KIT | KIT-Bibliothek | Impressum | Datenschutz

Coupling of Liquid and Surface Chemistry in Urea SCR Systems

Kuntz, Christian 1; Jägerfeld, Paul Jakob 1; Mmbaga, Joe; Hayes, Robert E.; Deutschmann, Olaf ORCID iD icon 1
1 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

Close-coupled selective catalytic reduction (SCR) systems are one method to deal with tightening emission legislation for NO$_x$ in internal combustion engines. Due to smaller mixing sections and at unfavourable boundary conditions, however, urea-water solution (UWS) droplets can impact on the SCR catalyst itself. To investigate this phenomenon further, this work develops a modeling capability of this process. Established mechanism for NH$_3$-SCR and HNCO hydrolysis from literature is integrated into DETCHEM$^{CHANNEL}$ and a 2D COMSOL model to simulate the influence in the SCR Channel. Simulations are validated against end-of-pipe experiments from literature and spatially resolved concentration profiles from a hot gas test rig with very good agreement. Finally, a channel simulation is coupled with a model to describe the catalytic decomposition of an urea droplet. The coupled simulation is able to simulate the influence of UWS droplet impact onto a catalyst channel. Fast droplet decomposition causes a peak in NH$_3$ and HNCO in the single channel and thus increases NO$_x$ conversion. However, the overall uniformity and efficiency are decreased, which is why droplet impact on the catalyst should be strictly avoided.


Verlagsausgabe §
DOI: 10.5445/IR/1000157845
Veröffentlicht am 17.04.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2199-3629, 2199-3637
KITopen-ID: 1000157845
Erschienen in Emission Control Science and Technology
Verlag Springer
Band 9
Seiten 77-92
Vorab online veröffentlicht am 28.03.2023
Schlagwörter Selective catalytic reduction, Urea by-product decomposition, Coupling, Channel simulation, Liquid and surface chemistry
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page