z0 =
−iω/ωp + γ /(2ωp) + o(1/ω).

We conclude that, if the assumption of equal scattering
rates holds at high temperature, we expect an anisotropic
surface impedance characterized by normal skin effect at low
frequency, which transitions into a highly conducting regime
at high frequency, characterized by a linear imaginary part and
a constant real part equal to Z0 ∝ γ /ωp.

2. Imaginary part as a function of relaxation rate

In this section, we show the imaginary parts of the
anisotropic surface impedance associated with the real parts
shown in Figs. 11 and 14, as a function of inverse momentum-
relaxing scattering rate 1/γmr, for the same parameters as in
Figs. 11 and 14. Figures 21(a) and 21(b) show the numerical
results stemming from Eqs. (143) and (144) for a hexagonal
Fermi surface, with orientation angle φ = 0 and φ = π/2
respectively. Figures 22(a) and 22(b) display the numerics

FIG. 20. Surface impedance Z (ω) normalized to the vacuum-
impedance Z0, as a function of dimensionless frequency ω/ωp, for
a square Fermi surface with Fermi-velocity modulus vF = 2.5 ×
10−3c, γmr = γmc = γ , and specular boundary conditions. Blue, red,
and gold curves refer to γ = {2 × 10−4, 0.02, 20}, respectively. Solid
(dashed) lines refer to ReZ (ω) [−ImZ (ω)]. (a) Results for tilting
angle φ = 0 with respect to the surface; see Fig. 8(a). (b) Results
for φ = π/4; see Fig. 8(b).

for a square Fermi surface, with orientation angle φ = 0 and
π/4, respectively.

From the comparison between Figs. 11 and 21 and between
Figs. 14 and 22, we see that the crossover from normal to
viscous or anomalous skin effect (depending on whether ω �
γmc or ω � γmc, respectively) is visible both in the real and
imaginary parts of the impedance, as a saturation in the limit
of vanishing γmr. However, the saturation value of the imagi-
nary part is much less sensitive to γmc than the corresponding
real part, for the same parameters. Hence, the real part of
the impedance allows a more accurate distinction between
anomalous and viscous skin effect, in the relaxationless limit.

APPENDIX E: ANALYSIS OF THE SURFACE IMPEDANCE
FOR SPECULAR SCATTERING

1. Isotropic (circular) Fermi surface

In this Appendix, we provide analytical results for the
impedance of a 2D isotropic Fermi surface. Each of these re-
sults approximates Z (ω) in a specific regime. The exact |Z (ω)|
(divided by Z0 and by (ω/ωp)1/2) calculated numerically from
Eqs. (84), (143), and (144), is reported as a red solid curve in
Fig. 23 as a function of ω/ωp, together with the analytical
approximations obtained as follows.
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FIG. 21. Inverse imaginary part −1/ImZ (ω) of the surface
impedance, normalized to the vacuum-impedance Z0, as a function
of inverse momentum-relaxation rate ωp/γmr, for a hexagonal Fermi
surface with Fermi-velocity modulus vF = 2.5 × 10−3c, ω/ωp =
10−4, and γmc = max{γmr, γ̄ }, with γ̄ = {10−5, 1, 103} for the blue,
red, and gold curves respectively. Specular boundary conditions are
assumed, according to Eq. (144). The dashed gray lines represent
the limit γmr = γmc = 0. (a) Results from Eq. (92), for tilting angle
φ = 0 with respect to the surface; see Fig. 7(a). The scattering-less
limit is given by Eq. (E13). (b) Results from Eqs. (101) and (102),
for φ = π/2; see Fig. 7(b). The scattering-less limit stems from
Eq. (E16).

a. Normal skin effect and perfect-conductor regime

In the limit of large momentum-relaxation rate γmr � γmc

and small momentum vF |qx| � (ω + iγmc), Eq. (84) reduces
to the Ohmic result

σyy(qx, ω)

ε0ω2
p

= 1

γmr − iω
. (E1)

Inserting Eq. (E1) in Eqs. (143) and (144), and performing the
momentum integrations, we achieve

Z

Z0
= 1 − i√

2ωp

√
γmr − iω

√
ω. (E2)

Equation (E2) gives |Z (ω)| ∝ √
γmrω at low frequencies (nor-

mal skin effect), while it becomes |Z (ω)| = μ0λLω at high
frequencies (perfect-conductor regime). Equation (E2) pro-
duces the dashed blue line in Fig. 23. The high-frequency limit
of Eq. (E2) also gives the dashed light-blue line in Fig. 23, in
the perfect-conductivity regime.

b. Anomalous skin effect regime

For ω � {γmc, γmr} (ballistic regime, with negligible scat-
tering) and vF |qx| � (ω + iγmc) (large momentum), Eq. (84)

FIG. 22. Inverse imaginary part −1/ImZ (ω) of the surface
impedance, normalized to the vacuum-impedance Z0, as a function
of inverse momentum-relaxation rate ωp/γmr, for a square Fermi sur-
face with Fermi-velocity modulus vF = 2.5 × 10−3c, ω/ωp = 10−4,
and γmc = max{γmr, γ̄ }, with γ̄ = {10−5, 1, 103} for the blue, red,
and gold curves, respectively. Specular boundary conditions are as-
sumed, according to Eq. (144). The dashed gray lines represent the
limit γmr = γmc = 0. (a) Results from Eq. (110), for tilting angle
φ = 0 with respect to the surface; see Fig. 8(a). The scattering-less
limit is given by Eq. (E35). (b) Results from Eqs. (109) and (102),
for φ = π/4; see Fig. 8(b). The scattering-less limit stems from
Eq. (E15).

