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Full list of author information is poses a serious challenge to existing image analysis tools. We develop a method for
available at the end of the article automated segmentation of single fibrils requiring only little user input during the

training process. This is achieved by combining a binary segmentation based on a
convolutional neural network with preprocessing steps to allow for easy manual
generation of training data. Subsequent skeletonization turns the binary
segmentation into a single-object segmentation. Then, we compute properties of
shape and texture of each segmented fibril, including an estimation of the fibril
width. We discuss the composition of the sample based on the distributions of these
computed properties and outline how a classification of fibril morphologies might be
performed using these properties.
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1 Introduction
Endogenous proteins regularly form fibrillary structures which serve important cellular
functions. However, formation of amyloid fibrils, i.e. abnormal protein filaments, gives
raise to a group of diseases, so-called amyloid diseases [4]. Examples include Parkinson’s
or Alzheimer’s disease and systemic amyloidosis. Studying the underlying mechanism in-
cludes the investigation of amyloid fibril samples by cryogenic electron microscopy (cryo-
EM) [19, 23]. As amyloid fibrils are often helically twisted, the resulting 2D images show
objects of periodically varying apparent width. The features regarding geometrical shape
and texture of the fibrils observed in the 2D data contain plenty information about the
underlying 3D structure of the fibrils. Software packages for EM-reconstruction like RE-
LION [12], cryoSPARC [18] or EMAN?2 [26] make use of this information to fully recon-
struct the molecular 3D structure of amyloid fibrils. However, this process involves cum-
bersome hand-picking of fibrils and requires huge computational resources. Thus, for a
fast characterization of a collection of fibrils, a different procedure is needed.

A viable approach to this is the statistical analysis of fibril shapes and textures, which
are directly accessible from 2D image data. In a previous study, we proposed an auto-
mated method for the extraction of so-called cross-over points [29] from 2D data without
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performing an actual segmentation of the entire fibrils. Based on a similar approach, a
method for automated picking of fibril center lines was proposed [27]. While cross-over
points and center lines are helpful tools for further analysis of fibrils, only a full segmenta-
tion allows for characterization by properties of shape and texture, e.g., the mean width or
variance in intensity. To enable the detailed analysis of such properties, we will present an
automated segmentation of fibrils from the cryo-EM images based on the application of
a suitably chosen architecture of convolutional neural networks (CNNs). For high-quality
micrographs where gray-scale thresholding is feasible, viable approaches for binary seg-
mentation exist [25, 30]. When thresholding is infeasible, e.g., due to noise or the inner
structure of fibrils, CNNs provide a promising approach. They have proven successful for
segmentation of image data from various microscopic techniques [8—11]. However, the
cryo-EM data investigated in the present paper poses challenges already for hand-labeling
and further processing. Thus, we propose a preprocessing workflow alleviating many of
these challenges and facilitating easy hand-labeling and processing. The employed kind
of neural networks is typically used for phase-based segmentation, resulting in an image
which distinguishes between fibrils and background, but not between individual fibrils.
For their analysis, it is necessary to perform an additional segmentation step in order to
extract single fibrils from cryo-EM data, where our method operates on the segmentation
provided by the CNN using a skeletonization algorithm to detect and distinguish single
fibrils.

Based on the provided segmentation, we show how to compute various properties of
shape and texture of fibrils. These properties may usually be exploited for the classification
of fibril morphologies.

The rest of this paper is organized as follows. In Sect. 2, materials and methods consid-
ered in the present paper are described. In particular, we describe the two-step segmen-
tation procedure including the employed neural network and skeletonization methods as
well as the properties of shape and texture by which we characterize each fibril. In Sect. 3,
we describe, validate and discuss the results obtained by the segmentation procedure and
provide a description of various properties computed from the segmented fibrils. Finally,
Sect. 4 concludes.

2 Materials and methods

2.1 Sample description and cryo-EM

Previously described, de-novo designed heptapeptide sequence LHLHLRL, with terminal
acetyl and amide groups, was used for fibrillation [21]. The peptide was dissolved in 10 mM
HCl to get 0.6 mM stock solution. This was stored as 20 nL aliquots at —80°C. Fibrillation
was set up using 91 uL of buffer (25 mM Tris pH 8.0, 1 mM ZnCl,) and 9 uL of peptide
stock to get a final peptide concentration of 0.054 mM. This was incubated at room tem-
perature for three days to get the final sample. Sample grids for cryo-EM data collection
were prepared by applying a 3.5 uL aliquot (0.054 mM) to glow-discharged holey carbon
coated grids (400 mesh C-flat 1.2/1.3), blotted with filter paper and plunge-frozen in liquid
ethane using a Vitrobot Mark 3 (Thermo Fisher Scientific).

