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Abstract
Given a closed smooth manifold M of even dimension 2n ≥ 6 with finite fundamental
group, we show that the classifying space BDiff(M) of the diffeomorphism group of
M is of finite type and has finitely generated homotopy groups in every degree.We also
prove a variant of this result for manifolds with boundary and deduce that the space of
smooth embeddings of a compact submanifold N ⊂ M of arbitrary codimension into
M has finitely generated higher homotopy groups based at the inclusion, provided the
fundamental group of the complement is finite. As an intermediate result, we show
that the group of homotopy classes of simple homotopy self-equivalences of a finite
CW complex with finite fundamental group is up to finite kernel commensurable to
an arithmetic group.
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Convention During the introduction, M denotes a closed connected smooth manifold
of dimension d ≥ 6, unless said otherwise.

The study of finiteness properties of diffeomorphism groups and their classifying
spaces has a long history in geometric topology. Combining work of Borel–Serre [8]
and Sullivan [56], it was known since the 70’s that if M is 1-connected, then the group
π0(Diff(M)) of isotopy classes of diffeomorphisms is finitely generated and even of
finite type, in the following sense:

Definition A space X is of finite type if it is weakly homotopy equivalent to a CW-
complex with finitely many cells in each dimension. A group G is of finite type (or of
type F∞) if it admits an Eilenberg-MacLane space K (G, 1) of finite type.

It was also known that this result has its limits: based on work of Hatcher–Wagoner
[30], Hatcher [31, Theorem 4.1] and Hsiang–Sharpe [35, Theorem 2.5] showed that
this can fail in the presence of infinite fundamental group, for instance for the high-
dimensional torus M = ×d S1. Later Triantafillou [57, Corollary 5.3] weakened the
condition on the fundamental group to allow all finite groups (however, there is an issue
with the proof; see Sect. 2.2 for an explanation of the issue and a way to circumvent
it).

These results can be interpreted as finiteness results for the fundamental group of
the classifying space BDiff(M) for smooth fibre bundles with fibre M . Around the
same time as Sullivan’s work appeared, Waldhausen [59] developed a programme
to systematically study these and related classifying spaces. It was known (see [31,
Proposition 7.5] for a proof outline) that his approach could lead to a proof that also
the higher homotopy groups of BDiff(M) are finitely generated in a certain range of
degrees increasing with the dimension of M , provided M is 1-connected, and possibly
even when π1(M) is finite (see p. 16 loc.cit.). This relied on two missing ingredients,
which were both provided later: a stability result for pseudoisotopies (proved by Igusa
[36, p. 6] building on ideas of Hatcher [32]) and a finiteness result for algebraic K -
theory of spaces (proved by Dwyer [16, Proposition 1.3] for 1-connected M and by
Betley [7, Theorem 1] for finite π1(M)). The question, however, whether the groups
πk(BDiff(M)) are finitely generated beyond this range remained open.

This changed with work of the third-named author [43] who—inspired by work of
Weiss [70]—combined work of Galatius–Randal–Williams [19–21] with Goodwillie,
Klein, and Weiss’ embedding calculus [26, 68] to show that indeed all homotopy
groups of BDiff(M) are finitely generated as long as M is 2-connected. In view of the
above mentioned results that hold in a range, one might hope that this 2-connectivity
assumption can be weakened to only requiring the fundamental group π1(M) to be
finite. Our main result confirms this in even dimensions.

Theorem A Let M be a closed smooth manifold of dimension 2n ≥ 6. If π1(M) is
finite at all basepoints, then the space BDiff(M) and all its homotopy groups are of
finite type.
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This has the following immediate corollary.

Corollary B For a manifold M as in Theorem A, the homotopy groups of BDiff(M)

are degreewise finitely generated. The same holds for the homology and cohomology
groups with coefficients in any Z[π0(Diff(M))]-module A that is finitely generated as
an abelian group.

Remark

(i) There are variants of Theorem A for spaces of homeomorphisms and for mani-
folds M that have boundary or come with tangential structures (see Sect. 6).

(ii) It follows from Theorem A that for manifolds M as in the statement, not only
is BDiff(M) of finite type, but also the path-component Diff0(M) ⊂ Diff(M)

of the identity (e.g. using Proposition 1.9 below). It was known that Diff0(M)

admits up to weak equivalence a CW-structure with countable many cells (see
e.g. [10, Proposition 1.1(1)]) and that it often cannot have one with finitely many
cells [1, TheoremB].

Embedding spaces

Theorem A also implies a finiteness result for the higher homotopy groups of embed-
ding spaces of manifold triads (Theorem 6.7). The following is a special case:

Theorem C Let M be a compact smooth manifold of dimension 2n ≥ 6 and N ⊂
int(M) a compact submanifold. If the fundamental groups of M and M \ N are finite
at all basepoints, then the groupsπk(Emb(N , M), inc)are finitely generated for k ≥ 2.

For submanifolds of codimension at least 3, the space of embeddings Emb(N , M)

can be studied via the aforementioned embedding calculus. In particular, an experi-
enced user of this calculus will be able to prove Theorem C in these codimensions
with ease. The novelty of our Theorem C is that it applies in all codimensions, which
allows examples such as the following.

Example For a smooth irreducible projective hypersurface Y ⊂ CPn , the fundamental
group of the complement is finite [14, Proposition 4.(1.3), Theorem 4.(1.13)], so
if n ≥ 3 then the groups πk(Emb(Y , CPn), inc) are finitely generated for k ≥ 2.
An example of such a Y is given by the Fermat quadric, cut out by the equation
z20 + · · · + z2n = 0.

Mapping class groups

Theorem A in particular says that for closed smooth manifolds M of dimension 2n ≥
6 whose fundamental group is finite at all basepoints, the group π1(BDiff(M)) ∼=
π0(Diff(M)) of isotopy classes of diffeomorphisms is of finite type. The proof of this
part of the result goes also through for odd-dimensional manifolds, and it involves
finiteness results for several variants of the group π0(Diff(M)) (see Sect. 2.1). In
particular, we show:
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Theorem D

(i) Let M be a closed smooth manifold of dimension d ≥ 6. If the fundamental group
of M is finite at all basepoints, then the group π0(Diff(M)) is of finite type.

(ii) Let X be a finite CW-complex. If the fundamental group of X is finite at all
basepoints, then the groupsπ0(hAuts(X)) andπ0(hAut(X)) of homotopy classes
of (simple) homotopy automorphisms are commensurable up to finite kernel to
arithmetic groups.

Remark

(i) See Sect. 1.1 for what it means for a group to be commensurable up to finite
kernel to an arithmetic group. This property in particular implies that the group
is of finite type.

(ii) The new part of (ii) is the result on groups of simple homotopy automorphisms.
The part regarding the group π0(hAut(X)) of all homotopy automorphisms was
proved by Triantafillou [58, Theorem 1]. Under the additional assumption that
M be orientable, item (i) was also stated by Triantafillou [58, Corollary 5.3], but
as explained in Sect. 2.2 below, the proof had a nontrivial gap. We circumvent
this issue in the proof by a new argument that relies on the part of (ii) on simple
homotopy automorphisms.

(iii) There are versions of Theorem D for variants of the groups π0(Diff(M))

and π0(hAuts(X)) such as the group π0(Homeo(M)) of isotopy classes of
homeomorphisms, or the subgroup of π0(hAuts(X)) that stabilises a set of
(co)homology classes (see Sect. 2.1)

On the assumptions

We conclude with comments on the hypotheses of the main result.

Infinite fundamental groups

As mentioned previously, it is known that a finiteness result such as Theorem A can
fail if the fundamental group of M is infinite. We elaborate on some explicit instances
of this phenomenon in Sect. 7.

Small dimensions

Baraglia [3] and Lin [46] gave examples of smooth 1-connected 4-manifolds M for
which π2(BDiff(M)) is not finitely generated, so the analogues of Theorems A and C
fail in dimension 4. For 2n = 2, the result is well-known.

Odd dimensions

We expect Theorem A to be also valid in all odd dimensions d ≥ 7. Some steps
in our proofs, however, use that M is even-dimensional in an essential way. Most
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notably, we rely on a general form of Galatius–Randal-Williams’ work on stable
moduli spaces of even-dimensional manifolds [19–21] and a homological stability
result for diffeomorphism groups of even-dimensional manifolds due to Friedrich
[18]. So far, there are no analogues of these results in odd dimensions in a sufficiently
general form, although partial results in this direction are available, see [9, 34, 52, 53].

A further obstacle in potential strategies to extend the proof of Theorem A to odd
dimensions is that Theorem D (i) is not known to hold for manifolds with non-empty
boundary, but we expect it to be true. We comment on this point in Remark 2.8.

1 Finiteness properties of groups and spaces

We begin with preliminaries on finiteness properties of various classes of groups and
spaces.

1.1 Finiteness properties of groups

There are various properties of groups relevant to the proof of Theorem A.We discuss
them in the following subsections.

1.1.1 Groups of finite type

Recall from the introduction that a group G is of finite type if it has an Eilenberg–
MacLane space K (G, 1)with finitely many cells in each dimension. This in particular
implies that G is finitely generated. For abelian groups the converse holds:

Lemma 1.1 An abelian group A is of finite type if and only if it is finitely generated.

Proof By the classification of finitely generated abelian groups, it suffices to show that
any cyclic group A is of finite type. This is clear if A is infinite since K (Z, 1) � S1

and follows for instance from Lemma 1.2 below for finite cyclic groups. ��
Lemma 1.2 Fix a short exact sequence of groups

1 −→ N −→ G −→ Q −→ 1.

If N is of finite type, then G is of finite type if and only if Q is of finite type. Moreover,
if G ′ ≤ G is a subgroup of finite index, then G is of finite type if and only if G ′ is.

Proof Using the fibration sequences K (N , 1)→ K (G, 1)→ K (Q, 1) and G/G ′ →
K (G ′, 1)→ K (G, 1), this follows from Proposition 1.9 below. ��

1.1.2 Arithmetic groups

A linear algebraic group G over Q is an algebraic subgroup of GLn defined as the
vanishing locus of finitely many polynomial equations with rational coefficients in the
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entries of thematrices and the inverse of the determinant.We denote byGQ ⊂ GLn(Q)

the discrete group of Q-points, i.e. solutions to the above equations in GLn(Q), and
define GZ := GQ ∩ GLn(Z). Following [55, §1.1], we call a group � arithmetic if
there exists an embedding � ↪→ GLn(Q) and an algebraic group G ⊂ GLn over Q

such that the intersection � ∩GZ has finite index in both � and GZ.
We refer to [55, §1.1–§1.3] for a list of properties of arithmetic groups. We only

need:

Theorem 1.3 (Borel–Serre) Arithmetic groups are of finite type.

Proof Any arithmetic group has a torsion-free subgroup of finite index [55, 1.3 (4)],
so by Lemma 1.2 it suffices to show the claim for torsion-free arithmetic groups. This
follows from the existence of the Borel–Serre compactification [55, 1.3 (5)]. ��

1.1.3 (Virtually) polycyclic and solvable groups

Other classes of groups that will play role in our arguments are polycyclic, polycyclic-
by-finite, and solvable groups. To recall their definition, remember that a subnormal
series of a group G is a sequence of subgroups

{e} = G0 ≤ G1 ≤ · · · ≤ Gn = G

such that Gi−1 ≤ Gi is normal for all i . The quotients Gi/Gi−1 are the factors of the
series. In these terms, a group G is called

(i) polycyclic if G admits a subnormal series whose factors are finitely generated
abelian,

(ii) polycyclic-by-finite (or virtually polycyclic) ifG admits a subnormal serieswhose
factors are finitely generated abelian or finite,

(iii) solvable if G admits a subnormal series whose factors are abelian.

Remark 1.4

(i) The above definition of a polycyclic group G as a “poly-(finitely generated
abelian)” group might look unusual at first sight. Note though that G admits
a subnormal series with finitely generated abelian quotients if and only if it
admits one with cyclic quotients. We opted for the version of the definition we
actually use in our arguments, but nevertheless stick to the more common term
“polycyclic”.

(ii) Polycyclic-by-finite groups are often defined as groups that admit a polycyclic
subgroup of finite index. This definition agrees with ours (see e.g. [65, Corollary
2.7 (a)]).

To state some of the closure properties of these types of groups, we say that a class
of groups is generated by a collection of groups if it is the smallest class of groups
that contains the given collection and is closed under taking extensions, quotients, and
subgroups.
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Lemma 1.5

(i) Solvable groups are generated by the class of abelian groups.
(ii) Polycyclic groups are generated by the class of finitely generated abelian groups.
(iii) Polycyclic-by-finite groups are generated by the class of finitely generated

abelian groups and finite groups.

Proof By definition these classes contain the listed groups, so it suffices to show that
solvable and polycyclic(-by-finite) groups are closed under extensions, subgroups, and
quotients. The first property is easy to see and the last two follow for instance from
[65, 2.1]. ��

1.1.4 Commensurability up to finite kernel

Recall that two groups G and G ′ are commensurable up to finite kernel if they are
equivalent with respect to the equivalence relation on the class of groups generated by
isomorphism, passing to finite index subgroups, and taking quotients by finite normal
subgroups.

Remark 1.6 In [56] and [57], commensurability up to finite kernel is referred to as just
commensurability (see [39] for an elucidation of this). This property is also sometimes
called S-commensurability (see e.g. [5]) or differing by finite groups (see e.g. [43]).

Combining Lemma 1.2 and Theorem 1.3, the following lemma is straightforward. It
summarises the properties of groups of finite type that play a role in the body of this
work.

Lemma 1.7 The class of groups of finite type contains all

(i) polycyclic-by-finite groups and
(ii) arithmetic groups

and is closed under extensions. Moreover, if G and G ′ are commensurable up to finite
kernel, then G is of finite type if and only G ′ is of finite type.

1.1.5 Groups that have polycyclic solvable subgroups

To discuss the final class of groups that features in our later arguments, we say that
a group G has polycyclic solvable subgroups if every solvable subgroup H ≤ G is
polycyclic.

Lemma 1.8 The class of groups which have polycyclic solvable subgroups contains

(i) polycyclic-by-finite groups and
(ii) arithmetic groups

and it is closed under extensions and passing to subgroups. Moreover, if G ′ ≤ G is
a finite index subgroup, then G has polycyclic solvable subgroups if and only if this
holds for G ′.
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Proof We first show the two closure properties. That this class is closed under taking
subgroups is clear. To prove the closure property for extensions, take a short exact
sequence 1→ N → G → G/N → 1 where N and G/N have polycyclic solvable
subgroups. For a solvable subgroup H ⊂ G, we have an induced exact sequence
1→ N ∩ H → H → H/(N ∩ H)→ 1, where N ∩ H ⊂ N is solvable because it
is a subgroup of H , and H/(N ∩ H) ⊂ G/N is solvable because it is a quotient of
H . Thus both N ∩ H and H/(N ∩ H) are polycyclic and since polycyclic groups are
closed under extensions (see Lemma 1.5), the same holds for H .

To establish the claim regarding finite index subgroups G ′ ≤ G, it suffices to show
that if G ′ has polycyclic solvable subgroups, then so does G. By passing to a finite
index subgroup, wemay assume thatG ′ is normal inG in which case the claim follows
from the closure property for extensions, since G ′ and G/G ′ have polycyclic solvable
subgroups; the former by assumption and the latter because it is finite.

Since finitely generated abelian and finite groups clearly have polycyclic solvable
subgroups, it follows that polycyclic-by-finite groups have polycyclic solvable sub-
groups. This leaves us with showing that an arithmetic group� has polycyclic solvable
subgroups. Malcev [47, Theorem2] shows this property for subgroups of GLn(Z), and
as any arithmetic group is a subgroup of GLn(Z) after taking a finite index subgroup,
this implies the general case. ��

1.2 Finiteness properties of spaces

Turning from groups to spaces, we first discuss:

1.2.1 Spaces of finite type

As in the introduction, we define a space X to be of finite type if it is weakly equivalent
to a CW-complex with finitely many cells in each dimension.

The following appears as Proposition 2.5 and 2.9 in [15].

Proposition 1.9

(i) Let f : X → Y be a 0-connected map. If hofiby( f ) is of finite type for all y ∈ Y ,
then X is of finite type if and only if Y is of finite type.

(ii) Suppose X is a connected space such that πk(X) is finitely generated for all
k ≥ 2, then X is of finite type if and only if π1(X) is of finite type.

Remark 1.10 In Proposition 1.9 and henceforth, we call a homotopy group πk(X)

finitely generated if it is finitely generated as an abelian group, not just as aZ[π1(X)]-
module.

We often apply Proposition 1.9 to truncations of spaces. Recall that an n-truncation
of a space X is a space τ≤n X together with a map τ≤n : X → τ≤n X such that at all
basepoints the induced map πk(X) → πk(τ≤n X) is an isomorphism for 0 ≤ k ≤ n
and πk(τ≤n X) vanishes for k > n. Every space has a unique n-truncation up to weak
homotopy equivalence.
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Corollary 1.11 Fix n ≥ 1 and let X be a connected space. If πk(X) is of finite type for
k ≤ n, then τ≤n X is of finite type. Consequently, for every Z[π1(X)]-module A that
is finitely generated as an abelian group, the groups Hk(X; A) are finitely generated
for 0 ≤ k ≤ n.