FIG. 23. Absolute value of the surface impedance |Z (ω)|, di-
vided by the vacuum impedance Z0 and by (ω/ωp)1/2, as a function
of ω/ωp, for a circular Fermi surface (isotropic 2D case). We use the
parameters vF /c = 0.0025, and γmr = 10−4γmc = 10−6ωp. Dashed
curves show analytical results valid in each regime, derived in Ap-
pendixes E 1 a–E 1 c. The yellow-shaded area gives a qualitative
estimation of the parameter space accessible to experiments [55].
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FIG. 24. Skin effect regimes for an isotropic 2D (circular) Fermi surface, as measured by the surface impedance Z (ω) as a function of
relaxation rate γmr, momentum-conserving collision rate γmr, and frequency ω/ωp, where ωp is the plasma frequency (78). The Fermi-surface
geometry is sketched on the left-hand side of the plot, together with the applied electric field E = Eyûy aligned with the y axis, and the local
Fermi velocity vectors shown by red arrows. (a) Regimes in the (γmr, ω) plane, for γmr = γmc. (b) Regimes in the (γmc, ω) plane, for fixed
γmr = 10−8ωp. The color palette is the density plot of ArgZ (ω)/(−π/2), giving the exponent η of Z (ω) ∝ ωη. Dashed lines are the analytical
crossover boundaries derived in Appendix E 1 d.

becomes
σyy(qx, ω)

ε0ω2
p

= 2

vF qx
. (E3)

Using Eq. (E3) in performing the integrations over momentum
in Eqs. (143) and (144), we obtain

Z

Z0
= 2

3

(
1√
3

− i

)(vF

2c

) 1
3

(
ω

ωp

) 2
3

. (E4)

Hence, Eq. (E4) gives |Z (ω)| ∝ ω2/3, consistently with the
literature on ballistic (anomalous) skin effect in isotropic sys-
tems [48,54,55]. Equation (E4) yields the dashed green line in
Fig. 23.

c. Hydrodynamic regime

We analyze hydrodynamic skin effect in the isotropic limit
by expanding the denominator in the conductivity Eq. (84)
for γmc → +∞ at first order (assuming negligible momentum
relaxation):

σyy(qx, ω)

ε0ω2
p

= 1

−iω + (vF qx )2/(4γmc)
. (E5)

We then perform the integrals over momentum in Eqs. (143)
and (144), using the expansion (E5), and we expand the result
in the low-frequency limit ω → 0+, to obtain

Z

Z0
= (−1 + i)(−1)

7
8
√

vF /c

2
√

2ωpγ
1
4

mc

ω
3
4 . (E6)

Eq. (E6) produces the dashed orange line in Fig. 23.

d. Crossover frequencies

To estimate characteristic frequencies for the various
crossovers between different skin effect regimes, we con-
sider the intersection points between the analytical results for

|Z (ω)| found in Appendixes E 1 a–E 1 c. Let us begin with the
crossovers in the (γmc, ω) plane, for γmc � γmr; see Fig. 24(b).
Using the low-frequency expansion of Eqs. (E2) and (E6),
we deduce the frequency ω = ωnv for the crossover between
normal and viscous skin effect:

ωnv = 16γmcγ
2
mr

ω2
p(vF /c)2

. (E7)

Equation (E7) gives the green dot in Fig. 23 and the dashed
yellow line in Fig. 24(b). It is consistent with the qualitative
crossover condition A©– V© in Table III, up to a numeri-
cal constant. Employing Eqs. (E6) and (E4), we obtain the
crossover frequency ω = ωva between the viscous and anoma-
lous regimes:

ωva = Cγ 3
mc

(
c

ωpvF

)2

, (E8)

with C = 4294967296/387420489 ≈ 11.086. Eq. (E8) pro-
duces the blue dot in Fig. 23 and the dashed light-blue line
in Fig. 24(b). It agrees with the qualitative criterion D1©– V© in
Table III. The crossover frequency ω = ωap between anoma-
lous and perfect-conductor regimes follows from Eq. (E4) and
|Z (ω)| = Z0ω/ωp:

ωap = 32

81
√

3

vF

λL
. (E9)

The red dot in Fig. 23 and the dashed red line in Fig. 24(b) are
both given by Eq. (E9). The latter is in qualitative agreement
with the length-scale criterion D2©– E© in Table III. Finally, the
crossover between viscous skin effect and perfect-conductor
regime is derived from Eq. (E6) and |Z (ω)| = Z0ω/ωp, giving

ωvp = v2
F

16γmc

1

λ2
L

. (E10)
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Equation (E10) generates the dashed purple line in Fig. 24(b)
and is consistent with the qualitative condition V©– F© in Ta-
ble III. We now analyze the crossovers in the (γmr, ω) plane,
for γmc = γmr; see Fig. 24(a). The boundary between normal
and anomalous skin effect follows from Eqs. (E2) and (E4):

ω′
na = 19683

1024

(
λL

vF

)2

γ 3
mr. (E11)

Equation (E11) yields the dashed yellow line in Fig. 24(a), and
is consistent with the qualitative condition A©–D1© in Table II.
The crossover between anomalous and perfect-conductor
regimes is independent from γmr, and it follows Eq. (E9)
as previously found from Eq. (E4). Therefore Eq. (E9) also
gives the dashed red line in Fig. 24(a), in agreement with the
condition D2©– E© in Table II. Lastly, a boundary between the
normal and perfect-conductor regimes stems from the low-
frequency expansion of Eq. (E2) and |Z (ω)| = Z0ω/ωp. We
simply obtain

ω′
np = γmr, (E12)

which is in full agreement with the criterion A©– B© in Table II,
and produces the dashed light-blue line in Fig. 24(a).