The grid quality was checked during optimization with a JEM-2100 transmission elec-
tron microscope (JEOL) at 200 kV. The data set analyzed here was acquired using a K2-
Summit detector (Gatan) in counting mode on a Titan Krios transmission electron mi-
croscope (Thermo Fisher Scientific) at 300 kV. Data was collected using 1.04 A pixel size,
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40 frames and a defocus range around —0.8 um to —2.0 um. Movie frames were gain cor-
rected using IMOD [14]. MOTIONCOR?2 [33] was used for motion correction and dose
weighing. Motion corrected images were further used for estimation of the contrast trans-
fer function using getf [31].

The cryo-EM data set used in the presented work consists of 1970 images. From 691
selected images, a total of 1000 fibrils were manually examined to determine the fibril
properties. This was done on the basis of fibril width and cross-over distance which were
measured using the program Fiji [22].

2.2 Binary segmentation

Most sample images contain more than one fibril, among various kinds of artifacts. The
goal of this paper is the development of a procedure for the automated extraction of these
fibrils from 2D cryo-EM images and for the statistical analysis of their shapes and textures.
The first measure towards single-fibril segmentation consists of a binary segmentation
which distinguishes a foreground phase, i.e. fibrils, from the background phase. For this,
aneural network is used which is trained on hand-labeled data. To simplify hand-labeling
and the application of the neural network, we perform a series of preprocessing steps,
visualized in Fig. 1.

In a first step, we scale each image to 25% of its original size, as this drastically reduces
computation time for subsequent processing while still preserving sufficient information
for accurate segmentation. The resulting images have a pixel size of 4.16 A. While down-
scaling reduces noise significantly, we apply a Gaussian smoothing with standard devia-
tion of 2.5 px to further eliminate noise. Some images were taken close to the edge of the
sample container. They show the container wall which we detect by applying a Sobel edge-
detection [13]. After some morphological closing, the detected walls split the image into
an inside and an outside part. Parts of the image outside the detected wall should not be
considered for further analysis and, therefore, are removed from the image. In a final pre-
processing step, we eliminate illumination gradients present in the images by subtracting
a Gaussian filter with standard deviation of 50 px from the image. The Gaussian filter is
computed only within the “inside part” of each image. Further measures are taken to avoid
edge-effects from the Gaussian filter.

For binary segmentation of the resulting image data, various architectures of neural net-

works exist. A common network architecture is a sequence of convolutional and interme-

Figure 1 Preprocessing steps applied to a sample
image. The original image is downscaled and
smoothed (a). Then, the container wall is detected (b)
and removed (c). Finally, illumination gradients are
removed (d)
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diary layers to project the input image into so-called latent space. This representation
is supposed to contain the necessary information to perform the segmentation task for
which the network is trained. To reconstruct the segmented image, transposed convolu-
tions (or de-convolutions) are often used in combination with upsampling layers, resulting
in a full-sized segmentation map. Examples of these networks include the popular U-net
architecture [20] and Xception networks [6]. We use a U-net style adaption of the Xcep-
tion architecture, i.e., a sequence of convolutional layers as described in [6] followed by
upsampling and transposed convolution layers in a similar manner to achieve a full-sized
segmentation map. The implementation was done in Keras/Tensorflow [1] and was based
on [5]. It operates on image patches of size 128 x 128 px. To generate training data, we per-
form hand-labeling of fibrils on the preprocessed images, where the preprocessing steps
simplify this task considerably as contrast is improved and artifacts do not need to be con-
sidered manually. Hand-labeling is done by manually tracing the outline of each fibril and
automatically filling in the rest of the fibril. Ambiguous cases where background is encom-
passed by a loop of overlapping fibrils are resolved by marking the background manually
at any single point within it. The hand-labeled images are then cut into appropriately sized
patches to train the neural network. In total, we used 58 hand-labeled images for training
and 13 hand-labeled images for testing the neural network. Despite the low number of
manually labeled images, a reliable segmentation is achieved.

Applying the trained CNN to the remaining preprocessed images yields grayscale im-
ages where the value of each pixel measures its likeliness to belong to a fibril. By setting a
threshold of 0.5, we obtain a binary image where the true phase corresponds to fibrils as
predicted by the CNN.