Proof To obtain the first part, apply Proposition 1.9 (ii) to the truncation τ≤n X . The
second part follows because τ≤n : X → τ≤n X induces an isomorphism in homology
in degrees≤ n, and spaces of finite type have degreewise finitely generated homology
groups with coefficients in local systems of the type in the statement, which one sees
using cellular homology. ��

1.2.2 From homology groups to homotopy groups

In general, finiteness properties of the homology groups of a space X need not imply
similar properties for the homotopy groups. If π1(X) is finite, however, this is often
the case, such as in the following lemma.

Lemma 1.12 Let X be a connected space with π1(X) finite. If Hk(X; A) is finitely
generated for all finitely generated Z[π1(X)]-modules A and k ≤ n, then the same
holds for πk(X).

Proof As π1(X) is finite, it suffices to show that for 2 ≤ k ≤ n the homo-
topy groups πk(X) ∼= πk(˜X) of the universal cover ˜X are finitely generated. As
Hk(X;Z[π1(X)]) ∼= Hk(˜X;Z), the groups Hk(˜X;Z) are finitely generated for k ≤ n,
so πk(˜X) is finitely generated for k ≤ n by the Hurewicz theorem modulo the Serre
class of finitely generated abelian groups. ��

Lemma 1.12 has the following useful corollary.

Corollary 1.13 If a space X is weakly homotopy equivalent to a connected finite CW-
complex with finite fundamental group, then the groups πk(X) are finitely generated
for k ≥ 1.

1.2.3 Finiteness properties of section spaces

Fixing a cofibration A ↪→ B, a fibration p : E → B with nonempty fibres, and a
section s0 of p|A : p−1(A) → A, we denote by SectA(p) the space in the compact-
open topology of sections s of p : E → B such that s|A = s0.

Lemma 1.14 For a finite CW pair (B, A) of relative dimension r and p : E → B a
fibration with fibre F, the following holds:

(i) If at all basepoints πk(F) is finite for all 0 ≤ k ≤ r , then π0(SectA(p)) is finite.
(ii) If at all basepoints πk(F) is polycyclic-by-finite for k = 1 and finitely generated

for 2 ≤ k ≤ r + 1, then at all basepoints π1(SectA(p)) is polycyclic-by-finite.
(iii) Let m ≥ 2. If at all basepoints πk(F) is finitely generated for m ≤ k ≤ m + r ,

then at all basepoints the group πm(SectA(p)) is finitely generated.
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Proof First note that if B = B1 � B2 is a union of connected components, then
SectA(p) ∼= SectA∩B1(p|B1)×SectA∩B2(p|B2), sowemayassume that B is connected.
In this case we prove the three assertions simultaneously by induction over the number
n of relative cells of (B, A). If n = 0, then we have B = A and SectA(p) = {s0}.
Assume that the conclusion holds for CW pairs with (n−1) relative cells and suppose
that B = B ′ ∪ Dd where Dd denotes a d-cell for some d ≤ r and that B ′ is obtained
from A by attaching (n − 1) cells of dimension ≤ r . The fibres of the restriction map
SectA(p)→ SectA(p|B′) are either empty or equivalent to the d-fold loop space�d F
at some basepoint, so the result follows from the long exact sequence in homotopy
groups together with the induction hypothesis and the fact that polycyclic-by-finite
groups are by Lemma 1.5 closed under extensions, taking subgroups, and quotients.

��

Corollary 1.15 Let (B, A) be a CW pair of (relative) finite type and p : E → B
be a fibration with fibre F. Suppose that π0(F) is finite, at all basepoints πk(F) is
polycyclic-by-finite for k = 1 and finitely generated for k ≥ 2, and thatπk(F) vanishes
for k > n. Then at all basepoints πk(SectA(p)) is polycyclic-by-finite for k = 1 and
finitely generated for k ≥ 2.

Proof Let A ⊂ skn(B) ⊂ B denote the relative n-skeleton. We observe that there
is a fibration sequence SectA∪skn(B)(p) → SectA(p) → SectA(p|skn(B)) whose
fibre is weakly contractible by obstruction theory and the hypothesis F � τ≤n F .
As (skn(B), A) is a finite CW pair since (B, A) is of relative finite type, the result
follows from Lemma 1.14. ��

2 Finiteness properties of mapping class groups

This section serves to establish finiteness results for variants of mapping class groups.

2.1 Finiteness properties of homotopymapping class groups

Building on work of Sullivan [56, Theorem 10.3], Triantafillou [58, Theorem 1]
proved that the homotopy mapping class group π0(hAut(X)) of a connected finite
CW-complex X with finite fundamental group is commensurable up to finite kernel
with an arithmetic group. Here hAut(X) ⊂ Map(X , X) is the group-like topolog-
ical monoid of homotopy self-equivalences of X equipped with the compact-open
topology. The proof of Theorem A relies on two extensions of her result.

2.1.1 Stabilisers of (co)homology classes

The first extension is minor. It concerns concerning stabilisers of sets of twisted
(co)homology classes. To state it, let X be a connected based space and write
hAutπ1∗ (X) ⊂ hAut(X) for the group-like submonoid of pointed homotopy auto-
morphisms that induce the identity on π1(X). This monoid naturally acts on the
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(co)homology groups Hk(X; V ) and Hk(X; V ) with coefficients in any Q[π1(X)]-
module V . For sets of (co)homology classes h∗ ⊂ H∗(X; V ) and h∗ ⊂ H∗(X; V ),
we write

hAutπ1∗ (X)h ⊂ hAutπ1∗ (X)

for the pointwise simultaneous stabiliser of h∗ and h∗.

Proposition 2.1 Let X be a connected based space, V be a Q[π1(X)]-module, and
h∗ ⊂ H∗(X; V ) and h∗ ⊂ H∗(X; V ) be subsets of (co)homology classes. If

(i) X is homotopy equivalent to a CW-complex that has either finitely many cells or
finitely generated homotopy groups that vanish aside from finitely many degrees,

(ii) the group π1(X) and the sets h∗ and h∗ are finite, and
(iii) V is finite-dimensional as a Q-vector space,

then the groupπ0(hAut
π1∗ (X)h) is commensurable up to finite kernelwith an arithmetic

group.

Proof We show this by adapting Triantafillou’s argument in [58]. First we assume
h∗, h∗ ⊂ {0}, in which case π0(hAut

π1∗ (X)h) = π0(hAut
π1∗ (X)). Abbreviating π1 :=

π1(X), we follow [58] and consider the zig-zag

autπ1(M) ∼= π0(hAut
Bπ1∗ (Xfib

Q
))←− π0(hAut

Bπ1∗ (X))
∼=−→ π0(hAut

π1∗ (X)). (1)

Here we use the following notation:

• hAutBπ1∗ (X) is the space of pointed homotopy automorphisms of X that commute
with a model of the 1-truncation X → Bπ1(X) as a fibration. This maps to
hAutπ1∗ (X) by the evident forgetful map. The latter is an equivalence since its
fibres are equivalent to loop spaces (at various basepoints) of the mapping space
Map∗(X , Bπ1(X)) which is homotopy discrete by obstruction theory.

• Xfib
Q

is the fibrewise rationalisation of X → Bπ1(X) (see p. 3397 loc.cit.).

• hAutBπ1∗ (Xfib
Q

) is defined analogously to hAutBπ1∗ (X). The left map is induced by
fibrewise rationalisation.

• M is a π1(X)-equivariant minimal cdga-model of the universal cover ˜X together
with a π1(X)-equivariant weak equivalence ρ : M → APL(˜X) to the cdga of
PL-polynomial differential forms on ˜X with its π1(X)-action by functoriality (see
p. 3393 loc.cit.)

• autπ1(M) are the equivariant homotopy classes of equivariant cdga automor-
phisms of M. This group is isomorphic to π0(hAut

Bπ1∗ (Xfib
Q

)) (see p. 3393 and
3397 loc.cit.).

By Theorems 6 (i) and 11 loc.cit., autπ1(M) is a linear algebraic group over Q, the
image

� := im
(

π0(hAut
Bπ1∗ (X))→ autπ1(M)

)
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is an arithmetic subgroup, and the map π0(hAut
Bπ1∗ (X)) → π0(hAut

Bπ1∗ (Xfib
Q

)) has

finite kernel, so we conclude that π0(hAut
Bπ1∗ (X)) ∼= π0(hAut

π1∗ (X)) is commensu-
rable up to finite kernel to an arithmetic group which finishes the proof in the case
h∗, h∗ ⊂ {0}.

In the next step, we prove the case where h∗ is finite and h∗ ⊂ {0}. Note that all
groups in the sequence act compatibly on the cohomology groups

Hk(M⊗Q[π1] V ) ∼= Hk(APL(˜X)⊗Q[π1] V ) ∼= Hk(X; V ),

so the subgroup π0(hAut
π1∗ (X)h) is commensurable up to finite kernel with the inter-

section of � with the subgroup autπ1(M)h ⊂ autπ1(M) of those automorphism that
fix h∗. By a straightforward extension of the proof of Theorem 6 (ii) loc.cit., the
action map autπ1(M)→ GL(Hk(M⊗Q[π1] A)) is a map of algebraic groups, so the
stabiliser of any cohomology class is an algebraic subgroup. As algebraic subgroups
are closed under finite intersections, it follows that autπ1(M)h ⊂ autπ1(M) is an
algebraic subgroup. Since the intersection of an arithmetic subgroup with an alge-
braic subgroup is arithmetic (see e.g. [55, p. 106]), this implies that � ∩ autπ1(M)h
is arithmetic and thus finishes the proof in the case h∗ ⊂ {0}.

The general case follows by using the canonical isomorphism Hk(M; A) ∼=
Hk(M; A∨)∨ where (−)∨ denotes taking Q-duals, combined with the fact that alge-
braic subgroups are closed under finite intersections. ��

2.1.2 Simple homotopy automorphisms

Our second extension of Triantafillou’s work is more substantial and concerns the
subgroup π0(hAuts(X)) ≤ π0(hAut(X)) of simple homotopy automorphisms of a
finite CW-complex X . The following gives the part of Theorem D (ii) about simple
homotopy automorphisms; the part about possibly non-simple ones is [58, Theorem
1].

Theorem 2.2 For a finite CW-complex X with finite fundamental group at all base-
points, the group π0(hAuts(X)) is commensurable up to finite kernel to an arithmetic
group. Moreover, assuming in addition that X is connected and based, the statement
of Proposition 2.1 also holds for the subgroup π0(hAut

π1,s∗ (X)h) ≤ π0(hAut
π1∗ (X)h)

of simple homotopy automorphisms.

Proof Recording the effect of a homotopy equivalence on components gives a
map from π0(hAuts(X)) to the symmetric group on the set π0(X), so its kernel
�[x]∈π0(X)π0(hAuts(Xx )) ≤ π0(hAuts(X) has finite index as π0(X) is finite; here
Xx denotes the component of x ∈ X . The property of being commensurable up to
finite kernel to an arithmetic group is closed under finite products, so to show the claim
we may assume that X is connected.

In the connected case, we fix a basepoint ∗ ∈ X and note that since the group
π := π1(X) is finite and thus has finitely many automorphisms, we may replace
the group π0(hAuts(X)) up to commensurability up to finite kernel by the group
π0(hAut

s,Bπ∗ (X)) of pointed simple self-equivalences over Bπ . The latter is the kernel
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of the homomorphism τ : π0(hAutBπ∗ (X))→Wh(π) = K1(Z[π ])/〈±π〉 that takes a
self-equivalence to itsWhitehead torsion; the fact that this is a homomorphism follows
from the composition formula for Whitehead torsion [50, Lemma 7.8]. To show that
ker(τ ) is commensurable up to finite kernel to an arithmetic group, we establish a
commutative diagram

π0(hAutBπ∗ (X)) Wh(π)

π0(hAutBπ∗ (Xfib
Q

)) K1(Q[π ]) WhQ(π).

(−)fib
Q

τ

τ

(2)

where WhQ(π) := K1(Q[π ])/〈±π〉. Here the right-hand vertical map is induced by
the inclusion Z ⊂ Q, the two-headed map is the quotient map, the left vertical map
(−)fib

Q
is induced by fibrewise rationalisation over Bπ , and themap τ will be explained

later.
Both the bottom right map and the right-hand vertical map have finite kernel: the

former since π is finite and the latter because K1(Z[π ]) → K1(Q[π ]) has finite
kernel [4, p. 550]. The group π0(hAut

s,Bπ∗ (X)) is thus commensurable up to finite
kernel to the kernel of the composition π0(hAutBπ∗ (X)) → K1(Q[π ]), so we may
show the claim for this kernel instead. Recall from the proof of Proposition 2.1 that
π0(hAutBπ∗ (Xfib

Q
)) is a linear Q-algebraic group which contains the image of (−)fib

Q

as an arithmetic subgroup. We will show below that the kernel of τ is a linear Q-
algebraic subgroup of π0(hAutBπ∗ (Xfib

Q
)). The intersection of an arithmetic subgroup

with a linear algebraic subgroup is arithmetic (see e.g. [55, p. 106]), so this will imply
that the image of the kernel of π0(hAutBπ∗ (X))→ K1(Q[π ]) in π0(hAutBπ∗ (Xfib

Q
)) is

an arithmetic group, which will in turn give the claim on π0(hAut
s,Bπ∗ (X)) since the

map (−)fib
Q

has finite kernel (see the proof of Proposition 2.1). We are thus left with
defining τ , showing that it makes (2) commute, and proving that the kernel of τ is a
linear Q-algebraic subgroup.

Writing d := dim(X), the map τ is defined as a composition

π0(hAutBπ∗ (Xfib
Q

)) −→ �d
i=0 AutQ[π ](Hi (˜X;Q))

�
i [−]−−−→ K1(Q[π ])d+1 χ−→ K1(Q[π ]). (3)

Here the first map is given by the action on the homology groups
H∗(˜Xfib

Q
;Q) ∼= H∗(˜X;Q) of the universal cover. The second map is on each factor an

instance of the canonical map [−] : AutR(P) → K1(R) for a ring R and a finitely
generated projective R-module P (see e.g. [49, p26]; note that any Q[π ]-module is
projective as Q[π ] is semisimple), and χ sends (x0, . . . , xd) to

∑d
i=0(−1)i xi . The

fact that τ makes the diagram (2) commute is the content of Lemma 2.3 below, so we
are left with showing that ker(τ ) ≤ π0(hAutBπ∗ (Xfib

Q
)) is a Q-algebraic subgroup. To

do so, we postcompose τ with the reduced norm map to the units of the centre

NrdQ[π ] : K1(Q[π ]) ↪−→ Z(Q[π ])×, (4)
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which is a monomorphism [62, p. 594]. It is induced by morphisms of the form

NrdQ[π ] : GLn(Q[π ]) −→ Z(Q[π ])× (5)

for n ≥ 0 that are compatible with stabilisation. Being the units in a finite-dimensional
Q-algebra, Z(Q[π ])× is a linearQ-algebraic group, so it suffices to prove that the com-
position of (3) with (4) is Q-algebraic, i.e. a morphism of algebraic groups defined
over Q. The first map in the composition (3) is Q-algebraic (see the proof of Propo-
sition 2.1). As χ : (Z(Q[π ])×)d+1 → Z(Q[π ])× is Q-algebraic as a composition of
multiplications and taking inverses in the commutative Q-algebraic group Z(Q[π ])×,
it suffices to show that the maps (5) are Q-algebraic, since we may factor the second
map in (3) as a product, over the homological degree, of the precomposition of the
Q-algebraic map AutQ[π ](Hi (˜X;Q))→ GLni (Q[π ]) induced by writing Hi (˜X;Q)

as a summand of a finitely generated free module of some rank ni , with the reduced
norm (5).

We can thus finish the proof by recalling a construction of the maps (5) that makes
it clear that they are Q-algebraic. In fact, more naturally these maps are defined
over a finite extension of Q, but this suffices, by restricting scalars (cf. [55, p. 106]).
By Maschke’s theorem, the Q-algebra Q[π ] is semisimple and thus by the Artin–
Wedddenburn theorem there is an isomorphism

Q[π ] ∼= �r
i=1 Mmi (Di )

to a product of matrix algebras over division algebras Di . Writing ki := Z(Di ) for
the centre (a finite field extension of Q), the norm map (5) is defined as a product

GLn(Q[π ]) ∼= �r
i=1 GLn·mi (Di )

�ri=0NrdDi−−−−−−→ �r
i=1 k

×
i
∼= Z(Q[π ])×

of reduced norm maps

NrdDi : GLn·mi (Di )→ k×i . (6)

The latter will be defined in such a way so that it is clear that they are algebraic over
ki , and this implies the same for (5) by choosing a common finite extension of the
ki ’s. To define NrdDi , one chooses a splitting field Ki for Di , i.e. a field extension
ki ⊂ Ki with an isomorphism φi : Ki ⊗ki Di ∼= Mli (Ki ) as ki -algebras for some
li ≥ 0 (see e.g. [24, Theorem 2.2.1]). One then considers for m ≥ 0 the composition

Mm(Di )
φi (1⊗(−))−−−−−−→ Mm·li (Ki )

det−→ Ki

which is multiplicative and turns out to, firstly, have image in ki ≤ Ki , secondly,
be independent of the choice of Ki and φi , and, thirdly, be given as a homogenous
polynomial over ki in a ki -basis of Mm(Di ) induced by a ki -basis of Di (see e.g. [24,
Construction 2.6.1] and [54, p. 27]). Choosing m = n ·mi and taking units, this gives
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(6), which is an algebraic map over ki as a result of the third property just discussed.
This completes the proof of the first part.