2. Hexagonal Fermi surface

This Appendix contains the analysis of the surface
impedance for a hexagonal Fermi surface and rotation angles
φ = {0, π/2}.

a. Scattering-less regime

In the absence of scattering, i.e., γmr = γmc = 0, and for
φ = 0, the conductivity reduces to Eq. (94) and the integral
over z in Eq. (144) can be evaluated analytically:

Z

Z0
= 1

2
√

2

ω

ωp

vF

c

(α2 − iα3) − ω/ωp(α2 − iα3)/α1

α2α3
,

(E13a)

α1 =
√(

ω

ωp

)2

+
(vF

c

)2
, (E13b)

α2 =
√

ω

ωp

(
α1 − ω

ωp

)
, (E13c)

α3 =
√

ω

ωp

(
α1 + ω

ωp

)
. (E13d)

The surface impedance (E13) crosses over from ReZ (ω) ∼
ω1/2 and −ImZ (ω) ∼ ω1/2 at low frequency to ReZ (ω) �
−ImZ (ω) ∼ ω at high ω, as shown by the solid and dashed
blue curves in Fig. 25, respectively. We can understand this
crossover analytically, by combining Eq. (144) with the con-
ductivity (94) as done in Sec. V A: in the regime ω � vF |qx|,
we directly obtain

Z (ω) ≈ 1 − i

2
Z0

√
vF

c

√
ω

ωp
= μ0ω

1 − i

2
δs(ω), (E14)

with the skin depth δs(ω) given by Eq. (131), while for
ω � vF |qx|, the momentum dependence of the conductivity

FIG. 25. Surface impedance Z (ω) normalized to the vacuum-
impedance Z0, as a function of dimensionless frequency ω/ωp, for
a hexagonal Fermi surface with Fermi-velocity modulus vF = 2.5 ×
10−3c, in the limit without relaxation and collisions, i.e., γmr =
γmc = 0. Blue (gold) curves show the results for crystals tilted at
an angle φ = 0 (φ = π/2) with respect to the surface, according to
Eq. (E13) [Eq. (E16)]. Solid and dashed lines refer to ReZ (ω) and
−ImZ (ω), respectively.

disappears and

Z (ω) ≈ −iZ0
ω

ωp
= −iμ0ωλL, (E15)

i.e., with the frequency-independent skin depth δs ≡ λL asso-
ciated with a perfect conductivity. In fact, as noticed in Sec. V,
the high-frequency limit (E15) of the surface impedance is
general and independent from the shape of the anisotropic 2D
Fermi surface.

In the limit γmr = γmc = 0 and φ = π/2, the conductivity
is given by Eq. (104) and the integral over z in Eq. (144) yields
the analytical result

Z

Z0
= i

√
3

2

ω

ωp

vF

c

1

β1

[−2(ω/ωp)2 − (vF /c)2 + β1

−2(ω/ωp)2 + (vF /c)2 − β1

− 2(ω/ωp)2 + (vF /c)2 + β1

−2(ω/ωp)2 + (vF /c)2 + β1

]
, (E16a)

β1 =
√

4

(
ω

ωp

)2

+ 8

(
ω

ωp

vF

c

)2

+
(vF

c

)4
. (E16b)

The high-frequency limit of the surface impedance (E16) is
characteristic of a perfect conductivity with no momentum
dependence, as mentioned in the preceding section. How-
ever, for φ = π/2, we have at low frequencies ReZ (ω) �
−ImZ (ω) ∼ ω, as shown by the solid and dashed gold curves
in Fig. 25. This behavior is understood by using Eqs. (144)
and (104) in the limit ω � vF |qx|, which straightforwardly
gives

Z (ω) ≈ −iZ0

√
3

2

ω

ωp
= −iμ0ωδs, (E17)

with the skin depth δs = √
3/2λL in accordance with

Eq. (134). Therefore, under the assumption ω � vF qx valid
at low frequencies, we expect a qualitative difference in the

013212-38



KINETIC THEORY OF THE NONLOCAL ELECTRODYNAMIC … PHYSICAL REVIEW RESEARCH 5, 013212 (2023)

skin depth and the surface impedance between the orientations
φ = 0 and π/2. An analogous difference follows from the
analysis of Z (ω) for a square Fermi surface, as performed in
Appendix E 3.

b. Normal and perfect-conductor regimes

For orientation angle φ = 0, the low-momentum conduc-
tivity follows Eq. (96). To order o[(vF qx )2], such conductivity
is momentum-independent, and equivalent to the one of
the Drude model, Eq. (120). Inserting this momentum-
independent conductivity in Eqs. (143) and (144) and
performing the momentum integrations, we straightforwardly
obtain

Z (ω)

Z0
= −i

ω

ωp

√
1 + iγmr

ω
. (E18)

Equation (E18) gives the dashed blue line in Fig. 9(a). At low
frequencies, it implies |Z (ω)| ∝ ω1/2, while for ω → +∞ it
becomes the perfect-conductor result Z (ω) = −iZ0ω/ωp =
−iμ0λLω. The latter also gives the dashed light blue line in
Fig. 9(a).

The conductivity for φ = π/2 in the low-momentum
regime is the same as for φ = 0, i.e., Eq. (96), to order
o[(vF qx )2]. This is a consequence of the property mentioned
in Sec. IV B 2, that the electrodynamics is independent of
orientation angle φ in the qx → 0+ limit for a hexagonal
Fermi surface. Hence, Eq. (E18) also gives the dashed blue
line in Fig. 9(b), while the dashed light blue line in the same
figure follows Z (ω) = −iμ0λLω.

c. Anomalous regime

To analyze the high-momentum anomalous regime for an-
gle φ = 0, we use the expansion of Eq. (92) to leading order
in qx → +∞, which gives Eq. (95). Inserting the latter into
Eqs. (143) and (144) and performing the momentum integra-
tions analytically, we obtain

Z (ω)

Z0
= 1 − i√

2ωp

√
vF /cω

3
4

2(ω + iγmc)
1
4

. (E19)

In the regime ω � γmc, Eq. (E19) gives

Z (ω)

Z0
= 1 − i

2
√

2

√
vF ω

cωp
. (E20)

Equation (E20) gives the dashed green line in Fig. 9(a).
For orientation angle φ = π/2, we use the high-

momentum expansion (106) of the conductivity in performing
the momentum integrals of Eqs. (143) and (144). The result is

Z (ω)

Z0
= −iω√

2

√
3 + i(γmc + 2γmr )

ω
. (E21)

The low-frequency expansion of Eq. (E21) at leading order
gives

Z (ω)

Z0
= 1 − i

2ωp

√
(γmc + 2γmr )ω, (E22)

which yields the dashed green line in Fig. 9(b). We can extract
a skin depth from Eq. (E22) in the presence of scattering, by

defining Z (ω) = (1 − i)/2μ0ωδs(ω). This gives Eq. (135) for
the skin depth.