2.3 Single fibril segmentation

For statistical analysis, the foreground phase of the binarized images corresponding to the
union set of all fibrils needs to be further segmented into single fibrils. Often, two or more
fibrils cross each other at a single point, rendering analysis of their shape at this point
infeasible. Thus, we resort to segmentation of the foreground phase into straight, non-
overlapping segments of fibrils. To achieve this, we employ a skeletonization and subse-
quent processing of the skeleton to identify these segments as shown in Fig. 2. First, we
apply a dilation with a disk of 10 px radius to the binarized images in order to eliminate
noise-induced artifacts which otherwise would lead to errors in the skeleton. Then, we ap-
ply Zhang’s algorithm [32] which calculates a skeleton of the foreground phase by succes-
sively removing boundary pixels without breaking the connectivity of the object. Similar

Figure 2 Preprocessed image (a) and dilated binary segmentation map (b), obtained from application of the
CNN, which is then skeletonized using Zhang's algorithm (c). Undesirable spurs (short branches) are shown in
red. Pruning deletes these branches and, finally, the skeleton is split into non-branching parts (d). For
visualization purposes all skeletons have been dilated by a few pixels
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Figure 3 By Euclidean distance transform, each pixel
is labeled according to the nearest part of the skeleton
(a). Using this information together with the binary
segmentation map yields individual pieces of
non-overlapping fibrils (b)

to other skeletonization algorithms like, e.g., Lee-thinning [15], the resulting skeleton suf-
fers from undesirable branches which may be induced by surface roughness of the object.
In our case, these spurs need to be removed, because they do not correspond to actual
fibril segments.

To achieve a spur-free skeleton, so-called pruning algorithms are frequently applied,
see e.g. [3]. However, standard pruning algorithms suffer from inconsistencies when two
branches starting from the same point are shorter than a given threshold. These inconsis-
tencies may result in both branches being removed, when one actually belongs to the (long)
main branch, or both branches staying in place. We avoid this by successively removing
the shortest branch/spur of the skeleton as long as it is shorter than a given threshold.
This is achieved by determining branching points and end points of the skeleton using the
hit-and-miss transformation [24] and computing the geodesic distance along each branch
from its end point to the next branching point. Then, the shortest branch is removed from
the skeleton if it is shorter than the given threshold and the process is repeated. Splitting
the pruned skeleton at its branching points, the resulting parts correspond to the fibril
segments of interest. These fibril segments are reconstructed by computing the Euclidean
distance transform with respect to the skeleton segments. In doing so, we memorize the
part of the skeleton to which the distance of a given point is smallest, see Fig. 3. The re-
sulting map identifies the closest skeleton part for each pixel of the fibril. Finally, we rotate
each fibril segment such that its major axis is parallel to the x-axis. As most fibril segments
are fairly straight with no bends, this results in well-defined data for subsequent analysis.

2.4 Properties of shape and texture

For each fibril (i.e., fibril segment), we compute various properties of shape and texture,
where we mask the original grayscale image with the segmented fibril. Then, we apply
a one-dimensional Gaussian filter with standard deviation of 10 px along the major axis
of the fibril to reduce noise and localized artifacts on the fibril. Furthermore, we apply
a masked version of the Gaussian filter to eliminate edge effects. Many fibrils exhibit a
grayscale gradient orthogonal to the major axis where the innermost part of the fibril is
darkest and the outer parts are brighter. This is due to the molecular structure of the fibril
consisting of twisted protofilaments [2]. Note that the one-dimensional Gaussian filter
mostly conserves this gradient while still eliminating noise.

At each position along the major axis of a fibril, we compute the width of the fibril, the
mean gray value and the variance in gray values on a slice orthogonal to the major axis.
For each fibril, this yields three curves as shown in Fig. 4. It turns out that many fibrils
exhibit a periodic pattern in all curves which is due to the helical structure of the fibrils
also seen in the grayscale images. However, the sample seems to comprise different types
of fibrils which also exhibit different patterns in these curves. Furthermore, an established