Regarding the addendum, recall from the proof of Proposition 2.1 that the group
π0(hAutπ∗ (X)h) is commensurable up to finite kernel to the arithmetic group given as
the image of π0(hAutBπ∗ (X)h) in the Q-algebraic group π0(hAutBπ∗ (Xfib

Q
)h), so, by

the first part of this proof, the intersection of this group with the Q-algebraic subgroup
ker(τ ) ≤ π0(hAutBπ∗ (Xfib

Q
)) is commensurable up to finite kernel toπ0(hAut

π,s∗ (X)h).
As intersections of arithmetic subgroups with Q-algebraic subgroups are arithmetic
(see e.g. [55, p. 106]), this gives the claim. ��
Lemma 2.3 The diagram (2) is commutative.

Proof We begin with a general discussion on torsion invariants over an associative
unital ring R which we assume to have the invariant basis number property, following
Milnor [50, p. 362]. We require all modules be left modules and all chain complexes
to be graded by the integers, bounded, and degreewise finitely generated. Given a
quasi-isomorphism ϕ : C∗ → D∗ of based chain complexes over R (i.e.Ci and Di are
free with specified basis), its mapping cone is an acyclic based chain complex, so it
has a torsion invariant

τR(ϕ) ∈ ˜K1(R) = K1(R)/〈±1〉

in the reduced first K -group of R (see e.g. Section 3 loc.cit.). By an observation of
Gersten [23], if source and target agree (i.e.C∗ = D∗) then τR(ϕ) does, firstly, not
dependent on the chosen bases, and can, secondly, be extended to self-equivalences
of chain complexes that are only degreewise projective, not necessarily free. (In fact
τR(−) can even be extended to have values in the non-reduced group K1(R) but we
will not need this and consider τR(−) as valued in ˜K1(R).) Viewed as an invariant
of quasi-automorphisms ϕ : C∗ → C∗ of degreewise projective chain complexes, the
torsion τR(−) enjoys the following properties:

(i) We have τR(ϕ) = 0 whenever C∗ is acyclic. This follows from
[23, Proposition 1].

(ii) For a map of short exact sequences

0 C∗ D∗ E∗ 0

0 C∗ D∗ E∗ 0

ϕC �

ι

ϕD �

π

ϕE �
ι π

we have τR(ϕD) = τR(ϕC )+ τR(ϕE ). This follows from an application of [50,
Theorem 3.1], after making the complexes degreewise free by adding comple-
ments, choosing bases, and taking mapping cones.

(iii) We have ϕR(snϕ) = (−1)nϕR(ϕ) for n ∈ Zwhere sn(−) shifts chain complexes
up by n degrees. This is clear from the definition [23, p412], but also follows
from (i) and (ii).
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(iv) Specialising τR(−) to automorphisms ϕ : P → P of finitely generated pro-
jective modules viewed as complexes concentrated in degree 0, we have
τR(ϕ) = [ϕ] ∈ ˜K1(R) where [−] : AutR(P) → K1(R) is the canonical map
which featured in the previous proof.

If the ring R is semisimple (i.e. if all its modules are projective), then the invariant
ϕR(−) simplifies significantly: for any quasi-isomorphism ϕ : C∗ → C∗ one has

τR(ϕ) =∑

i∈Z
(−1)i [Hi (ϕ) : Hi (C∗)

∼=−→ Hi (C∗)
]

where Hi (C∗) is considered as concentrated in degree 0.This follows froman induction
over the number of nontrivial homology groups using (i)–(iv): Property (i) gives the
initial case. For the induction step, wemay by (iii) assume that H0(C∗) is the nontrivial
homology group of lowest degree.By considering the subcomplexC ′∗ ≤ C∗ that agrees
with C∗ for ∗ > 0, with im(d : C1 → C0) for ∗ = 0, and is 0 otherwise, we get a
short exact sequence 0 → C ′∗ → C∗ → D∗ → 0 with D∗ := C∗/C ′∗, and a self-
map of this exact sequence consisting of quasi-isomorphisms ϕC ′ , ϕC = ϕ, and ϕD ,
so τR(ϕC ) = τR(ϕC ′) + τR(ϕD) using (ii). As C ′∗ has one less nontrivial homology
group, the induction hypothesis gives τR(ϕC ′) =∑

i>0(−1)i [Hi (ϕ)], so it remains to
show τR(ϕD) = [H0(ϕ)]. To do so, we consider the subcomplex D′∗ ⊆ D∗ which is
ker(d : D0 → D−1) = H0(C∗) in degree ∗ = 0 and 0 otherwise otherwise. Oncemore
we get an exact sequence 0→ D′∗ → D∗ → D∗/D′∗ → 0 and a quasi-isomorphism
of short exact sequences induced byϕD , so τR(ϕD) = τR(ϕD′)+τR(ϕD∗/D′∗) using (ii).
Moreover, we have τR(ϕD′) = [H0(ϕ)] using (iv) and τR(D∗/D′∗) = 0 using (iv), so
the induction is concluded.

We now turn to the proof of the statement. The top map in (2) is the composition

π0(hAut
Bπ∗ (X))

∼=←− π0(hAut
Bπ,cell∗ (X))→ π0(hAutZ[π ](Ccell∗ (˜X)))

τZ[π]−−→ ˜K1(Z[π ]) � Wh(π)

whereπ0(hAut
Bπ,cell∗ (X)) is the group of cellular homotopy classes of cellular pointed

homotopy equivalences over Bπ and π0(hAutZ[π ](Ccell∗ (˜X))) is the group of chain
homotopy classes of quasi-isomorphisms of the cellular chain complex over Q[π ] of
the universal cover. (Note on passing that dividing out the subgroup 〈±π〉 ≤ K1(Z[π ])
is not necessary to define the Whitehead torsion of a self -equivalence, by the above
discussion.) Next, we consider the diagram

π0(hAutZ[π ](Ccell∗ (˜X))) ˜K1(Z[π ]) Wh(π)

π0(hAutQ[π ](Ccell∗ (˜X)⊗Q)) ˜K1(Q[π ]) Wh(π)Q

τZ[π ]

(−)⊗Q (−)Q (−)Q

τQ[π ]
(7)

which commutes since the R-torsion τR(−) is natural under base change (see the
defining formula in loc.cit.). As Q[π ] is semisimple, the discussion above implies that
the composition π0(hAutZ[π ](Ccell∗ (˜X)))→Wh(π)Q agrees with the composition

π0(hAutZ[π ](Ccell∗ (˜X))) −→ �d
i=0 AutQ[π ](Hi (˜X;Q))

∑d
i=0(−1)i [−]−−−−−−−−−−→ ˜K1(Q[π ]) −� Wh(π)Q.
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In conclusion, this shows that the clockwise composition of (2) agrees with the com-
position

π0(hAutBπ∗ (X)) −→ �d
i=0 AutQ[π ](Hi (˜X;Q))

∑d
i=0(−1)i [−]−−−−−−−−→Wh(π)Q.

Factoring the first map as the composition

π0(hAutBπ∗ (X))
(−)fib

Q−−−→ π0(hAutBπ∗ (Xfib
Q

)) −→ �d
i=0 AutQ[π ](Hi (˜X;Q))

this is exactly the counterclockwise composition of (2), so the claim follows. ��
Remark 2.4 There is an alternative description of the map τ in (2): view K1(Q[π ]) as
the fundamental group of the algebraic K -theory (infinite loop) space of perfect chain
complexes ofQ[π ]-modules and quasi-isomorphisms (see e.g. [66, II.9.7.5, V.2.7.2]).
Then given a self-equivalence representing a class in π0(hAutBπ∗ (Xfib

Q
)), lift it to the

universal cover and take singular chains to obtain a self-equivalence of the perfect
Q[π ]-chain complex C∗(˜Xfib

Q
;Q) of rational singular chains. This gives a loop in the

algebraic K -theory space, so an element in K1(Q[π ]). This construction satisfies the
analogues of (i)–(iv), which one can use to show that it indeed agrees with the map τ .

Remark 2.5 There is an alternative proof of Theorem 2.2 in the case where X is an
orientable Poincaré complex of even formal dimension d, by showing that under this
additional assumption the inclusion π0(hAuts(X)) ≤ π0(hAut(X)) has in fact finite
index. To prove this, it suffices to show that π0(hAut

s,π1∗ (X)) ⊂ π0(hAut
π1∗ (X))

has finite index for which is it enough (as Wh(π1(X)) is finitely generated) to show
that τ( f ) ∈ Wh(π1(X)) is a torsion element for all [ f ] ∈ π0(hAut

π1∗ (M)). This is
proved in [62, Proposition 7.2], by the following argument: the duality formula for
Whitehead torsion gives τ( f ) = (−1)d+1τ( f )where (−) is the involution induced by
transposing matrices and sending g ∈ π1(M) tow(g) · g−1 wherew : π1(X)→ {±1}
is the orientation character. If d is even, we thus have 2 · τ( f ) = τ( f )− τ( f ) which
is a torsion-element as long as w is trivial (which is equivalent to X being orientable)
by [62, p. 611]. So τ( f ) is a torsion element itself and the claim follows.

2.2 Finiteness properties of mapping class groups

Building on his result for π0(hAut(X)), Sullivan [56, Theorem 13.3] also proved
that the mapping class group π0(Diff(M)) of a smooth closed 1-connected manifold
of dimension d ≥ 6 is commensurable up to finite kernel to an arithmetic group,
so in particular of finite type. As mentioned in the introduction, in [57, Corollary
5.3], Triantafillou claims that π0(Diff(M)) is also of finite type for whenever M is
orientable, of dimension d ≥ 5, and has finite fundamental group. There appear to be
two issues with the proposed proof of this in [57, 58], the first more critical than the
second:

(a) The first issue is that the proof crucially relies on the claim [58, Proposition 15] that
for all M as above, the image of π0(Diff(M)) in π0(hAut(M)) is finite index in
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the stabiliser π0(hAut(M))[T sM] ≤ π0(hAut(M)) of the stable tangent classifier
[T sM] ∈ [M, BO]. This is incorrect, see Example 2.9 below for counterexamples
in all odd dimensions≥ 5. The issue with the proof is that Triantafillou implicitly
assumes that the stabiliser of the identity under the action ofπ0(hAut(M))[T sM] on
the non-simple version of the structure set Sh(M) is the subgroup of those equiv-
alences that are homotopic to diffeomorphisms. However, this stabiliser agrees
instead with the (often larger) subgroup of those tangential self-equivalences of
M that are homotopic to a self-equivalence induced by an inertial h-cobordism
on M .

(b) The second issue concerns the claim in dimension 5. The proof of [57, Corollary
5.3] relies on work of Hatcher–Wagoner [30] and Igusa [36] which assumes the
dimension to be at least 6. Hatcher [31, p. 7] states that the necessary statement
was extended to d = 5 by Igusa, but to our knowledge no proof has appeared so
far.

Using Theorem 2.2, we are able to circumvent the first issue, basically by replacing
the role of the action of π0(hAut(M))[T sM] on Sh(M) in Triantafillou’s argument by
the action of π0(hAuts(M))[T sM] on Ss(M). As a courtesy to the reader, we spell
out the argument in full detail, which also gives us the chance to extend the result to
homeomorphisms and to nonorientable manifolds. The following in particular proves
Theorem D (i).

Theorem 2.6 Let M be a closed smooth manifold of dimension d ≥ 6 with finite fun-
damental group at all basepoints. Then the groups π0(Diff(M)) and π0(Homeo(M))

are of finite type and have polycyclic solvable subgroups in the sense of Sect.1.1.5.

Proof Directly from the definitions, we see that there is a commutative diagram

π0(CDiff(M)) π0(Diff(M)) π0(̃Diff(M)) 0

π0(CTop(M)) π0(Homeo(M)) π0(H̃omeo(M)) 0

(8)

with exact rows. Here the leftmost groups are the path-components of the groups
CDiff(M) and CTop(M) of concordance diffeomorphisms and homeomorphisms, the
terms in the third column are the groups of pseudoisotopy classes of diffeomorphisms
and homeomorphisms, and the vertical maps are the canonical forgetful maps (see e.g.
[31] for definitions).

We first argue that the leftmost vertical map is an isomorphism. For this it suf-
fices to prove that the homotopy fibre CTop(M)/CDiff(M) of the comparison map
BCDiff(M) → BCTop(M) is 1-connected. By smoothing theory (see [11, p. 453–
455]), this fibre agrees with a collection of path components of a space of sections
Sect(E → M) of a fibration whose fibre is equivalent to the homotopy fibre of the
stabilisation map

hofib
(

Top(d)/O(d)→ Top(d + 1)/O(d + 1)
)

.
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As this fibre is (d + 2)-connected (see [37, Essay V, §5, 5.0 (4)]), it follows
from obstruction theory that Sect(E → M) is 1-connected, so the same holds for
CTop(M)/CDiff(M).

By surgery theory, the homotopy fibre of the map

BD̃iff(M) −→ BH̃omeo(M) (9)

is homotopy equivalent to a collection of components of the mapping space
Map(M,Top/O). As Top/O has finite homotopy groups, it follows from obstruc-
tion theory that this mapping space has finitely many path components each of which
has degreewise finite homotopy groups, so the same holds for the homotopy fibre of
(9). In particular, the two rightmost groups in (8) are commensurable up to finite ker-
nel. As π0(CDiff(M)) ∼= π0(CTop(M)) is abelian [30, Lemma 1.1, p. 18] and groups
of finite type and with polycyclic solvable subgroups are closed under extensions and
commensurability up to finite kernels (see Lemmas 1.2 and 1.8), all we are left to do
is to show that

(i) π0(CDiff(M)) is finitely generated and
(ii) π0(̃Diff(M)) is of finite type and has polycyclic solvable subgroups.

Writing π0(hAut
∼=(M)) ≤ π0(hAuts(M)) for the subgroup of those simple homotopy

automorphisms that are homotopic to a diffeomorphism, Item (ii) will follow from the
exact sequence

π1(hAut
s(M)/̃Diff(M); id) −→ π0(̃Diff(M)) −→ π0(hAut

∼=(M)) −→ 1

and another application of Lemma 1.2 and Lemma 1.8 together with the fact that
polycyclic groups are closed under quotients (see Lemma 1.5) once we show

(iii) π1(hAuts(M)/̃Diff(M); id) is polycyclic and
(iv) π0(hAut

∼=(M)) is commensurable up to finite kernel with an arithmetic group.

We now explain the proofs of (i) and (iii); claim (iv) will be proved separately as
Proposition 2.7 below. For (i), we use that since d ≥ 6, there is an exact sequence of
abelian groups

Wh+1 (π1(M);Z/2⊕ π2(M)) −→ π0(C
Diff(M)) −→Wh2(π1(M)) −→ 0

by [30, p. 10–11] and [36, p. 104–105]. By definition, the rightmost group is a quotient
of K2(Z[π1(M)]) and the leftmost group a quotient of (Z/2⊕ π2(M))[π1(M)]. The
latter is finitely generated by Corollary 1.13 because π1(M) is finite and π2(M) is
finitely generated using Lemma 1.12. The former is finitely generated by [40, Theorem
1.1.(i)].

For the proof of (iii), we use the simple surgery exact sequence (see [61, Theorem
10.8]) in the form of an exact sequence of groups

Ls
d+2(Z[π1(M)], w) −→ π1(hAut

s(M)/̃Diff(M)) −→ [�M+,G/O],
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where Ls∗(Z[π1(M)], w) denotes the simple (quadratic) L-groups of π1(M) with
respect to the orientation character w : π1(M) → {±1} (see the next paragraph for
more details). We claim that the two outer terms in this sequence are finitely gener-
ated abelian, which would imply (iii). For [�M+,G/O], this holds as a consequence
of Lemma 1.14 and the fact that the infinite loop space G/O has finitely generated
homotopy groups. For the groups Ls∗(Z[π1(M)], w), finite generation follows from
[63, Theorem 7.3], but this requires some unwrapping:

The notation Wall uses in [63] is introduced in [60]: given an anti-structure R =
(R, α, u) (a unital ring R together with an anti-automorphism α : R → R and a unit
u ∈ R× satisfying some conditions [60, p. 2]) and a subgroup H ≤ K1(R) that
is invariant under the involution on K1(R) induced by taking transpose of matrices
followed by applying α coefficient-wise (denoted T in [60], see page 16), Wall defines
L-groups LH∗ (R) [60, p. 20] (the dependence onα and u is not reflected in his notation).
In the case R = Z[π1(M)], u = 1, α(g) = w(g) · g−1, and H the image of ±π1(M)

in K1(R), the groups denoted Ls∗(Z[π1(M)], w) above are Wall’s LH∗ (R) [60, p. 24–
25]. In [63, Theorem 7.3] he proves that LH∗ (R) is degreewise finitely generated for a
certain choice of invariant subgroup H ≤ K1(R) and any anti-structure (R, α, u) such
that the additive group of R is finitely generated (this holds in our case R = Z[π1(M)]
since π1(M) is finite) and that the Q-algebra R ⊗Q is semisimple (this holds in our
case by Maschke’s theorem). There are no restrictions on α or u. This only implies
that LH∗ (Z[π1(M)]) is degreewise finitely generated for a specific choice of H , but as
Wall indicates on page 286 of loc.cit., this is enough to conclude finite-generation for
any other choice of H : one applies a form of the Rothenberg sequence [60, Theorem 3,
p. 21] which compares LH∗ (Z[π1(M)]) with LH ′∗ (Z[π1(M)]) for involution invariant
subgroups H ≤ H ′ of K1(Z[π1(M)]). The relative terms are the Tate cohomology
groups of the induced involution on H ′/H , so they are finite since they are 2-torsion
by definition and finitely generated as subquotients of the finitely generated group
K1(Z[π1(M)]). ��
Proposition 2.7 Let d ≥ 6 and M a closed smooth d-manifold with finite funda-
mental group at all basepoints. The group π0(hAut

∼=(M)) of homotopy classes of
self-equivalences that are homotopic to a diffeomorphism is commensurable up to
finite kernel with an arithmetic group.