d. Hydrodynamic regime

To obtain the hydrodynamic impedance for φ = 0, it is suf-
ficient to consider Eq. (E19) in the limit γmc � ω (dominant
momentum-conserving collisions). This way, we obtain

Z (ω)

Z0
= 1 − i

2
√

2ωp

√
vF /cω

3
4

(iγmc)
1
4

. (E23)

Equation (E23) produces the dashed orange line in Fig. 9(a).
For orientation angle φ = π/2, the analysis of the hydro-

dynamic regime requires to push the expansion (106) to the
next term of order (vF qx )−2. Using such term in the momen-
tum integrals in Eqs. (143) and (144), and expanding the result
for ω → 0 at leading order, produces

Z (ω)

Z0
= − (−1)3/4

2
√

ωp

(
ω

γmc

) 3
4
√

vF

c
(γmc + 2γmr ). (E24)

Equation (E24) gives the dashed orange line in Fig. 9(b).

e. Crossover frequencies

For φ = 0, we begin by finding crossover boundaries in
the (γmc, ω) plane for γmc � γmr. The crossover frequency
between normal and viscous skin effect results from equating
|Z (ω)| from the low-frequency expansion of Eq. (E18) and
from Eq. (E23), and solving for ω = ωnv . We obtain

ωnv = 16γmcγ
2
mr

ω2
p(vF /c)2

. (E25)

Equation (E25) gives the green dot in Fig. 9(a) and the dashed
yellow curve in Fig. 10(b). It is also consistent with the quali-
tative criterion for the crossover A©– V© in Table III. To evaluate
the crossover frequency between viscous and anomalous skin
effect, we equate |Z (ω)| from Eqs. (E23) and (E20), solving
for ω = ωva. This gives simply

ωva = γmc. (E26)

Equation (E26) yields the blue dot in Fig. 9(a) and the dashed
light-blue curve in Fig. 10(b). Besides, Eq. (E26) fully agrees
with the qualitative condition D1©–D2© in Table III. The crossover
frequency between anomalous and perfect-conductor regimes
results from equating |Z (ω)| stemming from Eqs. (E20) and
|Z (ω)| = Z0ω/ωp, solving for ω = ωap. We have

ωap = ωp
vF

4c
. (E27)

Equation (E27) produces the red dot in Fig. 9(a) and the
dashed red curve in Fig. 10(b). Up to the numerical prefactor
1/4, it is consistent with the boundary D2©– E© in Table III.
Finally, there is a crossover between viscous and perfect-
conductor regimes, found by equating Eq. (E23) and |Z (ω)| =
Z0ω/ωp. The corresponding frequency is

ωvp =
(

vF

λL

)2 1

16γmc
. (E28)
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Equation (E28) generates the dashed purple line in Fig. 10(b),
and it is in qualitative agreement with the length-scale crite-
rion V©– F© from Table III.

For φ = π/2, we evaluate the crossover between nor-
mal and viscous skin effect by equating |Z (ω)| which result
from the low-frequency expansion of Eq. (E18) and from
the lengthy analytical expression which produces the dashed
orange line in Fig. 9(b), in hydrodynamic regime. Here we
quote the final result:

ωnv = 16γ 3
mcγ

2
mr

(γmc + 2γmr )2(vF /c)2ω2
p

. (E29)

Equation (E29) gives the green dot in Fig. 9(b) and the dashed
yellow curve in Fig. 10(d). It also respects the qualitative
criterion A©– V© in Table III, up to corrections of higher order
in γmc and δγ . The crossover between viscous and anoma-
lous skin effect results from equating |Z (ω)| stemming from
the analytical expression in hydrodynamic regime and from
Eq. (E22). The final result is

ωva = 4γ 3
mc

ω2
p(vF /c)2

. (E30)

Equation (E30) yields the blue dot in Fig. 9(b) and the dashed
light-blue curve in Fig. 10(d). It is consistent with the condi-
tion D1©– V© in Table III, up to higher-order corrections in γmc

and δγ . We obtain the crossover frequency between anoma-
lous and perfect-conductor by equating |Z (ω)| stemming from
Eqs. (E22) and |Z (ω)| = Z0ω/ωp, solving for ω = ωap. We
have

ωap = γmc

2
+ γmr. (E31)

Equation (E31) produces the red dot in Fig. 9(b) and the
dashed red curve in Fig. 10(d). It qualitatively agrees with the
criterion D1©–D2© reported in Table III, at leading order in γmc.
Lastly, the crossover between viscous and perfect-conductor
regimes stems from from the analytical expression in hydro-
dynamic regime and from |Z (ω)| = Z0ω/ωp. We obtain

ωvp = (γmc + 2γmr )2(vF /c)2

16γ 3
mc

ω2
p. (E32)

At leading order in γmc, Eq. (E32) agrees with the qualita-
tive condition V©– F© in Table III. The dashed purple line in
Fig. 10(d) stems from Eq. (E32).

We now trace the visible crossover boundaries in the
(γmr, ω) plane for γmc = γmr. For φ = 0, we find a crossover
between normal and viscous skin effect by equating the lead-
ing low-frequency expansion of Eqs. (E18) and (E23):

ω′
nv = 16

(
λL

vF

)2

γ 3
mr. (E33)

Equation (E33) yields the dashed yellow line in Fig. 10(a),
and it qualitatively agrees with the length-scale criterion A©–D1©
in Table II. The crossover between viscous and anomalous
regimes is found through Eqs. (E23) and (E20), with the sim-
ple result of Eq. (E12), as in the isotropic case. It is in perfect
agreement with the criterion D1©–D2© in Table II. Then, Eq. (E12)
produces the dashed light-blue line in Fig. 10(a). The bound-
ary between the anomalous and perfect-conductor regimes can

be estimated through Eq. (E20) and |Z (ω)| = Z0ω/ωp: it is
independent from γmr and γmc, and gives Eq. (E27). This result
gives the dashed red line in Fig. 10(a), in accordance with the
qualitative condition D2©– E© in Table II. Finally, we estimate the
boundary between the normal and perfect-conductor regimes
using Eq. (E18) and |Z (ω)| = Z0ω/ωp. We simply retrieve
Eq. (E12), in the same way as for the crossover between vis-
cous and anomalous skin effect. Hence, Eq. (E12) corresponds
also to the dashed purple line in Fig. 10(a), in agreement with
the condition A©– B© in Table II.