Weber et al. Journal of Mathematics in Industry (2023) 13:2 Page 6 of 11

7: N/\‘VV\JJ\V\M\/'\/'/‘#\/\
vy
‘W I'UHMMVML'WMMW WW“J’WW ; WMZW"\“:?&MW\J

" "
Wo 200 300 400 600 800 1000

Figure 4 Three examples of segmented fibrils, showing the (rotated) grayscale image of the fibril (top row),
the width of the fibril along its major axis (second row), as well as the mean gray value (third row) and the
variance in gray values (bottom row) at each slice orthogonal to the major axis. Each curve is overlaid with an
fitted sine function shown in red

property of amyloid fibrils is the so-called cross-over distance [2, 16]. Formally, cross-
overs are points on the fibril’s skeleton where the fibril width (in its 2D projection) takes
a local minimum. The distance between these points equals the pitch of the helical fibril
structure. For measuring the cross-over distance, we fit sine functions to the width and
gray values of each fibril. The wavelength of these functions roughly corresponds to the
cross-over distance. By comparing the wavelengths and the fit quality, we can assess the
reliability of the computed cross-over distance and identify fibrils which do not exhibit
Cross-overs.

Thus, for each fibril, we compute a number of scalar properties consisting of their width,
the gray value at the cross-overs, the coefficient of variation of width along the major axis,

and the cross-over distance.

3 Results

3.1 Manual assessment of fibril morphologies

To investigate the possible presence of different fibril morphologies, 1000 fibrils were man-
ually analyzed regarding width and cross-over distance. While the cross-over distance
could not be measured for roughly 40% of the fibrils, the fibril width was obtained for
all analyzed fibril structures. Based on a plot of the cross-over distance versus fibril width
for =~ 60% of the fibrils (Fig. 5) and the histogram of the fibril width for all analyzed fibrils
(Fig. 6), it was not possible to readily subdivide the data set into well-resolved fibril mor-
phologies. Nevertheless, visual analysis of the micrographs appeared to yield similar fibril

morphologies at widths of approximately 5-6, 7-8, 9-10 and 11-12 nm (Fig. 7).

3.2 Segmentation

For the chosen approach to single-fibril segmentation, we note that segmentation quality
can be assessed at various intermediate steps. The most crucial part of the segmentation
procedure is the binary segmentation performed by the CNN, see Sect. 2.2. As we retained
hand-labeled data which was not used for training, we can test the performance of the
CNN segmentation using this data. A well-established measure for the quality of binary

segmentation maps is the Serensen-Dice coefficient y € [0, 1], see [7], which is defined by
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Y=
IT| +1S]



Weber et al. Journal of Mathematics in Industry (2023) 13:2 Page 7 of 11

550

Figure 5 Cryo-EM based measurement of fibril
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Figure 6 Histogram of the distribution of fibril 160
width present in the cryo-EM data set, computed by
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Figure 7 Cryo-EM images of fibril morphologies present in the data set. Scalebar: 50 nm

where |T'N S| is the area of the intersection of ground truth T and segmentation map S and
|T| and |S| are their respective areas. A value of y = 1 corresponds to T = S while a value of
y =0 indicates that no pixel is classified correctly in the segmentation map. Applying the
trained neural network to the retained test data yields a mean Segrensen-Dice coefficient
of y = 0.83, indicating a reliable binary segmentation.

Assuming a sufficiently correct binary segmentation, the remaining steps can be as-
sessed by visual inspection. However, still a possible pitfall is splitting the foreground
phase into single fibril segments. Here, overlapping fibrils might not be split into sepa-
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Figure 8 Sample cutouts with fibril outlines overlaid
on top, where each cutout is rotated such that the
fibril's major axis matches the x-axis: Original
(preprocessed) image (a) and single-fibril
segmentation obtained by applying the CNN and the
skeleton-based method (b)

Figure 9 Scatterplot of manually measured widths
(x-axis) and automatically determined widths
(y-axis). The red line indicates the diagonal.
Histograms of both variables are shown on the
sides

width (automated) [nm]

5 10 15 20 25 30 35
width (manual) [nm]

rate parts or straight fibrils without any overlap might be split into different segments.
While the former would pose serious problems for further analysis and result in unreli-
able data, the latter would be a mere nuisance as we would only loose some information
regarding connectivity. However, our method for single-fibril segmentation aims to avoid

both errors and achieves good results, see Fig. 8. In total, we detected 2334 fibrils.