Proof Since every diffeomorphism is simple and preserves the tangent bundle,
the group π0(hAut

∼=(M)) is contained in the subgroup π0(hAuts(M))[T sM] ≤
π0(hAuts(M)) of simple self-equivalences that stabilise the stable tangent classifier
[T sM] ∈ [M, BO] with respect to the π0(hAut(M))-action by precomposition. We
first argue that the group π0(hAuts(M))[T sM] is commensurable up to finite kernel to
an arithmetic group.

Arguing as in the first part of the proof of Theorem 2.2, we may, firstly, assume
that M is connected and, secondly, replace the group π0(hAuts(M))[T sM] by its
analogue π0(hAut

s,π1∗ (M))[T sM] where we require the equivalences additionally to
preserve a basepoint and to induce the identity on fundamental groups. The group
π0(hAut

s,π1∗ (M))[T sM] is commensurable up to finite kernel to an arithmetic group by
the second part of Theorem 2.2 since it is commensurable up to finite kernel to the sta-
biliser of the image [T sMQ] of [T sM] under themap [M, BO] → [M, BOQ] induced
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by rationalising the simple space BO (which has finite preimages by obstruction the-
ory). This uses that BOQ is a product of Eilenberg–MacLane spaces, so stabilising
[T sMQ] is equivalent to stabilising a finite set of cohomology classes.

It thus suffices to show thatπ0(hAut
∼=(M)) ≤ π0(hAuts(M))[T sM] has finite index.

To do this, we use the simple surgery exact sequence from the previous proof, but this
time the part

Ls
d+1(Z[π1(M)], w)

ω−→ Ss(M)
η−→ [M,G/O]. (10)

Several properties of this sequence will play a role:

(a) The outer terms are abelian groups (for [M,G/O] this uses the infinite loop space
structure on G/O). The simple structure set Ss(M) (the set of homotopy classes
of simple homotopy equivalences from closed d-manifolds to M , up to precom-
position with diffeomorphisms) is a pointed set with basepoint [idM ] ∈ Ss(M).

(b) The sequence is exact as a sequence of pointed sets (see [61, Theorems 10.3,
10.5]).

(c) The group Ls
d+1(Z[π1(M)], w) acts on Ss(M) (in the category of unpointed sets)

such that two elements of Ss(M) have the same image under η if and only if they
lie in the same orbit (see Theorem 10.5 loc.cit.). The map ω is given by acting on
[idM ] ∈ Ss(M).

(d) The map η is π0(hAuts(M))-equivariant with respect to appropriate actions on
source and target (in the category of unpointed sets): an equivalence [φ] ∈
π0(hAuts(M)) acts on Ss(M) by postcomposition and on [M,G/O] by send-
ing [ f ] ∈ [M,G/O] to [ f ◦ φ] + η(φ) where φ is a homotopy inverse to φ (see
e.g. [6, Lemma3.3]).

(e) Writing j : G/O→ BO for the usual map, the composition

Ss(M)
η−→ [M,G/O] j∗−→ [M, BO] (11)

sends [ f : N → M] ∈ Ss(M) to (T sM − f
∗
(T sN )) ∈ [M, BO] (cf. [61, p. 113–

114]).

Equipping [M, BO] with the π0(hAuts(M))-action defined by the analogue of the
formula in (d) using the composition (11) in place of η (note that this action is not
the one by precomposition), the sequence (11) consists of π0(hAuts(M))-equivariant
maps. The final map in (11) has finite preimages by obstruction theory since G has
finite homotopy groups, so the stabiliser π0(hAuts(M))η ≤ π0(hAuts(M)) of the
basepoint in [M,G/O] (the constant map) has finite index in the stabiliser of the
basepoint in [M, BO]. The latter agrees with π0(hAuts(M))[T sM] as a result of (e). It
thus suffices to show that stabiliser π0(hAut

∼=(M)) of the basepoint [idM ] ∈ Ss(M)

has finite index in the stabiliser π0(hAuts(M))η of the basepoint in [M,G/O], i.e. that
the set π0(hAuts(M))η/π0(hAut

∼=(M)) of cosets is finite. By equivariance of η and
the fact that ker(η) = im(ω) by (b), the latter agrees with

(

π0(hAut
s(M))/π0(hAut

∼=(M))
)

∩ im(ω) ⊂ Ss(M), (12)
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where we view the left-hand quotient as a subset of Ss(M) via the action of
π0(hAuts(M)) on the basepoint [idM ] ∈ Ss(M), with stabiliser π0(hAut

∼=(M)). This
leaves uswith showing that the intersection (12) is finite. The argument for this depends
on the parity of the dimension.

For even d, in fact the whole image im(ω) of ω : Ls
d+1(Z[π1(M)], w)→ Ss(M) is

finite, since the entire group Ls
d+1(Z[π1(M)], w) is finite: by another application of the

Rothenberg sequence whose relative terms are finite (see the proof of Theorem 2.6), it
suffices to show finiteness for the variant of Ls

d+1(Z[π1(M)], w) for any involution-
invariant subgroup of K1(Z[π1(M)]). For a certain choice of subgroup this is stated
in [64, p. 2 (4)] with a reference to [63], but since it is cumbersome to extract the
statement from the latter, we refer to [33, Corollary 2] instead which shows that the
variant for the trivial subgroup H = K1(Z[π1(M)]) is annihilated by 8, so is finite by
finite-generation (see the end of the proof of Theorem 2.6).

For odd d, we consider the subgroup � ≤ Ls
d+1(Z[π1(M)], w) of elements that

are torsion in the cokernel of the map ι : Ls
d+1(Z) → Ls

d+1(Z[π1(M)], w) induced
by the inclusion of rings with anti-automorphism Z ≤ Z[π1(M)] where we equip Z

with the trivial anti-automorphism. We will finish the proof by showing that (12) is
finite in two steps:

(i) The image ω(�) of the subgroup � under ω is finite and
(ii) (12) agreeswith the a priori smaller intersection

(

π0(hAuts(M))/π0(hAut
∼=(M))

)

∩ ω(�).

To see (i), note that the image of ι : Ls
d+1(Z) → Ls

d+1(Z[π1(M)], w) has finite
index in � since by construction the quotient �/im(ι) is isomorphic to the torsion
subgroup of the finitely generated group Ls

d+1(Z[π1(M)], w)/im(ι). As ω is given by
acting on [idM ] ∈ Ss(M)with respect to the action of Ls

d+1(Z[π1(M)], w) on Ss(M),
it thus suffices to show that the potentially smaller image im(ω◦ι) is finitewhich in turn
follows from the naturality of the surgery exact sequence by choosing an embedded
disc Dd ⊂ M , and the fact that Ss

∂ (D
d) is finite as a result of the classification of

exotic spheres. This proves (i).
To prove (ii), by definition of the subgroup�, it suffices to show that for a given class

x ∈ Ls
d+1(Z[π1(M)], w) that maps underω to (12), there is a multiple n ·x with n �= 0

that lies in the image of the map ι : Ls
d+1(Z) → Ls

d+1(Z[π1(M)], w). It is enough
to test this property after applying a morphism with domain Ls

d+1(Z[π1(M)], w) and
finite kernel. The morphism σZ : Ls

d+1(Z[π1(M)], w)→ RC(π+1 (M)) we shall use
has target the complex representation ring of the kernel π+1 (M) := ker(w : π1(M)→
{±1}). It is given as the composition

Ls
d+1(Z[π1(M)], w) −→ Ls

d+1(R[π1(M)], w)
σR−→ RC(π+1 (M)) (13)

of themap induced by the inclusionZ ≤ R and themulti-signatureσR (see [64, Section
2.2]). This composition indeed has finite kernel, which follows by combining (i) that
Ls
d+1(Z[π1(M)], w) is finitely generated (see the end of the proof of Theorem 2.6),

(ii) that the first map in (13) has finite kernel by [63, Theorem 7.3] (note that this
result is phrased for a differently decorated L-group, but this implies what we need
by the Rothenberg sequence, as in the proof of Theorem 2.6), and (iii) that the kernel
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of the second map in (13) is torsion (see [64, Theorem 2.2.1]; note that the result in
the non-orientable case is on page 22).

We next identify the image σZ(x) ∈ RC(π+1 (M)) of the given class x ∈
Ls
d+1(Z[π1(M)], w). To begin with, note that since the class x maps to the inter-

section (12) under ω, it can be represented as the surgery obstruction of a degree 1
normal map W → M × [0, 1] of self -bordisms of M which is the identity on one
end and a simple homotopy equivalence on the other (We pass between L-groups and
surgery problems as in [61, §5] which involves the choice of orientation of the uni-
versal cover ˜M ; see page 46 loc.cit.. We make this choice once and for all.). In these
terms, the class σZ(x) is given (see [61, Section 13 B]) as a difference

σZ(x) = σ(π+1 (M), ˜W )− σ(π+1 (M), ˜M × I ) ∈ RC(π+1 (M))

where σ(G, N ), for an oriented compact manifold N with orientation-preserving
action by a finite group, is the G-signature in the sense of [2, p. 578–579, 587–588].
Here the orientations of ˜W and ˜M× I are induced by the chosen orientation of ˜M . The
second summand σ(π+1 (M), ˜M × I ) in fact vanishes; this follows from the definition
on p. 588 loc.cit. since the map ϕ on the top of that page is zero for ˜M × I because
the inclusion ˜M × {0, 1} ⊂ ˜M × I has a homotopy section.

To finish the proof of (ii), we are thus left to show that some multiple n ·
σ(π+1 (M), ˜W ) ∈ RC(π+1 (M)) with n �= 0 lies in the image of the composition
(σZ◦ι) : Ls

d+1(Z)→ RC(π+1 (M)). For this, we use that the bordismgroups�SO∗ (BG)

of oriented d-manifolds with a free action of a finite group G are finite in odd degrees
by an application of theAtiyah–Hirzebruch spectral sequence, so there exists a positive
integer m > 0 such that �m ˜M bounds π+1 (M)-equivariantly a manifold P with free
action. Gluing P to both ends of �m ˜W , we obtain a closed oriented π+1 (M)-manifold
V , still with free action. Moreover, we have

σ(π+1 (M), V ) = σ(π+1 (M), P)+ σ(π+1 (M),�m ˜W )+ σ(π+1 (M),−P) = m · σ(π+1 (M), ˜W )

by the additivity of the G-signature [2, Proposition (7.1)] and the fact that taking the
opposite orientation (indicated by a minus-sign) negates the G-signature. As m �= 0
it thus suffices to show n · σ(π+1 (M), V ) ∈ im(σZ ◦ ι) for some n �= 0, which is what
we do next.

Since V is a closed manifold, the class σ(π+1 (M), V ) ∈ RC(π+1 (M)) is a multiple
of the regular representation (see [61, Proposition 13B.1] or specialise [2, (6.12)] to
free actions; this uses that a class in RC(π+1 (M)) is determined by its character.).
To use this to prove the remaining claim, we distinguish some cases. If d + 1 ≡ 2
(mod 4) or when the orientation character w is nontrivial, we show that the only
multiple of the regular representation in the image of σZ is 0, which then implies that
σ(π+1 (M), V ) is trivial, so in particular in the image of (σZ ◦ ι). For this, we use that
a class in RC(π+1 (M)) is determined by its character, and read off from [64, Theorem
2.2.1] which characters are realised by classes in the image of σZ. Firstly, if d+1 ≡ 2
(mod 4), then all characters in the image take values in i · R ⊂ C, which is not the
case for any nontrivial multiple of the regular representation (consider the value at
1 ∈ π+1 (M)). Secondly, if w is non-trivial then characters in the image of σZ satisfy a
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certain conjugation condition (see Theorem 2.2.1 loc. cit.) which is again not satisfied
for any nontrivial multiple of the regular representation (as before, consider the value
at 1 ∈ π+1 (M)).

It remains to consider the case where d + 1 ≡ 0 (mod 4) and w is trivial. Directly
from the definition of σZ in [64, Section 2.2] we see that the image im(σZ ◦ ι) ⊂
RC(π+1 (M)) is contained in the cyclic subgroup 〈R 〉 spanned by the regular repre-
sentation. If we knew that σZ ◦ ι is injective, then since Ls

d+1(Z) ∼= Z, the inclusion
im(σZ ◦ ι) ≤ 〈R 〉 would have finite index, so since σ(π+1 (M), V ) ∈ 〈R 〉 we would
have n · σ(π+1 (M), V ) ∈ im(σZ ◦ ι) for some n �= 0, as claimed. To prove injectivity
of σZ ◦ ι, note that sincew is trivial, the map Ls

d+1(Z)→ Ls
d+1(Z[π1(M)], w) is split

injective (consider the augmentation Z[π1(M)] → Z which is a morphism of rings
with anti-automorphism), so σZ ◦ ι has to be injective as σZ has finite kernel and ι has
domain Ls

d+1(Z) ∼= Z. This concludes the proof. ��
Remark 2.8 To our knowledge, the analogue of Theorem 2.6 for manifolds with
nonempty boundary and diffeomorphisms fixing the boundary has not been proved yet,
though there is a version in the simply connected case [42]. Such a relative finiteness
result would simplify several steps in the proof of our main Theorem A.

Example 2.9 We now construct counterexamples in every odd dimension d ≥ 5 to
the claim in [58, Proposition 15] and [57, Theorem 5.1] that the image of the group
π0(Diff(M)) in π0(hAut(M))[T sM] has finite index for all closed smooth orientable
manifolds of dimension d ≥ 5 with finite fundamental group, by showing that the
inclusion π0(hAuts(M))[T sM] ≤ π0(hAut(M))[T sM] is not of finite index. This inval-
idates the proofs of [58, Theorems3–4, Proposition 15,Corollary 16] and [57, Theorem
5.1−5.2, 5.4, Corollary 5.3].

First we explain how ideas of Lawson [44, 45] lead to closed connected smooth
manifolds M of dimension d with the following properties:

(i) M is stably parallelisable.
(ii) Every element τ ∈Wh(π1(M)) is realised by an inertial h-cobordismWτ : M �

M such that the induced automorphism of π1(M) is the identity.

For this, fix a finitely-presented group π for which the map GLn(Z[π ]) → Wh(π)

is surjective for some n, and a based connected finite 2-complex X with π1(X) = π .
Choose an embedding X ↪→ R

d+1 (which exists for d ≥ 4) and a regular neigh-
bourhood N with a retraction r : N → X as the homotopy inverse of the inclusion
inc : X ↪→ N . Choosing M := ∂N , the first condition is satisfied since the d-manifold
M embeds by construction intoR

d+1 with trivial normal bundle. To show (ii), use that
any τ ∈Wh(π) arises as the torsion of a self-equivalence fτ : X∨∨

n S
2 → X∨∨

n S
2

that is the identity on X , so it in particular induces the identity on π (represent τ by
a matrix A ∈ GLn(Z[π ]), use it as instruction of how to construct a π -equivariant
self-equivalence of the universal cover, and take the quotient by π ). The composition
(inc ◦ fτ ◦ r) : N → N is homotopic to an embedding eτ : N ↪→ int(N ) (make it
an immersion by Smale–Hirsch theory and then an embedding by general position)
and its complement Wτ = N\eτ (int(N )) is the inertial h-cobordism M � M sought
after (use excision for (ii)).
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If π is finite, then GL2(Z[π ]) → Wh(π) is surjective [4, V, §4], so the above
construction applies to give a d-manifold M for any d ≥ 4 with π1(M) = π and
properties (i) and (ii). For τ ∈Wh(π), we pick Wτ as in (ii) and consider the induced
self-equivalence gτ : M → M . As M is stably parallelisable, gτ clearly stabilises
[T sM] ∈ [M, BO]. The Whitehead torsion of gτ is given by τ + (−1)d+1τ ∈Wh(π)

(use the composition and duality formula for Whitehead torsions [50, Lemma 7.8,
§10]), so since the involution onWh(π) is trivial after passing to the maximal torsion-
free quotient Wh(π)/tors (see [50, Corollary 6.10] or [62, p. 611]), the torsion of gτ

is 2 · [τ ] ∈ Wh(π)/tors if d is odd. Hence as long as Wh(π)/tors is non-trivial, the
subgroup π0(hAuts(M))[T sM] ≤ π0(hAut(M))[T sM] has infinite index. Examples of
finite groups π with non-trivial Wh(π)/tors abound, e.g. Z/5Z will do [50, Example
6.6].