In the configuration with φ = π/2, the only visible
crossover with γmr = γmc is the one between anomalous and
perfect-conductor regimes. It is found by equating the low-
frequency expansion of Eq. (E22) with |Z (ω)| = Z0ω/ωp, and
it simply gives

ω′
ap = 3

2γmr, (E34)

This equation provides the dashed red line in Fig. 10(c), and
it qualitatively agrees with the criteria D1©–D2© and A©– B© in
Table II.

3. Square Fermi surface

In this Appendix, we derive analytical expressions for the
surface impedance assuming a square Fermi surface and rota-
tion angles φ = {0, π/4}.

a. Scattering-less regime

In the same way as in Sec. VI A, we can analyze the
scattering-less limit of the surface impedance for a square
Fermi surface. In the geometry with tilting angle φ = 0, using
Eq. (144) and the conductivity (112), from the integral over z,
we directly obtain

Z (ω)

Z0
= i

ω

ωp

vF

c

γ1(γ2 − γ3) − ω/ωp(γ2 + γ3)

2γ1γ2γ3
, (E35a)

γ1 =
√(

ω

ωp

)2

+ 2
(vF

c

)2
, (E35b)

γ2 =
√

ω

ωp

(
γ1 − ω

ωp

)
, (E35c)

γ3 =
√

− ω

ωp

(
γ1 + ω

ωp

)
. (E35d)

Figure 26 shows the real and (minus the) imaginary parts
of the surface impedance (E35a) as a function of ω/ωp, as
blue solid and dashed curves, respectively. The behavior of
Z (ω) is very similar to the one for a hexagonal Fermi surface
with φ = 0; see Fig. 25. We can trace back this analogy
to the similar form of the conductivities (94) and (112) for
the hexagonal and square case respectively, which also give
the same qualitative behavior of the skin depths (131) and
(137). Consequently, in the regime ω � vF |qx| the conduc-
tivity (112) and Eq. (144) formally yield Eq. (E14), but with
Eq. (137) for the skin depth in square geometry. In the high-
frequency limit ω � vF |qx|, we retrieve the smallest possible
skin depth λL and the impedance follows Eq. (E15).
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FIG. 26. Surface impedance Z (ω) normalized to the vacuum-
impedance Z0, as a function of dimensionless frequency ω/ωp, for
a square Fermi surface with Fermi-velocity modulus vF = 2.5 ×
10−3c, in the limit without relaxation and collisions, i.e., γmr =
γmc = 0. Blue (gold) curves show the results for crystals tilted at
an angle φ = 0 (φ = π/4) with respect to the surface, according
to Eq. (E35) [Eq. (E15)]. Solid and dashed lines refer to ReZ (ω)
and −ImZ (ω), respectively. Notice that the impedance is entirely
imaginary for the φ = π/4 case.

As the skin depth analyzed in Sec. V B, the surface
impedance of the square Fermi surface is qualitatively mod-
ified by the presence of two large portions of the Fermi
surface parallel to the applied field for φ = π/4; see Fig. 8.
In fact, the disappearance of the momentum dependence of
the conductivity generates the London skin depth δ ≡ λL, so
that the surface impedance is simply given by Eq. (E15): it
is purely imaginary and linear in frequency. Such evolution
with ω is shown by the dashed gold line in Fig. 26 and is
valid at any frequency in the absence of scattering. Hence, we
expect a qualitative change in Z (ω) between the orientations
φ = 0 and φ = π/4, with the disappearance of ReZ (ω) in the
latter case for γmr = γmc = 0. Notice that such disappearance
does not occur for γmc > 0, as shown by the asymptotic limits
for γmr → 0 shown in Fig. 14: in that case, the asymptotic
value of the surface resistance is entirely due to momentum-
conserving collisions.

b. Normal and perfect-conductor regimes

Assuming an orientation φ = 0, the low-momentum con-
ductivity is given by Eq. (113). To order o[(vF qx )2], such
conductivity does not depend on momentum, and is equivalent
to the one of the Drude model. Inserting the momentum-
independent term in Eqs. (143) and (144), and performing
the momentum integrations, we retrieve Eq. (E18). Hence,
Eq. (E18) also gives the dashed blue line in Fig. 12(a).
At low frequencies, it implies Z (ω) ∝ ω1/2, while in the
high-frequency limit it turns into the perfect-conductor result
Z (ω) = −iμ0λLω, which is also shown by the dashed light
blue line in Fig. 12(a).

For angle φ = π/4, the conductivity is (120), identical to
the one of the Drude local conductor for any momentum.
Therefore, in the regime of normal skin effect, we obtain
Eq. (E18) for both φ = 0 and π/4, and this result gives the

dashed blue line in Fig. 12(b) as well. The dashed light-blue
line in Fig. 12(b) shows the perfect-conductor high-frequency
limit Z (ω) = −iμ0λLω.

c. Anomalous regime

For angle φ = 0, we use the expansion of Eq. (110) to
leading order in qx → +∞, which gives Eq. (115). Using
Eqs. (143) and (144), we obtain

Z (ω)

Z0
= 1 − i

2
√

ωp

√
vF /ciω

[2ω(ω + iγmc)]
1
4

. (E36)

In the limit ω � γmc, Eq. (E36) yields

Z (ω)

Z0
= 1 − i

25/4

√
vF

c

√
ω

ωp
, (E37)

which gives the dashed green line in Fig. 12(a).
Rotating the Fermi surface by an angle φ = π/4, the

conductivity (120) is momentum-independent, therefore the
anomalous regime is absent.