3.3 Validation

Based on the manually determined fibril widths, we performed further validation of the
segmentation. For 500 of the manually measured fibrils, coordinates on the fibrils were
stored and used to link the manually measured widths to the widths measured on the au-
tomated segmentation. As explained in Sect. 3.1, fibril widths may typically be used to
classify fibril morphologies. Figure 9 shows the measured and automatically determined
widths for all fibrils. The mean width obtained by manual measurement was 124.3 A while
the mean width obtained by automated segmentation was 124.9 A. The median deviation
of manually and automatically measured width was 13.9 A. Note that, as manual mea-
surements were performed on images with a resolution reduced by a factor of 4, this cor-
responds to a difference of only 3.33 px. This result strengthens the proof of reliability

established by computing the Sgrensen-Dice coefficient, sse Sect. 3.2.
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Figure 10 Histograms of various fibril properties. Note that all histograms exhibit a large variance but do not
show clear multi-modal behavior

3.4 Geometric properties of extracted fibrils

As described in Sect. 2.4, we computed several properties for each fibril. They are based
on the width and mean gray values along each fibril, see Fig. 4. Histograms of various
fibril properties are shown in Fig. 10. Note that the histograms of minimum, maximum
and mean width of all fibrils, automatically extracted from image data, show a similar dis-
tribution, which is due to a strong positive correlation between these three properties.
The correlation between minimum and maximum width is 0.76, between mean width
and maximum width 0.97 and between mean width and minimum width 0.88. Properties
based on the gray values which can be obtained from the single-fibril segmentation in-
clude the mean gray value and the variance of the gray value within each fibril. As the gray
values observed in the cryo-EM data are linked to the type of protofilaments and their
arrangement, they might be used as a proxy to determine fibril morphologies. When dif-
ferent morphologies are present in the sample, we would expect a broad variation in both
properties and, more importantly, multi-modal distributions. While we observe a broad
variation, the distributions do not appear to be multi-modal and thus, an appropriate clas-
sification of fibril morphologies based on these histograms is not feasible. This may be due
to heterogeneity in the fibril morphologies. Similarly, a classification based on the proper-
ties derived from fibrils widths fails. In line with the attempt to manually classify different
fibril morphologies (cf. Sect. 3.1, this suggests a high variability of the visual appearance
of fibrils of the same morphology in cryo-EM data. As this heterogeneity is specific to
the present data, a similar approach on other data may yield sufficient information for a
fast classification of fibril morphologies using, e.g., a Gaussian mixture model [17] on any
combination of the computed properties.

3.5 Discussion

The proposed method for automated segmentation of single fibrils leads to visually con-
vincing results which is corroborated by the computed validation measures. Unlike many
previously developed methods, see, e.g., [27, 28], the resulting segmentation does not only
give the fibril center lines or rough outlines but also their precise shapes. While we mainly
use this information to determine the fibril morphologies, further characteristics may be
derived from the segmentation of single fibrils in order to characterize the obtained fibril
morphologies. The methodology developed in the present paper does not use any prelim-
inary classification of short fibril segments, as, e.g., in [18]. This pre-classification leads
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to noise reduction before the final classification of morphologies is performed, which is
beneficial compared to the methodology proposed in the present paper. However, an ad-
vantage of our approach is that it is independent of possible errors occurring at the stage
of pre-classification, see the discussion in Sect. 4 of [18].

As described above, the single-fibril segmentation lends itself to the computation of
various properties of fibrils. When classification of fibril morphologies based on fibrils
widths is feasible, the presented approach may be used to quickly and reliably determine
the fibril widths and thus facilitating a fast classification. However, for the present data
no such classification was possible due to heterogeneity in the fibril morphologies. As a
further application, the single-fibril segmentation may be used as input for tools like, e.g.,
RELION [12] which require center lines or other segmentation-like input.

4 Conclusion

In the present work, we proposed a method for mostly automated segmentation of amy-
loid fibrils from cryo-EM image data. While our method relied on binary segmentation
by a convolutional neural network, preprocessing steps ensured that only little ground-
truth data was needed. Furthermore, manual labeling of the preprocessed image data was
fast and easy. The method yielded a reliable binary segmentation as shown by computing
the Sagrensen-Dice coefficient as well as by visual inspection. Further statistical analysis of
the sample composition required a single-object segmentation achieved by employing a
skeletonization scheme. This resulted in individually segmented fibrils for which we then
computed various properties of shape and texture. In agreement with the attempt to man-
ually classify different fibril morphologies, a high variability of the properties with no clear
multi-modal distribution was observed, rendering an easy classification infeasible. How-
ever, insofar as manually measured values were available, the validation of the computed
properties corroborated the reliability of the proposed method.
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