3 Finiteness properties of stable homology groups

A key ingredient in the proof of Theorem A is Galatius–Randal-Williams’ work [19–
21] on moduli spaces of manifolds and its extension by Friedrich [18] to certain
nontrivial fundamental groups. This section serves to use their work to deduce finite-
ness results for the homology of BDiff(M) for certain M in a range.

In order to state a form of their results suitable for our purposes, we fix a closed
manifold M of even dimension 2n and a factorisation over a connected space B

M
�M−→ B

λ−→ BO(2n) (14)

of a map M → BO(2n) classifying the tangent bundle of M . The result by the
aforementioned authors we are about to state concerns the homotopy quotient

BDiffλ(M) := Bun(T M, λ∗γ2n) � Diff(M) (15)

of the action via the derivative of Diff(M) on the space of bundle maps from the
tangent bundle T M to the pullback λ∗γ2n along λ of the universal 2n-plane bundle
γ2n → BO(2n). The map �M is covered by such a bundle map �M : T M → λ∗γ2n ,
denoted by the same symbol. This determines a path component of (15), which we
denote by BDiffλ(M)�M ⊂ BDiffλ(M). Furthermore, we fix a Moore–Postnikov
n-factorisation

M
ρM−→ B ′ u−→ B (16)

of �M , i.e. a factorisation into an n-connected cofibration ρM followed by an n-co-
connected fibration u. We abbreviate θ := (λ◦u) and denote byMTθ := Th(−θ∗γ2n)
the Thom spectrum of the inverse of the pullback of the universal bundle along
θ : B ′ → BO(2n). This spectrum admits an action by the group-like topological
monoid hAut(u) of self-weak equivalences of B ′ that commute with B ′ → B. A
parametrised form of the Pontryagin–Thom construction gives rise to a canonical
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homotopy class of maps

BDiffλ(M)�M −→ �∞MTθ � hAut(u) (17)

whose effect on homology is subject of the work of Galatius–Randal-Williams men-
tioned above.

Their main result implies that if M is simply-connected and of dimension 2n ≥ 6,
the map (17), when regarded as a map onto the path component it hits, induces an
isomorphism in homology in a range of degrees depending on the genus g(M, �M )

of (M, �M ). The genus is defined as the maximal number of disjoint embeddings
e : Sn × Sn\int(D2n) ↪→ M such that (�M ◦ e) : Sn × Sn\int(D2n) → B is null-
homotopic. Their work was extended by Friedrich [18] to manifolds with certain
nontrivial fundamental groups. The version of this result we shall use reads as follows
(see [22, Theorem 12.4.5, Section 12.4.7]).

Theorem 3.1 (Friedrich, Galatius–Randal-Williams) For a polycyclic-by-finite group
π , there exists a function ϕπ : N0 → N0 with limg→∞ ϕπ(g) = ∞ such that for any
closed connected manifold M of dimension d = 2n ≥ 6 with π1(M) ∼= π and a
factorisation as in (14), the map

BDiffλ(M)�M −→ �∞MTθ � hAut(u),

regarded as a map onto the path-components hit, induces an isomorphism in integral
homology in degrees ≤ ϕπ(g(M, �M )).

Remark 3.2 The works mentioned above provide an explicit choice of ϕπ , namely
ϕπ(g) = 1

2 (g − h(π) − 6) where h(π) is the Hirsch length of π—the number of
infinite cyclic summands in the factors of a subnormal series. This choice plays no
role in our arguments.

Theorem3.1 serves us to prove a finiteness result for the homology of BDiffλ(M)�M
in a range and under some conditions on B. One of the conditionswe opt for is technical
and certainly not optimal, but it suffices for our purposes. It involves

(i) the k-truncation τ≤k X of a space together with its canonical map X → τ≤k X ,
(ii) the rationalisation above the fundamental group of a space X , i.e. the fibrewise

rationalisation Xfib
Q

of the 1-truncation X → τ≤1X which comes with a natural

map X → Xfib
Q

over τ≤1X (see the proof of Proposition 2.1),
(iii) the generalised Eilenberg–MacLane space K (G, A) associated to a group G

with a degree-preserving action on a graded abelian group A =⊕

n≥2 An . This
is the based space given as the homotopy orbits K (A)hG of the G-action on the
Eilenberg–MacLane space K (A) =∏

i≥2 K (A, n). It has the property that there
exist isomorphisms

πk(K (G, A)) ∼=

⎧

⎪

⎨

⎪

⎩

G if k = 1,

An if k = n,

0 otherwise,
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with respect to which the action of π1(K (G, A)) on πn(K (G, A)) is the given
one. There is a preferred twisted cohomology class ι ∈ Hn(K (G, A); An) with
the property that for a connected based space X there is a natural bijection

[X , K (G, A)]∗ ∼=⊔

φ∈Hom(π1(X),G)

∏

n≥2 Hn(X;φ∗An),

induced by pulling back ι.

Theorem 3.3 Fix a closed connected manifold M of dimension d = 2n ≥ 6 and a
factorisation as in (14) such that

(i) π1(M) and π1(B) are finite,
(ii) πk(B) is finitely generated for k ≥ 2,
(iii) τ≤2n Bfib

Q
is weakly equivalent to a generalised Eilenberg–MacLane space.

Then the group Hk(BDiffλ(M)�M ;Z) is finitely generated for k ≤ ϕπ1(M)(g(M, �M ))

where ϕπ1(M) is a function as in Theorem 3.1.

Example 3.4 Taking λ to be the canonical factorisation

M
�M−→ BO(2n)

id−→ BO(2n),

we have BDiffλ(M)�M � BDiff(M). In this case, the second and third assumptions
of Theorem 3.3 are always satisfied, since there is a weak homotopy equivalence

BO(2n)fib
Q
→ K

(

Z/2, Q
−[2n] ⊕⊕

1≤i≤n−1 Q
+[4i])

induced by the twisted Euler class and the Pontryagin classes. Here the superscript ±
indicates whether Z/2 acts trivially or by multiplication with −1.
Proof of Theorem 3.3 In viewof Theorem3.1 and the fact that finite groups haveHirsch
length 0, it suffices to show that the homology of the path component

(�∞MTθ � hAut(u))�M ⊂ �∞MTθ � hAut(u)

hit by (17) is degreewise finitely generated. As explained in [22, Section 12.4.3], the
orbit-stabiliser theorem implies that this path component is equivalent to the homotopy
quotient�∞ρM

MTθ�hAut(u)ρM of the path component�∞ρM
MTθ ⊂ �∞MTθ induced

by the manifolds M together with the map ρM : M → B ′ from (16), acted upon by
the stabiliser hAut(u)ρM ⊂ hAut(u) of [M, ρM ] ∈ π0(MTθ). This quotient fits into a
fibration

�∞ρM
MTθ −→ �∞ρM

MTθ � hAut(u)ρM −→ BhAut(u)ρM ,

so the Serre spectral sequence shows that it suffices to prove that the fibre has degree-
wise finitely generated homology groups and that the base is of finite type. To see the
former, it suffices to show that the homology of the Thom spectrum MTθ is bounded
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below and degreewise finitely generated, for which we use the Thom isomorphism
Hk(MTθ;Z) ∼= Hk+2n(B ′;Zω) involving the local system Zω induced by the vector
bundle (λ◦u)∗γ2n over B ′. To see that the homology H∗(B ′;Zω) is degreewise finitely
generated, note that as ρM : M → B ′ is n-connected, the space B ′ is connected, has
finite fundamental group, and its higher homotopy groups are finitely generated up to
degree (n − 1) as a consequence of Corollary 1.13. In degrees ≥ n, the group πk(B ′)
agrees (up to passing to a subgroup if k = n) with πk(B) which is finitely generated
by assumption. Lemma 1.12 thus shows that H∗(B ′;Zω) is indeed degreewise finitely
generated.

This leaves uswith showing that BhAut(u)ρM is of finite type forwhichwe consider
the canonical composition

π0(MTθ) −→ π0(MTθ)⊗Q ∼= H0(MTθ;Q) ∼= H2n(B
′;Qω)

where the last two isomorphisms are induced by the Hurewicz and Thom isomor-
phisms respectively. We observed above that π0(MTθ) is finitely generated, so
the first map has finite kernel, which implies that the stabiliser π0(hAut(u))ρM of
[M, ρM ] ∈ π0(MTθ) has finite index in the stabiliser π0(hAut(u))ρM,Q

of the image
[M, ρM ]Q ∈ H2n(B ′;Qω) under the above composition. In view of Proposition 1.9we
may instead show that the group of path components of hAut(u)ρM,Q

is of finite type
and that its higher homotopy groups are finitely generated. As u is n-co-connected,
it is in particular 2n-co-connected, so it follows from Lemma 3.5 below that we may
replace hAut(u)ρM,Q

by the stabiliser

hAut(τ≤2nu)ρM,Q
⊂ hAut(τ≤2nu)

of [M, ρM ]Q ∈ H2n(B ′;Qω) ∼= H2n(τ≤2n B ′;Qω). We now consider the fibration
sequence

hAut(τ≤2nu) −→ hAut(τ≤2n B′)
(τ≤2nu)◦(−)−−−−−−−−→ Map(τ≤2n B′, τ≤2n B) (18)

with homotopy fibre taken over τ≤2nu. The base and total spaces of this fibration
have at all basepoints finitely generated higher homotopy groups and polycyclic-by-
finite fundamental group by Corollary 1.15 since τ≤2n B ′ as finite type as a result of
Corollary 1.11, so the same holds for the fibre. Thus it only remains to show that the
group π0(hAut(τ≤2nu)ρM,Q

) is of finite type. As the groups π1(B) and π1(B ′) are
finite, it is straightforward to see that this group is commensurable up to finite kernel
to the analogous group π0(hAut

π1∗ (τ≤2nu)ρM,Q
) of pointed homotopy automorphisms

over τ≤2nu (considered as a pointed map) that induce the identity on fundamental
group. Being of finite type is invariant under commensurability up to finite kernel by
Lemma 1.7, so we may restrict our attention to π0(hAut

π1∗ (τ≤2nu)ρM,Q
). Using the

pointed analogue of (18), we see that this group fits into an extension whose kernel
is a quotient of the polycyclic-by-finite group π1(Map∗(τ≤2n B, τ≤2n B ′), τ≤2nu) and
whose quotient is the stabiliser

π0(hAut
π1∗ (τ≤2n B ′)ρM,Q

)τ≤2nu ≤ π0(hAut
π1∗ (τ≤2n B ′)ρM,Q

) (19)
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of [τ≤2nu] ∈ π0(Map∗(τ≤2n B ′, τ≤2n B))with respect to the action by precomposition.
Being of finite type is preserved under extensions (see Lemma 1.2) and polycyclic-
by-finite groups are of finite type (see Lemma 1.5), so the claim follows once we
show that the subgroup (19) is of finite type. Since B has finitely generated homotopy
groups, an induction over a Postnikov tower shows that the map

π0(Map∗(τ≤2n B ′, τ≤2n B)) −→ π0(Map∗(τ≤2n B ′, τ≤2n Bfib
Q

))

induced by postcomposition with the fibrewise rationalisation has finite kernel, so the
stabiliser of [τ≤2nu] ∈ π0(Map∗(τ≤2n B ′, τ≤2n B)) has finite index in the stabiliser
of the image in π0(Map∗(τ≤2n B ′, τ≤2n Bfib

Q
)). As τ≤2n Bfib

Q
is weakly equivalent to a

generalised Eilenberg-MacLane spaces, we see that the subgroup

π0(hAut
π1∗ (τ≤2n B ′)ρM,Q

)τ≤2nu ≤ π0(hAut
π1∗ (τ≤2n B ′))

has finite index in the subgroup given as the common stabiliser of [M, ρM ]Q ∈
H2n(B ′;Qω) and the classes σk ∈ Hk(τ≤2n B ′;πk(B)⊗Q) for 2 ≤ k ≤ 2n induced
by τ≤2nu, where π1(τ≤2n B ′) acts on πk(B) via π1(τ≤2nu). This exhibits the claim as
a consequence of Proposition 2.1. ��

We finish this section with the lemma promised in the previous proof. Given
CW complexes X and X ′ and maps p : X → B and p′ : X ′ → B, we denote by
MapB(X , X ′) the space of pairs of a map f : X → X ′ and a homotopy from p to
p′ ◦ f , in the compact-open topology.

Lemma 3.5 If p : X → B is n-co-connected, then the map induced by n-truncation

MapB(X , X) −→ Mapτ≤n B(τ≤n X , τ≤n X)

is a weak homotopy equivalence.

Proof Denoting the n-truncation by τ : X → τ≤n X , we consider the commutative
diagram

MapB(X , X) Mapτ≤n B(τ≤n X , τ≤n X)

Mapτ≤n B(X , τ≤n X) .

τ◦(−) (−)◦τ

The claim will follow by showing that the diagonal maps are weak equivalences. The
right diagonal map agrees with the induced map on horizontal homotopy fibres of the
square

Map(τ≤n X , τ≤n X) Map(τ≤n X , τ≤n B)

Map(X , τ≤n X) Map(X , τ≤n B)

(τ≤n p)◦(−)

(−)◦τ (−)◦τ
(τ≤n p)◦(−)
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whose vertical maps are weak equivalences by obstruction theory, so the right diagonal
map is a weak equivalence as well. That the left diagonal arrow is a weak equivalence
follows from the fact that the square

X τ≤n X

B τ≤n B

p τ≤n p

is homotopy cartesian because p is n-co-connected. ��

4 Finiteness properties of embedding spaces

Our proof of Theorem A involves various comparisons between spaces of diffeomor-
phisms and spaces of self-embeddings. In this section we focus on proving finiteness
properties of spaces of embeddings by use of embedding calculus, as developed by
Goodwillie, Klein, and Weiss [26, 27, 68, 69]. These results might be useful in other
situations, so we phrase them in more generality than needed for the proof of Theo-
rem A.

4.1 Triad embeddings

We call a submanifold N ⊂ M of a manifold M a compact triad-pair if N and M
are compact and N comes with a decomposition ∂N = ∂0N ∪ ∂1N of its boundary
into (possibly empty or disconnected) compact submanifolds ∂0N and ∂1N that meet
in a corner such that ∂0N × [0, 1) = (∂M × [0, 1)) ∩ N for a choice of collar
∂M × [0, 1] ⊂ M . Given a compact triad-pair N ⊂ M , we denote by Emb∂0(N , M)

the space of embeddings e : N ↪→ M that agree with the inclusion N ⊂ M on a
neighborhood of ∂0N , in the smooth topology.

Remark 4.1 Embedding calculus as recalled below is usually stated for triads with
∂1N = ∅, but the general case can easily be deduced from this, as explained in [38,
Remark 1.2].

4.2 Recollection of embedding calculus

Let N ⊂ M be a compact triad-pair with dim(M) = d ≥ 3. Weiss’ Embedding
calculus [68] provides a tower of approximations

· · · −→ T3Emb∂0(N , M) −→ T2Emb∂0(N , M) −→ T1Emb∂0(N , M)

under Emb∂0(N , M), such that the map

Emb∂0(N , M) −→ TrEmb∂0(N , M) (20)

is (−(h − 1) + r(d − 2 − h))-connected where h is the relative handle dimension
of (N , ∂0N ), i.e. the minimum over the maximal indices of handle decompositions
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of N relative to ∂0N (see [27, Corollary 2.5]). The space T1Emb∂0(N , M) is weakly
homotopy equivalent to the space Bun∂0(T N , T M) of bundle monomorphisms that
extend the identity on T N |∂0N , and under this identification (20) can be identified with
the derivative (cf. [68, Example 10.3]).

Writing ι : N ↪→ M for the inclusion, the homotopy fibres (also called the layers)

hofibTr−1(ι)(TrEmb(N , M) −→ Tr−1Emb(N , M)) (21)

admit an explicit description in terms of configuration spaces for r ≥ 2. Details are
given in [41, Section 3.3.2]—following [68, 69]—in the special case ofmanifolds with
boundary and embedding of codimension zero, but this can be easily generalised. It
suffices for us to know that this homotopy fibre is given by a relative section space

Sect∂0Cr [N ])(ι∗Zr (M)→ Cr [N ])

of a fibration over a pair (Cr [N ], ∂0Cr [N ]) that is homotopy equivalent to a finite
CW pair. Roughly, Cr [N ] is obtained from the configuration space of r unordered
points in N by allowing particles to be infinitesimally close, and ∂0Cr [N ] consists
of configurations where either at least two points are infinitesimally close or at least
one lies in ∂0N . The fibre of this fibration agrees with the total homotopy fibre of the
cubical diagram (see [51, Def. 5.5.1] for a definition)

r := {1, . . . , r} ⊃ I �−→ Emb(r \ I , M). (22)

4.3 Finiteness properties through embedding calculus

Assuming the handle dimension of (N , ∂0N ) is so that the connectivity range of (20)
increases with r , we may prove finiteness properties of Emb∂0(N , M) by separately
considering T1Emb∂0(N , M) and all layers (21). This is carried out in Proposition 4.5
below, after two preliminary lemmas.