d. Hydrodynamic regime

The hydrodynamic limit of the impedance for φ = 0 fol-
lows directly from Eq. (E36) in the limit ω � γmc:

Z (ω)

Z0
= 1 − i

25/4√ωp

√
vF /cω

3
4

(iγmc)
1
4

. (E38)

Equation (E38) produces the dashed orange line in Fig. 12(a).
For φ = π/4, the momentum dependence of the conduc-

tivity vanishes, and there is no viscous regime.

e. Crossover frequencies

Let us first define criteria to distinguish the skin effect
regimes in the (γmc, ω) plane for γmc � γmr. For φ = 0, we
obtain the crossover frequency between normal and viscous
skin effect from equating |Z (ω)| that stem from the low-
frequency expansion of Eq. (E18) and from Eq. (E38), and
we solve for ω = ωnv . We have

ωnv = 8γmcγ
2
mr

ω2
p(vF /c)2

. (E39)

Equation (E39) gives the green dot in Fig. 12(a) and the
dashed yellow curve in Fig. 13(b). As for the other Fermi-
surface geometries, we can qualitatively interpret Eq. (E39)
as the crossover line A©– V© in Table III. The crossover fre-
quency between viscous and anomalous skin effect stems
from equating |Z (ω)| from Eqs. (E38) and (E37). The solu-
tion is ω = ωva = γmc, as for the hexagonal case Eq. (E26).
Therefore Eq. (E26) also yields the blue dot in Fig. 12(a) and
the dashed light-blue curve in Fig. 13(b). It coincides with
the lenght-scale criterion D1©–D2© in Table III. The crossover
between anomalous and perfect-conductor regimes results
from equating |Z (ω)| according to Eqs. (E37) and |Z (ω)| =
Z0ω/ωp, solving for ω = ωap. We have

ωap = ωp
vF

2
√

2c
. (E40)

Equation (E40) generates the red dot in Fig. 12(a) and the
dashed red curve in Fig. 13(b). Up to the prefactor 1/(2

√
2), it
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agrees with the condition D1©– V© in Table III. Finally, we find a
boundary between viscous and perfect-conductor regimes by
equating Eq. (E38) and |Z (ω)| = Z0ω/ωp. We obtain

ωvp = 1

8

(
vF

λL

)2 1

γmc
. (E41)

Equation (E41) is in qualitative agreement with the criterion
V©– F© in Table III, and it produces the dashed purple line in
Fig. 13(b).

For φ = π/4, the only crossover occurs between the nor-
mal and perfect-conductor regimes. We achieve ωnp = γmr, in
agreement with Eq. (E12) and independently from γmc. Then,
Eq. (E12) gives the red dot in Fig. 12(b) and the dashed red
line in Fig. 13(d). It is perfectly consistent with the qualitative
criteria A©– B© and D1©–D2© in Table II.

We now define crossover boundaries for the square geome-
try, in the (γmr, ω) plane for γmc = γmr. For φ = 0, there is
a crossover between normal and viscous skin effect, found
by equating the low-frequency expansion of Eqs. (E18) and
(E38):

ω′
nv = 8

(
λL

vF

)2

γ 3
mr. (E42)

Equation (E42) is in qualitative agreement with the criterion
A©–D1© in Table II, and it generates the dashed yellow line in
Fig. 13(a). A boundary between the viscous and anomalous
regimes is identified by the frequency at which Eqs. (E38) and
(E37) coincide. As for the hexagonal and circular geometries,
this gives Eq. (E12), which is equivalent to the condition
D1©–D2© in Table II, and it produces the dashed light-blue line
in Fig. 13(a). The crossover between the anomalous and
perfect-conductor regimes is estimated by equating Eq. (E37)
and |Z (ω)| = Z0ω/ωp. One retrieves Eq. (E40), consistently
with the previous analysis in the (γmc, ω) plane. Therefore
Eq. (E40) is also qualitatively consistent with the condi-
tion D2©– E© in Table II, and it yields the dashed red line in
Fig. 13(a). Besides, there is a crossover between normal and
perfect-conductor regimes, which is identified through the
equality between the low-frequency expansion of Eq. (E18)
and |Z (ω)| = Z0ω/ωp. In this case, we retrieve Eq. (E12),
in perfect agreement with the length-scale criterion A©– B© in
Table II. Hence, Eq. (E12) also produces the dashed purple
line in Fig. 13(a).

In the configuration with φ = π/4, there is but one
crossover with γmr = γmc: the one between normal and
perfect-conductor regimes. It is given by ωnp = γmr, which
agrees with Eq. (E12) as in the (γmc, ω) plane. This equa-
tion gives the dashed red line in Fig. 10(c), and it is equivalent
to the qualitative criteria D1©–D2© and A©– B© in Table II.

APPENDIX F: FREQUENCY SCALING OF THE SURFACE
IMPEDANCE FOR SPECULAR INTERFACE SCATTERING

In this section, we derive the scaling relation (4) for the
frequency dependence of the impedance Z (ω) analytically
for specular interface scattering. We start from Eq. (142) and
neglect the displacement current, leading to Eq. (144), that is

Z (ω) ≈ iωμ0

π

∫ +∞

−∞
dqx

1

μ0iωσyy(qx, ω) − q2
x

. (F1)

Assuming the scaling relation (146) for the conductivity, we
can write μ0iωσyy(qx, ω) = −α1(−iω)−β+1q−α

x . Inserting the
latter equation into Eq. (F1) and performing the momentum
integration analytically, we obtain

Z (ω) = 2μ0

π
�

(
1 + α

2 + α

)
�

(
3 + α

2 + α

)
α

− 1
2+α

1 (−iω)
β+α+1

2+α

∝ (−iω)η, (F2)

where �(z) = ∫ +∞
0 dte−t t z−1 is the Euler Gamma function,

and η = (1 + α + β )/(2 + α). Using (−i)η = e−iηπ/2, we re-
trieve the scaling relation (4).