Lemma 4.2 Let N ⊂ M be a compact triad-pair such that at all basepoints πk(M) is
finitely generated for k ≥ 2 and polycyclic-by-finite for k = 1. Then at all basepoints
πk(Bun∂0(T N , T M)) is finitely generated for k ≥ 2 andpolycyclic-by-finite for k = 1.

Proof There is a fibre sequence

Sect∂0(Lin(T N , f ∗T M)→ N ) −→ Bun∂0(T N , T M) −→ Map∂0
(N , M)

with fibre taken over a map f ∈ Map∂0
(N , M). Here Lin(T N , f ∗T M) → N is

the bundle over N with fibre over n ∈ N given by the space of linear injections
TnN → T f (n)M , which is homotopy equivalent to GLd(R)/GLk(R) where k =
codim(N ⊂ M). The derivative of the inclusion ∂0N ⊂ M induces a section over
∂0N . Lemma 1.14 now shows that base and fibre of this fibration have polycyclic-by-
finite fundamental groups and finitely generated higher homotopy groups, so the same
holds for the total space, as claimed. ��
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Lemma 4.3 Let M be a compact smooth manifold of dimension d ≥ 3 with π1(M)

finite at all basepoints. Then the kth homotopy group of the total homotopy fibre of
(22) is finitely generated for k ≥ 2 and finite for k = 1.

Proof Since total homotopy fibres can be computed iteratively [51, Proposition 5.5.4],
it suffices to prove that for all s ≤ r , πk(Emb(s, M)) is finitely generated for k ≥ 2
and finite for k = 1. This will follow by induction over s from the fibre sequence

M \ {s − 1 points} −→ Emb(s, M) −→ Emb(s − 1, M)

once we prove that πk(M \ {s − 1 points}) is finitely generated for k ≥ 2 and finite
for k = 1. This follows from Lemma 1.12, using the fact that the manifold M \ {s −
1 points} has the same fundamental group as M (using transversality and d ≥ 3)
and that its homology is finitely generated in each degree (using the Mayer–Vietoris
sequence). ��

Remark 4.4 For a connected d-manifold M with πd−1(M) and πd(M) finitely gener-
ated and d ≥ 3, πd−1(Emb(2, M)) is finitely generated if and only if π1(M) is finite
[29, Thm 2].

Proposition 4.5 Let N ⊂ M be a compact triad-pair. If ∂0N ⊂ N has relative handle
dimension at most d − 3 and at all basepoints π1(M) is finite, then at all basepoints
πk(Emb∂0(N , M)) is finitely generated for k ≥ 2 and polycyclic-by-finite for k = 1.

Proof We fix an embedding ι ∈ Emb∂0(N , M). By the assumption on the handle
dimension of N , the connectivity of the map Tr : Emb∂0(N , M)→ TrEmb∂0(N , M)

tends to∞ with r . Hence it suffices to show that πk(TrEmb∂0(N , M); Tr (ι)) has the
desired property for all r ≥ 1, which we do by induction over r ≥ 1. The base case
is Lemma 4.2 since πk(M) is finitely generated by Corollary 1.13. For the induction
step we consider the fibration sequence

Sect∂0
(

ι∗Zr (M)→ Cr [N ]
) −→ TrEmb∂0(N , M) −→ Tr−1Emb∂0(N , M)

with fibre taken over Tr−1(ι). By the induction hypothesis, the homotopy groups of the
base at the basepoint Tr−1(ι) are finitely generated for k ≥ 2 and polycyclic-by-finite
for k = 1, so it suffices to show that the homotopy groups of the path components of
the fibre satisfy the same property. As mentioned above, the pair (Cr [N ], ∂0Cr [N ])
is homotopy equivalent to a finite CW pair. By Lemma 4.3 the homotopy groups the
fibre of ι∗Zr (M)→ Cr [N ] have the desired property, so it follows from Lemma 1.14
that the homotopy groups of all components of the section space have this property
and hence the same holds for πk(TrEmb∂0(N , M); Tr (ι)). ��

Remark 4.6 Proposition 4.5 was certainly known to experts in embedding calculus. A
variant of this result for 1-connected manifolds was stated by Goodwillie in [25] and
a variant for certain self-embedding spaces featured in [43, Proposition 3.15].

123



Finiteness properties of automorphism spaces...

5 Finiteness properties of diffeomorphism groups

The proof of Theorem A is divided in two steps: in Sect. 5.2 we prove the claim under
the additional assumption that M is connected and has finite second homotopy group,
from which we deduce the general case in Sect. 5.3 by surgery. The first step involves
a variant of a fibre sequence known as the Weiss fibre sequence, and we explain this
first.

5.1 TheWeiss fibre sequence

Let M be a compact smooth manifold with and N ⊂ ∂M a compact codimension 0
submanifold of the boundary. There is a fibre sequence of the form

BDiff∂ (M) −→ BEmb
∼=
∂M\int(N )(M) −→ B2Diff∂ (N × [0, 1]) (23)

where Diff∂ (M) is the group of diffeomorphisms of M in the smooth topology that fix
a neighborhood of the boundary pointwise and Emb

∼=
∂M\int(N )(M) is the topological

monoid of self-embeddings of M in the smooth topology that agree with the iden-
tity on a neighborhood of ∂M \ int(N ) and are isotopic through such embeddings
to a diffeomorphism of M fixing ∂M pointwise. The space B2Diff∂ (N × [0, 1]) is
the delooping of BDiff∂ (N × [0, 1]) with respect to the A∞-structure induced by
juxtaposition.

A non-delooped form of this fibre sequence follows from the isotopy extension
theorem and featured in the special case N = Dd−1 in Weiss’ work on Pontryagin
classes [70, Remark 2.1.3]. Building on Weiss’ work, the third-named author [43]
proved finiteness results for automorphism spaces of 2-connected manifolds for which
he constructed the delooped sequence (23) for N = Dd−1 (see Section 4 loc.cit.). The
general case follows in the same way.

5.2 The case of finite second homotopy group

The goal of this section is to prove a weaker version of TheoremA, which additionally
assumes that M is connected and π2(M) is finite. The latter is only used once, to show
that a set of embeddings is finite in Lemma 5.3.

Theorem 5.1 Let M be a closed connected manifold of dimension 2n ≥ 6. If π1(M)

and π2(M) are finite, then the groups πk(BDiff(M)) are finitely generated for all
k ≥ 2.

Given M as in Theorem 5.1, we fix a handle decomposition of M and decompose
M into two codimension 0 submanifolds

M = M≤2 ∪ M>2

where M≤2 is the union of the handles of index ≤ 2 and M>2 = M\int(M≤2).
These submanifolds intersect in ∂M≤2 = ∂M>2. We shall also consider the stabilised
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manifolds

M>2
g := M>2�(Sn × Sn)�g, and Mg := M�(Sn × Sn)�g for g ≥ 0,

wherewemodel the first connected sumby gluing themanifold ([0, 1]×∂M>2
g )�(Sn×

Sn)�g to M>2 along ∂M>2 ⊂ M>2, so we have a canonical identification ∂M>2
g
∼=

∂M>2. The second connected sum is obtained from M>2
g by gluing on M≤2 along

∂M>2 = ∂M≤2. Fixing a choice of closed embedded disc D2n ⊂ int(M≤2), we
moreover define

Mg,1 := Mg\int(D2n).

so we have inclusions

M>2 ⊂ M>2
g ⊂ Mg,1 ⊂ Mg and M≤2 ⊂ Mg.

Note that these definitions include the case g = 0 where we have M0 = M , and
M>2

0 = M>2.
Our proof of Theorem 5.1 centres around two fibre sequences

BDiff∂ (M
>2
g ) −→ BEmb

∼=(M>2
g ) −→ B2Diff∂ (∂M

>2 × I ) and (24)

Emb(M≤2, Mg)ι2 −→ BDiff∂ (M
>2
g ) −→ BDiff(Mg)ι2 . (25)

The sequence (24) is the Weiss fibre sequence (23) for M = M>2
g and N =

∂M>2. To explain the second sequence, we write ι2 : M≤2 ↪→ Mg for the inclu-
sion and denote by Emb(M≤2, Mg)ι2 ⊂ Emb(M≤2, Mg) the component of ι2 and
by Diff(Mg)ι2 ⊂ Diff(Mg) the subgroup of the path components that stabilise
[ι2] ∈ π0(Emb(M≤2, Mg)) under postcomposition. With this notation in place, (25)
is induced by extending diffeomorphisms by the identity along M>2

g ⊂ Mg .
Using these fibre sequences, we will prove Theorem 5.1 via an induction involving

the following four statements. During the proof, we abbreviate finitely generated by
f.g. and fix a manifold M as in Theorem 5.1 as well as a function ϕπ1(M) : N0 → N0
as in Theorem 3.1.

(a)k πi (B2Diff∂ (∂M>2 × I )) is f.g. for all i with 2 ≤ i ≤ k + 1,
(b)k πi (BDiff(Mg)ι2) is f.g. for all pairs (i, g) with 1 ≤ i ≤ k and g ≥ 0,
(c)k Hi (BDiff(Mg)ι2;Z) is f.g. for all pairs (i, g) with 1 ≤ i ≤ k+1 ≤ ϕπ1(M)(g),
(d)k Hi (BDiff∂ (M>2

g );Z) is f.g. for all pairs (i, g) with 1 ≤ i ≤ k ≤ ϕπ1(M)(g).

The induction steps rely on the following four assertions which we justify later.

(A1) At all basepoints, the higher homotopy groups of Emb(M≤2, M) and
Emb∼=(M>2

g ) for g ≥ 0 are f.g. and their fundamental groups are polycyclic-
by-finite.

(A2) The spaces Emb(M≤2, M)ι2 and BEmb∼=(M>2
g ) are of finite type for g ≥ 0.

(A3) The group π0(Diff(Mg)ι2) is of finite type for g ≥ 0.
(A4) (b)k implies (c)k .
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Proof of Theorem 5.1 assuming (A1)–(A4) Since Theorem 5.1 is a statement about
higher homotopy groups, we may replace BDiff(M) by the space BDiff(M)ι2 .
Combining this with (A1), the fibre sequence (25) for g = 0, and the fact that sub-
groups of polycyclic-by-finite groups are f.g., we see that it suffices to show that
πk(BDiff∂ (M>2)) is f.g. for k ≥ 2. Combining (24) for g = 0 with (A1), this in turn
reduces it to showing that πk(B2Diff∂ (∂M>2 × I )) is f.g. for k ≥ 2; this is statement
(a)k for all k ≥ 0.

The proof now proceeds by simultaneously proving (a)k–(d)k for all k ≥ 0 via an
induction on k. The case k = 0 holds either trivially or as a result of (A3), so the
induction is completed by the following chain of implications:

(b)k and (c)k ⇒ (d)k+1. Consider the Serre spectral sequence of (25), which has the
form

IE2
p,q = Hp

(

BDiff(Mg)ι2; Hq(Emb(M≤2, Mg)ι2;Z)
) �⇒ Hp+q(BDiff∂ (M>2

g );Z).

By (A2), theZ[π0(Diff(Mg)ι2 ]-module Hq(Emb(M≤2, Mg)ι2;Z) is f.g. as an abelian
group for all q ≥ 0. Therefore, using (b)k and (A3), an application of Corollary 1.11
shows that IE2

p,q is f.g. for p ≤ k, while (c)k implies that IE2
k+1,0 is f.g. for k + 1 ≤

ϕπ1(M)(g). We thus have that IE2
p,q is f.g. for p + q ≤ k + 1 and k + 1 ≤ ϕπ1(M)(g),

so Hp+q(BDiff∂ (M>2
g );Z) is f.g. in the same range; this is (d)k+1.

(a)k and (d)k+1⇒ (a)k+1. Pick g ≥ 0 with k + 1 ≤ ϕπ1(M)(g) and consider the Serre
spectral sequence induced by the fibre sequence(24)

IIE2
p,q = Hp

(

B2Diff∂ (∂M>2 × I ); Hq (BDiff∂ (M>2
g ;Z)

) �⇒ Hp+q (BEmb
∼=(M>2

g );Z).

From (a)k and Corollary 1.11, it follows that IIE2
p,0 is f.g. for p ≤ k+1. From (d)k+1,

we obtain that IIE2
0,q is f.g. for q ≤ k+1. As B2Diff∂ (∂M>2× I ) is 1-connected, the

local systems involved in the E2-page are trivial, so the universal coefficient theorem
implies that IIE2

p,q is f.g. for p, q ≤ k + 1. Since E∞p,q is f.g. as a result of (A2), we
conclude that IIE2

p,0 = Hp(B2Diff∂ (∂M>2 × I );Z) is f.g. for p ≤ k + 2, so (a)k+1
follows from Lemma 1.12.

(a)k+1⇒ (b)k+1. Using (A1) and the fact that subgroups of polycyclic-by-finite groups
are finitely generated, this follows from the fibre sequences (24) and (25).

(b)k+1⇒ (c)k+1. This is (A4). ��
In the following four subsections, we establish the remaining assertions (A1)–(A4).

Assertion (A1): Emb(M≤2,M) and Emb(M>2
g ) have f.g. homotopy groups and

polycyclic-by-finite fundamental groups

We begin with the following auxiliary lemma.

Lemma 5.2 Fix g ≥ 0 and let M be as in Theorem 5.1. The following manifolds have
handle dimension ≤ 2n − 3:
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(i) M≤2 and
(ii) M>2

g .

Moreover, the following groups are finite:

(iii) π1(M>2
g ),

(iv) π1(Mg), and
(v) π2(Mg).

Proof By construction, the handle dimension of M≤2 is at most 2 ≤ 2n−3. Reversing
the handle decomposition of M , we see that the handle dimension of M>2 is at most
2n−3 aswell. ThemanifoldM>2

g can obtained fromM>2 by attaching only n-handles,
so the handle dimension of M>2

g is at most 2n− 3 too. This completes the proof of (i)
and (ii).

To prove (iii) note that since M is obtained from M≤2 by attaching handles of
index at least 3 and from M>2 by attaching handles of index at least 2n− 3 ≥ 3, both
inclusions M>2 ⊂ M and M≤2 ⊂ M are 2-connected, so π1(M>2) and π1(M≤2) are
finite since π1(M) is finite by assumption. This also implies finiteness of π1(M>2

g ),
since we already noted that M>2

g can obtained from M>2 by attaching n-handles.
For (iv) and (v), we use that Mg is obtained from Mg,1 by attaching a 2n-handle

to conclude that (a) πk(M0,1) is finite for k ≤ 2 since this holds for M = M0, and
that (b) it suffices to show the result for Mg,1. Now Mg,1 is obtained from M0,1 by
attaching n-handles and πk(M0,1) is finite for k ≤ 2, so π1(Mg,1) is finite for k ≤ 2
and the proof is completed. ��

Assertion (A1) now follows by applying Proposition 4.5 to M≤2 ⊂ M and M>2
g ⊂

M>2
g . The assumptions hold by Lemma 5.2 (i) and (ii), together with (iii) and (iv) for

g = 0.

Assertion (A2): Emb(M≤2,M)�2 and BEmb
∼=(M>2

g ) are of finite type

We first prove:

Lemma 5.3 For M as in Theorem 5.1, the set π0(Emb(M≤2, Mg)) is finite for g ≥ 0.

Proof Recall from Sect. 4 that the derivative map

Emb(M≤2, Mg) −→ Bun(T M≤2, T Mg) (26)

to the space Bun(T M≤2, T Mg) of bundle monomorphisms from T M≤2 to T Mg can
be identified with the first stage of the embedding calculus tower, so the map is (−(h−
1)+(2n−2−h))-connectedwhere h is the handle dimension ofM≤2. By construction,
we have h ≤ 2, so (26) is (2n − 5)-connected and hence a bijection on components
as we assumed 2n ≥ 6. It thus suffices to show that π0(Bun(T M≤2, T Mg)) is finite
for which we use the fibration

Sect(Iso(T M≤2, f ∗T Mg)→ M≤2) −→ Bun(T M≤2, T Mg) −→ Map(M≤2, Mg)
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of the proof of Lemma 4.2, with fibre taken over a map f ∈ Map(M≤2, Mg). The
long exact sequence of this fibration reduces the claim further to showing that both
π0(Map(M≤2, Mg)) and π0(Sect(Iso(T M≤2, f ∗T Mg))→ M≤2) are finite, for any
choice of f ∈ Map(M≤2, Mg). Since the first two homotopy groups ofMg are finite by
Lemma 5.2 (iv) and (v), and by Lemma 5.2 (i) themanifoldM≤2 has handle dimension
at most 2, the set π0(Map(M≤2, Mg)) is finite by Lemma 1.14. The same lemma also
takes care of the second set, since the fibre of Iso(T M≤2, f ∗T Mg)→ M≤2 is home-
omorphic to GL2n(R), which has two homotopy equivalent path components whose
first two homotopy groups are finite: π1(GL2n(R)) is of order 2 and π2(GL2n(R))

vanishes. ��
Lemma 5.3 allows us to prove the following.

Lemma 5.4 For g ≥ 0, the groups π0(Diff∂ (M>2
g )) and π0(Emb∼=(M>2

g )) are of

finite type. Moreover, π0(Diff∂ (M>2
g ) has polycyclic solvable subgroups in the sense

of section 1.1.5.

Proof We consider the exact sequence

π1(Emb(M≤2, Mg), ι2) −→ π0(Diff∂ (M>2
g )) −→ π0(Diff(Mg)) −→ π0(Emb(M≤2, Mg))

induced from the fibre sequence Diff∂ (M>2
g ) → Diff(Mg) → Emb(M≤2, Mg)

obtained by restriction along the inclusion ι2 : M≤2 ↪→ Mg . Arguing as in Asser-
tion (A1), using Lemma 5.2 (i) and (iv), and Proposition 4.5, the leftmost group in
this sequence is polycyclic-by-finite. The same holds for its image in π0(Diff∂ (M>2

g ))

since polycyclic-by-finite groups are closed under taking quotients (see Lemma 1.5).
Moreover, byLemma5.3 the setπ0(Emb(M≤2, Mg)) is finite, sowe have an extension

1 −→ F −→ π0(Diff∂ (M
>2
g )) −→ G −→ 1

where G ≤ π0(Diff(Mg)) is a finite index subgroup and F is polycyclic-by-finite.
This implies the claim for π0(Diff∂ (M>2

g )), since (a) being of finite type and having
polycyclic solvable subgroups is preserved under extensions and taking finite-index
subgroups by Lemmas 1.2 and 1.8, and (b) the groups F and π0(Diff(Mg)) have this
property; the former by Lemmas 1.8 and 1.7 and the latter by Theorem 2.6 since Mg

is a closed manifold.
To see the part concerning π0(Emb∼=(M>2

g )), we use the exact sequence

π2(B
2Diff∂ (∂M

>2 × I ))
∂−→ π1(BDiff∂ (M

>2
g )) −→ π1(BEmb

∼=(M>2
g )) −→ 0.

induced by (24), which yields an extension

1 −→ im(∂) −→ π0(Diff∂ (M
>2
g )) −→ π0(Emb

∼=(M>2
g )) −→ 1.

As π2(B2Diff∂ (∂M>2× I )) is abelian, so is im(∂). Since π0(Diff∂ (M>2
g )) has poly-

cyclic solvable subgroups by the first part, the abelian subgroup im(∂) is finitely
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generated and thus of finite type. Since π0(Diff∂ (M>2
g )) is also of finite type, it fol-

lows from Lemma 1.2 that π0(Emb∼=(M>2
g )) is of finite type as well and the proof is

finished. ��
Assertion (A2) now follows from two applications of the second part of Proposi-

tion 1.9, one to X = Emb(M≤2, M)ι2 and one to X = BEmb∼=(M≥2g ). In the former
case, the hypothesis that πk(X) is of finite type for all k is satisfied as a result of
Assertion (A1): for k ≥ 2 since it is abelian and finitely generated, and for k = 1
since it is polycyclic-by-finite and thus finite type by Lemma 1.7. In the latter case,
the hypothesis the hypothesis that πk(X) is of finite type is satisfied for k = 1 by
Lemma 5.4 and for k ≥ 2 since it is finitely generated abelian and thus of finite type
by Assertion (A1).

Assertion (A3):�0(Diff(Mg)�2) is of finite type

The group π0(Diff(Mg)ι2) is the stabiliser of the inclusion ι2 : M≤2 ↪→ Mg with
respect to the action of π0(Diff(Mg)) on π0(Emb(M≤2, Mg)) by precomposition. As
the latter is a finite set by Lemma 5.3, the subgroup

π0(Diff(Mg)ι2) ≤ π0(Diff(Mg))

has finite index.Asπ1(Mg) is finite byLemma5.2 (iv) andMg is closed,π0(Diff(Mg))

is of finite type by Theorem 2.6, so by Lemma 1.2 the same holds for π0(Diff(Mg)ι2).

Assertion (A4): (b)k implies (c)k

We begin by choosing aMoore–Postnikov 3-factorisation of a tangent classifier of M ,

M
�M−→ B

λ−→ BO(2n),

i.e. a factorisation into a 3-connected cofibration �M followed by a 3-co-connected
fibration.Asπ3(BO(2n))vanishes, this factorisation induces a canonical isomorphism

πk(B) ∼=
{

πk(M) if k ≤ 2,

πk(BO(2n)) if k ≥ 3.
(27)

Using the notation from Sect. 3, the map �M is covered by an element �M ∈
Bun(T M, λ∗γ2n), which in turn gives an element �M0,1 ∈ Bun(T M0,1, λ

∗γ2n)
by restriction. Up to homotopy, this extends uniquely to an element �Mg ∈
Bun(T Mg, λ

∗γ2n) by the following lemma.

Lemma 5.5 The class of �M0,1 has a unique preimage under the map

π0(Bun(T Mg, λ
∗γ2n)) −→ π0(Bun(T M0,1, λ

∗γ2n))

induced by the inclusion M0,1 ⊂ Mg.
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Proof The element �M0,1 gives a choice of tangent classifier τM0,1 : M0,1 → BO(2n)

which we may extend along the inclusions M0,1 ⊂ Mg,1 ⊂ Mg to tangent classifiers
τMg,1 and τMg respectively. Identifying the space of bundle maps Bun(T N , λ∗γ2n)
(up to weak equivalence) with the space of lifts of a tangent classifier N → BO(2n)

along λ : B → BO(2n), we see that the claim is equivalent to showing existence and
uniqueness of a solution to the lifting problem

M0,1 B

Mg BO(2n)

�M0,1

λ

τMg

As λ is 3-co-connected and the inclusion M0,1 ⊂ Mg is (n − 1)-connected, the
uniqueness part follows from obstruction theory and the assumption that n ≥ 3.
Existence would also follow from obstruction theory as long as n > 3, but to also
handle the case n = 3 we proceed differently. By obstruction theory it suffices to
construct a lift on Mg,1 ⊂ Mg . Viewing Mg,1 as the boundary connected sum Mg,1 ∼=
M0,1�Wg,1 with Wg,1 := (Sn × Sn)�g\int(D2n), this follows from the fact that Wg,1
is parallelisable: without loss of generality, τMg and �M0,1 are constant on M0,1∩Wg,1
and τWg,1 is constant on Wg,1, so that we may take the lift over Wg,1 to be constant as
well. ��

We write BDiffλ(Mg)�Mg
⊂ BDiffλ(Mg) for the path component induced by the

component [�Mg ] ∈ π0(Bun(T Mg, λ
∗γ2n)) ensured by the previous lemma.

Proposition 5.6 For k ≤ ϕπ1(M)(g), the group Hk(BDiffλ(Mg)�Mg
;Z) is finitely gen-

erated.

Proof This will follow from Theorem 3.3 once we show that the genus of (Mg, �Mg )

is at least g and that the hypotheses (i)–(iii) of that theorem are satisfied.
To prove the former, recall that the genus of (Mg, �Mg ) agrees with the maximal

number of disjointly embedded copies of e : Sn × Sn\D2n ↪→ Mg , such that the
map (�Mg ◦ e) : Sn × Sn\int(D2n) → B is nullhomotopic. Since Wg,1 = (Sn ×
Sn)�g\int(D2n) has genus g and there is an evident embedding e′ : Wg,1 ↪→ Mg =
M�(Sn × Sn)�g , it suffices to show that the map (�Mg ◦ e′) is null-homotopic. This
follows directly from the proof of Lemma 5.5.

To establish the hypotheses (i)–(iii) of Theorem 3.3, we use (27). Since BO(2n) has
f.g. homotopy groups and πk(M) is finite for k ≤ 1 and f.g. for k = 2, assumptions
(i) and (ii) are clearly satisfied. Postnikov 2-truncation, the twisted Euler class and the
Pontryagin classes further induce a map to a generalised Eilenberg–MacLane-space

Bfib
Q
−→ K

(

π1(B),
(

π2(B)⊗Q
)[2] ⊕Q[2n] ⊕⊕

1≤i≤n−1 Q[4i]
)

(28)

where the action of π1(B) ∼= π1(M) on π2(B)⊗Q is the usual one and the action on
π∗(BO(2n)) ⊗ Q = Q[2n] ⊕⊕

1≤i≤n−1 Q[4i] is via the map B → BO(2n). This

123



M. Bustamante et al.

map is an equivalence in view of (27), so assumption (iii) is satisfied and Theorem 3.3
applies. ��

The key lemma to reduce Assertion (A4) to Proposition 5.6 is the following.

Lemma 5.7 The image of the canonical map

π1(BDiff
λ(Mg)�Mg

) −→ π1(BDiff(Mg)) ∼= π0(Diff(Mg))

agrees with the subgroup π0(Diff(Mg)ι2) ⊂ π0(Diff(Mg)).

Proof There is a commutative diagram

π0(Diff(Mg)) π0(Bun(T Mg, T Mg)) π0(Bun(T Mg, λ
∗γ ))

π0(Emb(M≤2, Mg)) π0(Bun(T M≤2, T Mg)) π0(Bun(T M≤2, λ∗γ ))

2©
1© 3©

where the vertical arrows are inducedby restriction, the left horizontal arrowsby taking
derivatives, and the right horizontal arrows by postcomposition with �Mg . The image
in question agrees with the preimage of �Mg under the top horizontal composition
and the subgroup π0(Diff(Mg)ι2) is the preimage of ι2 under the left vertical map. As
the images of ι2 and �Mg in the bottom right corner agree by construction, it suffices
to show that the preimages under the numbered maps of the respective images of
[id] ∈ π0(Diff(Mg)) are singletons. In the proof of Lemma 5.3 we have seen that 1©
is a bijection, so there is nothing to show in this case. For 2©, the claim is equivalent
to uniqueness up to homotopy of lifts

M≤2 B

Mg BO(2n).

�M≤2

τMg

which follows by obstruction theory sinceMg can be obtained fromM≤2 by attaching
handles of index at least 3 and the right vertical map is 3-co-connected by construction.
Finally, we can show that 3© is injective. This is equivalent to showing the uniqueness
up to homotopy of a lift of �M≤2 : M≤2 → B along Mg → B, which is another
consequence of obstruction theory since M≤2 has handle dimension at most 2 and
Mg → B is 3-connected. ��

We are now in a position to prove Assertion (A4). Fixing k ≥ 1 and assuming that
πi (BDiff(Mg)ι2) is finitely generated for 1 ≤ i ≤ k and g ≥ 0, we need to show that
Hi (BDiff(Mg)ι2;Z) is finitely generated for 1 ≤ i ≤ k + 1 and k + 1 ≤ ϕπ1(M)(g).
Using Lemma 5.7, we see that there is a fibration sequence

Bun(T Mg, λ
∗γ )�Mg

−→ BDiffλ(Mg)�Mg
−→ BDiff(Mg)ι2
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where Bun(T Mg, λ
∗γ )�Mg

⊂ Bun(T Mg, λ
∗γ ) is the path component of �Mg . As

explained in the proof of Lemma 4.2, the space Bun(T Mg, λ
∗γ ) fits into a fibration

sequence

Sect(Iso(T Mg, f ∗λ∗γ )→ Mg) −→ Bun(T Mg, λ
∗γ ) −→ Map(Mg, B)

with fibre taken over a map f . Using that each path component of GL2n(R) has finite
fundamental group and finitely generated higher homotopy groups, it follows from
Lemma 1.14 that the fibre of this sequence has at all basepoints polycyclic-by-finite
fundamental group and finitely generated higher homotopy groups. The same holds
for the base and hence also for the total space, since it follows from (27) that also
B has finite fundamental group and finitely generated higher homotopy groups. In
particular, it follows from Corollary 1.11 that Bun(T Mg, λ

∗γ )�Mg
has degreewise

finitely generated integral homology groups. Using that πi (Diff(Mg)ι2) is of finite
type for i = 0 by (A3) and finitely generated for i ≤ k by assumption, we conclude
from Corollary 1.11 that for all g ≥ 0 the E2-page of the Serre spectral sequence

E2
p,q
∼= Hp(BDiff(Mg)ι2 ; Hq (Bun(T Mg, λ

∗γ )�Mg
;Z)) �⇒ Hp+q (BDiffλ(Mg)�Mg

;Z).

is finitely generated for p ≤ k and q ≥ 0. By Proposition 5.6, the group E∞p,q is
finitely generated for p + q ≤ ϕπ1(M)(g), so E2

k+1,0 ∼= Hk+1(BDiff(Mg)ι2;Z) is
finitely generated for k + 1 ≤ ϕπ1(M)(g), as claimed.

This finishes the proof of Assertion (A4) which was the remaining ingredient in
the proof of Theorem 5.1. Equipped with Theorem 5.1, we now proceed to prove
Theorem A.

5.3 Proof of Theorem A

Let M be a closed smooth manifold of dimension d = 2n ≥ 6 with finite fundamental
group. Our task is to show that BDiff(M) and all its homotopy groups are of finite
type. We first assume that M is connected.

By Theorem 2.6, the group π1(BDiff(M)) is of finite type, so in view of Proposi-
tion 1.9, it suffices to show that the higher homotopy groups of BDiff(M) are of finite
type or equivalently (as they are abelian) that they are finitely generated. To this end,
we consider the composition

π2(M)
h−→ H2(M;Z)

w2−→ Z/2 (29)

of the Hurewicz map with the homomorphism induced by the second Stiefel-Whitney
class of M . Since π2(M) is finitely generated (see Corollary 1.13), the kernel of
(29) is generated by finitely many elements, say x1, . . . , xk ∈ π2(M). By general
position, these generators can be represented (as unpointed homotopy classes) by an
embedding e : �k S2 ↪→ M . The normal bundle of this embedding is classified by the
second Stiefel-Whitney class, so is trivial as we chose the xi to lie in the kernel of (29).
Consequently, there is an extension e to an embedding of the form ē : �k S2×Dd−2 ↪→
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M . Restricting diffeomorphisms of M to this tubular neighborhood yields a fibration
sequence

Diff∂ (M\int(�k S2 × Dd−2)) −→ Diff(M) −→ Emb(�k S2 × Dd−2, M) (30)

with fibre taken over ē. As �k S2 × Dd−2 has handle dimension 2 ≤ d − 3 and M
has finite fundamental group, at all basepoints the group πk(Emb(�k S2× Dd−2, M))

is by Proposition 4.5 finitely generated for k ≥ 2 and polycyclic-by-finite for k = 1.
In particular, all subgroups of the fundamental groups are polycyclic-by-finite, so
in particular finitely generated (see Lemma 1.5). The long exact sequence in homo-
topy groups of (30) thus reduces the claim to showing that πk(Diff∂ (M\int(�k S2 ×
Dd−2)); id) is finitely generated for k ≥ 1. For this, we consider

χ(M) := M \ int(�k S2 × Dd−2) ∪�k S2×Sd−3 (�k D3 × Sd−3),

the manifold obtained from M by performing surgery on the embeddings that
constitute ē. This is a closed connected manifold with π1(χ(M)) ∼= π1(M) and
π2(χ(M)) ∼= π2(M)/� for a subgroup � ≤ π2(M) that contains the chosen generat-
ing set {x1, . . . , xk} ⊂ π2(M) of the kernel of (29) (cf. [48, Lemma 2]), so π2(χ(M))
is finite, in fact either trivial or of order 2. Similar to (30), we have a fibration sequence

Diff∂ (M\int(�k S2 × Dd−2)) −→ Diff(χ(M)) −→ Emb(�k D3 × Sd−3, χ(M)) (31)

by restricting diffeomorphisms to the canonical inclusion �k D3 × Sd−3 ⊂ χ(M).
As �k D3 × Sd−3 has handle dimension d − 3 and πk(χ(M)) is finite for k ≤ 2,
the base of this fibration has at all basepoints finitely generated homotopy groups by
Proposition 4.5, and the total space has finitely generated homotopy groups based
at the identity as a result of Theorem 5.1, so the fibre must have finitely generated
homotopy groups based at the identity as well. This completes the proof for connected
manifolds.

If M is disconnected, we write it as a disjoint union M ∼= �i∈I M�mi
i for a finite

set I , positive integers mi ≥ 1 for i ∈ I , and pairwise non-diffeomorphic connected
manifolds Mi . This decomposition induces an isomorphism of the form

Diff(M) ∼=∏

i∈I Diff(Mi ) ��mi ,

so the homotopy groups of Diff(M) fit into short exact sequences

0 −→∏

i∈I πk(Diff(Mi )) −→ πk(Diff(M)) −→∏

i∈I πk(�mi ) −→ 0

for k ≥ 0. By the first part, the kernel of this extension is of finite type and since finite
groups are of finite type (see Lemma 1.7), also the quotient is of finite type. Thus
πk(Diff(M)) is of finite type by Lemma 1.2 for k ≥ 0. The proof is completed by
applying Proposition 1.9.
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6 Variants and applications of Theorem A

In this section we prove variants of Theorem A for manifolds with boundary (see
Theorem 6.1) or tangential structures (see Theorem 6.3), and for spaces of homeo-
morphisms (see Theorem 6.5). We also explain an application to embedding spaces,
which includes Theorem C.