APPENDIX G: INFLUENCE OF BOUNDARY CONDITIONS
ON THE IMPEDANCE MODULUS

In this section, we check the results in Figs. 10, 13, and
24 against the effect of different boundary conditions at the
vacuum-metal interface. While specular interface scattering is
assumed in the main text, here we employ diffusive scatter-
ing. In this case, the electric field inside the metal satisfies
[48,54,55](

∂2

∂x2
+ ω2

c2

)
Ed

y (x, ω)

= −iμ0ωJd
y (x, ω)

= −iμ0ω

∫ +∞

0
dx′σyy(x − x′, ω)Ed

y (x′, ω). (G1)

We assume that limx→+∞ |Ed
y (x, ω)| = 0, and also that

limz→+∞ |∂Ed
y (x, ω)/∂x| = limx→+∞ |∂2Es

y (x, ω)/∂x2| = 0
[48]. Here we have the additional complication that the
driving term in Eq. (G1) only acts in the half-infinite space
x ∈ (0,+∞), which in principle prevents us from directly
switching to momentum space. We follow Ref. [48] in
defining Ed

y (x, ω) = 0 : x < 0 and an auxiliary field

Ẽ (x, ω) =
{

0, x � 0,

iμ0ω
∫ +∞

0 dx′σyy(x − x′, ω)Ed
y (x′, ω), x < 0,

(G2)

where σyy(x − x′, ω) is the nonlocal conductivity. Then, by
construction the wave equation (G1) is equivalent to the prob-
lem

Ẽ (x, ω)

= ∂2Ed
y (x, ω)

∂x2
+ ω2

c2
Ed

y (x, ω)

+ iμ0ω

∫ +∞

0
dx′σyy(x − x′, ω)Ed

y (x′, ω), ∀x ∈ R. (G3)

We see that Eq. (G3) is now manageable for all x
outside and inside the metal, and this allows one to
employ the bilateral Laplace transform L of the fields
[48] Ed

y (s, ω) = L {Ed
y (x, ω)}, Ẽ (s, ω) = L {Ẽ (x, ω)}, and

σyy(s, ω) = L {σyy(x, ω)}. This way, one obtains an equa-
tion for Ed

y (s, ω) in terms of Ed
y (0+, ω), and a loga-

rithmic integral over s involving σyy(s, ω). The integral
can then be simplified [114] to give an expression for
[Ed

x (0+, ω)]/[∂Ed
x (z, ω)/∂z|z=0+ ]. The latter is then converted
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FIG. 27. Skin effect regimes for an isotropic 2D (circular) Fermi surface, as measured by the surface impedance Z (ω) as a function of
relaxation rate γmr, momentum-conserving collision rate γmr, and frequency ω/ωp, where ωp is the plasma frequency (78). Diffusive boundary
conditions are assumed, in accordance with Eq. (G4). The Fermi-surface geometry is sketched on the left-hand side of the plot, together with
the applied electric field E = Eyûy aligned with the y axis, and the local Fermi velocity vectors shown by red arrows. (a) Regimes in the (γmr, ω)
plane, for γmr = γmc. (b) Regimes in the (γmc, ω) plane, for fixed γmr = 10−8ωp. The color palette is the density plot of ArgZ (ω)/(−π/2),
giving the exponent η of Z (ω) ∝ ωη.

into the surface impedance Z (ω) through Eq. (138):

Z (ω) = iμ0ω
2

π

∫ +∞

0
dqx

[
iμ0ωσyy(qx, ω) + ω2

c2
− q2

x

]−1

.

(G4)

Parametrizing the degree of specularity of interface scattering
with p ∈ [0, 1], Eq. (G4) corresponds to p = 0 (completely
diffusive scattering), while Eq. (142) corresponds to p = 1
(specular scattering). Figures 27–29 show the density-plot
“phase diagrams” for the surface impedance modulus |Z (ω)|
of a circular, hexagonal, and square Fermi surface, employing
diffusive boundary conditions. The results must be compared
with Figs. 24, 10, and 13 respectively, which refer to the
same geometries and are obtained assuming specular interface
scattering. All other parameters in Figs. 27–29 are the same as
in Figs. 24, 10, and 13. Comparing all “phase diagrams” of the
same Fermi-surface geometry for specular and diffusive scat-
tering, we see that the results for |Z (ω)| are in full agreement
for the two types of boundary conditions. Hence, we conclude
that the results for the impedance modulus, described in the
main text, are robust against the effect of nonspecular surface
scattering.

APPENDIX H: PARAMETRIZATION OF ARBITRARILY
SHAPED 2D FERMI SURFACES

This Appendix details the methodology employed to
calculate the surface-impedance “phase diagrams” for non-
polygonal 2D Fermi surfaces, including the effects of an
arbitrary curvature of Fermi-surface segments. For simplicity,
here we retain the assumption of a constant Fermi velocity
modulus for any orientation in reciprocal space, in accor-
dance with Eq. (66), however the direction of vkF varies with
orientation and is locally orthogonal to the Fermi surface
by definition [92]. A straightforward generalization to cases
where even the Fermi-velocity modulus is anisotropic may be

performed by referring to the more general parametrization
(56). In this section, we also retain the hypothesis that two
mirror symmetry planes exist in reciprocal space, according
to Eq. (46) and employing β = y and α = x for the space
directions.