6.1 Manifolds with boundary

For manifolds with nonempty boundary, we can prove the following version of The-
orem A for the higher homotopy groups of BDiff∂ (M).

Theorem 6.1 Let d = 2n ≥ 6 and M a compact smooth d-dimensional mani-
fold, possibly with boundary. If at all basepoints π1(M) is finite, then the groups
πk(BDiff∂ (M)) are finitely generated for k ≥ 2.

Proof We fix a relative handle decomposition of the boundary inclusion ∂M ⊂ M ,
write M≤2 ⊂ M for the union of the handles of index ≤ 2, and set M>2 =
M\int(M≤2). Restriction to M≤2 induces a fibre sequence

Diff∂ (M
>2) −→ Diff∂ (M) −→ Emb∂ (M

≤2, M)

with fibre taken over the inclusion M≤2 ⊂ M . The relative handle dimension of
∂M ⊂ M≤2 at most 2, and as 2 ≤ d − 3, Proposition 4.5 implies that all path
components of the base of the sequence have finitely generated higher homotopy
groups and polycyclic-by-finite fundamental group, so the result follows from the
long exact sequence in homotopy groups once we prove that πk(Diff∂ (M>2); id) is
finitely generated for k ≥ 1. To see this, we consider the double

D(M>2) := M>2 ∪∂M>2 M>2,

which is a closed manifold. Its diffeomorphism group fits into a fibre sequence

Diff∂ (M
>2) −→ Diff(D(M>2)) −→ Emb(M>2, D(M>2)) (32)

induced by restriction, with fibre taken over the inclusion M>2 ⊂ D(M>2). As the
manifold D(M>2) is obtained from M>2 by attaching handles of index at least 3, and
M is obtained from M>2 by attaching handles of index at least d − 2, the inclusions
M>2 ⊂ D(M>2) and M>2 ⊂ M are both 2-connected. In particular π1(D(M>2))

is finite, so πk(Diff(D(M>2)); id) is of finite type for k ≥ 0 by Theorem A, so in
particular finitely generated. Now, by Proposition 4.5, every path component of the
base has finitely generated homotopy groups, since M>2 has handle dimension at
most d−3, which can be seen by reversing the handle decomposition of M . The result
follows from the long exact sequence in homotopy groups induced by (32). ��
Remark 6.2 ByProposition 1.9, to extend the full statement of TheoremA tomanifolds
with boundary, itwould suffice to show thatπ0(Diff∂ (M)) is of finite type.Theorem2.6
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does not apply if ∂M �= ∅ (cf.Remark 2.8), but there is a trick in the case that ∂M
admits a nullbordism W of (absolute) handle dimension ≤ 1. In this case, we have an
exact sequence

π1(Emb(W , M ∪∂M W ); ι) −→ π0(Diff∂ (M)) −→ π0(Diff(M ∪∂M W ))ι −→ 0

where the rightmost group is the stabiliser of the inclusion ι ∈ π0(Emb(W , M ∪∂M

W )). By Proposition 4.5 the leftmost group is polycyclic-by-finite, and so its image in
π0(Diff∂ (M)) is as well. Hence, by Lemma 1.2 in order to show that π0(Diff∂ (M)) is
of finite type, it suffices to show that π0Diff(M ∪∂M W )ι is of finite type, which would
follow from Theorem 2.6 and Lemma 1.2 if π0(Diff(M ∪∂M W ))ι ≤ π0(Diff(M ∪∂M

W )) had finite index. This is indeed the case, since π0(Emb(W , M ∪∂M W )) is finite
by an argument similar to the proof of Lemma 5.3.

This trick applies for instance to manifolds M◦ = M\int(D2n) obtained from a
closed manifold M of dimension 2n ≥ 6 with finite π1(M) by removing an embedded
disc.

6.2 Tangential structures

Let M be a manifold of dimension 2n and

M
�−→ B

λ−→ BO(2n)

be a factorisation of a choice of tangent classifier for M . This induces a bundle map
� : T M → λ∗γ2n and, by restriction, a bundle map �∂ : T M |∂M → λ∗γ2n . Denoting
by Bun∂ (T M, λ∗γ ; �∂) the space of bundle maps T M → λ∗γ2n extending �∂ , we
consider the homotopy quotient by the action via the derivative

BDiffλ∂ (M; �∂) := Bun∂ (T M, λ∗γ ; �∂) � Diff∂ (M)

and the path component BDiffλ∂ (M; �∂)� ⊂ BDiffλ∂ (M; �∂) induced by �.

Theorem 6.3 Let M be a compact smooth manifold of dimension 2n ≥ 6, possibly
with boundary. If at all basepoints π1(M) is finite and at all basepoints πk(B) is
finitely generated for k ≥ 2, then πk(BDiffλ∂ (M; �∂)�) is finitely generated for k ≥ 2.

Proof There is a fibration sequence

Bun∂ (T M, λ∗γ ; �∂)� −→ BDiffλ∂ (M; �∂)� −→ BDiff∂ (M)�,

where Diff∂ (M)� ⊂ Diff∂ (M) is the stabiliser of [�] ∈ π0(Bun(T M, λ∗γ ; �∂)) by the
Diff∂ (M)-action via the derivative, and Bun∂ (T M, λ∗γ ; �∂)� ⊂ Bun∂ (T M, λ∗γ ; �∂)

denotes the path component of �. The base in this fibration has finitely generated higher
homotopy groups by Theorem 6.1, so it suffices to show the same for the fibre. Using
the fibre sequence

Sect∂ (Iso(T M, f ∗λ∗γ )→ M)→ Bun∂ (T M, λ∗γ ; �∂) −→ Map∂ (M, B)
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with homotopy fibre taken over amap f ∈ Map∂ (M, B) (see the proof of Lemma 4.2),
this follows from Lemma 1.14 applied to base and fibre. ��
Remark 6.4 If in addition π1(B) is polycyclic-by-finite and π0(Diff∂ (M)�) is of finite
type, then a similar argument shows that also the space BDiffλ∂ (M; �∂)� and its fun-
damental group are of finite type. This applies for instance when M is closed and
πk(hofib(B → BO(2n)) is finite for 0 ≤ k ≤ 2n, since then π0(Bun(T M, λ∗γ ; �∂)�)

is finite by Lemma 1.14, so π0(Diff(M)�) has finite index in π0(Diff(M)) which has
finite type by Theorem 2.6.

6.3 Homeomorphisms

In order to extend our results to topological groups of homeomorphisms Homeo∂ (M)

in the compact-open topology, we rely on parametrised smoothing theory (see [37,
Essay V]) in the form of a fibration sequence

Sect∂ (E → M)A −→ BDiff∂ (M) −→ BHomeo∂ (M), (33)

for any smooth manifold M of dimension d ≥ 5, where E → M is a fibration with
fibre Top(d)/O(d) equipped with a section, and Sect∂ (E → M)A ⊂ Sect∂ (E → M)

is a certain collection of path components of the relative section space.

Theorem 6.5 Let M be a compact smooth manifold of dimension 2n ≥ 6 such that
at all basepoints π1(M) is finite. Then the groups πk(BHomeo∂ (M)) are finitely
generated for k ≥ 2. Moreover, if ∂M = ∅ then BHomeo(M) and π1(BHomeo(M))

are of finite type.

Proof The space Top(2n)/O(2n) is 1-connected and has finitely generated homotopy
groups for 2n ≥ 6 as a consequence of [43, Corollary D], so Lemma 1.14 implies that
Sect∂ (E → M)A has polycyclic-by-finite fundamental group and finitely generated
homotopy groups at all basepoints. As πk(BDiff∂ (M)) is finitely generated for k ≥ 2
by Theorem 6.1, the long exact sequence induced by (33) implies the first part of the
claim. For the second, it suffices by Proposition 1.9 to show that π0(Homeo(M)) is
of finite type. This holds by Theorem 2.6. ��
Remark 6.6 A version for the higher homotopy groups of spaces of homeomorphisms
with tangential structure can be deduced from Theorem 6.5 similar to the proof of
Theorem 6.3.

6.4 Embedding spaces in all codimensions

Proposition 4.5—proved via embedding calculus—is a finiteness result for spaces of
embeddings of handle codimension at least 3 and Theorem A can be interpreted as a
finiteness result for space of embeddings of handle codimension 0. We now deduce
from the latter a finiteness result for any codimension, which includes Theorem C as
a special case.

We adopt the conventions on embeddings of triads introduced in Sect. 4.1.
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Theorem 6.7 Let M be a smooth compact manifold of dimension 2n ≥ 6 and N ⊂
M a compact triad-pair. If at all basepoints π1(M) and π1(M\N ) are finite, then
πk(Emb∂0(N , M), inc) is finitely generated for k ≥ 2.

Proof We consider the compact triad-pair ν(N ) ⊂ M given by a closed tubular neigh-
borhood ν(N ) ⊂ M where ∂0(ν(N )) is the part of ∂(ν(N )) lying over ∂0N . Restriction
along the inclusion N ⊂ ν(N ) induces a fibration sequence

Sect∂0(Iso(T ν(N ), T M rel T N )→ N )→ Emb∂0(ν(N ), M)→ Emb∂0(N , M) (34)

with homotopyfibre takenover the inclusion,whereSect∂0(Iso(T ν(N ), T M rel T N )→
N ) is the space of sections fixed at ∂0N of the bundle Iso(T ν(N ), T M rel T N )→ N
over N whose fibres are the space of linear isomorphisms Tnν(N )→ TnM that extend
the inclusion TnN ⊂ TnM . Each of these fibres are homotopy equivalent to GLk(R)

where k = codim(N ⊂ M), so it follows from Lemma 1.14 that the fibre in (34)
has finitely generated higher homotopy groups and polycyclic-by-finite fundamental
group at all basepoints. It thus suffices to show that the higher homotopy groups of
Emb∂0(ν(N ), M) based at the inclusion are finitely generated. For this we consider
the fibration sequence induced by restriction

Diff∂ ((M \ ν(N )) ∪ ∂1(ν(N ))) −→ Diff∂ (M) −→ Emb∂0(ν(N ), M)

with homotopy fibre taken over the inclusion. By Theorem 6.1, the groups
πk(Diff∂ (M); id) are finitely generated for k ≥ 1, so it suffices to show that the
same holds for Diff∂ ((M \ ν(N )) ∪ ∂1(ν(N ))). Shrinking the tubular neighborhood,
we see that (M\ν(N )) ∪ ∂1(ν(N )) is homotopy equivalent to M\N , so its funda-
mental group is finite at all basepoints by assumption. The claim now follows from
Theorem 6.1. ��

6.4.1 Some examples

The hypotheses for Theorem C are met in many examples in which Proposition 4.5
does not apply. In the introduction we have an example involving hypersurfaces in
CPn with possibly non-simply connected complement; here are two even more basic
ones:

(i) The complement of the usual inclusion CPn−1 ⊂ CPn is contractible, so Theo-
remC implies that for n ≥ 3, the groupsπk(Emb(CPn−1, CPn), inc) are finitely
generated for k ≥ 2. Furthermore, since the complement of a closure of a tubular
neighborhood of CPn−1 is diffeomorphic to a 2n-disc and π0(Diff∂ (D2n)) is
finite, it also follows that π1(Emb(CPn−1, CPn), inc) is polycyclic-by-finite.

(ii) Similarly, we get that πk(Emb(RP2n−1, RP2n), inc) is finitely generated if k ≥
2 and polycyclic-by-finite if k = 1, provided 2n ≥ 6.

In Example 7.3 below, we will see that Theorem 6.7 can fail in low codimensions if
the assumption on the fundamental group is dropped.
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7 On the limits of Theorems A and C

In this final section, we explain some examples that illustrate that the finiteness con-
dition on the fundamental groups in Theorem A or Theorem C is often necessary.

7.1 Infinite generation in the homotopy groups of diffeomorphism groups

Asmentioned in the introduction, it is known that the homotopy groups of BDiff∂ (M)

need not be finitely generated if the fundamental group is not finite. Perhaps the most
prominent instances of this phenomenon are high-dimensional tori and solid tori:

Example 7.1 (i) For M = T d = ×d S1 with d ≥ 6, Hsiang–Sharpe [35, Theorem
2.5] proved that for k ≤ d, the group πk(BDiff(T d)) is not finitely generated
(see also [31, Theorem 4.1] for the case k = 1). Moreover, they showed that the
groups πk(BDiff(T d−2 × S2)) are not finitely generated for k ≤ d − 2, again
provided that d ≥ 6 [35, Example 3].

(ii) One can show that for every prime p the sum
⊕

N
Z/p injects into π2p−3(BDiff∂

(S1 × Dd−1)) as long as d is sufficiently large with respect to p. For p = 2, this
can be deduced from work of Igusa [36, 8.a.2] and for p > 2 it can be shown by
a combination of pseudoisotopy theory and work of Grunewald–Klein–Macko
[28] (see [17, Section 4] for an explanation of how this goes, and see [13, Theorem
A] for a different approach if d is even).

In addition to specific examples such as tori, there are large classes of manifolds
with infinite fundamental group for which some homotopy group of BDiff(M) is not
finitely generated:

Example 7.2 (i) Hsiang–Sharpe [35, Proposition 2.2 (A)] proved that for any closed
manifold M of dimension d ≥ 6 such that π1(M) contains infinitely many
elements that are not conjugate to their inverses, the group π0(Diff(M)) is not
finitely generated if π1(hAut(M), id) is finitely generated (so for example if at
all basepoints πk(M) is polycyclic-by-finite for k = 1 and finitely generated for
2 ≤ k ≤ d + 1, by Lemma 1.14).

(ii) Once completed, Weiss–Williams’ programme on automorphisms of manifolds
(see [67] for a survey) can be used to generalise Example 7.1 (ii) to show non-
finite generation results for BDiff∂ (M) for many manifolds M , e.g. all high-
dimensional orientable manifolds whose fundamental group surjects onto the
integers. For this kind of manifolds one can show that for any prime p > 2, the
group π2p−3(BDiff∂ (M)) is not finitely generated if the dimension d of M is
sufficiently large compared to p.
Let us outline how this roughly goes: using the composition

D̃iff∂ (S1×Dd−1)
Diff∂ (S1×Dd−1)

ww−−→ �∞(�WhDiff(S1)hC2)
tr−→ �∞(�WhDiff(S1))

of the Weiss–Williams map and the transfer, one sees that the group
π2p−3(̃Diff∂ (S1× Dd−1)/Diff∂ (S1× Dd−1)) injects into π2p−3(�∞(�WhDiff
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(S1)hC2)) for p  d, and after localising away from 2 also into π2p−2(WhDiff

(S1)), which is known to contain a copy of
⊕

N
Z/p (related to Example 7.1

(ii)). Choosing an embedding of S1 × Dd−1 ↪→ M such that S1 × Dd−1 ↪→
M → K (π1(M), 1)→ K (Z, 1) is an equivalence, one then argues that the same
is true for π2p−3(̃Diff∂ (M)/Diff∂ (M)), using the commutative diagram

D̃iff∂ (S1×Dd−1)
Diff∂ (S1×Dd−1) �∞(�WhDiff (S1)) �∞(�WhDiff (K (Z, 1)))

D̃iff∂ (M)
Diff∂ (M)

�∞(�WhDiff (M)) �∞(�WhDiff (K (π1(M), 1)))

tr◦ww �

tr◦ww

whose bottom-right horizontal map is induced by Postnikov truncation. To go
from D̃iff∂ (M)/Diff∂ (M) to BDiff∂ (M) it suffices to show that the composition
D̃iff∂ (M) → D̃iff∂ (M)/Diff∂ (M) → �∞(�WhDiff(K (Z, 1))) is trivial on
higher homotopy groups, which one can do by factoring it over hAut(K (Z, 1)) �
K (Z, 1) � Z

×.

7.2 Infinite generation in the homotopy groups of embedding spaces

We end with an example illustrating that the assumption on π1(M, N ) in Theorem 6.7
is necessary.

Example 7.3 Formanyd ≥ 6, the component of standard inclusion inEmb∂ (Dd−2, Dd)

has some homotopy groups that are not finitely generated. In this case the complement
is homotopy equivalent to S1, so its fundamental group is infinite cyclic.

To see this non-finite generation, one can argue as follows: restricting diffeomor-
phisms of S1 × Dd−1 to a slice ∗ × Dd−1 ⊂ S1 × Dd−1 yields a fibre sequence

Diff∂ (D
d)→ Diff∂ (S

1 × Dd−1)→ Emb∂ (D
d−1, S1 × Dd−1)

withfibre takenover the inclusion.Nowfixapair (k, d) such thatd �= 4, 5, 7 and so that
πk(Diff∂ (S1× Dd−1); id) is not finitely generated (as mentioned in Example 7.1 (ii),
there are many such pairs). Since πk(Diff∂ (Dd); id) is finitely generated for all k ≥ 0
by [43, Theorem A], the group πk(Emb∂ (Dd−1, S1 × Dd−1); inc) cannot be finitely
generated. From this and a variant of the “delooping trick” (cf. [12, p. 23–25]) in
the form of an equivalence Emb∂ (Dd−1, S1 × Dd−1) � �Emb∂ (Dd−2, Dd), one
concludes πk+1(Emb∂ (Dd−2, Dd); inc) is not finitely generated either.
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