Consider the 2D parametrization kF (θ ) for the variation of
the Fermi wave vector as a function of angle θ . Then, a vector
nk locally orthogonal to the curve kF (θ ) corresponds to

nk = dkF (θ )

dθ
× ûz, (H1)

where ûz is the unit vector normal to the 2D plane where kF (θ )
lies. The differential line element dS, which enters into Fermi-
surface integrations, results

dS = nkdθ, (H2)

where

nk = |nk| =
√

[kF (θ )]2 +
[

dkF (θ )

dθ

]2

. (H3)

Equation (H4) corresponds to the rotation by π/2 of the unit
vector locally tangent to the curve kF (θ ) at a given angle θ .
The unit vector normal to kF (θ ) is then

n̂k = nk

nk
= 1√

[kF (θ )]2 + [ dkF (θ )
dθ

]2

×
[

ûkF kF (θ ) − ûθ

dkF (θ )

dθ

]
, (H4)

where ûkF and ûθ are the unit vectors in the radial and angular
directions, respectively. Then, remembering the transforma-
tion of unit vectors from polar to Cartesian coordinates,

ûkF = cos θ ûkx + sin θ ûky , (H5a)

ûθ = − sin θ ûkx + cos θ ûky , (H5b)
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FIG. 28. Orientational dependence of skin effect regimes for a hexagonal Fermi surface, as measured by the surface impedance Z (ω) as a
function of relaxation rate γmr, momentum-conserving collision rate γmr, and frequency ω/ωp, where ωp is the plasma frequency (78). Diffusive
boundary conditions are assumed, in accordance with Eq. (G4). The corresponding orientation is sketched on the left-hand side of each plot,
together with the applied electric field E = Eyûy aligned with the y axis. Red arrows depict the local Fermi velocity vectors. (a) “Parallel”
configuration in the (γmr, ω) plane, for γmr = γmc. (b) “Parallel” configuration in the (γmc, ω) plane, for fixed γmr = 10−8ωp. (c) Fermi surface
rotated by φ = π/2 with respect to panels (a) and (b), in the (γmr, ω) plane, for γmr = γmc. (d) Fermi surface rotated by φ = π/2 in the (γmc, ω)
plane, for fixed γmr = 10−8ωp. The color palette is the density plot of ArgZ (ω)/(−π/2), giving the exponent η of Z (ω) ∝ ωη.

combining Eqs. (H4) and (H5), we have

n̂k = N−1

{[
cos θkF (θ ) + sin θ

dkF (θ )

dθ

]
ûkx

+
[

sin θkF (θ ) − cos θ
dkF (θ )

dθ

]
ûky

}
, (H6)

where N ≡ nk obeys Eq. (H3). Further decomposing Eq. (H6)
into its components along kx and ky yields Eq. (152).

As an exemplary application, in the next section we cal-
culate the components (152) of n̂k for the “supercircle”
geometry (153) of Sec. VII D 1, using selected values of the
parameter p.

1. Parametrization of the “supercircle” Fermi surface

For the geometry (153), the derivatives dkF (θ )/dθ have to
be separately evaluated in the four quadrants of the 2D plane.
For generic p, we have

dkF (θ )

dθ
= [| cos θ |p−1sign{cos θ} sin θ

− | sin θ |p−1sign{sin θ} cos θ ]

× [| cos θ |p + | sin θ |p]−
1+p

p . (H7)

For generic values of p, the integrals (72) which contribute to
the transverse conductivity (71) have to be calculated numeri-
cally. Therefore we do not have a general closed expression
for the conductivity for any momentum and frequency. In
the following, we separately analyze specific values of p: we
exactly retrieve the results of Secs. IV C 1 and VI B for p = 1
(“diamond” shape) and of Secs. IV A and Appendix E 1 for
p = 2 (circular shape).

a. “Diamond” shape (p = 1)

The derivatives (H7) for p = 1 are

dkF (θ )

dθ
= − cos θ + sin θ

(cos θ + sin θ )2
, 0 � θ <

π

2
, (H8a)

dkF (θ )

dθ
= − cos θ + sin θ

−1 + sin(2θ )
,

π

2
� θ < π, (H8b)

dkF (θ )

dθ
= cos θ − sin θ

(cos θ + sin θ )2
, π � θ <

3π

2
, (H8c)

dkF (θ )

dθ
= cos θ + sin θ

(cos θ − sin θ )2
,

3π

2
� θ < 2π. (H8d)
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FIG. 29. Orientational dependence of skin effect regimes for a square Fermi surface, as measured by the surface impedance Z (ω) as a
function of relaxation rate γmr, momentum-conserving collision rate γmr, and frequency ω/ωp, where ωp is the plasma frequency (78). Boundary
conditions are diffusive, in accordance with Eq. (G4). The corresponding orientation is sketched on the left-hand side of each plot, together
with the applied electric field E = Eyûy aligned with the y axis. Red arrows depict the local Fermi velocity vectors. (a) “Diamond-shaped”
configuration in the (γmr, ω) plane, for γmr = γmc. (b) “Diamond-shaped” configuration in the (γmc, ω) plane, for fixed γmr = 10−8ωp. (c) Fermi
surface rotated by φ = π/4 with respect to panels (a) and (b), in the (γmr, ω) plane, for γmr = γmc. (d) Fermi surface rotated by φ = π/4 in
the (γmc, ω) plane, for fixed γmr = 10−8ωp. The color palette is the density plot of ArgZ (ω)/(−π/2), giving the exponent η of Z (ω) ∝ ωη.

The normalization factors (H3) are

nk = 1√
2

[(cos θ + sin θ )4]−
1
2 , 0 � θ <

π

2
v π � θ <

3π

2
,

(H9a)

nk = 1√
2

[(cos θ − sin θ )4]−
1
2 ,

π

2
� θ < π v

3π

2
� θ < 2π.

(H9b)

Using Eqs. (H8) and (H9) into Eqs. (152), we identically
retrieve

n̂k = 1√
2

ûkx + 1√
2

ûky , 0 � θ <
π

2
, (H10a)

n̂k = − 1√
2

ûkx + 1√
2

ûky ,
π

2
� θ < π, (H10b)

n̂k = − 1√
2

ûkx − 1√
2

ûky , π � θ <
3π

2
, (H10c)

n̂k = 1√
2

ûkx − 1√
2

ûky ,
3π

2
� θ < 2π, (H10d)

which is fully consistent with the piecewise-constant
parametrization of Table V in Sec. IV C 1.

b. Circular shape (p = 2)

For a circular shape, the derivatives (H7) are null in all
quadrants:

dkF (θ )

dθ
= 0. (H11)

Using Eq. (H11) into Eq. (H4), we retrieve

n̂k ≡ ûkF , (H12)

as it should be: the direction normal to the Fermi surface is
the radial direction for a circular shape. Hence, in this special
case, we identically retrieve the results of Sec. IV A.
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